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THE SLOW REGIME OF RANDOMLY
BIASED WALKS ON TREES1

BY YUEYUN HU AND ZHAN SHI

Université Paris XIII and Université Paris VI

We are interested in the randomly biased random walk on the supercriti-
cal Galton–Watson tree. Our attention is focused on a slow regime when the
biased random walk (Xn) is null recurrent, making a maximal displacement
of order of magnitude (logn)3 in the first n steps. We study the localization
problem of Xn and prove that the quenched law of Xn can be approximated
by a certain invariant probability depending on n and the random environ-
ment. As a consequence, we establish that upon the survival of the system,

|Xn|
(logn)2 converges in law to some non-degenerate limit on (0,∞) whose law

is explicitly computed.

1. Introduction. Let T be a supercritical Galton–Watson tree rooted at ∅, so
it survives with positive probability. For any pair of vertices x and y of T, we
say x ∼ y if x is either a child, or the parent, of y. Let ω := (ω(x), x ∈ T) be a
sequence of vectors; for each vertex x ∈ T, ω(x) := (ω(x, y), y ∈ T) is such that
ω(x, y) ≥ 0 for all y ∈ T and that

∑
y∈T ω(x, y) = 1. We assume that for each pair

of vertices x and y, ω(x, y) > 0 if and only if y ∼ x.
For given ω, let (Xn,n ≥ 0) be a random walk on T with transition probabili-

ties ω, that is, a T-valued Markov chain, started at X0 = ∅, such that

Pω{Xn+1 = y|Xn = x} = ω(x, y).

For any vertex x ∈ T \ {∅}, let
←
x be its parent, and let (x(1), . . . , x(N(x))) be

its children, where N(x) ≥ 0 is the number of children of x. Define A(x) :=
(Ai(x),1 ≤ i ≤ N(x)) by

Ai(x) := ω(x, x(i))

ω(x,
←
x )

, 1 ≤ i ≤ N(x).(1.1)

A special example is when Ai(x) = λ for all x ∈ T \ {∅} and all 1 ≤ i ≤ N(x),
where λ is a finite and positive constant: the random walk (Xn) is then the λ-biased
random walk on T introduced and studied in depth by Lyons [27, 28], Lyons,
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Pemantle and Peres [32, 33]. In particular, if Ai(x) = 1, ∀x, ∀i, we get the simple
random walk on T.

It is known that when the transition probabilities are random—the resulting ran-
dom walk (Xn) is then a random walk in random environment—the walk possesses
a regime of slow movement. We are interested in this slow movement in this paper.

In the language of Neveu [36], (T,ω) is a marked tree. Note that A(x), x ∈
T \ {∅} depends entirely on the marked tree. We assume, from now on, that A(x),
x ∈ T \ {∅}, are i.i.d., and write A = (A1, . . . ,AN) for a generic random vector
having the law of A(x) (for any x ∈ T \ {∅}). We mention that the dimension
N ≥ 0 of A is random, and is governed by the law of reproduction of T. We use
P to denote the probability with respect to the environment, and P := P ⊗ Pω the
annealed probability, that is, P(·) := ∫

Pω(·)P(dω).
Throughout the paper, we assume

E

(
N∑

i=1

Ai

)
= 1, E

(
N∑

i=1

Ai logAi

)
= 0.(1.2)

In the language of branching random walks (see Section 2), (1.2) refers to the
“boundary case;” in this case, the biased walks produce some unusual phenomena
that have still been beyond good understanding. We also assume the following
integrability condition: there exists δ > 0 such that

E

(
N∑

i=1

A1+δ
i

)
+ E

(
N∑

i=1

A−δ
i

)
+ E

(
N1+δ) < ∞.(1.3)

Lyons and Pemantle [30] established a recurrence vs. transience criterion for ran-
dom walks on general trees; applied to the special setting of Galton–Watson trees,
it says that (1.2) ensures that the biased walk (Xn) is P-a.s. recurrent. Menshikov
and Petritis [35] gave another proof of the recurrence by means of Mandelbrot’s
multiplicative cascades, assuming some additional integrability condition. The
proofs of the recurrence in both [30] and [35] required an extra exchangeability as-
sumption on (A1, . . . ,AN), which turned out to be superfluous, and was removed
by Faraud [15], who furthermore proved that (Xn) is null recurrent under (1.2).

Introduced by Lyons and Pemantle [30] as an extension of deterministically
biased walks studied in Lyons [27, 28], randomly biased walks on trees have re-
ceived much research interest. Deep results were obtained by Lyons, Pemantle
and Peres [32] and [33], who also raised further open problems. Often motivated
by these results and problems, both the transient regimes [1, 2] and the recurrent
regimes [6, 7, 15, 16, 18, 19] have been under intensive study for these walks. For
a general account of biased walks on trees, we refer to [26, 37] and [40].

We add a special vertex, denoted by
←
∅, which is the parent of ∅, and as-

sume that (ω(∅, y), |y| = 1 or y = ←
∅) is independent of other random vectors
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(ω(x, y), y ∼ x) for x ∈ T \ {∅}, having the same distribution as any of these ran-
dom vectors; whenever the biased walk (Xi) hits

←
∅, it comes back to ∅ in the next

step. [However,
←
∅ is not considered as a vertex of T; so, for example,

∑
x∈T f (x)

does not contain the term f (
←
∅).] This makes the presentation of our model more

pleasant, since the family of i.i.d. random vectors A(x) also includes the element
A(∅) from now on.

It was proved in [16] that under (1.2) and (1.3), almost surely upon the survival
of the system,

lim
n→∞

1

(logn)3 max
0≤i≤n

|Xi | = 8

3π2σ 2 ,

where

σ 2 := E

(
N∑

i=1

Ai(logAi)
2

)
∈ (0,∞).(1.4)

We are interested in the typical size of |Xn|; a natural question is to find a
deterministic sequence an → ∞ such that |Xn|

an
converges in law to some non-

degenerate limit. In dimension 1 [which would be an informal analogue of the
case N(x) = 1 for all x], the slow movement was discovered by Sinai [41] who
showed that Xn

(logn)2 converges weakly to a non-degenerate limit under the annealed
measure. More precisely, Sinai [41] developed the seminal “method of valley” to
localise the walk around the bottom of a certain Brownian valley with high prob-
ability. This method, however, seems hopeless to be directly adapted to the biased
walk on trees. Observe that in terms of the invariant measure, we can interpret
Sinai’s method of valley as the approximation of the law of the walk by a certain
invariant measure whose mass is concentrated at the neighbourhood of the bottom.
Our main result, stated as Theorem 2.1 below, asserts that upon the survival of the
system, the (quenched) finitely-dimensional distribution of the biased walk can
be approximated by the product measure of some invariant probability measures.
A consequence of this result is that under (1.2) and (1.3), for all x > 0,

lim
n→∞P

(
σ 2|Xn|
(logn)2 ≤ x

∣∣∣survival
)

=
∫ x

0

1

(2πy)1/2 P
(
η ≤ 1

y1/2

)
dy,

where σ is the constant in (1.4), and η := sups∈[0,1][m(s)−m(s)]. Here, (m(s), s ∈
[0,1]) is a standard Brownian meander,2 and m(s) := supu∈[0,s]m(u).

We mention that
∫ ∞

0
1

(2πy)1/2 P(η ≤ 1
y1/2 )dy = 1 because E( 1

η
) = (π

2 )1/2,
see [21].

In the next section, we give a precise statement of Theorem 2.1, as well as an
outline of its proof.

2Recall that the standard Brownian meander can be realised as follows: m(s) := |B(g+s(1−g))|
(1−g)1/2 ,

s ∈ [0,1], where (B(t), t ∈ [0,1]) is a standard Brownian motion, with g := sup{t ≤ 1 : B(t) = 0}.
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2. Random potential, and statement of results. The movement of the biased
random walk (Xn) depends strongly on the random environment ω. It turns out to
be more convenient to quantify the influence of the random environment via the
random potential, which we define by V (∅) := 0 and

V (x) := − ∑
y∈]]∅,x]]

log
ω(

←
y , y)

ω(
←
y ,

⇐
y )

, x ∈ T \ {∅},(2.1)

where
⇐
y is the parent of

←
y , and ]]∅, x]] := [[∅, x]] \ {∅}, with [[∅, x]] denoting

the set of vertices (including x and ∅) on the unique shortest path connecting ∅

to x. Throughout the paper, we use xi (for 0 ≤ i ≤ |x|) to denote the ancestor of x

in the ith generation; in particular, x0 = ∅ and x|x| = x. As such, the potential V

in (2.1) can also be written as

V (x) = −
|x|−1∑
i=0

log
ω(xi, xi+1)

ω(xi, xi−1)
, x ∈ T \ {∅}, (x−1 := ←

∅).

The random potential process (V (x), x ∈ T) is a branching random walk, in the
usual sense of Biggins [9]. There exists an obvious bijection between the random
environment ω and the random potential V .

In terms of the random potential, assumptions (1.2) and (1.3) become, respec-
tively,

E
( ∑

x:|x|=1

e−V (x)

)
= 1, E

( ∑
x:|x|=1

V (x)e−V (x)

)
= 0,(2.2)

and

E
( ∑

x:|x|=1

e−(1+δ)V (x)

)
+ E

( ∑
x:|x|=1

eδV (x)

)
+ E

[( ∑
x:|x|=1

1
)1+δ]

< ∞.(2.3)

We refer from now on to (2.2) or (2.3) instead of to (1.2) or (1.3). In the language
of branching random walks, (2.2) corresponds to the “boundary case” (Biggins and
Kyprianou [12]). The branching random walk in this case is known, under some
additional integrability assumptions, to have some highly non-trivial universality
properties.

We are often interested in properties upon the system’s non-extinction, so let us
introduce

P∗(·) := P(·|non-extinction),

P
∗(·) := P(·|non-extinction).

Let us define a symmetrised version of the potential:

U(x) := V (x) − log
(

1

ω(x,
←
x )

)
, x ∈ T.(2.4)
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We call U the symmetrised potential, and use frequently the following relation
between U and V :

e−U(x) = 1

ω(x,
←
x )

e−V (x) = e−V (x) + ∑
y∈T:←y =x

e−V (y), x ∈ T.(2.5)

We now introduce a pair of fundamental martingales associated with the poten-
tial V . Assumption (2.2) immediately implies that (Wn,n ≥ 0) and (Dn,n ≥ 0)

are martingales under P, where

Wn := ∑
x:|x|=n

e−V (x),(2.6)

Dn := ∑
x:|x|=n

V (x)e−V (x), n ≥ 0.(2.7)

In the literature, (Wn) is referred to as an additive martingale, and (Dn) a deriva-
tive martingale. Since (Wn) is a non-negative martingale, it converges P-a.s. to a
finite limit; under assumption (2.2), this limit is known (Biggins [10], Lyons [29])
to be 0:

Wn → 0, P∗-a.s.(2.8)

[We will see in (4.2) the rate of convergence.] In view of (2.5), this yields

inf
x:|x|=n

U(x) → ∞, P∗-a.s.(2.9)

For the derivative martingale (Dn), it is known (Biggins and Kyprianou [11],
Aïdékon [4]) that (2.3) is “slightly more than” sufficient to ensure that Dn con-
verges P-a.s. to a limit, denoted by D∞, and that

D∞ > 0, P∗-a.s.

For an optimal condition (of L logL-type) for the positivity of D∞, see the recent
work of Chen [14]. The two martingales (Dn) and (Wn) are asymptotically related;
see Section 4.

The basic idea is to add a reflecting barrier at (notation: ]]∅, x[[:=]]∅, x]] \ {x})
Lr :=

{
x : ∑

z∈]]∅,x]]
eV (z)−V (x) > r,

∑
z∈]]∅,y]]

eV (z)−V (y) ≤ r,∀y ∈]]∅, x[[
}
,(2.10)

where r > 1 is a parameter.3 We mention that Lr does not necessarily separate
∅ from infinity: our assumptions (2.2) and (2.3) do not exclude the existence of
r > 1 and a sequence of vertices x0 := ∅ < x1 < x2 · · · with |xi | = i, i ≥ 0, such
that

∑n
i=1 eV (xi)−V (xn) ≤ r for all n ≥ 1.

3That is, each time the biased walk (Xi) hits any vertex x ∈ Lr , it moves back to
←
x in the next

step.
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If r = r(n) := n
(logn)γ

with γ < 1, then we will see from Lemma 5.1 that with
P

∗-probability going to 1 (for n → ∞), the biased walk does not hit any vertex
in Lr in the first n steps.4 As such, it makes no significant difference if we add a
reflecting barrier at Lr . An advantage, with the presence of the reflecting barrier
at Lr , for any r > 1, is that the biased walk becomes positive recurrent under the

quenched probability Pω, and its invariant probability πr is as follows: πr(
←
∅) :=

1
Zr

, and for x ∈ T,

πr(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Zr

e−U(x), if x < Lr ,

1

Zr

e−V (x), if x ∈ Lr ,
(2.11)

where Zr is the normalizing factor:5

Zr := 1 + ∑
x∈T:x<Lr

e−U(x) + ∑
x∈Lr

e−V (x).(2.12)

We extend the definition of πr to the whole tree T by letting πr(x) := 0 if neither
x < Lr nor x ∈ Lr .

