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PROPAGATION OF CHAOS FOR THE LANDAU EQUATION WITH
MODERATELY SOFT POTENTIALS

BY NICOLAS FOURNIER AND MAXIME HAURAY

Université Pierre et Marie Curie and Université d’Aix-Marseille

We consider the 3D Landau equation for moderately soft potentials
[γ ∈ (−2, 0) with the usual notation] as well as a stochastic system of N parti-
cles approximating it. We first establish some strong/weak stability estimates
for the Landau equation, which are fully satisfactory only when γ ∈ [−1, 0).
We next prove, under some appropriate conditions on the initial data, the so-
called propagation of molecular chaos, that is, that the empirical measure of
the particle system converges to the unique solution of the Landau equation.
The main difficulty is the presence of a singularity in the equation. When
γ ∈ (−1, 0), the strong-weak uniqueness estimate allows us to use a coupling
argument and to obtain a rate of convergence. When γ ∈ (−2,−1], we use
the classical martingale method introduced by McKean. To control the sin-
gularity, we have to take advantage of the regularity provided by the entropy
dissipation. Unfortunately, this dissipation is too weak for some (very rare)
aligned configurations. We thus introduce a perturbed system with an addi-
tional noise, show the propagation of chaos for this system and finally prove
that the additional noise is almost never used in the limit N → ∞.
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1. Introduction and main results.

1.1. The Landau equation. The 3D homogeneous Landau equation for mod-
erately soft potentials reads

∂tft (v) = 1

2
divv

(∫
R3

a(v − v∗)
[
ft (v∗)∇ft (v) − ft (v)∇ft (v∗)

]
dv∗

)
,(1.1)

where the initial distribution f0 : R3 → R is given. The unknown ft : R3 �→ R

stands for the velocity-distribution in a plasma. The matrix a : R3 �→ M3×3(R) is
symmetric nonnegative and given by

a(v) = |v|2+γ

(
I − v ⊗ v

|v|2
)

for some γ ∈ (−2, 0). We will also use the notation

b(v) = div a(v) = −2|v|γ v.

This equation, with γ = −3, replaces the Boltzmann equation when particles
are subjected to a Coulomb interaction. It was derived by Landau in 1936. Physi-
cally, only the case γ = −3 is really interesting: it is explained in [2] that the case
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γ = −3 is the only one that you can obtain from a particle system in a suitable
weak coupling limit, even if the interaction potential has a finite range (a fact that
was already discovered by Bogolyubov). Concerning this Coulomb case γ = −3,
the strongest existence result was recently obtained by Desvillettes [7], which im-
proves on that of Villani [38]. See also Arsen’ev–Peskov [1] for a local existence
result, [13] for a local uniqueness result and Gualdani–Guillen [19] for a detailed
study of the radially symmetric case.

When γ ∈ (−3, 1], the Landau equation can be seen as an approximation of
the corresponding Boltzmann equation in the asymptotics of grazing collisions.
The reference [38] that was already mentioned above rigorously proves the con-
vergence of the Boltzmann equation to the Landau equation, together with the ex-
istence of solutions to the Landau equation in the whole range. For moderately soft
potentials, that is, when γ ∈ (−2, 0), a global well-posedness result was obtained
in [14]. For hard potentials, that is, when γ ∈ (0, 1], well-posedness, regularity and
large-time behavior have been studied by Desvillettes–Villani [8, 9]. A probabilis-
tic interpretation was introduced by Funaki in [17]. We also refer to the book of
Villani [39] for a long review on kinetic models, including this one.

Let us finally mention a few important properties: the Landau equation pre-
serves mass, momentum, kinetic energy and dissipates entropy.

1.2. Some notation. We denote by P(R3), the set of probability measures
on R

3. When f ∈ P(R3) has a density, we also denote by f ∈ L1(R3) this den-
sity. For q > 0, Pq(R3) stands for the set of all f ∈ P(R3) such that mq(f ) =∫
R3 |v|qf (dv) < ∞.

For f ∈ P(R3), we introduce the notation

b(f, v) :=
∫
R3

b(v − v∗)f (dv∗), a(f, v) :=
∫
R3

a(v − v∗)f (dv∗),

(1.2)
σ(f, v) := (

a(f, v)
)1/2

.

