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A CENTRAL LIMIT THEOREM FOR THE EULER
CHARACTERISTIC OF A GAUSSIAN EXCURSION SET

BY ANNE ESTRADE AND JOSÉ R. LEÓN1

Université Paris Descartes and Universidad Central de Venezuela

We study the Euler characteristic of an excursion set of a stationary
isotropic Gaussian random field X : � × Rd → R. Let us fix a level u ∈ R

and let us consider the excursion set above u, A(T ,u) = {t ∈ T : X(t) ≥ u}
where T is a bounded cube ⊂ Rd . The aim of this paper is to establish a cen-
tral limit theorem for the Euler characteristic of A(T ,u) as T grows to Rd ,
as conjectured by R. Adler more than ten years ago [Ann. Appl. Probab. 10
(2000) 1–74].

The required assumption on X is C3 regularity of the trajectories, non de-
generacy of the Gaussian vector X(t) and derivatives at any fixed point t ∈Rd

as well as integrability on Rd of the covariance function and its derivatives.
The fact that X is C3 is stronger than Geman’s assumption traditionally used
in dimension one. Nevertheless, our result extends what is known in dimen-
sion one to higher dimension. In that case, the Euler characteristic of A(T ,u)

equals the number of up-crossings of X at level u, plus eventually one if X is
above u at the left bound of the interval T .

Introduction. The Euler characteristic, also called Euler–Poincaré index, is
one of the additive functionals that can be defined on the collection of all com-
pact sets of Rd . It describes (a part of) the topology. In dimension one, the Euler
characteristic is the number of disjoint intervals constituting the compact set. Intu-
itively, in dimension two, the Euler characteristic equals the number of connected
components minus the number of “holes” in the compact set. In dimension three, it
equals the number of connected components minus the number of “handles” plus
the number of “interior hollows.”

We are interested in the Euler characteristic of an excursion set A(T ,u) =
{t ∈ T : X(t) ≥ u} for a real valued smooth stationary isotropic Gaussian field
X = {X(t); t ∈ Rd}, a bounded closed cube T ⊂ Rd and a level u. We denote it
as χ(X,T ,u) for a while. One should consider χ(X,T ,u) as an extension in di-
mension greater than one of the very precious one-dimensional tool constituted by
UX(T ,u), the number of up-crossings at level u of X on the interval T . In 2000,
Adler [3] conjectured that χ(X,T ,u) satisfies a central limit theorem (CLT) as T

grows to Rd . We prove it in the present paper. In dimension one, a CLT result for
UX(T ,u) can be found in [12], Chapter 10.
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Beyond the Euler characteristic, the study of the excursion sets and the level
functionals of a stationary field is a very popular theme. Many authors were and
still are interested in this domain as proved by the successful books of Adler and
Taylor [5] and Azaïs and Wshebor [12], or the recent papers [9, 13, 23, 30], among
others. On the one hand, the description of the excursion sets appears very power-
ful to characterize the field X. For instance, since the first of Adler’s books [2] one
knows that the expectation of χ(X,T ,u) is a good approximation for the proba-
bility of the maximum of X on T to be greater than u. Also the line integral with
respect to the level curve at any level u provides information on the anisotropy
property of X (see [14] and [18]). On the other hand, at least in the Gaussian case,
accurate methods such as the theory of crossings can be used to get explicit values
for level functionals (see the seminal work of Slud [29] and also the paper of Kratz
and León [19]).

In the present paper, three types of tools are mixed. The first one is the Hermite
expansion. It allows the L2 expansion of χ(X,T ,u) into stochastic integrals with
respect to Hermite polynomials. We use it to prove the finiteness of the asymptotic
variance. Our second tool is the Stein method, recently revisited in [25, 27, 28]
for instance. With this tool, the CLT for χ(X,T ,u) turns out to be a consequence
of the asymptotic normality of each stochastic integral. This point is nothing but
a continuous parameter version of the celebrated Breuer–Major theorem (see [8]).
Precisely, we follow Nourdin et al. [25] but with some modifications motivated by
the fact that our process has parameter in Rd instead of Z. The last tool is more
a toolbox: differential calculus in dimension >1. Actually, we have to consider
the random vectorial field X = (∇X,∇2X,X), where ∇X(t) denotes the gradient
vector of X at point t and ∇2X(t) denotes the d(d + 1)/2-dimensional vector
whose coordinates are equal to the second derivates of X at point t .

Our study for establishing a CLT for level functionals has many precursors in
the literature. The first one that we can cite is Adler’s work [1] using the Euler
characteristic of an excursion set to build a spectral moment estimator for two-
dimensional Gaussian fields. Following this direction, we have in mind statistical
outcomes of our result. They could serve various fields of application such as brain
exploration or representation of the universe following [33] or the nice introduc-
tion of the forthcoming book [6], as well as worn surfaces or more generally rough
surfaces as proposed in [7, 31]. Our result could be used to get the asymptotic dis-
tribution of the statistic under the null hypothesis in a test of Gaussianity. Further-
more, it should also give a functional CLT for u �→ χ(X,T ,u) as in [23, 31] where
similar questions are studied. We also have in mind extensions to non-Gaussian or
to nonstationary fields, starting from the recent results [7, 13, 15, 23]. At last, let
us mention the very recent study [24] concerned with asymptotic Euler integrals,
following a similar approach as the present paper.

Hypothesis on X. Throughout the paper, we deal with a centered stationary
isotropic Gaussian field X = {X(t) : t ∈ Rd} such that Var(X(0)) = 1. We also
assume that almost every realization of X is of class C3 on Rd . This last hypothesis
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should certainly be weakened, but we use it in this form to make the computations
as fluent as possible.

We write Xi and Xij the derivatives of X of first and second order:

• X′(t) = ∇X(t) the d-dimensional vector (Xi(t))1≤i≤d ,
• X′′(t) the d × d Hessian matrix (Xij (t))1≤i,j≤d ,
• ∇2X(t) the d(d + 1)/2-dimensional vector (Xij (t))1≤i≤j≤d .

Furthermore, we consider the Gaussian vectorial field X = (∇X,∇2X,X)

with values in RD , D = d + d(d + 1)/2 + 1.

ASSUMPTION (A1). For any t ∈ Rd , the covariance matrix of the random
vector X(t) has full rank D.

It is well known that for any fixed t , X(t) and ∇X(t) are independent, as well as
∇X(t) and ∇2X(t). This yields that �X, the covariance matrix of X(t), is block-
diagonal with one block of size d and the other one of size d(d + 1)/2 + 1.

Denoting by r the covariance function of X, r(t) = Cov(X(0),X(t)), the regu-
larity assumption on X implies that r ∈ C6(Rd). For any multidimensional index
m = (i1, . . . , ik) with 1 ≤ k ≤ 6 and 1 ≤ ij ≤ d , we write ∂mr

∂tm (t) = ∂kr
∂ti1 ···∂tik

(t) =
r
(k)
i1···ik (t). Moreover, since X is isotropic, for any fixed t and any 1 ≤ i 
= j ≤ d ,

Xi(t) and Xj(t) are independent and there exists a real number λ ≥ 0 such that
the first diagonal block of �X, namely the opposite of the Hessian matrix of r at
point 0, equals λId . Assumption (A1) implies that λ > 0.

Since the field X and the level u will be fixed almost everywhere in the rest
of the paper, we drop the dependence in our notation and, from now on, we write
χ(T ) instead of χ(X,T ,u).

Outline of the article. We are interested in the asymptotic as the cube T tends
to Rd , so we start our study without taking into account what happens on the
boundary of T . Hence, in Section 1 instead of considering χ(T ), the Euler charac-
teristic of the excursion above u, we consider ϕ(T ), a modified quantity inspired
by [5], Lemma 11.7.1, which we call modified Euler characteristic of the excursion
above u. Roughly speaking, by applying Morse’s theorem, both notions coincide
on the interior of T . The precise definition of ϕ(T ) is given in Section 1.2 whereas
the definition of χ(T ) stands in Section 2.3.

Section 1 is devoted to the study of the L2 properties of ϕ(T ). In Sec-
tion 1.1, as a by product, we first establish some results on the second moment of
N∇X(T , v) = {t ∈ T : ∇X(t) = v} which are of interest for their own (see Propo-
sition 1.1). Next, we state that the usual Kac’s counting approximation formula
for the number of roots of a vector field (named as “Metatheorem” in [5], The-
orem 11.2.3) not only holds almost surely, but also in L2(�). Taking the limit
of the Hermite expansion of this approximation yields the expansion of ϕ(T ) in
Section 1.2.
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Section 2 deals with the main result, namely Theorem 2.6, which gives a CLT
for χ(T ) as T ↗ Rd . We first solve this question for ϕ(T ) in Section 2.2, after
establishing in Section 2.1 that the asymptotic variance of |T |−1/2ϕ(T ) is finite,
where |T | stands for the volume of T . Although the asymptotic variance is ex-
pressed as a series, we give an explicit lower bound as well as some tricks to com-
pute the coefficients in the Appendix section. The asymptotic normality of ϕ(T )

is obtained through a Breuer–Major type argument. We prove it in our setting,
in other words, for a Gaussian process indexed by a d-dimensional continuous pa-
rameter (see Proposition 2.4). In Section 2.3, we use the theory of Morse to transfer
the CLT from ϕ(T ) to χ(T ).

Two technical proofs have been postponed in the Appendix. The proof of
Proposition 1.1 includes differential calculus and sharp estimates. The proof of
Lemma 2.2 deals with specific Gaussian calculus, some of them inspired from
the computation of Eϕ(T ) in [5], Chapters 11.6 and 11.7. It shows how tricky the
computations are as soon as one wants to obtain an explicit formula in this domain.