Due to the periodicity of the walk (Xi), we divide the tree T into T
(even) and

T
(odd) with

T
(even) := {

x ∈ T : |x| is even
}
, T

(odd) := {
x ∈ T : |x| is odd

}
.

Depending on the parity of n, the law of Xn (starting from ∅) is supported

either by T
(even) or by T

(odd) ∪ {←∅}. Note that πr(T
(even)) = πr(T

(odd) ∪ {←∅}) = 1
2

as πr(·) is the invariant probability measure of a finite Markov chain of period 2.
We define a new probability measure: for any r > 1,

π̃r (·) :=
{

2πr(·)1T(even) (·), if �r� is even,

2πr(·)1
T(odd)∪{←∅}(·), if �r� is odd.(2.13)

For any pair of probability measures μ and ν on T∪{←∅}, we denote by dtv(μ, ν)

the distance in total variation:

dtv(μ, ν) := 1

2

∑
x∈T∪{←∅}

∣∣μ(x) − ν(x)
∣∣.

The main result of the paper is as follows.

4Actually γ < 2 will do the job (by Theorem 2.8). However, in Section 6, when we start prov-
ing our main results, only Lemma 5.1 is available, which says that γ < 1 suffices. The proof of
Theorem 2.8 comes afterwards, in Section 7.

5By x < Lr , we mean
∑

z∈]]∅,y]] eV (z)−V (y) ≤ r for all vertex y ∈]]∅, x]].
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THEOREM 2.1. Assume (2.2) and (2.3). Then

dtv
(
Pω{Xn ∈ •}, π̃n

) → 0, in P∗-probability.

More generally, for any κ ≥ 1 and 0 < t1 < t2 < · · · < tκ ≤ 1,

dtv

(
Pω

{
(X�t1n�, . . . ,X�tκn�) ∈ •}, κ⊗

i=1

π̃tin

)
→ 0, in P∗-probability.

As such, X�tin�, 1 ≤ i ≤ κ , are asymptotically independent under Pω. In partic-
ular, no aging phenomenon is possible in the scale of linear time.

Let us mention that in Theorem 2.1, the dependence of π̃tin on ti is rather weak.
As Lemma 2.2 below shows, dtv(πtin, πn) → 0 in P∗-probability, so asymptoti-
cally, the influence of ti on π̃tin shows up only via the parity of �tin�.

LEMMA 2.2. For any a ≥ 0, as r → ∞,

sup
u∈[r/(log r)a,r]

dtv(πr ,πu) → 0, in P∗-probability.

Theorem 2.1 has the following interesting consequence concerning distance be-
tween Xn and ∅.

COROLLARY 2.3. Assume (2.2) and (2.3). Fix κ ≥ 1 and 0 < t1 < t2 < · · · <
tκ ≤ 1. Under P

∗, σ 2

(logn)2 |X�tin�|, 1 ≤ i ≤ κ , are asymptotically independent and

converge in law to a common non-degenerate limit on (0,∞) whose density is
given by

1

(2πx)1/2 P
(
η ≤ 1

x1/2

)
1{x>0},

where σ 2 ∈ (0,∞) is the constant in (1.4), and η := sups∈[0,1][m(s)−m(s)]. Here,
(m(s), s ∈ [0,1]) is a standard Brownian meander, and m(s) := supu∈[0,s]m(u).

The distribution of η is easily seen to be absolutely continuous (Section 4), and
can be characterised using a result of Lehoczky [25]. For more discussions, see
[21]. Very recently, Pitman [38] has succeeded in determining the law of η using
a relation between the Brownian meander and the Brownian bridge established by
Biane and Yor [8]: η has the Kolmogorov–Smirnov distribution:

P(η ≤ x) =
∞∑

k=−∞
(−1)ke−2k2x2 = (2π)1/2

x

∞∑
j=0

exp
(
−(2j + 1)2π2

8x2

)
, x > 0.

Theorem 2.1 is proved by means of two intermediate estimates, stated below
as Propositions 2.4 and 2.5. The first proposition estimates the local time at the
root ∅, whereas the second concerns the local limit probability of the biased walk.
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For any vertex x ∈ T, let us define

Ln(x) :=
n∑

i=1

1{Xi=x}, n ≥ 1,(2.14)

which is the (site) local time of the biased walk at x.

PROPOSITION 2.4. Assume (2.2) and (2.3). For any ε > 0,

Pω

{∣∣∣∣ Ln(∅)

n/ logn
− σ 2

4D∞
e−U(∅)

∣∣∣∣ > ε

}
→ 0, in P∗-probability.(2.15)

Moreover,

Eω

(
Ln(∅)

n/ logn

)
→ σ 2

4D∞
e−U(∅), in P∗-probability,(2.16)

PROPOSITION 2.5. Assume (2.2) and (2.3). As n → ∞ along even numbers,

(logn)Pω(Xn = ∅) → σ 2

2D∞
e−U(∅), in P∗-probability.

We now say a few words about the proof. It turns out that the partition function
Zr has a simpler expression. Let Lr be as in (2.10). Define

Yr := ∑
x∈T:x≤Lr

e−V (x),(2.17)

with the obvious notation x ≤ Lr meaning x < Lr or x ∈ Lr .

LEMMA 2.6. Let Yr and Zr be as in (2.17) and (2.12), respectively. Then
Zr = 2Yr , for all r > 1.

PROOF. If x ∈ T is such that x < Lr , we have Zrπr(x) = e−U(x) = e−V (x) +∑
y∈T:←y =x

e−V (y). Therefore,∑
x<Lr

Zrπr(x) = ∑
x<Lr

e−V (x) + ∑
x<Lr

∑
y∈T:←y =x

e−V (y)

= ∑
x<Lr

e−V (x) + ∑
y∈T:∅<y≤Lr

e−V (y),

which is
∑

x<Lr
e−V (x) + ∑

y≤Lr
e−V (y) − e−V (∅). Hence∑

x<Lr

Zrπr(x) = 2
∑

x≤Lr

e−V (x) − ∑
x∈Lr

e−V (x) − 1.
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Since π is a probability measure, we have πr(
←
∅)+∑

x<Lr
πr(x)+∑

x∈Lr
πr(x) =

1, so

Zr = Zrπr(
←
∅) + ∑

x<Lr

Zrπr(x) + ∑
x∈Lr

Zrπr(x)

= 1 +
[
2

∑
x≤Lr

e−V (x) − ∑
x∈Lr

e−V (x) − 1
]

+ ∑
x∈Lr

e−V (x),

which is 2
∑

x≤Lr
e−V (x). Lemma 2.6 is proved. �

So Yr is half the partition function under the invariant measure. The following
theorem, which plays an important role in the proof of Proposition 2.4 and Theo-
rem 2.1, describes the asymptotics of Yr .

THEOREM 2.7. Assume (2.2) and (2.3). Let Yr be as in (2.17). We have

lim
r→∞

Yr

log r
= 2

σ 2 D∞, in P∗-probability,

where σ 2 ∈ (0,∞) is the constant in (1.4), and D∞ the P∗-almost sure positive
limit of the derivative martingale (Dn) in (2.7). As a consequence,

lim
r→∞

Zr

log r
= 4

σ 2 D∞,

lim
r→∞(log r)πr(∅) = σ 2

4D∞
e−U(∅), in P∗-probability.

Finally, the following general estimate allows us to justify the presence of a
barrier at Lr .

THEOREM 2.8. Assume (2.2) and (2.3). Let (an) be a deterministic sequence
of positive real numbers such that limn→∞ an

(logn)2 = 0, then

lim
n→∞P

(
n⋃

i=1

{Xi ∈ Lrn}
)

= 0,

where rn := n
an

.

The rest of the paper is organised as follows:

• Section 3, environment: preliminaries on branching random walks.
• Section 4, environment: proof of Theorem 2.7.
• Section 5, biased walk: preliminaries on hitting barriers and local times.
• Section 6, biased walk: proof of Proposition 2.4.
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• Section 7, biased walk: proof of Theorem 2.8.
• Section 8, biased walk: proof of Proposition 2.5.
• Section 9, biased walk: proofs of Lemma 2.2, Theorem 2.1 and Corollary 2.3.

Some comments on the organization are in order. In the next two sections, we
study the behaviour of the random environment, starting in Section 3 by recalling
some known results for branching random walks, and ending in Section 4 with
the proof of Theorem 2.7. The biased walk (Xn) comes into picture in the last
five sections. In Section 5, we collect a couple of useful results about hitting lines
and local times for the biased walk. The proof of Proposition 2.4, which is the
most technical part of the paper, is presented in Section 6. Once Proposition 2.4 is
established, we use it to deduce Theorem 2.8 in Section 7, and Proposition 2.5 in
Section 8. Finally, Theorem 2.1 and Corollary 2.3 (together with Lemma 2.2) are
proved in Section 9.

Throughout the paper, for any pair of vertices x and y, we write x < y or y > x

if y is a (strict) descendant of x, and x ≤ y or y ≥ x if either y > x, or y = x.

3. Environment: Preliminaries on branching random walks. We recall, in
this section, some known results in the literature for branching random walks, and
deduce a few useful consequences.

Under assumption (2.2), there exists a sequence of i.i.d. real-valued random
variables (Si − Si−1, i ≥ 0), with S0 = 0, such that for any n ≥ 1 and any Borel
function g : Rn →R+,

E
[ ∑
x∈T:|x|=n

g
(
V (xi),1 ≤ i ≤ n

)] = E
[
eSng(Si,1 ≤ i ≤ n)

]
,(3.1)

where, for any vertex x ∈ T, xi (0 ≤ i ≤ n) denotes, as before, the ancestor of x in
the ith generation. As such, V (x0),V (x1), . . . , V (xn) (for |x| = n) are the values
of the potential V alongs the branch [[∅, x]].

Formula (3.1), often referred to as the “many-to-one formula,” is easily checked
by induction on n. However, the appearance of the new, one-dimensional random
walk (Si, i ≥ 0) has a deep meaning in terms of the so-called spinal decomposition
via a change of probabilities. The idea of change of probabilities in the study of
spatial branching processes has a long history, going back at least to Kahane and
Peyrière [23] and to Bingham and Doney [13], and has led to various forms of the
spinal decomposition. Since Lyons, Pemantle and Peres [31], it reaches a standard
way of presentation. In our paper, we do not need any deep applications of the
spinal decomposition, so we stay with the original probability P without making
any change of probabilities, even though we do need a “bivariate” version of (3.1):

E
[ ∑
x∈T:|x|=n

g
(
V (xi),�(xi−1),1 ≤ i ≤ n

)]
(3.2)

= E
[
eSng(Si, �̃i−1,1 ≤ i ≤ n)

]
,
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where, on the left-hand side of (3.2), we define

�(x) := ∑
y:←y =x

e−[V (y)−V (x)], x ∈ T,(3.3)

and on the right-hand side of (3.2), (�̃i, i ≥ 0) is such that (Si − Si−1, �̃i−1),
i ≥ 1, are i.i.d. random vectors whose law is characterised by

E
[
h(S1, �̃0)

] = E
[ ∑
x∈T:|x|=1

e−V (x)h
(
V (x),�(∅)

)]
,(3.4)

for any Borel function h : R2 → R+. The last equality follows, obviously,
from (3.2) by taking n = 1 there. Note that by definition, �(∅) = ∑

x:|x|=1 e−V (x).
In particular, an application of the Hölder inequality, using assumption (2.3),

yields the existence of δ1 > 0 such that

E
[
(�̃0)

δ1
] =

[( ∑
x:|x|=1

e−V (x)

)1+δ1]
< ∞.(3.5)

These are known facts about the spinal decomposition. For a proof of (3.2),
see [20].

We now deduce several simple but useful results. The first allows us to include
the random variable �(x) in the bivariate many-to-one formula (3.2). The second
takes care of summation over all vertices on the stopping line Lr instead of on a
given generation, which leads to the third which is also the main estimate in this
section.

LEMMA 3.1. Assume (2.2). Let �(x) be as in (3.3). For any n ≥ 1 and any
Borel function f :R2n+1 →R+, we have

E
[ ∑
x∈T:|x|=n

f
(
V (xi),�(xi−1),1 ≤ i ≤ n,�(x)

)]

= E
[
eSnF (Si, �̃i−1,1 ≤ i ≤ n)

]
,

where (Si − Si−1, �̃i−1), i ≥ 1, are i.i.d. whose common distribution is given
in (3.4), and

F(ai, bi−1,1 ≤ i ≤ n) := E
[
f

(
ai, bi−1,1 ≤ i ≤ n,

∑
x∈T:|x|=1

e−V (x)

)]
.(3.6)

In particular, if g :Rn+1 →R+ is a Borel function, then

E
[ ∑
x∈T:|x|=n

g
(
V (x1), . . . , V (xn),�(x)

)] = E
[
eSnG(S1, . . . , Sn)

]
,

where G(a1, . . . , an) := E[g(a1, . . . , an,
∑

x∈T:|x|=1 e−V (x))].