Observe that a(f, v) is symmetric nonnegative [since a(v) is so for all v ∈ R
3],

so that it indeed admits a unique nonnegative symmetric square root. The Landau
equation (1.1) can be rewritten as

∂tft (v) = 1
2 divv

(
a(ft , v)∇vft (v) − b(ft , v)ft (v)

)
.(1.3)

We will denote by H the entropy functional: for f ∈ Pq(R3), for some q >

0 we define H(f ) = ∫
R3 f (v) log f (v) dv ∈ (−∞,+∞] if f has a density and

H(f ) = ∞ otherwise. Thanks to the moment assumption, this entropy is always
well defined; see, for instance, [21], Lemma 3.1.

We shall also use some similar notation for probability distributions of systems
of N particles. Precisely, for N ≥ 1, P((R3)N) stands for the set of probabil-
ity measures on (R3)N . When F N ∈ P((R3)N) has a density, we also denote by
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F N ∈ L1((R3)N) this density. We write Psym((R3)N) for the set of all exchange-
able elements of P((R3)N). For F N ∈ Psym((R3)N), we introduce mq(F N) :=∫
(R3)N |v1|qF N(dv1, . . . , dvN) and define Pq((R3)N) = {F N ∈ Psym((R3)N) :

mq(F N) < ∞}. Finally, we introduce the entropy of F N ∈ Pq((R3)N) for some
q > 0 by setting

H
(
F N ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N−1
∫

(R3)N
F N(v1, . . . , vN) log F N(v1, . . . , vN) dv1 · · ·dvN,

if F N has a density,

+∞, otherwise.

We will use the MKW (Monge–Kantorovich–Wasserstein) distance; see Vil-
lani [40] for many details: for f,g ∈P2(R3),

W2(f, g) = inf
{(∫

R3×R3
|v − w|2R(dv, dw)

)1/2

: R ∈ �(f,g)

}
,

where �(f,g) = {R ∈P(R3 ×R
3) : R has marginals f and g}.

We now recall what is usually called propagation of molecular chaos.

DEFINITION 1.1. Let Y be a random variable taking values in a Polish space
E with law g and, for each N ≥ 2, a family (YN

1 , . . . ,YN
N ) of exchangeable E-

valued random variables. The sequence (YN
1 , . . . ,YN

N ) is said to be Y-chaotic (or
g-chaotic) if one of the three equivalent conditions is satisfied:

(i) (YN
1 ,YN

2 ) goes in law to g ⊗ g as N → ∞;
(ii) for all j ≥ 1, (YN

1 , . . . ,YN
j ) goes in law to g⊗j as N → ∞;

(iii) N−1 ∑N
1 δYN

i
goes in probability to g as N → ∞.

We refer for instance to Sznitman [36] for the equivalence of the three condi-
tions and to [21] for quantitative versions of this equivalence. Propagation of chaos
holds for a particle system [towards the solution (ft )t≥0 of its limit equation] if,
starting with f0-chaotic initial data, the particles are ft -chaotic for all times t . And
trajectorial propagation of chaos holds when the trajectories of the particles are
Y -chaotic, for a suitable process Y associated to the limit equation.

We will use the generic notation C for all positive constant appearing in the
sequel. When needed, we will indicate in subscript the quantities on which it de-
pends.

1.3. Well-posedness and strong/weak stability. We first recall that for α ∈
(−3, 0) and f ∈ P(R3) ∩ Lp(R3) with p > 3/(3 + α), it holds that

sup
v∈R3

∫
R3

|v − v∗|αf (v∗) dv∗ ≤ 1 + Cα,p‖f ‖Lp .(1.4)

This is easily checked: write that
∫
R3 |v − v∗|αf (v∗) dv∗ ≤ 1 + ∫

v∗∈B(v,1) |v −
v∗|αf (v∗) dv∗ and use the Hölder inequality.
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We next define the (classical) notion of weak solutions we use.

DEFINITION 1.2. Let γ ∈ (−2, 0). We say that f is a weak solution to (1.1)
if it satisfies:

(i) f ∈ L∞
loc([0,∞),P2(R

3)),
(ii) if γ ∈ (−2,−1), f ∈ L1

loc([0,∞),Lp(R3)) for some p > 3/(4 + γ ),
(iii) for all ϕ ∈ C2

b(R3), all t ≥ 0,∫
R3

ϕ(v)ft (dv) =
∫
R3

ϕ(v)f0(dv)

(1.5)

+
∫ t

0

∫
R3

∫
R3

Lϕ(v, v∗)fs(dv)fs(dv∗) ds,

where

Lϕ(v, v∗) := 1

2

3∑
k,l=1

akl(v − v∗)∂2
klϕ(v) +

3∑
k=1

bk(v − v∗)∂kϕ(v).