1. L2 properties of ϕ(T ).

1.1. L2 approximation of ϕ(T ). Let T = ∏
1≤i≤d [ai, bi] be a bounded rect-

angle in Rd and let us consider the excursion set A(T ,u) = {t ∈ T : X(t) ≥ u}.
As we shall see later on in this section and in Section 2.3, the study of the Euler
characteristic of A(T ,u) yields to consider the number of stationary points of X

within the excursion set A(T ,u). Therefore, as an auxiliary tool, we start with a
result concerning the number of roots of ∇X.

We introduce the number of points in T where the vectorial random field ∇X

reaches the value v ∈ Rd . For v = 0 ∈ Rd , it is nothing but the number of station-
ary points of X in T . For any v ∈ Rd , we denote N∇X(T , v) the aforementioned
random variable

N∇X(T , v) = #
{
t ∈ T : ∇X(t) = v

}
.

Let us also define the following approximation sequence:

N∇X
ε (T , v) =

∫
T

∣∣det
(
X′′(t)

)∣∣δε

(∇X(t) − v
)
dt,

where δε = (2ε)−d1[−ε,ε]d . It is well known ([5], Theorem 11.2.3) that N∇X
ε (T ,

v) →ε→0 N∇X(T , v) almost surely and that N∇X(T , v) belongs to L1(�). The
next proposition states that it also belongs to L2(�) and that the convergence also
holds in L2(�), assuming the random field X is sufficiently smooth.

PROPOSITION 1.1. Let X be a stationary isotropic Gaussian field with tra-
jectories of class C3 that satisfies Assumption (A1). Then:

1. for any v ∈ Rd , N∇X(T , v) ∈ L2(�),
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2. v �→ E[(N∇X(T , v))2] is a continuous function on Rd ,
3. for any v ∈ Rd , N∇X

ε (T , v) →ε→0 N∇X(T , v) in L2(�).

PROOF. See the Appendix. �

REMARK. In dimension d = 1, the fact that the number of crossings of X′
at level u, namely NX′

(T ,u), can be approximated in L2(�) has already been
established (see, for instance, Theorem 10.10 in [12]). The usual condition for this
result to hold is

∫
|t |≤1 
(t)/|t |dt < +∞ where 
(t) = r(4)(0)− r(4)(t), known as

Geman’s assumption. It is weaker than assuming X has C3-trajectories and turns
out to be a necessary condition for NX′

(T ,u) to belong to L2(�) (see [20]).
In dimension d > 1, since a long time, papers have been devoted to the study

of higher moments of the number of roots of a stationary Gaussian field. In partic-
ular, thirty years ago, Elizarov gave a sufficient condition in [16]: the one dimen-
sional integrals

∫ δ
0 (r

(4)
11ii (0,0, . . . ,0) − r

(4)
11ii(τ,0, . . . ,0))τ−1 dτ have to be finite

for all i = 1, . . . , d . Since in our present case, r is C6 in a neighborhood of 0
and since r(5)(0) = 0, the required condition is fulfilled. Despite this partial an-
swer and another specific one in [22], we could not find any statement similar to
Proposition 1.1. Actually our proof is inspired by [10] and [11].

We now give the definition of ϕ(T ), the modified Euler characteristic of the
excursion set A(T ,u), by prescribing

ϕ(T ) =
d∑

k=0

(−1)kμk(T ) where

μk(T ) = #
{
t ∈ T : X(t) ≥ u,∇X(t) = 0, index

(
X′′(t)

) = d − k
}
.

Here the “index” stands for the number of negative eigenvalues.

PROPOSITION 1.2. Let X be a stationary isotropic Gaussian field with tra-
jectories of class C3 and satisfying Assumption (A1). Then:

1. ϕ(T ) ∈ L2(�),
2. the following convergence holds almost surely and in L2(�)

ϕ(T ) = lim
ε→0+(−1)d

∫
T

det
(
X′′(t)

)
1[u,∞)

(
X(t)

)
δε

(∇X(t)
)
dt.

PROOF. Let us introduce

ϕ(ε,T ) = (−1)d
∫
T

det
(
X′′(t)

)
1[u,∞)

(
X(t)

)
δε

(∇X(t)
)
dt.

The almost sure convergence in the second point is contained in Theorem 11.2.3
of [5], so we only prove the first point and the convergence in L2(�).
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It is obvious that |ϕ(ε,T )| ≤ N∇X
ε (T ,0) and Proposition 1.1 implies the conver-

gence of E[(N∇X
ε (T ,0))2] towards E[(N∇X(T ,0))2]. Then, the dominated con-

vergence theorem allows us to conclude that

E
[
ϕ2(ε, T )

] → E
[
ϕ2(T )

] ≤ E
[(

N∇X(T ,0)
)2]

< +∞.

We obtain as a bonus that ϕ(T ) ∈ L2(�). Furthermore, the above convergence of
the L2(�)-norms and the a.s. convergence of ϕ(ε,T ) imply the L2(�) conver-
gence. �

REMARK. The first study in dimension d > 1 on the finiteness of the second
order moment of the Euler characteristic can be found in the 40 years old article of
Adler and Hasofer [4]. Much more recently, the fact that ϕ(T ) belongs to L2(�)

has been implicitly established in [32] under convenient assumptions.

1.2. Hermite type expansion of ϕ(T ). In the following, we use the Hermite
polynomials (Hn)n∈N defined by Hn(x) = (−1)nex2/2 dn

dxn (e−x2/2). They provide
an orthogonal basis of L2(R, φ(x) dx) where φ denotes the standard Gaussian
density on R. We also denote by φm the standard Gaussian density on Rm.

In order to get an expansion of ϕ(T ) as stochastic integrals with respect to
Hermite polynomials, as a first step, we establish the expansion of ϕ(ε,T ).

We identify any symmetric matrix of size d × d with the d(d + 1)/2-
dimensional vector containing the coefficients on and above the diagonal and write
d̃et the associated determinant map.

Let us recall that D = d + d(d + 1)/2 + 1. We consider the map Gε defined on
RD by

(x, y, z) ∈ Rd ×Rd(d+1)/2 ×R �→ Gε(x, y, z) = δε(x) d̃et(y)1[u,∞)(z),

and the map fu defined on Rd(d+1)/2+1 by

(y, z) ∈Rd(d+1)/2 ×R �→ fu(y, z) = d̃et(y)1[u,∞)(z).

On the other hand, we recall that �X stands for the covariance matrix of the D-
dimensional Gaussian vector

X(t) = (∇X(t),∇2X(t),X(t)
)
.

We choose 
 a D × D matrix such that 
t
 = �X, where t
 denotes the trans-
pose of 
. We can thus write, for any fixed t ∈ Rd , X(t) = 
Y(t) with Y(t) a
D-dimensional standard Gaussian vector. Since the matrix �X is block diagonal
with blocks of respective dimensions d and d(d + 1)/2 + 1, 
 also factorizes into(
1

0
0


2

)
with blocks of the same size as those of �X. Furthermore, we recall that

X is isotropic and thus 
1 = √
λId where λ = −r

(2)
ii (0) for any i = 1, . . . , d . For

y = (y, ȳ) ∈ RD = Rd ×RD−d , we define

G̃ε(y) = Gε(
y) = δε(
1y)fu(
2ȳ) = δε ◦ 
1(y)fu ◦ 
2(ȳ).(1)
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Since the map G̃ε clearly belongs to L2(RD,φD(y) dy) the following expansion
converges in this space

G̃ε(y) =
∞∑

q=0

∑
n∈ND;|n|=q

c(G̃ε,n)H̃n(y),

where n = (n1, n2, . . . , nD), |n| = n1 + n2 + · · · + nD and H̃n(y) =∏
1≤j≤D Hnj

(yj ). The factorization that appears in (1) induces a factorization of
the Hermite coefficients into

c(G̃ε,n) = c(δε ◦ 
1, n)c(fu ◦ 
2, n̄),

where for n = (n, n̄) ∈ Nd × ND−d , the Hermite coefficients of the maps δε ◦ 
1
and fu ◦ 
2 are given by

c(δε ◦ 
1, n) = 1

n!
∫
Rd

δε(
√

λy)H̃n(y)φd(y) dy,(2)

c(fu ◦ 
2, n̄) = 1

n̄!
∫
RD−d

fu(
2z)H̃n̄(z)φD−d(z) dz.(3)

Writing ϕ(ε,T ) as ϕ(ε,T ) = ∫
T G̃ε(Y (t)) dt yields the following expansion:

ϕ(ε,T ) = (−1)d
∞∑

q=0

∑
n=(n,n̄)

|n|=q

c(δε ◦ 
1, n)c(fu ◦ 
2, n̄)

∫
T

H̃n
(
Y(t)

)
dt.(4)

We will take the limit as ε goes to 0 in (4) to obtain the expansion of ϕ(T ). We
first compute the limit in (2):

c(δε ◦ 
1, n)−→
ε→0

1

n!(2πλ)−d/2H̃n(0) := d(n).(5)

In what follows, we introduce

a(n) = d(n)c(fu ◦ 
2, n̄) for n = (n, n̄) ∈ Nd ×ND−d .(6)

PROPOSITION 1.3. Let X be a stationary isotropic Gaussian field with C3 tra-
jectories that satisfies Assumption (A1). The following expansion holds in L2(�):

ϕ(T ) = (−1)d
∞∑

q=0

∑
n∈ND;|n|=q

a(n)

∫
T

H̃n
(
Y(t)

)
dt.