3904 Y. HU AND Z. SHI

PROOF. Let Fn := σ(x,V (x), x ∈ T, |x| ≤ n), the σ -field generated by the
branching random walk in the first n generations. By definition, for |x| = n, �(x)

is independent of Fn, so

E
[ ∑
x∈T:|x|=n

f
(
V (xi),�(xi−1),1 ≤ i ≤ n,�(x)

)∣∣∣Fn

]

= ∑
x∈T:|x|=n

F
(
V (xi),�(xi−1),1 ≤ i ≤ n

)
,

where F is given by (3.6). Taking expectation with respect to P on both sides, and
using the bivariate many-to-one formula (3.2), we obtain the lemma. �

LEMMA 3.2. Assume (2.2). Let E1,E2, . . . be Borel subsets of R. Let r > 1
and let Lr be as in (2.10). Then

E
( ∑

x∈Lr

e−V (x)1{V (xi)∈Ei,1≤i≤|x|}
)

= P
(
Si ∈ Ei,1 ≤ i ≤ T (S)

r

)
,(3.7)

where T
(S)
r := inf{i ≥ 1 : ∑i

j=1 eSj−Si > r}.
PROOF. We write∑
x∈Lr

e−V (x)1{V (xi)∈Ei,1≤i≤|x|} =
∞∑

k=1

∑
x:|x|=k

e−V (x)1{x∈Lr }1{V (xi)∈Ei,1≤i≤k}.

Obviously, {x ∈ Lr} = {∑z∈]]∅,x]] eV (z)−V (x) > r,
∑

z∈]]∅,v]] eV (z)−V (v) ≤ r,∀v ∈
]]∅, x[[}. We take expectation with respect to P on both sides. By the many-to-one
formula (3.1),

E
( ∑

x∈Lr

e−V (x)1{V (xi)∈Ei,1≤i≤|x|}
)

=
∞∑

k=1

P
(
T (S)

r = k, Si ∈ Ei,1 ≤ i ≤ k
)
,

which is P(Si ∈ Ei,1 ≤ i ≤ T
(S)
r ). �

REMARK 3.3. Let Yr := ∑
x≤Lr

e−V (x) = 1 + ∑∞
k=1

∑
x:|x|=k e−V (x)1{x≤Lr }

as in (2.17). Since x ≤ Lr means
∑

z∈]]∅,v]] eV (z)−V (v) ≤ r for all v ∈]]∅,
←
x [[ (the

inequality considered as holding trivially if |x| = 1), the proof of Lemma 3.2 yields

E(Yr) = 1 + E
(
T (S)

r

) ≤ 1 + E
[
inf

{
i ≥ 1 : max

1≤j≤i
Sj − Si > log r

}]
.

It is easy to check (for a detailed proof, see [20]) that E[inf{i ≥ 1 : max1≤j≤i Sj −
Si > u}] is bounded by c1u

2 for some constant c1 > 0 and all u ≥ 1. Hence, there
exists c2 > 0 such that

E(Yr) ≤ c2(log r)2, r ≥ 2.(3.8)
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We are going to use (3.8) in Section 6, in the proof of Proposition 2.4.
Although we do not need it in the present paper, an elementary argument shows

that E(Yr )

(log r)2 is bounded also from below.

We now present the main probabilistic estimate of the section.

LEMMA 3.4. Assume (2.2) and (2.3). The laws of (log r)
∑

x∈Lr
e−V (x) under

P∗, for r ≥ 1, are tight.
In particular, for any a < 1, (log r)a

∑
x∈Lr

e−V (x) → 0, r → ∞, in P∗-
probability.

PROOF. Let ε > 0. Our assumption ensures infx:|x|=n V (x) → ∞ (for n →
∞) P∗-a.s. [see (2.9)]; so we can choose and fix a constant α > 0 such that

P∗( inf
x∈TV (x) ≥ −α

)
≥ 1 − ε.(3.9)

For any x ∈ T, write

V (x) := min
y∈[[∅,x]]V (y).

By Lemma 3.2,

E
( ∑

x∈Lr

e−V (x)1{V (x)≥−α}
)

= P(S
T

(S)
r

≥ −α),(3.10)

where T
(S)
r := inf{i ≥ 1 : ∑i

j=1 eSj−Si > r}, and Si := min0≤j≤i Sj .

Let H(1
2 log r) := inf{i ≥ 1 : Si > 1

2 log r}. We have

P(S
T

(S)
r

≥ −α) ≤ P
(
T (S)

r < H
(1

2 log r
)
, S

T
(S)
r

≥ −α
) + P(SH(1/2 log r) ≥ −α).

We bound the two probability expressions on the right-hand side. For
P(SH(1/2 log r) ≥ −α), we write H−(−α) := inf{i ≥ 1 : Si < −α}, to see that for
some constant c3 > 0,

P(SH(1/2 log r) ≥ −α) = P
{
H

(
1

2
log r

)
< H−(−α)

}
≤ c3α

1/2 log r + α
.

(For the last inequality, which is elementary, see for example Aïdékon [3] under the
assumption of existence of exponential moments of S1.) Hence P(SH(1/2 log r) ≥
−α) ≤ 2c3α

log r
. Accordingly,

P(S
T

(S)
r

≥ −α) ≤ P
(
T (S)

r < H

(
1

2
log r

)
, S

T
(S)
r

≥ −α

)
+ 2c3α

log r
.(3.11)

To deal with P(T
(S)
r < H(1

2 log r), S
T

(S)
r

≥ −α), we note that by definition of

T
(S)
r , r <

∑T
(S)
r

j=1 e
Sj−S

T
(S)
r , which, on the event {T (S)

r < H(1
2 log r), S

T
(S)
r

≥ −α}, is
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bounded by
∑T

(S)
r

j=1 eSj+α ≤ ∑H(1/2 log r)−1
j=1 e(1/2 log r)+α ≤ r1/2eαH(1

2 log r). Con-
sequently,

P
(
T (S)

r < H
(1

2 log r
)
, S

T
(S)
r

≥ −α
) ≤ P

(
H

(1
2 log r

)
> r1/2e−α).

By Kozlov [24], P{H(1
2 log r) > r1/2e−α} ≤ c4

eα/2 log r

r1/4 for some constant c4 > 0
and all n ≥ 2. Going back to (3.11) and having (3.10) in mind, we obtain

E
( ∑

x∈Lr

e−V (x)1{V (x)≥−α}
)

≤ c4
eα/2 log r

r1/4 + 2c3α

log r
.

In view of (3.9), and since ε > 0 can be as small as possible, Lemma 3.4 follows
readily. �

4. Environment: Proof of Theorem 2.7. This section is mainly devoted to
the proof of Theorem 2.7, but also prepares a few useful estimates for the forth-
coming sections. The material in this section concerns only the environment (thus
the potential V and the symmetrised potential U ); no discussion on the movement
of the biased walk (Xi) is involved.

Let Wn := ∑
|x|=n e−V (x), n ≥ 0, be the additive martingale as in (2.6). Consider

also, for n ≥ 0 and λ > 0,

W(λ)
n := ∑

|x|=n

e−V (x)1{maxy∈]]∅,x]][V (y)−V (y)]≤λ},(4.1)

where

V (y) := max
z∈[[∅,y]]V (z).

We mentioned earlier in (2.8) that under assumption (2.2), we have Wn → 0 P∗-
a.s. The rate of decay of Wn is known: according to [5], under (2.2) and (2.3), we
have

lim
n→∞n1/2Wn =

(
2

πσ 2

)1/2

D∞, in P∗-probability.(4.2)

The asymptotics of W
(λ)
n are also studied: according to Madaule [34], for any

a ≥ 0,

lim
n→∞

W
(n1/2a)
n

Wn

= P
(
η <

a

σ

)
, in P∗-probability,

where η := sups∈[0,1][m(s) −m(s)], with m(s) := supu∈[0,s]m(u), and (m(s), s ∈
[0,1]) denoting as before a standard Brownian meander. In view of (4.2), this is
equivalent to saying the following convergence in P∗-probability:

lim
n→∞n1/2W(n1/2a)

n =
(

2

πσ 2

)1/2

D∞P
(
η <

a

σ

)
.(4.3)

This holds for any given a ≥ 0.
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By the absolute continuation relation between the Brownian meander m and
the three-dimensional Bessel process R (see [22]), we know that the law of
η := sups∈[0,1][m(s) − m(s)] is absolutely continuous with respect to the law of
sups∈[0,1][R(s) − R(s)]. The latter is atomless because R is an h-transform (in
the sense of Doob) of Brownian motion. As a consequence, a �→ P(η < a

σ
) is

continuous on R. On the other hand, both a �→ W
(n1/2a)
n and a �→ P(η < a

σ
) are

non-decreasing. It follows that (4.3) holds uniformly (in a ≥ 0) in the following
sense: for any ε > 0,

lim
n→∞ P∗

{
sup
a≥0

∣∣∣∣n1/2W(n1/2a)
n −

(
2

πσ 2

)1/2

D∞P
(
η <

a

σ

)∣∣∣∣ ≥ ε

}
= 0.(4.4)

We now state a lemma.

LEMMA 4.1. We have

lim
λ→∞

1

λ

∞∑
k=1

W
(λ)
k = 2

σ 2 D∞, in P∗-probability.(4.5)

PROOF. We first argue that in
∑∞

k=1 W
(λ)
k , only those k that are comparable to

λ2 make a significant contribution to the sum. More precisely, we claim that for
any ε1 > 0,

lim
b→0

lim sup
λ→∞

P∗
{

1

λ

�bλ2�∑
k=1

W
(λ)
k ≥ ε1

}
= 0,(4.6)

lim
B→∞ lim sup

λ→∞
P∗

{
1

λ

∞∑
k=�Bλ2�

W
(λ)
k ≥ ε1

}
= 0.(4.7)

To prove (4.6) and (4.7), let ε > 0 and fix α ≥ 0 as in (3.9), that is, such that

P∗{ inf
x∈TV (x) ≥ −α

}
≥ 1 − ε.(3.9)

Consider the truncated version of W
(λ)
k defined by

W
(λ,α)
k := ∑

|x|=k

e−V (x)1{maxy∈]]∅,x]][V (y)−V (y)]≤λ}1{V (x)≥−α},

where V (x) := minz∈[[∅,x]] V (z) as before. Clearly, on the set {infx∈T V (x) ≥ −α},
W

(λ,α)
k = W

(λ)
k for all k ≥ 1.

By the many-to-one formula in (3.1),

E
(
W

(λ,α)
k

) = P
{

max
0≤j≤k

(Sj − Sj ) ≤ λ,Sk ≥ −α
}
,(4.8)

where Sj := max0≤i≤j Si and Sj := min0≤i≤j Si .
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The proof of (4.6) is easy: we have E(W
(λ,α)
k ) ≤ P{Sk ≥ −α}, which is bounded

by c5
k1/2 for some constant c5 (depending on α) and all k ≥ 1 (see Kozlov [24]);

hence

1

λ
E

(�bλ2�∑
k=1

W
(λ,α)
k

)
≤ 1

λ

�bλ2�∑
k=1

c5

k1/2 ,

which goes to 0 when λ → ∞ and then b → 0. This readily yields (4.6).
To prove (4.7), we use (4.8), and apply the Markov property at time k

2 (treating
it as an integer by dropping the symbol of the integer part), to see that

E
(
W

(λ,α)
k

) ≤ P
{
Sk/2 ≥ −α, max

k/2≤j≤k
(Sj − Sj ) ≤ λ

}
≤ P{Sk/2 ≥ −α} × P

{
max

0≤j≤k/2
(Sj − Sj ) ≤ λ

}
.

Again, P{Sk/2 ≥ −α} ≤ c5
(k/2)1/2 , whereas P{max0≤j≤k/2(Sj − Sj ) ≤ λ} can be

estimated as follows: by the Markov property, P{max0≤j≤k/2(Sj − Sj ) ≤ λ} ≤
[P{max0≤j≤�λ2�(Sj − Sj ) ≤ λ}]�k/(2�λ2�)�. By Donsker’s theorem, there exists a
constant 0 < c6 < 1 such that P{max0≤j≤�λ2�(Sj − Sj ) ≤ λ} ≤ 1 − c6 for all
sufficiently large λ (say λ ≥ λ0) which yields P{max0≤j≤k/2(Sj − Sj ) ≤ λ} ≤
(1 − c6)

�k/(2�λ2�)�, ∀λ ≥ λ0. Hence, for λ ≥ λ0 and k ≥ 1,

E
(
W

(λ,α)
k

) ≤ c5

(k/2)1/2 (1 − c6)
�k/(2�λ2�)�

from which it follows that

lim
B→∞ lim sup

λ→∞
1

λ
E

{ ∞∑
k=�Bλ2�

W
(λ,α)
k

}
= 0.