Remark that every term is well defined in (1.5) under our assumptions on f

and ϕ, since ∣∣Lϕ(v, v∗)
∣∣ ≤ Cϕ

(|v − v∗|γ +1 + |v − v∗|γ +2).(1.6)

If γ ∈ [−1, 0), we have |Lϕ(v, v∗)| ≤ Cϕ(1 + |v|2 + |v∗|2) so that condition (i)
is sufficient, while if γ ∈ (−2,−1), we have |Lϕ(v, v∗)| ≤ Cϕ(1 + |v|2 + |v∗|2 +
|v − v∗|γ +1), so that conditions (i) and (ii) are enough: use (1.4) with α = γ + 1.

For γ ∈ (−2, 0), we set

q(γ ) := γ 2

2 + γ
, p1(γ ) := 3

3 + γ
and, for q > q(γ ),

(1.7)

p2(γ, q) := 3q − 3γ

q − 3γ
.

It can be checked that 1 < p1(γ ) < p2(γ, q) < 3. Let us recall the well-posedness
result of [14].

THEOREM 1.3 (Corollary 1.4 in [14]). Let γ ∈ (−2, 0) and f0 ∈ P2(R3)

satisfy H(f0) < ∞ and mq(f0) < ∞ for some q > q(γ ). Then (1.1) has
a unique weak solution f ∈ L∞

loc([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) for
some p > p1(γ ). Moreover, this unique solution satisfies m2(ft ) = m2(f0) and
H(ft ) ≤ H(f0) for all t ≥ 0 and f belongs to L1

loc([0,∞),Lp(R3)) for all
p ∈ (p1(γ ),p2(γ, q)).

We first state some weak/strong stability estimates and improve the above
uniqueness result.
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THEOREM 1.4. Let γ ∈ (−2, 0) and f0 ∈ P2(R3) satisfy also H(f0) < ∞
and mq(f0) < ∞ for some q > q(γ ). Let f be the unique weak solution of (1.1)
built in Theorem 1.3.

(i) Assume that γ ∈ (−1, 0]. For any other weak solution g ∈ L∞
loc([0,∞),

P2(R3)) to (1.1) starting from g0 ∈P2(R3), any p ∈ (p1(γ ),p2(γ, q)), any t ≥ 0,

W 2
2 (ft , gt ) ≤ W 2

2 (f0, g0) exp
(

Cγ,p

∫ t

0

(
1 + ‖fs‖Lp

)
ds

)
.

We thus have uniqueness for (1.1) (with initial condition f0) in the class of all
measure solutions in L∞

loc([0,∞),P2(R
3)).

(ii) Assume that γ ∈ (−2,−1]. For any p ∈ (p1(γ ),p2(γ, q)), any

r >
2p − 3

(3 + γ )(p − 1) − 1
(1.8)

and any other weak solution g ∈ L∞
loc([0,∞),P2(R

3)) ∩ L1
loc([0,∞),Lr(R3))

to (1.1),

W 2
2 (ft , gt ) ≤ W 2

2 (f0, g0) exp
(

Cγ,p,r

∫ t

0

(
1 + ‖fs‖Lp + ‖gs‖Lr

)
ds

)
.

In particular, for any r > [3(q + γ )]/[5q + 2γ q + 3γ ], we have unique-
ness for (1.1) (with initial condition f0) in the class L∞

loc([0,∞),P2(R
3)) ∩

L1
loc([0,∞),Lr(R3)) [it suffices to let p ↑ p2(γ, q) in (1.8)].

When γ ∈ (−1, 0), we thus prove the uniqueness in the class of all measure
solutions in L∞

loc([0,∞),P2(R
3)). This is quite satisfactory and interesting for the

well-posedness theory, but there is another important consequence: we will be able
to apply (up to some fluctuations) the stability result to the empirical measure of
an associated particle system.

When γ ∈ (−2,−1], the strong/weak estimate is of course less satisfactory,
since we do not manage to completely get rid of the regularity assumptions on g.
The uniqueness we deduce is slightly better than that stated in [14], Corollary 1.4,
but the stability result cannot be applied to the empirical measure of a particle
system.