Note that, according to Mehler’s formula (see [12], Lemma 10.7), if |n| 
= |m|
then Cov(H̃n(Y (s)), H̃m(Y (t))) = 0. The above expansion turns out to be orthog-
onal in L2(�).
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PROOF OF PROPOSITION 1.3. Let us take the formal limit of the right-hand
side of (4) and define the random variable

η(T ) = (−1)d
∞∑

q=0

∑
n∈ND;|n|=q

a(n)

∫
T

H̃n
(
Y(t)

)
dt.

The first step consists in proving that η(T ) belongs to L2(�). Let Q be a positive
integer. Let us denote by πQ the projection onto the first Q chaos in L2(�) and by
πQ the projection onto the remaining ones, so that

πQ(
η(T )

) =
Q∑

q=0

∑
n∈ND;|n|=q

a(n)

∫
T

H̃n
(
Y(t)

)
dt,

πQ

(
η(T )

) = η(T ) − πQ(
η(T )

)
.

Using the orthogonality relations between the Hermite polynomials, we have

E
[
πQ(

η(T )
)2]

=
Q∑

q=0

E

[( ∑
|n|=q

a(n)

∫
T

H̃n
(
Y(t)

)
dt

)2]

≤
Q∑

q=0

lim
ε→0

E

[( ∑
n=(n,n̄)

|n|=q

c(δε ◦ 
1, n)c(fu ◦ 
2, n̄)

∫
T

H̃n
(
Y(t)

)
dt

)2]

≤ lim
ε→0

E
[
ϕ(ε,T )2] = E

[
ϕ(T )2]

< ∞,

where we have used Fatou’s lemma in the second line, and (4) and Proposition 1.2
in the last one. Thus E[η(T )2] < ∞.

It remains to show that ϕ(T ) = η(T ) in L2(�). In the next lines, we write ‖ · ‖2
for the norm in L2(�). Then, we have∥∥ϕ(T ) − η(T )

∥∥
2

≤ ∥∥πQ

(
ϕ(T ) − η(T )

)∥∥
2 + ∥∥πQ(

ϕ(T ) − ϕ(ε,T )
)∥∥

2

+ ∥∥πQ(
ϕ(ε,T ) − η(T )

)∥∥
2

≤ ∥∥πQ

(
ϕ(T )

)∥∥
2 + ∥∥πQ

(
η(T )

)∥∥
2 + ∥∥ϕ(T ) − ϕ(ε,T )

∥∥
2

+ ∥∥πQ(
ϕ(ε,T ) − η(T )

)∥∥
2.

The first two terms tend to 0 as Q → ∞ because both functions ϕ(T ) and η(T )

belong to L2(�), the third one tends to zero as ε → 0 due to Proposition 1.2, and
the last term tends to zero as ε → 0 for fixed Q due to (4), (5), (6) and the definition
of η(T ). Hence, by taking the limit as ε → 0 and Q → ∞, we get ϕ(T ) = η(T ).

�
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2. Central limit theorem for χ(T ). In this section, we will prove our main
result, which consists in a central limit theorem for the Euler characteristic χ(T ) of
the excursion set A(T ,u) when T grows to Rd . We will first concentrate on ϕ(T )

and will be interested in the asymptotics of ζ(T ) = ϕ(T )−Eϕ(T )

|T |1/2 . To make it precise,

we assume that the compact rectangle T has the following shape T = [−N,N]d
with N a positive integer, and we let N go to infinity. We will prove that the random
variable

ζ
([−N,N]d) = ϕ([−N,N]d) −Eϕ([−N,N]d)

(2N)d/2

converges in distribution to a centered Gaussian variable.
We need to introduce the following assumption.

ASSUMPTION (A2). Denoting ψ(t) = max{| ∂mr
∂tm (t)|;m ∈ {1, . . . , d}k,0 ≤

k ≤ 4},
ψ(t) → 0 when ‖t‖ → +∞, ψ ∈ L1(

Rd)
and

∫
Rd

r(t) dt > 0.

Note that Assumption (A2) implies that r ∈ Lq(Rd) for all q ≥ 1 and hence
that X admits a spectral density fX that is continuous. Moreover, fX(0) =∫
Rd r(t) dt > 0.

2.1. Asymptotic variance of ϕ(T ). We start with a crucial result, which states
that the variance of ζ([−N,N]d)) has a finite limit as N goes to infinity. As ex-
pected, the asymptotic variance depends on the level u.

PROPOSITION 2.1. Let X be a stationary isotropic Gaussian field indexed by
Rd with C3 trajectories and satisfying Assumptions (A1)–(A2). For any level u,

Var
(
ζ
([−N,N]d)) −→

N→+∞V (u) with V (u) < +∞.

Moreover, V (u) ≥ fX(0)λdHd(u)2φ(u)2.

PROOF. Starting from the Hermite type expansion of ϕ([−N,N]d) in L2(�)

as is given in Proposition 1.3, and using the orthogonality, we obtain

Var
(
ζ
([−N,N]d)) =

∞∑
q=1

∑
n,m∈ND

|n|=|m|=q

a(n)a(m)RN(n,m)(7)

with

RN(n,m) = (2N)−d
∫
[−N,N]d

∫
[−N,N]d

Cov
(
H̃n

(
Y(s)

)
, H̃m

(
Y(t)

))
ds dt

=
∫
[−2N,2N]d

Cov
(
H̃n

(
Y(0)

)
, H̃m

(
Y(v)

)) ∏
1≤k≤d

(
1 − |vk|

2N

)
dv.
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A slight generalization of Mehler’s formula (see Lemma 10.7 in [12]) allows us to
write for any n,m ∈ ND such that |n| = |m|,

Cov
(
H̃n

(
Y(0)

)
, H̃m

(
Y(v)

))
(8)

= ∑
dij≥0∑

i dij=nj ;∑j dij=mi

n!m! ∏
1≤i,j≤D

(�Y
ij (v))dij

(dij )! ,

where �Y
ij (v) = Cov(Yi(0), Yj (v)). Since �Y (v) = 
−1�X(v)t (
−1) with �X the

covariance function of (∇X,∇2X,X), we have for any v ∈ Rd ,

sup
1≤i,j≤D

∣∣�Y
ij (v)

∣∣ ≤ Kψ(v),

where ψ has been introduced in Assumption (A2) and K is some positive constant.
Hence, for |n| = |m| = q ,∣∣Cov

(
H̃n

(
Y(0)

)
, H̃m

(
Y(v)

))∣∣ ≤ K ′ψq(v),

with some positive constant K ′. By Assumption (A2), ψ ∈ Lq(Rd), so we can
apply the dominated convergence theorem and get

RN(n,m) −→
N→∞R(n,m) =

∫
Rd

Cov
(
H̃n

(
Y(0)

)
, H̃m

(
Y(v)

))
dv.(9)

According to (7), we write Var(ζ([−N,N ]d)) = ∑∞
q=1 V N

q and we know that

V N
q −→

N→∞Vq := ∑
n,m∈ND

|n|=|m|=q

a(n)a(m)R(n,m).(10)

Note that for any q , V N
q ≥ 0 and so Vq ≥ 0. We will establish that

sup
N

∞∑
q=Q+1

V N
q −→

Q→∞ 0.(11)

Using Fatou’s lemma, it will prove that the series V = ∑∞
q=1 Vq is convergent and

that Var(ζ([−N,N]d)) tends to V . The first step of Proposition 2.1 will thus be
achieved.

Let us remark that (11) is equivalent to Var(πQ(ζ([−N,N]d)))−→Q→∞ 0 uni-
formly with respect to N , where πQ is the projection onto the terms of order > Q.

Let s ∈ Rd and set θs the shift operator associated with the field X, that is,
θsX· = Xs+·. Introducing the set of indices

IN = [−N,N)d ∩Zd,
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we can write

ζ
([−N,N]d) = ζ

([−N,N)d
) = (2N)−d/2

∑
s∈IN

θs ◦ ζ
([0,1)d

)
.

Then, denoting by VN,Q the variance Var(πQ(ζ([−N,N]d))) and using the sta-
tionarity of X, we obtain

VN,Q = (2N)−d
∑

s∈I2N

αs(N)E
(
πQ

(
ζ
([0,1)d

))
πQ

(
θs ◦ (

ζ
([0,1)d

))))
,

where αs(N) denotes the cardinal of {t ∈ IN : t − s ∈ IN }, which is certainly less
than (2N)d .

Let us choose a such that ψ(s) ≤ ρ < 1/K for ‖s‖∞ ≥ a. We split VN,Q into
V 1

N,Q + V 2
N,Q where in V 1

N,Q the sum runs for the indices s ∈ {s ∈ I2N : ‖s‖∞ <

a + 1} and in V 2
N,Q for {s ∈ I2N : ‖s‖∞ ≥ a + 1}.

At first, it holds for 2N > a + 1,∣∣V 1
N,Q

∣∣ ≤ (2N)−d(2a + 2)d(2N)dE
(
πQ

(
ζ
([0,1)d

))2)
,

which goes to 0 as Q goes to ∞ uniformly with respect to N .
Next, for any s ∈ I2N such that ‖s‖∞ ≥ a + 1, we write

E
(
πQ

(
ζ
([0,1)d

))
πQ

(
θs ◦ (

ζ([0,1)d)
)))

(12)

=
∞∑

q=Q+1

∫
[0,1]d

∫
[0,1]d

E
[
Fq

(
Y(t)

)
Fq

(
Y(s + u)

)]
dt du,

where

E
[
Fq

(
Y(t)

)
Fq

(
Y(s + u)

)]
= E

[ ∑
n∈ND;|n|=q

a(n)H̃n
(
Y(t)

) ∑
n∈ND;|n|=q

a(n)H̃n
(
Y(s + u)

)]
.