Since ε > 0 in (3.9) can be as small as possible, this implies (4.7).
Now that (4.6) and (4.7) are justified, we are ready for the proof of Lemma 4.1.

Fix B > b > 0. By (4.4), for λ → ∞,

1

λ

�Bλ2�∑
k=�bλ2�

W
(λ)
k = 1

λ

(
2

πσ 2

)1/2

D∞
�Bλ2�∑

k=�bλ2�

1

k1/2 P
(
η <

λ

σk1/2

)
+ oP∗(1),

where oP∗(1) denotes a term satisfying limλ→∞ oP∗(1) = 0 in P∗-probability
(whose value may vary from line to line). On the other hand, by Fubini’s theo-
rem,

1

λ

∫ Bλ2

bλ2

1

u1/2 P
(
η <

λ

σu1/2

)
du = 1

λ
E
[∫ (Bλ2)∧λ2/(σ 2η2)

bλ2

du

u1/2 1{η<1/(σb1/2)}
]

= 2E
[((

B1/2 ∧ 1

ση

)
− b1/2

)
1{η<1/(σb1/2)}

]
.
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Since η is atomless, this yields

1

λ

�Bλ2�∑
k=�bλ2�

W
(λ)
k

=
(

8

πσ 2

)1/2

D∞E
[((

B1/2 ∧ 1

ση

)
− b1/2

)
1{η<1/(σb1/2)}

]
(4.9)

+ oP∗(1).

Note that E[((B1/2 ∧ 1
ση

) − b1/2)1{η<1/(σb1/2)}] → E[ 1
ση

] when B → ∞ and b →
0. In view of (4.6) and (4.7), we see that when λ → ∞,

1

λ

∞∑
k=1

W
(λ)
k →

(
8

πσ 2

)1/2

D∞E
[

1

ση

]
, in P∗-probability.

By [21], E( 1
η
) = (π

2 )1/2, which yields Lemma 4.1. �

We now have all the ingredients for the proof of Theorem 2.7.

PROOF OF THEOREM 2.7. By definition,

Yr = ∑
x∈T

e−V (x)1{x<Lr } + ∑
x∈Lr

e−V (x).

We already know (Lemma 3.4) that
∑

x∈Lr
e−V (x) → 0 in P∗-probability. So it

remains to check that

lim
r→∞

1

log r

∑
x∈T

e−V (x)1{x<Lr } = 2

σ 2 D∞, in P∗-probability.(4.10)

By definition, {x < Lr} means
∑

z∈]]∅,y]] eV (z)−V (y) ≤ r , ∀y ∈]]∅, x]]. So∑
x∈T

e−V (x)1{x<Lr }

=
∞∑

k=0

∑
x:|x|=k

e−V (x)1{∑z∈]]∅,y]] eV (z)−V (y)≤r,∀y∈]]∅,x]]}
(4.11)

≤
∞∑

k=0

∑
x:|x|=k

e−V (x)1{maxy∈]]∅,x]][V (y)−V (y)]≤log r}

=
∞∑

k=0

W
(log r)
k .
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A similar lower bound holds as well: we fix an arbitrary positive real number
B > 0, ∑

x∈T
e−V (x)1{x<Lr }

≥
�B(log r)2�∑

k=0

∑
x:|x|=k

e−V (x)1{maxy∈]]∅,x]][V (y)−V (y)]≤log(r/B(log r)2)}(4.12)

=
�B(log r)2�∑

k=0

W
(log(r/B(log r)2))
k .

Applying Lemma 4.1 and (4.7), and noting that limr→∞ log(r/B(log r)2)
log r

= 1, we
obtain that under P∗,

lim
r→∞

1

log r

∑
x∈T

e−V (x)1{x<Lr } = 2

σ 2 D∞, in probability.

Theorem 2.7 is proved. �

REMARK 4.2. The proof of the upper bound in Theorem 2.7, combined
with (4.7), tells us that for any ε > 0,

lim
B→∞ lim sup

r→∞
P∗

{
1

log r

∑
x∈T:|x|≥B(log r)2,x≤Lr

e−V (x) ≥ ε

}
= 0.(4.13)

We are entitled to sum over x ≤ Lr instead of over x < Lr because∑
x∈Lr

e−V (x) → 0 in P∗-probability (Lemma 3.4); (4.13) will be useful in Sec-
tion 6.

5. Biased walks: Preliminaries on hitting barriers and local times. In this
section, we collect two preliminary results for the biased walk (Xi). The first is a
weaker version of Theorem 2.8, and the second concerns the covariance of edge
local times. For the sake of clarity, we present them is two distinct subsections.

5.1. Hitting reflecting barriers. This subsection is devoted to a weaker version
of Theorem 2.8, stated as follows. The proof of Theorem 2.8 comes much later, in
Section 7.

LEMMA 5.1. Assume (2.2) and (2.3). If r = r(n) := n
(logn)γ

with γ < 1, then

lim
n→∞P

(
n⋃

i=1

{Xi ∈ Lr}
)

= 0,

where Lr is as in (2.10).
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PROOF. Define

Tx := inf{i ≥ 0 : Xi = x}, x ∈ T,(5.1)

T +
∅

:= inf{i ≥ 1 : Xi = ∅}.(5.2)

In words, Tx is the first hitting time at x by the biased walk, whereas T +
∅ is the first

return time to the root ∅.
Let x ∈ T \ {∅}. The probability Pω(Tx < T +

∅ ) only involves a one-dimensional
random walk in random environment [namely, the restriction at [[∅, x[[ of the bi-
ased walk (Xi)], so a standard result for one-dimensional random walks in random
environment (Golosov [17]) tells us that

Pω

(
Tx < T +

∅

) = ω(∅, x1)eV (x1)∑
z∈]]∅,x]] eV (z)

= ω(∅,
←
∅)∑

z∈]]∅,x]] eV (z)
,(5.3)

where x1 is the ancestor of x in the first generation.
Define T

(0)
∅ := 0 and inductively T

(k)
∅ := inf{i > T

(k−1)
∅ : Xi = ∅}, k ≥ 1. In

words, T
(k)
∅ is the kth return time of the biased walk (Xi) to the root ∅. (In partic-

ular, T
(1)
∅ = T +

∅ .) For n ≥ 1, we have

Pω(Tx ≤ n) =
∞∑

k=0

Pω

[
Tx ≤ n,T

(k)
∅ ≤ Tx < T

(k+1)
∅

]

=
∞∑

k=0

Eω

[
1{T (k)

∅
≤n}Pω(Tx < T∅, Tx ≤ n − j)|

j :=T
(k)
∅

]

≤
∞∑

k=0

Eω

[
1{T (k)

∅
≤n}Pω

(
Tx < T +

∅

)]
= Pω

(
Tx < T +

∅

)
Eω

(
Ln(∅) + 1

)
,

where Ln(∅) := ∑n
i=1 1{Xi=∅} is the local time at ∅. By (5.3), we get

Pω(Tx ≤ n) ≤ Eω(Ln(∅) + 1)∑
z∈]]∅,x]] eV (z)

.

Let r > 1, and let Lr be as in (2.10). We have

Pω

(
n⋃

i=1

{Xi ∈ Lr}
)

≤ ∑
x∈Lr

Pω(Tx ≤ n) ≤ Eω

(
Ln(∅) + 1

) ∑
x∈Lr

1∑
z∈]]∅,x]] eV (z)

.

By definition of Lr , 1∑
z∈]]∅,x]] eV (z) ≤ 1

r
e−V (x) for x ∈ Lr ; hence

Pω

(
n⋃

i=1

{Xi ∈ Lr}
)

≤ Eω(Ln(∅) + 1)

r

∑
x∈Lr

e−V (x).(5.4)
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We use the trivial inequality Ln(∅) ≤ n, so Eω(Ln(∅)) ≤ n. We now take
r = r(n) := n

(logn)γ
. With this choice of r , Lemma 3.4 tells us that if γ < 1, then

(logn)γ
∑

x∈Lr
e−V (x) → 0 in P∗-probability. This yields Lemma 5.1. �

5.2. Covariance for edge local times of biased walks. In the proof of Propo-
sition 2.4 in Section 6, we are going to estimate the covariance of local time of
the biased walk (Xi). It turns out to be more convenient to deal with covariance
of edge local time instead of site local time. More precisely, for any k ≥ 1 and any
vertex x ∈ T \ {∅}, let us define the edge local time

Lk(x) :=
k∑

i=1

1{Xi−1=←
x ,Xi=x},(5.5)

which is the number of passages of the walk (Xi), in the first k steps, on the
oriented edge from

←
x to x. We are interested in the (edge) local time during an

excursion away from ∅.
Notation: x ∧ y is the youngest common ancestor of x and y (or, equivalently,

the unique vertex satisfying [[∅, x ∧ y]] = [[∅, x]] ∩ [[∅, y]]).

LEMMA 5.2. Let T +
∅ := inf{i ≥ 1 : Xi = ∅} denote the first return to the root

∅ as in (5.2).

(i) We have, for x �= y ∈ T,

Covω

[
LT +

∅

(x),LT +
∅

(y)
]

(5.6)
≤ 2e−[V (x)−V (x∧y)]−[V (y)−V (x∧y)]Eω

[
LT +

∅

(x ∧ y)2],
where Covω stands for covariance under the quenched probability Pω.

(ii) We have, for x ∈ T \ {∅},
Eω

[
LT +

∅

(x)
] = ω(∅,

←
∅)e−V (x).(5.7)

Eω

[
LT +

∅

(x)2] = ω(∅,
←
∅)e−V (x)

(
2

∑
y∈]]∅,x]]

eV (y)−V (x) − 1
)
.(5.8)

PROOF. (i) We use the following elementary identity: for any pairs of random
variables ξ1 and ξ2 defined on a probability space (�,F ,P), having finite second
moments, and any σ -field G ⊂ F , we have

Cov(ξ1, ξ2) = E
[
CovG (ξ1, ξ2)

] + Cov
[
E(ξ1|G ),E(ξ2|G )

]
,(5.9)

where CovG (ξ1, ξ2) := E(ξ1ξ2|G )−E(ξ1|G )E(ξ2|G ) is the conditional covariance
of ξ1 and ξ2 given G .

We first treat the case that neither of x and y is an ancestor of the other.
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We write u = u(x, y) := x ∧y for brevity, and let x|u|+1 and y|u|+1 be the ances-
tor, at generation |u| + 1, of x and y respectively. By definition of x ∧ y, the ver-
tices x|u|+1 and y|u|+1 are distinct children of u. Conditionally on LT +

∅

(x|u|+1) and

LT +
∅

(y|u|+1), the edge local times LT +
∅

(x) and LT +
∅

(y) are independent. We ap-

ply (5.9) to ξ1 := LT +
∅

(x), ξ2 := LT +
∅

(y) and G := σ(LT +
∅

(x|u|+1),LT +
∅

(y|u|+1)),

the σ -field generated by the edge local times LT +
∅

(x|u|+1) and LT +
∅

(y|u|+1). Since
the conditional covariance vanishes, (5.9) gives that

Covω

[
LT +

∅

(x),LT +
∅

(y)
] = Covω

[
Eω

(
LT +

∅

(x)|G )
,Eω

(
LT +

∅

(y)|G )]
,(5.10)

with G := σ(LT +
∅

(x|u|+1),LT +
∅

(y|u|+1)). Let us compute Eω(LT +
∅

(x)|G ), which

is nothing else but Eω(LT +
∅

(x)|LT +
∅

(x|u|+1)). Write |x| =: j > i := |u|. Then

for any k ∈ (i, j) ∩ Z, and given LT +
∅

(xk) = � ≥ 1, LT +
∅

(xk+1) has the law

of
∑�

m=1 Gm, where Gm, m ≥ 1, are i.i.d. geometric random variables with

parameter pk := ω(xk,xk−1)
ω(xk,xk+1)+ω(xk,xk−1)

[i.e., Gm takes value r with probability

(1 − pk)
rpk for all non-negative integer r]. Since Gm has mean 1−pk

pk
, we have

Eω(LT +
∅

(xk+1)|LT +
∅

(xk)) = LT +
∅

(xk)
1−pk

pk
= LT +

∅

(xk)e−[V (xk+1)−V (xk)]. As a con-

sequence, we deduce from the Markov property of k → LT +
∅

(xk) (under Pω) that

Eω

(
LT +

∅

(x)|LT +
∅

(x|u|+1)
) = LT +

∅

(x|u|+1)

j−1∏
k=i+1

e−[V (xk+1)−V (xk)]

= LT +
∅

(x|u|+1)e
−[V (x)−V (x|u|+1)].

Similarly, Eω(LT +
∅

(y)|LT +
∅

(y|u|+1)) = LT +
∅

(y|u|+1)e−[V (y)−V (y|u|+1)]. Going back
to (5.10), this leads to

Covω

[
LT +

∅

(x),LT +
∅

(y)
]

(5.11)
= e−[V (x)−V (x|u|+1)]−[V (y)−V (y|u|+1)] Covω

[
LT +

∅

(x|u|+1),LT +
∅

(y|u|+1)
]
.

To compute the covariance on the right-hand side, we write (u(1), . . . , u(N(u)))

for the children of u [among which are x|u|+1 and y|u|+1; so N(u) ≥ 2],
and observe that conditionally on LT +

∅

(u) = � ≥ 1, the law of the random

vector (LT +
∅

(u(k)),1 ≤ k ≤ N(u)) under Pω is multinomial with parameter

(
∑�

k=1 Gk, (p
(k)(u) := ω(u,u(k))

1−ω(u,
←
u )

,1 ≤ k ≤ N(u))), where Gk , k ≥ 1, are i.i.d. ran-

dom variables having the geometric distribution of parameter ω(u,
←
u ).6 Accord-

6A random vector (ξ1, . . . , ξN ) defined on (�,F ,P) has the multinomial distribution with pa-

rameter (m, (p(1), . . . , p(N))) if P(ξ1 = m1, . . . , ξN = mN) = m!
m1!···mN !

∏N
k=1(p(k))mk for all non-
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ingly, for all � ≥ 1,

Eω

[
N(u)∏
k=1

(sk)
L

T
+
∅

(u(k))∣∣∣LT +
∅

(u) = �

]
= Eω

[(
N(u)∑
k=1

skω(u,u(k))

1 − ω(u,
←
u )

)∑�
k=1 Gk

]

=
{
Eω

[(
N(u)∑
k=1

skω(u,u(k))

1 − ω(u,
←
u )

)G1]}�

.

Since Eω(sG1) = ω(u,
←
u )

1−s(1−ω(u,
←
u ))

, this yields

Eω

[
N(u)∏
k=1

(sk)
L

T
+
∅

(u(k))∣∣∣LT +
∅

(u)

]
=

{
ω(u,

←
u )

1 − ∑N(u)
k=1 skω(u,u(k))

}L
T

+
∅

(u)

.(5.12)

[We proved it assuming that LT +
∅

(u) ≥ 1, but it is trivially true on the set

{LT +
∅

(u) = 0}.] In particular, for 1 ≤ k �= m ≤ N(u),

Eω

[
LT +

∅

(
u(k))|LT +

∅

(u)
] = e−[V (u(k))−V (u)]LT +

∅

(u),

Eω

[
LT +

∅

(
u(k))LT +

∅

(
u(m))|LT +

∅

(u)
]

= e−[V (u(k))−V (u)]−[V (u(m))−V (u)]LT +
∅

(u)
(
LT +

∅

(u) + 1
)
.

Applying again (5.9), this time to ξ1 := LT +
∅

(u(k)), ξ2 := LT +
∅

(u(m)) and G :=
σ(LT +

∅

(u)), we obtain (Varω denoting variance under Pω)

Covω

[
LT +

∅

(
u(k)),LT +

∅

(
u(m))] = e−[V (u(k))−V (u)]−[V (u(m))−V (u)]Eω

[
LT +

∅

(u)
]

+ e−[V (u(k))−V (u)]−[V (u(m))−V (u)] Varω
[
LT +

∅

(u)
]

≤ 2e−[V (u(k))−V (u)]−[V (u(m))−V (u)]Eω

[
LT +

∅

(u)2],
the last inequality following from the fact that LT +

∅

(u) ≤ LT +
∅

(u)2 [recalling that

LT +
∅

(u) is integer-valued]. We take k and m be such that u(k) = x|u|+1 and u(m) =
y|u|+1. In view of (5.11), this yields the desired inequality (5.6) in Lemma 5.2.

It remains to deal with the special case that either x is an ancestor of y, or y is
an ancestor of x.

This, however, is easy. Without loss of generality, let us assume that y is
an ancestor of x, in which case we have seen that Eω(LT +

∅

(x)|LT +
∅

(y)) =

negative integers mk , 1 ≤ k ≤ N , satisfying m1 + · · · + mN = m; in particular, E(s
ξ1
1 · · · sξN

N ) =
(
∑N

k=1 p(k)sk)
m, for all sk ≥ 0, 1 ≤ k ≤ N .
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e−[V (x)−V (y)]LT +
∅

(y). So applying (5.9) to ξ1 := LT +
∅

(x), ξ2 := LT +
∅

(y) and G :=
σ(LT +

∅

(y)) gives

Covω

[
LT +

∅

(x),LT +
∅

(y)
] = 0 + e−[V (x)−V (y)] Varω

[
LT +

∅

(y)
]
,

yielding (5.6).
(ii) We already noted that Eω[LT +

∅

(x)] = e−[V (x)−V (x1)]Eω[LT +
∅

(x1)], where x1

denotes, as before, the ancestor of x in the first generation. Since Eω[LT +
∅

(x1)] =
ω(∅, x1), and by definition, ω(∅, x1) = ω(∅,

←
∅)e−V (x1), this yields

Eω[LT +
∅

(x)] = ω(∅,
←
∅)e−V (x), as stated in (5.7).

It remains to compute Eω[LT +
∅

(x)2]. From (5.12), we get that

Eω

[
LT +

∅

(
u(k))[LT +

∅

(
u(k)) − 1

]|LT +
∅

(u)
] = e−2[V (u(k))−V (u)]LT +

∅

(u)
[
LT +

∅

(u) + 1
]
.

Taking expectation on both sides, and replacing the pair (u(k), u) by (x,
←
x ), we

obtain

Eω

[
LT +

∅

(x)2] = e−2[V (x)−V (
←
x )]Eω

[
LT +

∅

(
←
x )2]

+ (
e−2[V (x)−V (

←
x )] + e−[V (x)−V (

←
x )])Eω

[
LT +

∅

(
←
x )

]
.

By the already proved (5.7), Eω[LT +
∅

(
←
x )] = ω(∅,

←
∅)e−V (

←
x ). Solving this

difference equation (with initial condition Eω[LT +
∅

(x1)
2] = ω(∅, x1) = ω(∅,

←
∅)e−V (x1)) yields (5.8). This completes the proof of the lemma. �

6. Biased walks: Proof of Proposition 2.4. Let P
(r)
ω denote the quenched

law of the biased walk with a reflecting barrier at Lr . Under P
(r)
ω , the biased walk

(Xi) is positive recurrent taking values in {x ∈ T : x ≤ Lr} ∪ {←∅}, with invariant
probability πr as in (2.11). In particular, if T +

∅ denotes, as in (5.2), the first return
time to ∅, and LT +

∅

(site) local time as in (2.14),

E(r)
ω

(
T +
∅

) = 1

πr(∅)
,(6.1)

E(r)
ω

[
LT +

∅

(y)
] = πr(y)

πr(∅)
, y ∈ {x ∈ T : x ≤ Lr} ∪ {←∅}.(6.2)

We now proceed to study Ln(∅) under P
(r)
ω . Let � ≥ 1, and let T

(�)
∅ denote the

�th return time to ∅ (so T
(1)
∅ is T +

∅ , under P
(r)
ω ). Under P

(r)
ω , T

(�)
∅ is the sum of �

independent copies of T +
∅ . In particular, E

(r)
ω (T

(�)
∅ ) = � × E

(r)
ω (T +

∅ ) = �
πr (∅)

.



3916 Y. HU AND Z. SHI

By the simple relation {Ln(∅) ≤ �} = {T (�)
∅ ≥ n}, we have

P (r)
ω

{
Ln(∅) ≤ �

} = P (r)
ω

{
T

(�)
∅ − �

πr(∅)
≥ n − �

πr(∅)

}
,

which, by Chebyshev’s inequality, is bounded by �
(n−�/πr (∅))2 Var(r)ω (T +

∅ ) if n >

�
πr(∅)

(Var(r)ω denoting the variance under the probability P
(r)
ω ). However, it has

not been clear to us whether Var(r)ω (T +
∅ ) is sufficiently small. This is why some

care is in order when applying the method of second moment. We are not going
to estimate the variance (under P

(r)
ω ) of T +

∅ ; instead, we are going to decompose
T +
∅ into three distinct parts, in such a way that the variance of a part is sufficiently

small for our needs and that the expectation of the other parts is also sufficiently
small.

Recall from (2.10) that Lr := {x : ∑
z∈]]∅,x]] eV (z)−V (x) > r,∑

z∈]]∅,y]] eV (z)−V (y) ≤ r,∀y ∈]]∅, x[[}. The reason for which we have not been

able to make Var(r)ω (T +
∅ ) small is that r is too large. Our solution is to consider two

scales: Lr and Ls with s := r
(log r)θ

≤ r , where θ ≥ 0.

The promised decomposition for T +
∅ is as follows, the constant δ1 being defined

in (3.5):

T
(a)
∅ := ∑

y∈T:y<Ls

LT +
∅

(y)1{minu∈[[∅,y]] ω(u,
←
u )≥(log r)−6/δ1 },(6.3)

T
(b)
∅ := ∑

y∈T:y<Ls

LT +
∅

(y)1{minu∈[[∅,y]] ω(u,
←
u )<(log r)−6/δ1 },(6.4)

T
(c)
∅ := ∑

y∈T:Ls≤y≤Lr

LT +
∅

(y).(6.5)

Then

T +
∅

− 1 ≤ T
(a)
∅ + T

(b)
∅ + T

(c)
∅ ≤ T +

∅
.(6.6)

[The quantities T +
∅ and T

(a)
∅ + T

(b)
∅ + T

(c)
∅ can differ by 1 in case X1 = ←

∅.]

The next pair of lemmas summarise basic properties of T
(a)
∅ , T

(b)
∅ and T

(c)
∅ that

are needed in this paper: loosely speaking, we control in a satisfying way the first
two moments of T

(a)
∅ , and although we have no control on the variances of T

(b)
∅

and T
(c)
∅ , we show that they both have negligible expectations compared to the

expectation of T +
∅ .

LEMMA 6.1. Let θ ≥ 0 and let s := r
(log r)θ

. When r → ∞,

E
(r)
ω (T

(a)
∅ )

E
(r)
ω (T +

∅ )
→ 1, in P∗-probability,(6.7)
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E
(r)
ω (T

(b)
∅ )

E
(r)
ω (T +

∅ )
→ 0, in P∗-probability,(6.8)

E
(r)
ω (T

(c)
∅ )

E
(r)
ω (T +

∅ )
→ 0, in P∗-probability.(6.9)

In particular,

E
(r)
ω (T

(b)
∅ ) + E

(r)
ω (T

(c)
∅ )

log r
→ 0, in P∗-probability.(6.10)

LEMMA 6.2. Let θ ≥ 0 and let s := r
(log r)θ

. There exists a constant c7 > 0
such that for all r ≥ 2,

E
[
Var(r)ω

(
T

(a)
∅

)] ≤ c7s(log r)18/δ1+6,(6.11)

where δ1 > 0 is the constant in (3.5).

By admitting Lemmas 6.1 and 6.2 for the time being, we are able to prove
Proposition 2.4.

PROOF OF PROPOSITION 2.4. Let θ ≥ 0 and let s := r
(log r)θ

. Let

T
(�),(a)
∅ := ∑

y∈T:y<Ls

L
T

(�)
∅

(y)1{minu∈[[∅,y]] ω(u,
←
u )≥(log r)−6/δ1 },

T
(�),(b)
∅ := ∑

y∈T:y<Ls

L
T

(�)
∅

(y)1{minu∈[[∅,y]] ω(u,
←
u )<(log r)−6/δ1 },

T
(�),(c)
∅ := ∑

y∈T:Ls≤y≤Lr

L
T

(�)
∅

(y).

Then T
(�)
∅ − � ≤ T

(�),(a)
∅ + T

(�),(b)
∅ + T

(�),(c)
∅ ≤ T

(�)
∅ .

For any n1 ≥ 1 and n2 ≥ 1 with n1 + n2 ≤ n − �,

P (r)
ω

{
Ln(∅) ≤ �

} = P (r)
ω

{
T

(�)
∅ ≥ n

}
≤ P (r)

ω

{
T

(�),(a)
∅ + T

(�),(b)
∅ + T

(�),(c)
∅ ≥ n − �

}
≤ P (r)

ω

{
T

(�),(a)
∅ ≥ n1

} + P (r)
ω

{
T

(�),(b)
∅ + T

(�),(c)
∅ ≥ n2

}
.