Arcones inequality ([8], Lemma 1) implies that∣∣E[
Fq

(
Y(t)

)
Fq

(
Y(s + u)

)]∣∣ ≤ Kqψq(s + u − t)
∑

n∈ND;|n|=q

a(n)2n!.

Let us remark that the series
∑

n∈ND a(n)2n! diverges so that we have to handle
it carefully in what follows. Recall that equation (6) writes as a(n) = d(n)c(fu ◦

2, n) with d(n) given by (5). Since Hk(0)2 ≤ k! for any positive integer k, we
have d2(n)n! ≤ Cd with C = (2πλ)−1 and hence∑

n∈ND;|n|=q

a(n)2n! ≤ Cdqd
∑

|n|≤q

c(fu ◦ 
2, n)2n! ≤ Cdqd
∥∥fu ◦ 
2

∥∥2
.
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Therefore, the absolute value of (12) can be bounded by

Cd
∥∥fu ◦ 
2

∥∥2
∞∑

q=Q+1

qdKq
∫
[0,1]d

∫
[0,1]d

ψq(s + u − t) dudt.

Hence, ∣∣V 2
N,Q

∣∣ ≤ Cd
∥∥fu ◦ 
2

∥∥2
∞∑

q=Q+1

qdKqρq−1

× ∑
s∈I2N ;‖s‖∞≥a+1

∫
[0,1]d

∫
[0,1]d

ψ(s + u − t) dudt,

where we have used that for any ‖s‖∞ ≥ a +1 and u, t ∈ [0,1]d , ψ(s+u− t) ≤ ρ.
On the one hand, since ρ < 1/K ,

∑∞
q=Q+1 qdKqρq−1 is the tail of a convergent

series. On the other hand,∑
s∈I2N ;‖s‖∞≥a+1

∫
[0,1]d

∫
[0,1]d

ψ(s + u − t) dudt

≤ ∑
s∈I2N

∫
[−1,1]d

ψ(s + u)du ≤ 2
∫
Rd

ψ(u)du < +∞.

Hence, supN |V 2
N,Q| goes to 0 as Q goes to infinity and we have proved that

Var ζ([−N,N]d) tends to

V =
∞∑

q=1

∑
n,m∈ND

|n|=|m|=q

a(n)a(m)R(n,m) < +∞.(13)

The first assertion of Proposition 2.1 being established, it remains to prove that
V ≥ fX(0)λdHd(u)2φ(u)2.

Actually, in the sum (13), each q-term is nonnegative so that V is greater than
the q = 1 term. The next lemma, which is proved in the Appendix, allows us to
conclude for the lower bound of V . �

LEMMA 2.2. Let us denote by V1 the term corresponding to q = 1 in the
sum (13). Then

V1 = V1(u) = fX(0)λdHd(u)2φ(u)2.

If one is interested in getting an explicit value for the asymptotic variance V ,
it is sufficient to combine equation (13) with equations (3), (5), (6) for a(n) and
equations (8), (9) for R(n,m). Nevertheless, it seems difficult to simplify the final
expression. The previous lemma is a successful attempt of simplification of the
first term of the series (13). The tricky computations that we used in the proof,
partially inspired by [5], Section 11.7, could be extended to the next terms in the
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series. Another attempt to get explicit formulae can be found in the working paper
[17] that is concerned with dimension d = 2.

2.2. Central limit theorem for ϕ(T ).

THEOREM 2.3. Let X be a stationary isotropic Gaussian field indexed by Rd

with C3 trajectories and satisfying Assumptions (A1)–(A2). As N ↗ +∞,

ζ
([−N,N]d) = ϕ([−N,N]d) −Eϕ([−N,N]d)

(2N)d/2

converges in distribution to a centered Gaussian variable with finite variance V

given by (13).

PROOF. By the proof of Proposition 2.1 [see (11)], we already know that

sup
N

Var
(
πQ

(
ζ
([−N,N]d))) −→

Q→∞ 0.

So πQ(ζ([−N,N]d)) → 0 in L2(�) when N → ∞ and Q → ∞ in this order.
Hence, in order to establish the CLT for ζ([−N,N]d), it is enough to show, for a
fixed Q as N goes to infinity, the asymptotic normality of the sequence

πQ(
ζ
([−N,N]d)) = ζ

([−N,N]d) − πQ

(
ζ
([−N,N]d))

(14)

= 1

(2N)d/2

∫
[−N,N]d

Q∑
q=1

Gq

(
Y(t)

)
dt,

where we have defined Gq(x) = ∑
n∈ND;|n|=q a(n)H̃n(x). Note that Proposi-

tion 2.1 states that the asymptotic variance of πQ(ζ([−N,N]d)) is finite. Then,
the result follows from the classical Breuer–Major theorem (see, for instance, Ar-
cones’s paper [8]), although in this theorem the parameter set is Z whereas in our
setting the parameter set is Rd . �

For completeness, we give a statement and a proof of the Breuer–Major theo-
rem, both adapted to our setting, namely Proposition 2.4 below. Our proof follows
very closely the proof of the CLT in Nourdin et al. [25]. The main tool is the expan-
sion into the Wiener–Itô chaos. Standard references for this matter are Nualart’s
[26] and Major’s [21] books, for instance.

PROPOSITION 2.4. Let X be a stationary isotropic Gaussian field indexed
by Rd with C3 trajectories that satisfies Assumptions (A1)–(A2). For any fixed
positive integer Q, as N ↗ +∞, πQ(ζ([−N,N]d)) converges in distribution to
a centered Gaussian variable with finite variance σ 2

Q = ∑Q
q=1 Vq , where the Vq ’s

are introduced in (10).

PROOF. We will write πQ(ζ([−N,N]d)) as a sum of multiple Wiener–Itô
integrals of order q (1 ≤ q ≤ Q). With this goal in mind, we remember that
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for any t ∈ Rd , Y(t) is a D-dimensional standard Gaussian vector given by
Y(t) = 
−1X(t), where X is the D-dimensional vector field X = (∇X,∇2X,X).
Assumption (A2) yields that X admits a spectral density fX and so the following
spectral representation holds:

X(t) =
∫
Rd

ei〈t,λ〉√f (λ)dW(λ), t ∈ Rd,

where W is a complex Brownian measure on Rd .
With any λ = (λ1, . . . , λd) in Rd we associate the vector ν(λ) in CD , defined

by

ν(λ) = (
(iλj )1≤j≤d, (−λjλk)1≤j≤k≤d,1

)
,

so that we can write the next D-dimensional spectral representation

Y(t) = 
−1X(t) =
∫
Rd

ei〈t,λ〉√f (λ)
(

−1ν(λ)

)
dW(λ), t ∈ Rd .

In what follows, for any t ∈ Rd and any j = 1, . . . ,D, we denote by ϕt,j the square
integrable map on Rd such that

Yj (t) =
∫
Rd

ϕt,j (λ) dW(λ).

Let us remark that (ϕt,j )1≤j≤D is an orthogonal system in L2(Rd) since Y(t) is
a standard Gaussian vector. Then Itô’s formula for multiple Wiener–Itô integrals
([21], Theorem 4.3) allows us to write for any n = (n1, . . . , nD) ∈ ND such that
|n| = n1 + · · · + nD = q ,

H̃n
(
Y(t)

) = ∏
1≤j≤D

Hnj

(
Yj (t)

)
=

∫
Rdq

(
ϕ

⊗n1
t,1 ⊗ · · · ⊗ ϕ

⊗nD

t,D

)
(λ1, . . . , λq) dW(λ1) · · · dW(λq)(15)

= Iq

(
ϕ

⊗n1
t,1 ⊗ ⊗· · · ⊗ ϕ

⊗nD

t,D

)
,

where Iq stands for the Wiener–Itô integral of order q . We shall use the following
property of Iq ,

∀h ∈ L2((
Rd)q)

s.t. ∀x ∈ (
Rd)q

, h(−x) = h̄(x), Iq(h) = Iq

(
Sym(h)

)
,

where Sym(h) stands for the symmetrization of h,

Sym(h)(x1, . . . , xq) = 1

q!
∑
σ∈Sq

h(xσ(1), . . . , xσ(q)), x1, . . . , xq ∈ Rd

with Sq the group of all permutations of {1, . . . , q}.
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For n = (n1, . . . , nD) ∈ND such that |n| = q , we define

An =
{

m ∈ {1, . . . ,D}q :
q∑

j=1

1{i}(mj ) = ni,∀i = 1, . . . ,D

}
,

and remark that the family (An)n∈ND;|n|=q provides a partition of {1,2, . . . ,D}q .
It allows us the following notation:

for m ∈ An, let bm = 1

CardAn
a(n),

with CardAn standing for the cardinal of An. So m �→ bm is symmetric on
{1,2, . . . ,D}q . Let us also remark that for any m = (m1, . . . ,mq) ∈An,

Sym
(
ϕ

⊗n1
t,1 ⊗ · · · ⊗ ϕ

⊗nD

t,D

) = Sym(ϕt,m1 ⊗ ϕt,m2 ⊗ · · · ⊗ ϕt,mq )

and so Iq(ϕ
⊗n1
t,1 ⊗ · · · ⊗ ϕ

⊗nD

t,D ) = Iq(ϕt,m1 ⊗ ϕt,m2 ⊗ · · · ⊗ ϕt,mq ). We use this last
identity and (15) to compute Gq(Y (t)) as follows:

Gq

(
Y(t)

) = ∑
n∈ND;|n|=q

a(n)Iq

(
ϕ

⊗n1
t,1 ⊗ · · · ⊗ ϕ

⊗nD

t,D

)
= ∑

m∈{1,2,...,D}q
bm

∑
m∈An

Iq(ϕt,m1 ⊗ · · · ⊗ ϕt,mq ).