Observe that E
(r)
ω [T (�),(b)

∅ +T
(�),(c)
∅ ] = �[E(r)

ω (T
(b)
∅ )+E

(r)
ω (T

(c)
∅ )], so by Markov’s

inequality,

P (r)
ω

{
T

(�),(b)
∅ + T

(�),(c)
∅ ≥ n2

} ≤ �

n2

[
E(r)

ω

(
T

(b)
∅

) + E(r)
ω

(
T

(c)
∅

)]
.
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For P
(r)
ω {T (�),(a)

∅ ≥ n1}, we note that E
(r)
ω (T

(�),(a)
∅ ) = � × E

(r)
ω (T

(a)
∅ ) ≤ � ×

E
(r)
ω (T +

∅ ) = �
πr (∅)

, and that Var(r)ω (T
(�),(a)
∅ ) = �Var(r)ω (T

(a)
∅ ). If n1 − �

πr (∅)
> 0,

then by Chebyshev’s inequality,

P (r)
ω

{
T

(�),(a)
∅ ≥ n1

} ≤ P (r)
ω

{
T

(�),(a)
∅ − E(r)

ω

(
T

(�),(a)
∅

) ≥ n1 − �

πr(∅)

}

≤ �Var(r)ω (T
(a)
∅ )

[n1 − �/πr(∅)]2 .

Let us now fix the choice for �, n1 and n2. Let 0 < ε < 1. We take n1 := �(1 +
ε) �

πr (∅)
� and n2 := �ε �

πr (∅)
� − � − 1 so that n1 + n2 ≤ (1 + 2ε) �

πr (∅)
− �, which

is indeed bounded by n − � if we take � := � 1
1+2ε

nπr(∅)�. With the choice made
for (�, n1, n2), we have

P (r)
ω

{
Ln(∅) ≤ �

} ≤ �Var(r)ω (T
(a)
∅ )

[n1 − �/πr(∅)]2 + �

n2

[
E(r)

ω

(
T

(b)
∅

) + E(r)
ω

(
T

(c)
∅

)]
.

Recall from Theorem 2.7 that (log r)πr(∅) → σ 2

4D∞ e−U(∅) in P∗-probability (for
r → ∞). We choose r = n so that we are entitled to apply Lemma 5.1. With
the definition of s := r

(log r)θ
, we apply Lemma 6.2 (choosing θ > 18

δ1
+ 5) and

Lemma 6.1 [part (6.10)], to see that P
(r)
ω {Ln(∅) ≤ �} → 0 in P∗-probability.

By Lemma 5.1, P(
⋃n

i=1{Xi ∈ Lr}) → 0, so this is equivalent to saying that
Pω{Ln(∅) ≤ �} → 0 in P∗-probability, with the choice of � := � 1

1+2ε
nπr(∅)�.

Again, since (log r)πr(∅) → σ 2

4D∞ e−U(∅) in P∗-probability (Theorem 2.7), this
yields the lower bound in (2.15).

The proof of the upper bound is similar, with the same choice r := n, and is
slightly easier because we do not need to care about T

(�),(b)
∅ and T

(�),(c)
∅ any more.

Indeed, for any � ≥ 1,

P (r)
ω

{
Ln(∅) ≥ �

} = P (r)
ω

{
T

(�)
∅ ≤ n

}
≤ P (r)

ω

{
T

(�),(a)
∅ ≤ n

}
≤ Var(r)ω (T

(�),(a)
∅ )

[E(r)
ω (T

(�),(a)
∅ ) − n]2

,

as long as E
(r)
ω (T

(�),(a)
∅ ) > n. Again, E

(r)
ω (T

(�),(a)
∅ ) = �E

(r)
ω (T

(a)
∅ ), and

Var(r)ω (T
(�),(a)
∅ ) = �Var(r)ω (T

(a)
∅ ). This time, with ε > 0, our choice is � := �(1 +

ε)nπr(∅)�. For this new choice of �, part (6.7) of Lemma 6.1 ensures that
P∗{E(r)

ω (T
(�),(a)
∅ ) > (1 + ε

2)n} → 1 for n → ∞. So by Lemma 6.2, if s := r
(log r)θ

with θ > 18
δ1

+ 5, then P
(r)
ω {Ln(∅) ≥ �} → 0 in P∗-probability, which, in view of
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Lemma 5.1, is equivalent to saying that Pω{Ln(∅) ≥ �} → 0 in P∗-probability.
This yields (2.15).

It remains to check (2.16). In view of (2.15), it suffices to show the following:(
logn

n

)2

Eω

[(
Ln(∅)

)2] is tight under P∗.(6.12)

Clearly, Eω[(Ln(∅))2] ≤ E
(r)
ω [(Ln(∅))2], for any r > 1. Observe that

E(r)
ω

[(
Ln(∅)

)2] ≤ 2
∞∑

j=1

jP (r)
ω

{
Ln(∅) ≥ j

} = 2
∞∑

j=1

jP (r)
ω

{
T

(j)
∅ ≤ n

}
.

By Chebyshev’s inequality, P
(r)
ω {T (j)

∅ ≤ n} ≤ e × E
(r)
ω (e−T

(j)
∅

/n), which, by the

strong Markov property, is e × [E(r)
ω (e−T +

∅
/n)]j . As such,

Eω

[(
Ln(∅)

)2] ≤ 2e
∞∑

j=1

j
[
E(r)

ω

(
e−T +

∅
/n)]j ≤ 2e

[1 − E
(r)
ω (e−T +

∅
/n)]2

,

where, in the last inequality, we used the elementary fact that
∑∞

j=1 jxj =
x

(1−x)2 ≤ 1
(1−x)2 for any x ∈ [0,1].

Note that for any nonnegative random variable ξ with E(ξ2) < ∞, we have

E(1 − e−ξ ) ≥ E(ξ − ξ2

2 ) = E(ξ) − 1
2 [E(ξ)]2 − 1

2 Var(ξ). Therefore,

1 − E(r)
ω

(
e−T +

∅
/n) ≥ 1 − E(r)

ω

(
e−T

(a)
∅

/n)
≥ E

(r)
ω (T

(a)
∅ )

n
− [E(r)

ω (T
(a)
∅ )]2

2n2 − Var(r)ω (T
(a)
∅ )

2n2 .

We choose again r := n. By Lemma 6.1 and Theorem 2.7, E
(r)
ω (T

(a)
∅ ) = ( 4

σ 2 D∞ +
oP∗(1)) log r , where oP∗(1) denotes, as before, a term converging to 0 in P∗-
probability and its value may vary from line to line. By Lemma 6.2, if we

choose s := r
(log r)θ

with θ > 18
δ1

+ 5, then
Var(r)ω (T

(a)
∅

)

n logn
→ 0 in P∗-probability. This

yields (6.12), and thus (2.16). Proposition 2.4 is proved. �

The rest of the section is devoted to the proof of Lemmas 6.1 and 6.2.

PROOF OF LEMMA 6.1. Clearly, (6.10) follows from (6.8) and (6.9) (com-
bined with Theorem 2.7). On the other hand, T

(a)
∅ + T

(b)
∅ + T

(c)
∅ and T +

∅ differ by
at most 1 [see (6.6)], so (6.8) and (6.9) together imply (6.7). As a consequence, we
only need to prove (6.8) and (6.9).

Let us start with the proof of (6.9). By definition of T
(c)
∅ [see (6.5)], E(r)

ω (T
(c)
∅ ) =∑

Ls≤y≤Lr
E

(r)
ω [LT +

∅

(y)]. We have seen in (6.2) that E
(r)
ω [LT +

∅

(y)] = πr(y)
πr (∅)

for
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y ≤ Lr . Since E
(r)
ω (T +

∅ ) = 1
πr(∅)

[see (6.1)], we have

E
(r)
ω (T

(c)
∅ )

E
(r)
ω (T +

∅ )
= ∑

Ls≤y≤Lr

πr(y) = ∑
Ls≤y<Lr

e−U(y)

Zr

+ ∑
y∈Lr

e−V (y)

Zr

.

Noting e−U(y) = e−V (y) + ∑
z∈T:←z =y

e−V (z), we arrive at

E
(r)
ω (T

(c)
∅ )

E
(r)
ω (T +

∅ )
= ∑

Ls≤y<Lr

e−V (y)

Zr

+ ∑
Ls<z≤Lr

e−V (z)

Zr

+ ∑
y∈Lr

e−V (y)

Zr

≤ 2

Zr

∑
Ls≤y≤Lr

e−V (y).

By Theorem 2.7, 1
log r

∑
y≤Lr

e−V (y) → 2
σ 2 D∞ in P∗-probability and

1
log r

∑
y<Ls

e−V (y) → 2
σ 2 D∞ in P∗-probability (noting that 1

log r

∑
y∈Ls

e−V (y) →
0 in P∗-probability according to Lemma 3.4). Hence 1

log r

∑
Ls≤y≤Lr

e−V (y) →
2
σ 2 D∞ − 2

σ 2 D∞ = 0 in P∗-probability. Since Zr
log r

→ 4
σ 2 D∞ > 0 in P∗-probability

(Theorem 2.7), we conclude that

2

Zr

∑
Ls≤y≤Lr

e−V (y) → 0, in P∗-probability.

This yields (6.9).
We now turn to the proof of (6.8). Recall that E

(r)
ω [LT +

∅

(y)] = πr(y)
πr (∅)

=
eU(∅)−U(y) = eU(∅)[e−V (y) +∑

z∈T:←z =y
e−V (z)] for y < Ls . By definition of T

(b)
∅

in (6.4),

E(r)
ω

(
T

(b)
∅

) = eU(∅)
∑

y<Ls

(
e−V (y) + ∑

z∈T:←z =y

e−V (z)

)
1{y bad},

where, by “y bad,” we mean minu∈[[∅,y]] ω(u,
←
u ) < (log r)−6/δ1 . So

E(r)
ω

(
T

(b)
∅

) ≤ 2eU(∅)
∑

y≤Ls

e−V (y)1{y bad} ≤ 2eU(∅)
∑

y≤Lr

e−V (y)1{y bad}.

Let B > 0 be a constant. Then

E(r)
ω

(
T

(b)
∅

) ≤ 2eU(∅)(�(6.13) + �(6.14)),

where7

�(6.13) := ∑
y∈T:|y|≤B(log r)2

e−V (y)1{y bad},(6.13)

7For notational convenience, we treat B(log r)2 as an integer.
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�(6.14) := ∑
y≤Lr ,|y|>B(log r)2

e−V (y).(6.14)

In view of (4.13), we have, for any ε > 0,

lim
B→∞ lim sup

r→∞
P∗{�(6.14) ≥ ε log r} = 0.(6.15)

We now bound �(6.13). When y is bad, maxu∈[[∅,y]] 1
ω(u,

←
u )

> (log r)6/δ1 , which

means maxu∈[[∅,y]] �(u) > (log r)6/δ1 − 1, with �(u) := ∑
z∈T:←z =u

e−[V (z)−V (u)]

as in (3.3). Accordingly, writing a(r) := (log r)6/δ1 − 1 for brevity,

�(6.13) ≤ ∑
y∈T:|y|≤B(log r)2

e−V (y)1{maxu∈[[∅,y]] �(u)>a(r)}

≤ 1 +
B(log r)2∑

k=1

∑
y∈T:|y|=k

e−V (y)(1{maxu∈[[∅,y[[ �(u)>a(r)} + 1{�(y)>a(r)}),

the first term “1” on the right-hand side resulting from y = ∅. We take expectation
with respect to P on both sides. By Lemma 3.1 and in its notation,

E(�(6.13)) ≤ 1 +
B(log r)2∑

k=1

E
[
1{max1≤i≤k �̃i−1>a(r)} + P

( ∑
x:|x|=1

e−V (x) > a(r)

)]
.

Since �̃i−1 (for i ≥ 1) is distributed as �̃0, we have, for all b > 0 and all
i ≥ 1, P(�̃i−1 > b) ≤ c8b

−δ1 , where δ1 > 0 is the constant in (3.5), and c8 :=
E[(�̃0)

δ1] = E[(∑x:|x|=1 e−V (x))1+δ1] which is finite according to (3.5). On the
other hand, (3.5) also yields P(

∑
x:|x|=1 e−V (x) > b) ≤ c8b

−(1+δ1) (for b > 0).
Hence,

E(�(6.13)) ≤ 1 + B(log r)2[B(log r)2c8a(r)−δ1 + c8a(r)−(1+δ1)
]
.

This yields
�(6.13)

log r
→ 0 in L1(P) and equivalently, in L1(P∗), and a fortiori in P∗-

probability. Together with (6.15), and since E
(r)
ω (T

(b)
∅ ) ≤ 2eU(∅)(�(6.13)+�(6.14)),

we obtain
E

(r)
ω (T

(b)
∅

)

log r
→ 0 in P∗-probability. Recalling that E

(r)
ω (T +

∅ ) = 1
πr(∅)

and
that (log r)πr(∅) converges in P∗-probability to a positive limit (Theorem 2.7),
we deduce that

E
(r)
ω (T

(b)
∅ )

E
(r)
ω (T +

∅ )
→ 0, in P∗-probability,

which is the desired conclusion in (6.8). Lemma 6.1 is proved. �

PROOF OF LEMMA 6.2. Recall that T
(a)
∅ := ∑

y<Ls
LT +

∅

(y)1{y good}, where

{y good} :=
{

min
u∈[[∅,y]]ω(u,

←
u ) ≥ (log r)−6/δ1

}
,
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with δ1 > 0 denoting the constant in (3.5). For any y < Ls , we have y < Lr , so
T

(a)
∅ has the same distribution under P

(r)
ω and under Pω. In particular,

Var(r)ω

(
T

(a)
∅

) = Varω
(
T

(a)
∅

) = Varω

( ∑
y<Ls

LT +
∅

(y)1{y good}
)
.

Let Lk(x) := ∑k
i=1 1{Xi−1=←

x ,Xi=x} be edge local time as in (5.5). Then∑
y<Ls

LT +
∅

(y)1{y good} = ∑
y<Ls

LT +
∅

(y)1{y good}

+ ∑
y≤Ls ,y �=∅

LT +
∅

(y)1{←y good}.

By the elementary inequality Var(ξ1 + ξ2) ≤ 2[Var(ξ1) + Var(ξ2)] (for random
variables ξ1 and ξ2 having finite second moments), this leads to

Var(r)ω

(
T

(a)
∅

) ≤ 2 Varω

( ∑
y<Ls

LT +
∅

(y)1{y good}
)

+ 2 Varω

( ∑
y≤Ls ,y �=∅

LT +
∅

(y)1{←y good}
)
.

We write

Varω

( ∑
y≤Ls ,y �=∅

LT +
∅

(y)1{←y good}
)

= ∑
y≤Ls ,y �=∅

Varω
[
LT +

∅

(y)
]
1{←y good}

+ ∑
y �=z≤Ls ,y,z �=∅

Covω

[
LT +

∅

(y),LT +
∅

(z)
]
1{←y good}1{←z good},

and we have a similar expression for Varω(
∑

y<Ls
LT +

∅

(y)1{y good}). Lemma 6.2
will be a straightforward consequence of the following inequalities: for some con-
stants c9 > 0 and c10 > 0, and all r ≥ 2,

E
( ∑

y≤Ls

Eω

[
LT +

∅

(y)2]1{←y good}
)

≤ c9s(log r)6/δ1+2,(6.16)

E
( ∑

y �=z≤Ls

(
Covω

[
LT +

∅

(y),LT +
∅

(z)
])+1{←y good}

)
≤ c10s(log r)18/δ1+6,(6.17)

where δ1 > 0 is in (3.5), and (Covω[· · ·])+ denotes the positive part of Covω[· · ·].
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So it remains to check inequalities (6.16) and (6.17). We start with the proof
of (6.16). Recall from Lemma 5.2 that

Eω

[
LT +

∅

(y)2] = ω(∅,
←
∅)e−V (y)

(
2

∑
z∈]]∅,y]]

eV (z)−V (y) − 1
)

≤ 2e−V (y)
∑

z∈]]∅,y]]
eV (z)−V (y).

For the sum on the right-hand side, we write (
⇐
y denoting as before the parent of

←
y )∑

z∈]]∅,y]]
eV (z)−V (y) = e−[V (y)−V (

←
y )] ∑

z∈]]∅,
←
y ]]

eV (z)−V (
←
y ) + 1

= ω(
←
y , y)

ω(
←
y ,

⇐
y )

∑
z∈]]∅,

←
y ]]

eV (z)−V (
←
y ) + 1

≤ 1

ω(
←
y ,

⇐
y )

∑
z∈]]∅,

←
y ]]

eV (z)−V (
←
y ) + 1.

If y ≤ Ls , then by definition,
←
y < Ls , so that

∑
z∈]]∅,

←
y ]] eV (z)−V (

←
y ) ≤ s. On the

other hand, if
←
y is good, then by definition, 1

ω(
←
y ,

⇐
y )

≤ (log r)6/δ1 . Consequently,

Eω

[
LT +

∅

(y)2]1{←y good}1{y≤Ls} ≤ 2
[
s(log r)6/δ1 + 1

]
e−V (y).(6.18)

Since E(
∑

y≤Ls
e−V (y)) ≤ c2(log s)2 [see (3.8)], this yields (6.16).

We now turn to the proof of (6.17). Consider a pair y �= z ≤ Ls . By Lemma 5.2,

Covω

[
LT +

∅

(y),LT +
∅

(z)
] ≤ 2e−[V (y)−V (y∧z)]−[V (z)−V (y∧z)]Eω

[
LT +

∅

(y ∧ z)2].
Hence, writing LHS(6.17) := ∑

y �=z≤Ls
(Covω[LT +

∅

(y),LT +
∅

(z)])+1{←y good}, we
have

LHS(6.17) ≤ 2
∑

u<Ls

∑
y �=z≤Ls :y∧z=u

e−[V (y)−V (u)]−[V (z)−V (u)]Eω

[
LT +

∅

(u)2]1{u good}.

Observe that 1{u good} ≤ 1{←u good}, so by (6.18), Eω[LT +
∅

(u)2]1{u good} ≤
2[s(log r)6/δ1 + 1]e−V (u). Consequently,

LHS(6.17) ≤ 4
[
s(log r)6/δ1 + 1

] ∑
u<Ls

e−V (u)1{u good}

(6.19)
× ∑

y �=z≤Ls :y∧z=u

e−[V (y)−V (u)]−[V (z)−V (u)].
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Let us consider the double sum
∑

y �=z≤Ls :y∧z=u e−[V (y)−V (u)]−[V (z)−V (u)] on the
right-hand side. Write k = k(u) := |u| for brevity. Then∑

y �=z≤Ls :y∧z=u

e−[V (y)−V (u)]−[V (z)−V (u)]

= ∑
a �=b,

←
a =u=←

b

e−[V (a)−V (u)]−[V (b)−V (u)]

× ∑
y,z≤Ls :yk+1=a,zk+1=b

e−[V (y)−V (a)]−[V (z)−V (b)].

Observe that if y ≤ Ls is such that |y| ≥ k + 1 and yk+1 = a, then by definition
of Ls in (2.10),

∑
w∈]]a,v]] eV (w)−V (v) ≤ s, ∀v ∈]]a, y[[; so writing y = aỹ (the

concatenation of a and ỹ), then ỹ as a vertex of the subtree rooted at a satisfies
ỹ ≤ Ls(a), where Ls(a) is defined as Ls , but associated with the subtree rooted at
vertex a. Accordingly, with Fk+1 denoting the σ -field generated by (V (x), |x| ≤
k + 1), we have that on the set {|u| = k},

E
( ∑

y �=z≤Ls :y∧z=u

e−[V (y)−V (u)]−[V (z)−V (u)]∣∣∣Fk+1

)

≤ ∑
a �=b,

←
a =u=←

b

e−[V (a)−V (u)]−[V (b)−V (u)][E(Ys)
]2

.

If u is good, then by definition, ω(u,
←
u ) ≥ (log r)−6/δ1 ; in particular,∑

a∈T:←a =u

e−[V (a)−V (u)] = 1

ω(u,
←
u )

− 1 ≤ 1

ω(u,
←
u )

≤ (log r)6/δ1,

which implies that
∑

a �=b,
←
a =u=←

b
e−[V (a)−V (u)]−[V (b)−V (u)] ≤ (log r)12/δ1 . Hence

on the set {|u| = k},
E
( ∑

y �=z≤Ls :y∧z=u

e−[V (y)−V (u)]−[V (z)−V (u)]∣∣∣Fk+1

)
1{u good}

≤ (log r)12/δ1
[
E(Ys)

]2
.

Going back to (6.19), this yields

E(LHS(6.17)) ≤ E
(

4
[
s(log r)6/δ1 + 1

]
(log r)12/δ1

[
E(Ys)

]2 ∑
u<Ls

e−V (u)

)
.

Since
∑

u<Ls
e−V (u) ≤ ∑

u≤Ls
e−V (u) = Ys , we obtain: E(LHS(6.17)) ≤

4[s(log r)6/δ1 + 1](log r)12/δ1[E(Ys)]3. In view of (3.8), this yields (6.17), and
completes the proof of Lemma 6.2. �
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7. Biased walks: Proof of Theorem 2.8. Recall from (5.4) that

Pω

(
n⋃

i=1

{Xi ∈ Lr}
)

≤ Eω(Ln(∅) + 1)

r

∑
x∈Lr

e−V (x).

By Lemma 3.4, (log r)
∑

x∈Lr
e−V (x) is tight under P∗. Theorem 2.8 follows

from (2.16) of Proposition 2.4.

8. Biased walks: Proof of Proposition 2.5. We begin with a general fact for
reversible Markov chains. The fact is well known. For a simple proof for finite
chains, see Saloff-Coste ([39], Lemma 1.3.3 (1), page 323), applied to P 2.

FACT 8.1. Let P be the transition probability of a reversible Markov chain
taking values in a countable space E. Then for any x ∈ E, the sequence k →
P 2k(x, x) is non-increasing.

We prepare for the proof of Proposition 2.5. Let P
(r)
ω be, as before, the quenched

probability with a reflecting barrier at Lr , and E
(r)
ω the corresponding expectation.

LEMMA 8.2. Let γ ∈ R, and let r = r(n) := n
(logn)γ

. Then

(logn)2−γ sup
B∈σ {X1,...,Xn}

∣∣P (r)
ω (B) − Pω(B)

∣∣
is tight under P∗.

PROOF. For B ∈ σ {X1, . . . ,Xn},∣∣P (r)
ω (B) − Pω(B)

∣∣ ≤ Pω

(
n⋃

i=1

{Xi ∈ Lr}
)
,

which is bounded by Eω(Ln(∅)+1)
r

∑
x∈Lr

e−V (x) [see (5.4)]. We conclude by means
of Lemma 3.4 and (2.16) of Proposition 2.4. �

We are now ready to prove Proposition 2.5.

PROOF OF PROPOSITION 2.5. We choose r := n so that we are entitled
to apply Lemma 8.2 (with γ = 0). We claim that for any an → ∞ satisfying
limn→∞ logan

logn
= 0,

max
k even: n/an≤k≤n

∣∣∣∣(logn)P (r)
ω (Xk = ∅) − σ 2

2D∞
e−U(∅)

∣∣∣∣ → 0,

(8.1)
in P∗-probability.

By Lemma 8.2, (8.1) will imply Proposition 2.5.
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Let m := mn be the smallest even number such that m ≥ n
an

. Clearly logm
logn

→ 1.

Using the trivial upper bound Lm(∅)
m

≤ 1, we deduce from part (2.16) of Proposi-
tion 2.4 and Lemma 8.2 that for n → ∞,

E(r)
ω

(
Lm(∅)

m/ logm

)
→ σ 2

4D∞
e−U(∅), in P∗-probability.(8.2)

By Fact 8.1, i �→ P
(r)
ω (X2i = ∅) is non-increasing, so E

(r)
ω ( Lm(∅)

m/ logm
) =

logm
m

∑m
i=1 P

(r)
ω (Xi = ∅) ≥ 1

2(logm)P
(r)
ω (Xm = ∅), the factor 1

2 coming from the
fact we sum over even numbers i ∈ [1,m]. Combined with (8.2), we see that

max
k even: n/an≤k≤n

(logn)P (r)
ω (Xk = ∅) = (logn)P (r)

ω (Xm =∅)

(8.3)

≤ σ 2 + oP∗(1)

2D∞
e−U(∅),

where oP∗(1) denotes a quantity which goes to 0 in P∗-probability as n → ∞.
To obtain the lower bound for P

(r)
ω (Xk = ∅), we consider the Markov chain

(X2i , i ≥ 0) under P
(r)
ω , starting from X0 := ∅. This chain takes values in

Er := {x ∈ T : x ≤ Lr , |x|even}, with πr(Er) = 1
2 due to periodicity. In other

words, 2πr(x) for x ∈ Er , is the invariant probability measure of (X2i , i ≥ 0). By
Fact 8.1, we see that for integer i ≥ 0, P

(r)
ω (X2i = ∅) ≥ 2πr(∅). In particular,

for k := 2�n
2�, P

(r)
ω (Xk = ∅) ≥ 2πr(∅) = 2

Zr
e−U(∅). As such, (8.1) follows from

Theorem 2.7 and (8.3). �

REMARK 8.3. By definition, 1
πr(∅)

= ZreU(∅), which is 4+oP∗ (1)

σ 2 D∞eU(∅) ×
logn according to Theorem 2.7, where oP∗(1) → 0 in P∗-probability as n → ∞.
So (8.1) can also be stated as follows: For any an → ∞ such that limn→∞ logan

logn
=

0, uniformly in even integers k ∈ [ n
an

, n],
P (n)

ω (Xk = ∅) = (
2 + oP∗(1)

)
πn(∅).(8.4)

This will be useful in the proof of Theorem 2.1 in Section 9.