Fubini’s theorem for multiple Wiener integrals applied to formula (14) yields

πQ(
ζ
([−N,N]d)) =

Q∑
q=1

Iq

(
gN

q

)
where

gN
q = 1

(2N)d/2

∫
[−N,N]d

∑
m∈{1,2,...,D}q

bmϕt,m1 ⊗ · · · ⊗ ϕt,mq dt.

This expression corresponds to equation (4.43) in [25]. Hence, according to (4.47)
of [25], if h is a twice differentiable bounded map with bounded derivatives and if
ZQ is a centered Gaussian random variable with variance equal to σ 2 = ∑Q

q=1 Vq ,
then ∣∣E[

h(ZQ)
] −E

[
h
(
πQ(

ζ
([−N,N]d)))]∣∣

(16)

≤ ‖h′′‖∞
2

Q∑
p,q=1

∥∥∥∥δpqVp − 1

q

〈
DIp

(
gN

p

)
,DIq

(
gN

q

)〉
H

∥∥∥∥
L2(�)

,

where δpq denotes the Kronecker symbol and D denotes the Malliavin deriva-
tive (see [25] for its definition). We are now in position to prove the CLT for
πQ(ζ([−N,N]d)): it is sufficient to establish that the right-hand side of (16) tends
to 0.
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First step: It consists of considering the terms corresponding to p = q and es-
tablishing ∥∥∥∥Vq − 1

q

〈
DIq

(
gN

q

)
,DIq

(
gN

q

)〉
H

∥∥∥∥
L2(�)

→ 0.(17)

Let us compute the expectation of the term within the brackets:

E

(
1

q

〈
DIq

(
gN

q

)
,DIq

(
gN

q

)〉
H

)
= q!∥∥gN

q

∥∥2
H⊗q

= q!
(2N)d

∫
[−N,N]d

∫
[−N,N]d

∑
m,l∈{1,2,...,D}q

bmbl

×
q∏

j=1

�Y
mj lj

(s1 − s2) ds1 ds2

= 1

(2N)d

∫
[−N,N]d

∫
[−N,N]d

∑
n,n′∈ND

|n|=|n′|=q

a(n)a
(
n′)

× Cov
(
H̃n

(
Y(s1)

)
, H̃n′

(
Y(s2)

))
ds1 ds2.

The last line is equal to V N
q and we already proved that V N

q → Vq . So

E

(
1

q

〈
DIq

(
gN

q

)
,DIq

(
gN

q

)〉
H

)
→ Vq.

We now turn to the L2(�) convergence. We note that∥∥∥∥Vq − 1

q

〈
DIq(g

N
q ),DIq(g

N
q )

〉
H

∥∥∥∥2

L2(�)

≤
∥∥∥∥ 1

q

〈
DIq

(
gN

q

)
,DIq

(
gN

q

)〉
H

∥∥∥∥2

L2(�)

+
(
Vq −E

(
1

q

〈
DIq

(
gN

q

)
,DIq

(
gN

q

)〉
H

))2

.

We already know that the second term tends to 0. The fact that the first term also
tends to 0 is actually included in the next step (p = q case).

Second step: It consists of showing that for q ≥ p,∥∥∥∥ 1

q

〈
DIp

(
gN

p

)
,DIq

(
gN

q

)〉
H

∥∥∥∥2

L2(�)

→ 0.(18)
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Formula (3.36) of [25] implies∥∥∥∥ 1

q

〈
DIp

(
gN

p

)
,DIq

(
gN

q

)〉
H

∥∥∥∥2

L2(�)

≤ p!
(

q − 1
p − 1

)2
(q − p)!E[

Ip

(
gN

p

)]2
∥∥∥∥gN

q

⊗
q−p

gN
q

∥∥∥∥
H⊗2p

+ p2

2

p−1∑
l=1

(l − 1!)2
(

p − 1
l − 1

)2 (
q − 1
l − 1

)2
(p + q − 2l)!

×
(∥∥∥∥gN

p

⊗
p−l

gN
p

∥∥∥∥
H⊗2l

+
∥∥∥∥gN

q

⊗
q−l

gN
q

∥∥∥∥
H⊗2l

)
,

where for e < p,

gN
p

⊗
e

gN
p = 1

(2N)d

∫
[−N,N]d×[−N,N]d

∑
m,l∈{1,...,D}p

bmbl

e∏
j=1

�Y
mj lj

(s1 − s2)

× ϕs1,me+1 ⊗ · · · ⊗ ϕs1,mp ⊗ ϕs2,le+1 ⊗ · · · ⊗ ϕs2,lp ds1 ds2.

In this form, defining I (N) = [−N,N]d × [−N,N]d × [−N,N]d × [−N,N]d ,
we get ∥∥∥∥gN

p

⊗
e

gN
p

∥∥∥∥2

H⊗2(p−e)
≤

(
Dp

∑
m∈{1,...,D}p

|bm|2
)2

Z(N),

with

Z(N) = 1

(2N)2d

∫
I (N)

ψe(s1 − s2)ψ
e(s3 − s4)ψ

p−e(s1 − s3)

× ψp−e(s2 − s4) ds1 ds2 ds3 ds4.

Moreover, we have ψe(s3 − s4)ψ
p−e(s1 − s3) ≤ ψp(s3 − s4)+ψp(s1 − s3). Thus,

we can write Z(N) ≤ Z1(N) +Z2(N) where

Z1(N) ≤ 1

(2N)2d

∫
I (N)

ψe(s1 − s2)ψ
p(s3 − s1)ψ

p−e(s2 − s4) ds1 ds2 ds3 ds4.

The inner integral
∫
[−N,N]d ψp(s3 − s1) ds3 is less than

∫
Rd ψp(v) dv < +∞, and

for the remaining terms

1

(2N)2d

∫
[−N,N]d [×−N,N]d×[−N,N]d

ψe(s1 − s2)ψ
p−e(s2 − s4) ds1 ds2 ds4

≤ 1

(2N)2d

∫
[−N,N]d [×[−N,N]d

ψe ∗ ψp−e(s1 − s4) ds1 ds4

≤ 1

(2N)d

∫
Rd

ψe ∗ ψp−e(s) ds → 0.
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The term Z2(N) can be treated similarly, yielding ‖gN
p

⊗
e gN

p ‖2
H⊗2(p−e) → 0.

Hence, (18) holds in force. Together with (17), it implies that (16) tends to zero.
�

The same proof can be used to get the next result, which deals with a collection
of levels. Let us emphasize that the coefficients a(n) appearing in the asymptotic
variance given by (13) do depend on the level u [see (6)]. We denote them as
a(n, u) in the next theorem.

THEOREM 2.5. Let X be a stationary isotropic Gaussian field indexed by Rd

with C3 trajectories and satisfying Assumptions (A1)–(A2). For any level u, we
denote

ζ
([−N,N]d, u

) = ϕ([−N,N]d, u) −Eϕ([−N,N]d, u)

(2N)d/2 .

Let u1, . . . , uK be K fixed levels in R. As N ↗ +∞, the random vector(
ζ
([−N,N]d, u1

)
, . . . , ζ

([−N,N]d, uK

))
converges in distribution to a centered Gaussian vector with covariance matrix
(C(ui, uj ))1≤i,j≤K given by

C(u, v) =
∞∑

q=1

∑
n,m∈ND

|n|=|m|=q

a(n, u)a(m, v)R(n,m).(19)

2.3. Morse’s theory and central limit theorem for χ(T ). We follow the pre-
sentation of Adler and Taylor’s book ([5], Section 9.4), inspired by Morse’s theo-
rem, to give a precise definition of χ(T ), the Euler characteristic of the excursion
set A(T ,u).

We still work with T = [−N,N]d and for � = 0,1, . . . , d , we denote by ∂�T the
collection of all the �-dimensional faces of T . In particular, ∂dT only contains the

interior
◦
T = (−N,N)d . Each �-dimensional face J of T is associated with a cardi-

nal � subset σ(J ) of {1, . . . , d} and a sequence (εj )j∈{1,...,d}\σ(J ) in {−1,+1}d−�

such that

J = {
v ∈ T : −N < vj < N for j ∈ σ(J ), vj = εjN for j /∈ σ(J )

}
.(20)

The Euler characteristic of A(T ,u) can be computed as

χ(T ) = ∑
0≤�≤d

∑
J∈∂�T

ϕ̃(J ) with ϕ̃(J ) =
�∑

k=0

(−1)kμ̃k(J ),

where for any �-dimensional face J of T

μ̃k(J ) = #
{
v ∈ J : X(v) ≥ u,Xj (v) = 0 for j ∈ σ(J ),

εjXj (v) > 0 for j /∈ σ(J ), index
((

Xij (v)
)
i,j∈σ(J )

) = � − k
}
.
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Let us remark that the above formula can be written as χ(T ) =∑
0≤�<d

∑
J∈∂�T

ϕ̃(J ) + ϕ̃(
◦
T ). Moreover, Bulinskaya’s lemma (Lemma 11.2.10

of [5]) entails that with probability one there is no point t in the boundary set ∂T

satisfying ∇X(t) = 0, then μ̃k(
◦
T ) = μk(T ). Hence, comparing with the definition

of ϕ(T ) that is given in Section 1.2, we obtain ϕ̃(
◦
T ) = ϕ(T ). Therefore, we now

write

χ(T ) = ∑
0≤�<d

∑
J∈∂�T

ϕ̃(J ) + ϕ(T ).(21)

Recall that we want to establish that χ(T ) satisfies a central limit theorem. More
precisely, we will prove that |T |−1/2(χ(T ) − Eχ(T )) converges in distribution to
a centered Gaussian random variable as T grows to Rd . Recall also that Proposi-
tion 2.3 already provides a CLT for ϕ(T ). So, according to (21), there only remains
to prove that for any � = 0,1, . . . , d − 1 and any face J in ∂�T , the variance of
|T |−1/2ϕ̃(J ) tends to 0 as T grows to Rd .