9. Biased walks: Proofs of Lemma 2.2, Theorem 2.1 and Corollary 2.3.

PROOF OF LEMMA 2.2. For 0 < u ≤ r and x ∈ T∪ {←∅},∣∣πr(x) − πu(x)
∣∣ = ∣∣∣∣Zrπr(x) − Zuπu(x)

Zu

− Zrπr(x)

(
1

Zu

− 1

Zr

)∣∣∣∣
≤ Zrπr(x) − Zuπu(x)

Zu

+ Zrπr(x)

(
1

Zu

− 1

Zr

)
,
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by using the facts that Zrπr(x) ≥ Zuπu(x) and Zr ≥ Zu. By taking the summation
on x,

2dtv(πu,πr) ≤ Zr − Zu

Zu

+ Zr

(
1

Zu

− 1

Zr

)
= 2

Zr − Zu

Zu

,

which is bounded by 2
Zr−Zr/(log r)a

Zr/(log r)a
if u ∈ [ r

(log r)a
, r]. By Theorem 2.7, 1

log r
(Zr −

Zr/(log r)a ) → 0 in P∗-probability, from which Lemma 2.2 follows. �

PROOF OF THEOREM 2.1. (i) Case κ = 1. We prove the following stronger
statement: Fix 0 < c < 1. As n → ∞,

max�cn�≤m≤n
sup

A⊂T∪{←∅}

∣∣Pω(Xm ∈ A) − π̃m(A)
∣∣ → 0, in P∗-probability.(9.1)

The fact that (9.1) holds uniformly in m will be useful in the proof for the case
κ ≥ 2.

In view of Lemma 8.2, it suffices to prove (9.1) for P
(r)
ω in lieu of Pω, with

r := n.
Let n be large and put bn := � n

(logn)2 �. For cn ≤ m ≤ n (we treat cn as an inte-

ger) and A ⊂ T∪ {←∅}, we have

0 ≤ P (r)
ω (Xm ∈ A) −

m∑
k=bn

P (r)
ω (Xm ∈ A,gm = k) ≤ P (r)

ω

{
Lcn(∅) < bn

}
,(9.2)

where gm := max{i ≤ m : Xi = ∅} is the last return time to ∅ before m and the sec-
ond inequality follows from the fact that {gm ≤ bn} ⊂ {Lm(∅) ≤ bn} ⊂ {Lcn(∅) ≤
bn}.

For any ε > 0, we have bn < ε cn
log(cn)

for sufficiently large n; so

Pω

{
Lcn(∅) < bn

}
≤ Pω

(∣∣∣∣ Lcn(∅)

(cn)/ log(cn)
− σ 2

4D∞
e−U(∅)

∣∣∣∣ > ε

)
+ 1{σ 2/(4D∞)e−U(∅)≤2ε}.

Applying Proposition 2.4, and since ε > 0 can be as small as possible, we see that
Pω{Lcn(∅) < bn} → 0 in P∗-probability. A fortiori, P

(r)
ω {Lcn(∅) < bn} → 0 in

P∗-probability. Going back to (9.2), we obtain

P (r)
ω (Xm ∈ A) −

m∑
k=bn

P (r)
ω (Xm ∈ A,gm = k) → 0, in P∗-probability,(9.3)

uniformly in A ⊂ T∪ {←∅} and in m ∈ [cn,n] ∩Z.
Let us deal with the sum on the left-hand side of (9.3). By the Markov property

at time k,

P (r)
ω (Xm ∈ A,gm = k) = P (r)

ω (Xk = ∅)P (r)
ω

(
Xm−k ∈ A,m − k < T +

∅

)
,

where T +
∅ denotes, as before, the first return time to ∅.



3928 Y. HU AND Z. SHI

By (8.4), uniformly in even numbers k ∈ [bn,n], P
(r)
ω (Xk = ∅) = (2 +

oP∗(1))πr(∅). It follows that uniformly in A and in m,

P (r)
ω (Xm ∈ A) − 2πr(∅)

m∑
k=bn,k even

P (r)
ω

(
Xm−k ∈ A,m − k < T +

∅

) → 0,

in P∗-probability. If m is even, so is m − k, then we can restrict A to A ∩ T
(even).

A similar restriction holds if m is odd. Define

Am :=
{

A ∩T
(even), if m is even,

A ∩ (
T

(odd) ∪ {←∅}), if m is odd.

We have [with oP∗(1) denoting an expression tending to 0 in P∗-probability, uni-
formly in A and in m]

P (r)
ω (Xm ∈ A) = 2πr(∅)

m∑
k=bn

P (r)
ω

(
Xm−k ∈ Am,m − k < T +

∅

) + oP∗(1)

(9.4)

= 2πr(∅)

m−bn∑
i=0

P (r)
ω

(
Xi ∈ Am, i < T +

∅

) + oP∗(1),

which implies that

P (r)
ω (Xm ∈ A) ≤ 2πr(∅)E(r)

ω

[T∅−1∑
i=0

1{Xi∈Am}
]

+ oP∗(1)

(9.5)
= 2πr(Am) + oP∗(1),

by the fact that πr(∅) = 1
E

(r)
ω (T +

∅
)
. By Lemma 2.2, πr(Am) = πm(Am) + oP∗(1).

Since 2πm(Am) = π̃m(A), we obtain that P
(r)
ω (Xm ∈ A) ≤ π̃m(A) + oP∗(1).

To get (9.1), it remains to check that P
(r)
ω (Xm ∈ A) ≥ π̃m(A) + oP∗(1), which

will be done if we are able to reverse the inequality in (9.5). By (9.4) and tightness
of (logn)πr(∅), it suffices to prove that

1

logn

∞∑
i=m−bn+1

P (r)
ω

(
i < T +

∅

) → 0, in P∗-probability.(9.6)

Of course,
∑∞

i=m−bn+1 P
(r)
ω (i < T +

∅ ) = E
(r)
ω [(T +

∅ − (m − bn + 1))+]. By (6.6)

and in its notation (with s := r
(log r)θ

and θ ≥ 0), T +
∅ ≤ T

(a)
∅ + T

(b)
∅ + T

(c)
∅ + 1; so∑∞

i=m−bn+1 P
(r)
ω (i < T +

∅ ) ≤ E
(r)
ω [(T (a)

∅ − (m − bn))
+] + E

(r)
ω [T (b)

∅ ] + E
(r)
ω [T (c)

∅ ].
Lemma 6.1 entails that E

(r)
ω [T (b)

∅ ] + E
(r)
ω [T (c)

∅ ] = (logn) × oP∗(1). On the other
hand,

E(r)
ω

[(
T

(a)
∅ − (m − bn)

)+] ≤ E(r)
ω

[
T

(a)
∅ 1{T (a)

∅
≥m−bn}

] ≤ 1

m − bn

E(r)
ω

[(
T

(a)
∅

)2]
.
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By Lemma 6.2 and tightness of 1
logn

E
(r)
ω [T (a)

∅ ], we take a large parameter θ such

that 18
δ1

+ 6 − θ < 1 and arrive at (9.6). This completes the proof of (9.1).
(ii) Case κ ≥ 2. We only check the case κ = 2 because the general case can

be proved exactly in the same way. Without loss of generality, we take t2 = 1 and
t1 = s ∈ (0,1). For brevity, we treat sn as an integer. It suffices to prove that, for
n → ∞,

sup
A1,A2⊂T∪{←∅}

∣∣Pω(Xsn ∈ A1,Xn ∈ A2) − π̃sn(A1)π̃n(A2)
∣∣ → 0,

(9.7)
in P∗-probability.

Fix t ∈ (s,1). Let dsn := min{i > sn : Xi = ∅} and Bn := {dsn ≤ tn} =
{Ltn(∅) > Lsn(∅)}. By (2.15) of Proposition 2.4,

Pω

(
Bc

n

) → 0, in P∗-probability.(9.8)

Hence, Pω(Xsn ∈ A1,Xn ∈ A2) = Pω(Xsn ∈ A1,Xn ∈ A2,Bn) + oP∗(1) where
oP∗(1) denotes an expression converging to 0 in P∗-probability uniformly in A1,

A2 ⊂ T∪ {←∅}. Applying the strong Markov property at dsn, this gives

Pω(Xsn ∈ A1,Xn ∈ A2)

=
tn∑

k=sn+1

Pω(Xsn ∈ A1,dsn = k)Pω(Xn−k ∈ A2) + oP∗(1),

which is
∑tn

k=sn+1 Pω(Xsn ∈ A1,dsn = k)π̃n−k(A2) + oP∗(1) by (9.1).
For even numbers k ∈ (sn, tn], n and n − k have the same parity and

dtv(π̃n−k, π̃n) ≤ 2dtv(πn−k,πn). So by Lemma 2.2, dtv(π̃n−k, π̃n) → 0 in P∗-
probability, uniformly in even numbers k ∈ [sn, tn]. As such,

Pω(Xsn ∈ A1,Xn ∈ A2) =
tn∑

k=sn+1

Pω(Xsn ∈ A1,dsn = k)π̃n(A2) + oP∗(1)

= Pω(Xsn ∈ A1)π̃n(A2) + oP∗(1),

by means of (9.8). Applying the already proved case κ = 1 of Theorem 2.1 to sn,
we get that Pω(Xsn ∈ A1) = π̃sn(A1) + oP∗(1), which yields (9.7) and completes
the proof of Theorem 2.1. �

PROOF OF COROLLARY 2.3. We only prove the case κ = 1 and tκ = 1. The
general case can be handled exactly in the same way.

By Lemma 2.2, dtv(πn(·),πn−1(·)) → 0 in P∗-probability, from which follows
that

dtv
(1

2

(
π̃n(·) + π̃n−1(·)), πn(·)) → 0, in P∗-probability.(9.9)
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Applying Theorem 2.1 (case κ = 1) to n and n − 1, we get from (9.9) that

sup
A⊂T∪{←∅}

∣∣Pω(Xn ∈ A) + Pω(Xn−1 ∈ A) − 2πn(A)
∣∣ → 0,

(9.10)
in P∗-probability.

Let B > b > 0 be constants and let n be large. We treat b(logn)2 and B(logn)2 as
integers for brevity. By (9.10) [with oP∗(1) denoting an expression converging to 0
in P∗-probability, uniformly in B > b > 0]

I(9.11) := Pω

(
b ≤ |Xn|

(logn)2 ≤ B

)
+ Pω

(
b ≤ |Xn−1|

(logn)2 ≤ B

)
(9.11)

= 2
∑

b(logn)2≤|x|≤B(logn)2

πn(x) + oP∗(1).

By definition of πn in (2.11) (and the fact that Zn = 2Yn as in Lemma 2.6),

2
∑

b(logn)2≤|x|≤B(logn)2

πn(x) = 1

Yn

B(logn)2∑
k=b(logn)2

∑
|x|=k

(
1{x<Ln}e−U(x) + 1{x∈Ln}e−V (x))

= 2

Yn

( B(logn)2∑
k=b(logn)2

∑
|x|=k

1{x<Ln}e−V (x) + �n

)
,

where |�n| ≤ ∑
|x|=b(logn)2 e−V (x) + ∑

|x|=B(logn)2+1 e−V (x) + ∑
x∈Ln

e−V (x) =
Wb(logn)2 + WB(logn)2+1 + ∑

x∈Ln
e−V (x), where (Wi) is the additive martingale

in (2.6). Since Wi → 0 (for i → ∞) P∗-a.s. [see (2.8)], and
∑

x∈Ln
e−V (x) → 0

in P∗-probability (Lemma 3.4), we have �n → 0 in P∗-probability. On the other
hand, Yn

logn
→ 2

σ 2 D∞ in P∗-probability (Theorem 2.7). Consequently,

I(9.11) = σ 2

D∞ logn

B(logn)2∑
k=b(logn)2

∑
|x|=k

1{x<Ln}e−V (x) + oP∗(1).

By an obvious analogue of (4.11) and (4.12),

B(logn)2∑
k=b(logn)2

∑
|x|=k

1{x<Ln}e−V (x) ≤
B(logn)2∑

k=b(logn)2

W
(logn)
k ,

and

B(logn)2∑
k=b(logn)2

∑
|x|=k

1{x<Ln}e−V (x) ≥
B(logn)2∑

k=b(logn)2

W
(log(n/B(logn)2))
k .
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Applying (4.9) to λ = logn and noting that limn→∞ log(n/B(logn)2)
logn

= 1, this yields
that for any fixed B > b > 0,

I(9.11) =
(

8σ 2

π

)1/2

E

[[(
B1/2 ∧ 1

ση

)
− b1/2

]
1(η≤1/(σb1/2))

]
+ oP∗(1).(9.12)

Note that E{[(B1/2 ∧ 1
ση

) − b1/2]1(η≤1/(σb1/2))} is continuous in B and b. Since
|Xn| and |Xn−1| only differ 1, we get that

2Pω

(
b + 1

(logn)2 ≤ |Xn|
(logn)2 ≤ B − 1

(logn)2

)

≤ I(9.11) ≤ 2Pω

(
b − 1

(logn)2 ≤ |Xn|
(logn)2 ≤ B + 1

(logn)2

)
,

which, in view of (9.12), readily yields the case κ = 1 of Corollary 2.3, as claimed.
�
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