For � = 0, the previous statement is obvious since ϕ̃({v}) is either 0 or 1 for any
vertex v of T .

Let us now be concerned with � ∈ {1, . . . , d − 1}. We deal with a fixed face
J ∈ ∂�T and we use (20) to introduce the following notation.
• For any v ∈ R�, we define v(J ) = (v

(J )
1 , . . . , v

(J )
d ) ∈Rd by

v
(J )
j = vj if j ∈ σ(J ); v

(J )
j = εjN if j /∈ σ(J ).

• A random field X(J) is defined on R� by

X(J)(v) = X
(
v(J )) for any v ∈ R�.

It clearly inherits the properties of X so that X(J) is Gaussian, stationary, isotropic,
centered and its trajectories are a.s. of class C3.

The same arguments as in Section 2 apply for X(J) instead of X. A statement
similar to Proposition 2.1 can thus be formulated:

Var
(
(2N)−�/2(

ϕ̃(J ) −Eϕ̃(J )
)) −→

N→+∞V (J ) < +∞.

Hence, the variance of ϕ̃(J ) is negligible with respect to (2N)−d and we are finally
able to state our main result.

THEOREM 2.6. Let X be a stationary isotropic Gaussian field indexed by Rd

with C3 trajectories that satisfies Assumptions (A1)–(A2). As N ↗ +∞,

χ([−N,N]d) −Eχ([−N,N]d)

(2N)d/2

converges in distribution to a centered Gaussian variable with finite variance V

given by (13).
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APPENDIX A: PROOFS

A.1. Proof of Proposition 1.1. We recall the following Rice’s formulas
(see [5], Chapter 11 or [12], Chapter 6) for the first two factorial moments, in
the case of a Gaussian stationary random field,

E
[
N∇X(T , v)

] = |T |E(∣∣det
(
X′′(0)

)∣∣)p0(v),(22)

E
[
N∇X(T , v)

(
N∇X(T , v) − 1

)]
=

∫
T0

∣∣T ∩ (T − s)
∣∣E(∣∣det

(
X′′(0)

)
det

(
X′′(s)

)∣∣(23)

/∇X(0) = ∇X(s) = v
)
p0,s(v, v) ds,

where pt(·) and pt,s(·, ·) are the probability density functions of ∇X(t) and
(∇X(t),∇X(s)), respectively and T0 denotes the rectangle around 0 obtained
from T = ∏

1≤j≤d [aj , bj ] by prescribing T0 = ∏
1≤j≤d [aj − bj , bj − aj ]. Note

that in (23), both sides are simultaneously finite or infinite.
Point 1. We shall establish that the right-hand side of (23) is finite. It is clearly

sufficient to focus on the behavior near 0 of the integrand.
Let us start with an upper bound for p0,t (v, v) for t in a neighborhood of 0.

The vector (∇X(0),∇X(t)) is a 2d centered Gaussian vector. Let us denote by
�∇X(t) its covariance matrix. It can be written with blocks of size d ×d , �∇X(t) =( λId−r ′′(t)

−r ′′(t)
λId

)
, and its determinant is given by

det
(
�∇X(t)

) = det
(
λ2Id − (

r ′′(t)
)2) = det

(
2λId − 
(t)

)
det

(

(t)

)
∼ (2λ)d‖t‖2d as ‖t‖ → 0.

Therefore, for a certain constant C,

∀v ∈Rd, p0,t (v, v) ≤ p0,t (0,0) ≤ C‖t‖−d .(24)

We now introduce the event C(v, t) = {∇X(0) = ∇X(t) = v} and turn to the
study of

g(v, t) := E
(∣∣det

(
X′′(0)

)
det

(
X′′(t)

)∣∣/C(v, t)
)
,

for t and v fixed in Rd with 0 < ‖t‖ ≤ 1. Using Cauchy–Schwarz inequality and
the stationarity of X, we obtain

g(v, t)2 ≤ E
([

det
(
X′′(0)

)]2
/C(v, t)

)
E

([
det

(
X′′(t)

)]2
/C(v, t)

)
= h(v, t)h(v,−t),

with h(v, t) = E(det(X′′(0)2)/C(v, t)).
We use the following result: If A is a d × d symmetric positive matrix and if

v1 is a vector in Rd with norm 1, then det(A) ≤ 〈Av1, v1〉det((〈Avi, vj 〉)2≤i,j≤d),
where (v1, v2, . . . , vd) is any orthonormal basis of Rd containing v1.
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We apply this inequality to the positive matrix A = X′′(0)2 and the vector v1 =
t/‖t‖. It yields, for a positive constant C,

det
(
X′′(0)2) ≤

〈
X′′(0)2 t

‖t‖ ,
t

‖t‖
〉

det
((〈

X′′(0)2vi, vj

〉)
2≤i,j≤d

)
(25)

≤ C‖t‖−2∥∥X′′(0)t
∥∥2∥∥X′′(0)

∥∥2(d−1)
.

Let us now introduce Y : [0,1] → Rd the vectorial process defined by Y(x) =
X′(xt). Hence, Y(0) = ∇X(0), Y (1) = ∇X(t), Y ′(0) = X′′(0)t , and for i =
1, . . . , d , Y ′′

i (x) = 〈X(3)
i· (xt)t, t〉. Writing a Taylor formula between 0 and 1 gives

Y(1) = Y(0) + Y ′(0) + ∫ 1
0 Y ′′(x)(1 − x)dx, and so

X′′(0)t = ∇X(t) − ∇X(0) −
∫ 1

0

〈
X(3)(xt)t, t

〉
(1 − x)dx.

Then, under C(v, t), X′′(0)t = − ∫ 1
0 〈X(3)(xt)t, t〉(1−x)dx. Introducing this iden-

tity within (25) and using Cauchy–Schwarz inequality, we get

E
(
det

(
X′′(0)2)

/C(v, t)
)

≤ C‖t‖−2E
(∥∥X′′(0)

∥∥4(d−1)
/C(v, t)

)1/2

×E

(∥∥∥∥∫ 1

0

〈
X(3)(xt)t, t

〉
(1 − x)dx

∥∥∥∥4/
C(v, t)

)1/2

≤ C‖t‖2E
(∥∥X′′(0)

∥∥4(d−1)
/C(v, t)

)1/2
E

(
sup

x∈[0,1]
∥∥X(3)(xt)

∥∥4/
C(v, t)

)1/2
.

In the next lemma, we will prove that both conditional expectations are bounded.
We will thus obtain

E
(
det

(
X′′(0)2)

/C(v, t)
) ≤ Cte‖t‖2.

Then, thanks to (24),
∫
‖t‖≤1 g(v, t)p0,t (v, v) dt will be finite. The first point of

Proposition 1.1 will thus be established.

LEMMA A.1. There exists a positive constant C such that for any t ∈ Rd ,
‖t‖ ≤ 1,

E
(∥∥X′′(0)

∥∥4(d−1)
/C(v, t)

) ≤ C and E
(

sup
x∈[0,1]

∥∥X(3)(xt)
∥∥4

/C(v, t)
)

≤ C.

PROOF. We start with writing a Taylor’s formula around 0 for the covariance
function r . Let us remind that r is assumed to be C6. The isotropy of X allows
us to write r(t) = R(‖t‖) with R : R+ → R of class C6. We know that R(0) =
1, R′(0) = R(3)(0) = 0, R′′(0) = −λ and we introduce R(4)(0) = μ. We use the
standard notation o(‖t‖) and O(‖t‖) for ‖t‖ → 0. So

r(t) = 1 − λ

2
‖t‖2 + μ

4!‖t‖
4 + o

(‖t‖5)
as ‖t‖ → 0.
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Taking the second derivatives in the above formula yields the Hessian matrix of r ,
namely r ′′(t) = (r

(2)
ij (t))1≤i,j≤d with

r ′′(t) = −λId + 
(t)
(26)

with 
(t) = μ
3!

(‖t‖2Id + (2ti tj )1≤i,j≤d

) + o
(‖t‖3)

.

Let K = d(d + 1)/2. We consider the K-dimensional Gaussian vector ∇2X(0)

whose coordinates are the coefficients above and on the diagonal of the symmetric
matrix X′′(0). We write down the following K-dimensional regression system

∇2X(0) = A(t)∇X(0) + B(t)∇X(t) + Z(t),(27)

where A(t) and B(t) are two matrices of size K × d and Z(t) is a K-dimensional
centered Gaussian vector that is independent from ∇X(0) and ∇X(t). In that form,
we have

E
(∥∥X′′(0)

∥∥4(d−1)
/C(v, t)

) = E
(∥∥(

A(t) + B(t)
)
v + Z(t)

∥∥4(d−1))
,

where for any t , (A(t) + B(t))v + Z(t) is a Gaussian random vector with mean
(A(t) + B(t))v. Its higher moments will be bounded with respect to t , ‖t‖ ≤ 1, as
soon as its mean and its variance are also bounded.

We now compute the regression coefficients. Writing the covariances between
the coordinates in (27) and using (26) allows us to write the next linear 2d-
dimensional system for any fixed k (1 ≤ k ≤ K),(

λId −r ′′(t)
−r ′′(t) λId

)(
A(t)k·
B(t)k·

)
=

(
0d

r
(3)
k· (t)

)
.

Here,
(A(t)k·
B(t)k·

)
and

( 0d

r
(3)
k· (t)

)
are considered as column vectors of size 2d and the first

matrix on the left as a block matrix of size 2d × 2d . The inverse of this block
matrix is given by

(M1(t)
M2(t)

M2(t)
M1(t)

)
where M1(t) and M2(t) are d × d matrices such

that

λM1(t) − r ′′(t)M2(t) = Id and − r ′′(t)M1(t) + λM2(t) = 0d .(28)

Hence, solving the system yields A(t)k· + B(t)k· = (M1(t) + M2(t))r
(3)
k· (t). From

(28), it is not difficult to derive that

M1(t) + M2(t) = λ−2(
λId − r ′′(t)

)−1 = λ−2(
2λId − 
(t)

)−1 → 2λ−1Id .

Since r(3) is bounded, we get that ‖(A(t) + B(t))v‖ ≤ C for any t ∈ Rd , ‖t‖ ≤ 1.
It remains to prove that the variance of Z(t) is also bounded. The computation

of the covariance in (27) yields

Cov
(
Zk(t),Zl(t)

) = r
(4)
k,l (0) − 〈

r
(3)
k· (t),M1(t)r

(3)
l· (t)

〉
, 1 ≤ k, l ≤ K,

where M1(t) can be derived from (28) and (26),

M1(t) = λ−1(
Id − λ−2r ′′(t)2)−1 = λ

((
2λId − 
(t)

)

(t)

)−1
.
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Since ‖r(3)(t)‖ = O(‖t‖) and ‖
(t)‖ = O(‖t‖2), we get ‖Cov(Zk(t),Zl(t))‖ ≤
C for any t ∈ Rd , ‖t‖ ≤ 1.

We have just established the first upper bound of the lemma. For the second one,
we can proceed similarly by considering the regression system for any fixed t 
= 0

∇3X(s) = C(s, t)∇X(0) + D(s, t)∇X(t) + Z∗(s, t),

with self-understanding notation and appropriate dimensions for the vectors
and matrices. Therefore, for any x ∈ [0,1], conditionally to C(v, t), X(3)(xt)

is nothing but the Gaussian random vector given by (C(xt, t) + D(xt, t))v +
Z∗(xt, t). Hence, if we prove that the conditional mean of X(3)(xt), namely
(C(xt, t) + D(xt, t))v, as well as its conditional variance are uniformly bounded
with respect to x ∈ [0,1] and ‖t‖ ≤ 1, then any conditional moment of the
supremum of ‖X(3)(xt)‖ for x ∈ [0,1] will be bounded with respect to ‖t‖ ≤
1. This can easily be done once the regression system is solved. Actually,
we have C(xt, t) = −λ(2λId − 
(t))−1(r(4)(0) + o(‖t‖)), the same holds
for D(xt, t) and Cov(Z∗(xt, t)) = r(6)(0) − λ2tCC(xt, t) − λ2tDD(xt, t) +
2C(xt, t)r ′′(t)D(xt, t). All these quantities are bounded and Lemma A.1 is thus
proved. �

Point 2. According to (22), the map v �→ E[N∇X(T , v)] is continuous. Hence,
the second assertion of Proposition 1.1 holds true if we show the continuity of the
second factorial moment of N∇X(T , ·). Thanks to the previous point, introducing
F(v, t) = g(v, t)p0,t (v, v), we know that for η > 0 there exists a δ > 0 such that∫
‖t‖≤δ F (v, t) dt < η uniformly with respect to v contained in any compact subset

of Rd . Moreover, let us observe that v �→ F(v, t) is continuous for any fixed t 
= 0.
Indeed, using a regression system similar to the one performed in (27) for both
∇2X(0) and ∇2X(t), one can write

g(v, t) = ∣∣d̃et
((

A(t) + B(t)
)
v + Z(t)

) × d̃et
((

Ā(t) + B̄(t)
)
v + Z̄(t)

)∣∣.
In this form, the continuity of g(·, t), and hence of F(·, t), is obvious. Then,∣∣E[

N∇X(T , v)
(
N∇X(T , v) − 1

)] −E
[
N∇X(

T , v′)(N∇X(
T , v′) − 1

)]∣∣
≤ 2η +

∫
‖s‖>δ

∣∣F(v, t) − F
(
v′, t

)∣∣dt.

The continuity follows by taking the lim sup as v′ → v in the left-hand side of the
inequality.

Point 3. We use the so-called “area formula” in order to prove the third assertion.
One can see [12], Proposition 6.1, for instance, for a reference. It states that, if
f :Rd →R is continuous and bounded, then∫

Rd
N∇X(T ,u)f (u) du =

∫
T

∣∣det
(
X′′(t)

)∣∣f (∇X(t)
)
dt a.s.
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This identity can easily be extended to functions f that are almost everywhere
continuous. It applies here with f = δε(· − v), and thus

E
[(

N∇X(T , v)
)2] ≤ lim sup

ε→0
E

[(∫
T

∣∣det
(
X′′(t)

)∣∣δε

(∇X(t) − v
)
dt

)2]

= lim sup
ε→0

E

[(∫
Rd

N∇X(T ,u)δε(u − v) du

)2]
≤ lim sup

ε→0

∫
Rd

E
[(

N∇X(T ,u)
)2]

δε(u − v) du

= E
[(

N∇X(T , v)
)2]

.

In the first line we have used Fatou’s lemma and the a.s. convergence of N∇X
ε (T ,0)

to N∇X(T ,0), in the second one the area formula and finally in the third one Jensen
inequality and the continuity proved before. It implies that E[(N∇X

ε (T , v))2] is
finite and tends to E[(N∇X(T , v))2]. Combined with the a.s. convergence, it gives
the third point of Proposition 1.1. �

A.2. Proof of Lemma 2.2. Let us recall (13), which yields the following ex-
pression for V1:

V1 = ∑
n,m∈ND

|n|=|m|=1

a(n)a(m)R(n,m).(29)

Although the notation does not mention it explicitly, the coefficients a(n) depend
on the level u. Actually, for n = (n,n) ∈ND = Nd ×ND−d ,

a(n) = a(n, u) = d(n)c(fu ◦ 
2, n) with fu = d̃et ⊗ 1[u,+∞)

as given by (6) and (1).
Throughout the proof, K denotes the integer d(d +1)/2, so that D−d = K +1.

Let us recall that 
 has been introduced as any square root matrix of �X, the
covariance matrix of X(0). From now on, without loss of generality, we choose 
,
and so 
2, to be lower triangular as


2 =
(

L 0
t l α

)
,(30)

with L a K × K lower triangular matrix, l a vector in RK , t l denotes the 1 ×
K matrix containing the coordinates of l and α > 0. Furthermore, the fact that
Cov(X(t),Xii(t)) = −λ 
= 0 implies that the vector l does not vanish and the fact
that Var(X(t)) = 1 implies that ‖l‖2 + α2 = 1.

Hence, for (y, z) ∈ RD−d =RK ×R, we have

fu ◦ 
2(y, z) = d̃et(Ly)1[u,+∞)

(〈l, y〉 + αz
)
.(31)
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The computation of d̃et(Ly) is solved in the next lemma. It states that the expan-
sion of the map y ∈ RK �→ d̃et(Ly) in the basis of Hermite polynomials on RK

only involves Hermite polynomials of degree exactly equal to d .

LEMMA A.2. Let L be the matrix introduced in (30). There exists a family of
real numbers (βm)m∈NK ;|m|=d depending on L such that

∀y ∈RK d̃et(Ly) = ∑
m∈NK ;|m|=d

βmH̃m(y) = ∑
m∈NK ;|m|=d

βmy(m),

where y(m) = ∏
1≤k≤K(yk)

mk .

PROOF. The map F : y ∈ RK �→ F(y) = d̃et(Ly) is a polynomial function of
degree d . We first expand it in the basis of Hermite polynomials on RK as follows

F(y) =
d∑

q=0

∑
m∈NK ;|m|=q

βmH̃m(y),

where the coefficients are given by

βm = 1

m!
∫
RK

F (y)H̃m(y)φK(y) dy = 1

m!
(
F ∗ φ

(m)
K

)
(0) = 1

m!
(
F (m) ∗ φK

)
(0).

We shall establish that βm = 0 for all indices m ∈NK such that |m| < d . This will
prove the first equality in the lemma.

Note that in the previous expression of βm for m = (m1, . . . ,mK) with |m| = q ,
G(m) denotes the derivative ∂qG

∂ym1 ···∂ymK
for any function G defined on RK .

In order to compute F (m), we write down F(y) as F(y) = det(A(y)), where
for any y ∈ RK , A(y) is a symmetric d × d matrix. The map y ∈ RK �→ A(y) is
linear, so that for any 1 ≤ i, j ≤ d we have A(y)i,j = ∑K

k=1 ak
ij yk . Hence, denoting

by sgn(σ ) the sign of any permutation σ ∈ Sd , we get

F(y) = det
(
A(y)

) = ∑
σ∈Sd

sgn(σ )

d∏
i=1

(
d∑

k=1

ak
i,σ (i)yk

)
.

Then, for k = 1, . . . ,K , ∂F
∂yk

(y) = ∑
1≤i≤d det(Â(y)

ik
), where Â(y)

ik
denotes the

d × d matrix obtained from A(y) replacing the i-th line by the line (ak
i1, . . . , a

k
id).

More generally, for any m ∈ NK with |m| < d , F (m)(y) can be written as a
sum of determinants of d × d matrices, which are obtained from A(y) replacing
|m| lines by lines equal to (ak

i1, . . . , a
k
id) with some i ∈ {1, . . . , d} and some k ∈

{1, . . . ,K}. Let us denote Â(y)
(m)

for any such matrix.
Coming back to the computation of the coefficients βm, we write each βm as a

sum of terms which are equal to 1
m!

∫
RK det(Â(y)

(m)
)φK(y) dy. We will prove that

they vanish for all indices m such that |m| < d .
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Each of the above integrals is equal to E(det(Â(Z)
(m)

)) with Z a N(0, IK)

Gaussian vector such that the d × d matrix X′′(0) is equal to X′′(0) = A(Z).
Hence, each integral reduces to the computation of∑

σ∈Sd

sgn(σ )E(Xi1,σ (i1)Xi2,σ (i2) · · ·Xid−|m|,σ (id−|m|))a
k1
j1,σ (j1)

· · ·ak|m|
j|m|,σ (j|m|),

where {i1, i2, . . . , id−|m|} ∪ {j1, i2, . . . , j|m|} = {1, . . . , d}. If d − |m| is odd, since
all the Gaussian random variables Xi,j have a symmetric distribution, then the
above term is zero. Thus, let us assume that d −|m| = 2l. Then the standard Wick’s
formula says that

E(Xi1,σ (i1)Xi2,σ (i2) · · ·Xid−|m|,σ (id−|m|))

= ∑
E(Xk1,σ (k1)Xk2,σ (k2)) · · ·E(Xk2l−1,σ (k2l−1)Xk2l ,σ (k2l )),

where the sum is taken over all the different ways of grouping the indices
i1, i2, . . . , id−|m| into l pairs denoted by {k1, k2}, . . . , {k2l−1, k2l}. With any fixed
permutation σ , we associate a new permutation σ ′ as follows:

σ ′(jk) = σ(jk) for 1 ≤ k ≤ |m|,
σ ′(k1) = σ(k2), σ ′(k2) = σ(k1),

σ ′(km) = σ(km) for the remaining indices.

Then, sgn(σ ′) = − sgn(σ ) because σ ′ is the composition of σ with a transposition.
Moreover,

E(Xk1,σ (k1)Xk2,σ (k2)) = r
(4)
k1,σ (k1),k2,σ (k2)

(0) = E(Xk1,σ
′(k1)Xk2,σ

′(k2)).

This implies the cancellation of all pairs of two associated permutations and hence∑
σ∈Sd

sgn(σ )E(Xi1,σ (i1)Xi2,σ (i2) · · ·Xid−|m|,σ (id−|m|))a
k1
j1,σ (j1)

· · ·ak|m|
j|m|,σ (j|m|) = 0.

We have proved that all the coefficients βm with |m| < d equal 0 and so the first
expansion of the lemma is established.

In order to get the second expansion, we remark that for any x ∈ R and any
positive integer k, lims→+∞ s−kHk(sx) = xk . Then, using our first expansion, we
get for any y ∈RK ,∑

m∈NK ;|m|=d

βmy(m) = lim
s→+∞ s−d d̃et(sLy) = d̃et(Ly).

Lemma A.2 is proved. �

Let us come back to equation (29). Note that |n| = 1 implies that we can write
n = ei for one index i = 1, . . . ,D where (ei )1≤i≤D stands for the canonical basis
of RD .
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Then for n = ei , due to the explicit form of d(n) given in (5), we have

a(ei ) =
{

0, if 1 ≤ i ≤ d,

(2πλ)−d/2c(fu ◦ 
2, ei), if d + 1 ≤ i ≤ D.

Hence,

V1 = λ−d(2π)−d
∑

d+1≤i,j≤D

c(fu ◦ 
2, ei)c(fu ◦ 
2, ej )R(ei , ej ),

where we deduce from (9) that R(ei , ej ) = ∫
Rd Cov(Yi(0), Yj (v)) dv.

REMARK A.3. Denoting by �X the covariance function of the D-dimensional
Gaussian field X = (∇X,∇2X,X), for any 1 ≤ i, j ≤ D,∫

Rd
�X

i,j (v) dv = (2π)dfX(0)δD,D(i, j),

where δ stands for the Kronecker symbol.

Indeed, �X
D,D(v) = E(X(0)X(v)) = r(v), and using the spectral density of X,

one can write r(v) = f̂X(v), where f̂X denotes the Fourier transform with f̂X(v) =∫
Rd ei〈v,λ〉fX(λ)dλ. Hence

∫
Rd �X

D,D(v) dv = ̂̂fX(0) and, since fX is supposed to

be continuous, the inversion formula yields ̂̂fX(0) = (2π)dfX(0).
For (i, j) 
= (D,D), �X

i,j is the covariance function between a derivative of X

and another derivative of X, with at least one of both derivatives being of order at
least one. So, up to a power of (−1), �X

i,j equals a derivative of order at least one

of the function r . When computing the integral of �X
i,j over all Rd , one can use

Fubini’s theorem to pick out a well chosen integral over R, which can be computed
through a primitive along one direction of �X

i,j . Since r and all its derivatives tend

to 0 at infinity due to Assumption (A2), we get
∫
Rd �X

i,j (v) dv = 0 for (i, j) 
=
(D,D).

We come back to the computation of R(ei , ej ) = ∫
Rd Cov(Yi(0), Yj (v)) dv. Re-

member that the covariance function of the vector field Y is given by

�Y (v) = 
−1�X(v)t
−1.

Using Remark A.3, we get

R(ei , ej ) =
∫
Rd

�Y
ij (v) dv = (2π)dfX(0)

(

−1)

iD

(

−1)

jD.

Since 
 is lower triangular, 
−1 is also lower triangular. Furthermore, (30) yields
(
−1)iD = α−1δi,D . Then, for any d + 1 ≤ i, j ≤ D,

R(ei , ej ) = (2π)dfX(0)α−2δD,D(i, j)
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and therefore

V1 = fX(0)λ−dα−2c(fu ◦ 
2, eD)2.(32)

According to (3) and (31), we get

c(fu ◦ 
2, eD) =
∫
RK×R

d̃et(Ly)1[u,+∞)

(〈l, y〉 + αz
)
zφK(y)φ(z) dy dz

=
∫
RK

d̃et(Ly)φ

(
1

α

(
u − 〈l, y〉))φK(y) dy,

where we have used zφ(z) = −φ′(z),∀z ∈ R.
Hence, using Lemma A.2, we have c(fu ◦ 
2, eD) = ∑

|m|=d βmIm where we
introduce the next integral

Im :=
∫
RK

H̃m(y)φ

(
1

α

(
u − 〈l, y〉))φK(y) dy

= (−1)d
∫
RK

φ

(
1

α

(
u − 〈l, y〉))φ

(m)
K (y) dy

= (−1)d
(
ϕ0 ∗ φ

(m)
K

)(
ul∗

) = (−1)d(ϕ0 ∗ φK)(m)(ul∗
)
.

In the previous lines, ϕ0 denotes the map y ∈ RK �→ ϕ0(y) = φ( 1
α
〈l, y〉) and l∗ is

any vector in RK such that 〈l, l∗〉 = 1.

REMARK A.4. For any y ∈ RK , (ϕ0 ∗ φK)(y) = αφ(〈l, y〉).
Indeed, the map x ∈ R �→ 1

α

∫
RK φ( 1

α
(x − 〈l, z〉))φK(z) dz is the probability

density function of a random variable Z = αN + 〈l,G〉 where N is a standard
Gaussian random variable and G is a standard Gaussian vector of dimension K in-
dependent of N . But Z is clearly Gaussian, centered, with variance α2 + ‖l‖2 = 1.

Using the previous remark, we get for any y ∈ RK

(ϕ0 ∗ φK)(m)(y) = αl(m)φ(d)(〈l, y〉) = (−1)dαl(m)Hd

(〈l, y〉)φ(〈l, y〉).
Coming back to the computation of Im, we get Im = αl(m)Hd(u)φ(u), since
〈l, ul∗〉 = u. Then, the desired Hermite coefficient can be written in the follow-
ing form

c(fu ◦ 
2, eD) = α

( ∑
|m|=d

βml(m)

)
Hd(u)φ(u) = α d̃et(Ll)Hd(u)φ(u),

where we have used Lemma A.2 to compute the sum inside the parenthesis.
It remains to compute d̃et(Ll) = det(A(l)). We write out the coordinates

of the (K + 1)-dimensional Gaussian vector (∇2X,X) in the following order
((Xij )1≤i<j≤d, (Xii)1≤i≤d,X), so that the lower triangular matrix L can be writ-

ten as L = (L(1)

L(3)
0

L(2)

)
and the vector l = (l(1)

l(2)

)
, where the top part has length
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K − d whereas the bottom part has length d . With this notation, (Xij )1≤i<j≤d =
L(1)(Yk)d+1≤k≤K−d . Since Cov(X,Xij ) = 0 for all i < j , we deduce that l(1) van-
ishes and since Cov(X,Xii) = rii(0) = −λ for any i = 1, . . . , d , we deduce that all
the coordinates of L(2)l(2) are equal to λ. It implies that the symmetric d × d ma-
trix A(l) induced by the K dimensional vector Ll is diagonal and equal to −λId .
Hence, d̃et(Ll) = det(A(l)) = (−λ)d and we finally obtain

c(fu ◦ 
2, eD) = α(−λ)dHd(u)φ(u).

Thanks to (32), we have V1 = fX(0)λdHd(u)2φ(u)2 and Lemma 2.2 is proved.
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