1.4. Entropy dissipation and a priori bounds. The fact that smooth solutions
to the Landau equation (1.1) belong to L1

loc([0,∞),Lp(R3)) is a consequence of
the entropy dissipation. We sketch here the argument for the sake of complete-
ness and also because we will use, in the proof of Theorem 1.8, a similar strategy
to obtain some regularity estimate on the particle system. Precisely, the entropy
dissipation for a solution ft of the Landau equation (1.1) reads

d

dt
H(ft ) = −

∫
R3

∫
R3

(∇ log ft (v) − ∇ log ft (v∗)
)∗

a(v − v∗)

× (∇ log ft (v) − ∇ log ft (v∗)
)
ft (dv)ft (dv∗)
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(where the superscript ∗ stands for the transposition), which is certainly nonneg-
ative thanks to the nonnegativity of a. Using the drift and diffusion introduced in
(1.2), the dissipation of entropy may be rewritten as

d

dt
H(ft ) = −

∫
R3

∇ log ft (v)a(ft , v)∇ log ft (v)ft (dv) −
∫
R3

div b(ft , v)ft (dv).

Then since the entropy of ft is decreasing and its second moment constant,
Lemma 2.1 (taken from [8], Proposition 4) shows that the first term in the right-
hand side controls a weighted Fisher information Iγ (ft ) := ∫

R3 |∇ log ft |2(1 +
|v|)γ ft (dv). This in turn allows us to control the Lp-norm of ft (for some val-
ues of p), thanks to Lemma C.3, provided we have sufficiently many moments.
Finally, a Lp-norm of ft with p large enough is sufficient to bound ‖div b(ft )‖∞.
All in all, if f0 has a finite entropy and moment of order q , the entropy dissipation
leads, for any p ∈ (p1(γ ),p2(γ, q)), to∫ T

0
‖ft‖Lp dt ≤ Cγ,p,q,T .

Let us mention that in his recent paper [7], Desvillettes introduces a very tricky
method and manages to derive a similar estimate when γ ∈ [−3,−2].

1.5. The particle system. We now consider the following toy model: we have
N particles characterized by their velocities VN

i , solving the following system of
R

3-valued SDEs

∀i = 1, . . . ,N VN
i (t) = VN

i (0) +
∫ t

0
b
(
μ̃N

s ,VN
i (s)

)
ds

(1.9)

+
∫ t

0
σ
(
μ̃N

s ,VN
i (s)

)
dBi (s),

with the notation (1.2). Here, (Bi (t))i=1,...,N,t≥0 is an independent family of 3D

standard Brownian motions independent of (VN
i (0))i=1,...,N and finally, for some

ηN ∈ (0, 1),

μ̃N
t = μN

t 
 φηN
where μN

t = 1

N

N∑
1

δVN
i (t) and φη(x) = 3

4πη3 1{|x|<η}.

We could probably also study the same system without the smoothing by con-
volution with φηN

. But without this smoothing, the particle system is not clearly
well-posed. Since the paper is already technical enough, we decided not to study
this (possibly difficult) issue. However, this is not really a limitation, since in all
the results below, we allow ηN to tend to 0 as fast as one wants.

PROPOSITION 1.5. For any N ≥ 1, any initial condition (VN
i (0))i=1,...,N , any

ηN ∈ (0, 1), (1.9) has a pathwise unique strong solution (VN
i (t))i=1,...,N,t≥0.
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The main topic of this paper is to show that, provided ηN → 0 and under suitable
conditions on (VN

i (0))i=1,...,N , the empirical measure μN
t converges, as N → ∞,

to the weak solution ft of (1.1) built in Theorem 1.3. When γ = 0, the coefficients
a, b are smooth and such a convergence has been proved by Fontbona–Guérin–
Méléard [11], Carrapatoso [4]; see also [12]. In a work in preparation [3], Bolley–
Guillin–Fournier obtain some results when γ ∈ (0, 1). In [4] and [3], a slightly
more natural particle system, which a.s. preserves momentum and kinetic energy,
is considered. We have not been able to study this system with the present tech-
nique, although the difference of its behavior seems very light.

When γ < 0, the situation is rather more complicated, due to the singularity
of the coefficients a, b. To our knowledge, there are no available results in that
context, except the one of Miot–Pulvirenti–Saffirio [25], where a partial result has
been obtained when γ = −3: they prove the convergence to the Landau hierar-
chy, which unfortunately does not allow one to conclude. Here, we propose two
methods.

When γ ∈ (−1, 0), we handle a direct computation, mimicking the strong/weak
stability study, and we get a result with a rate of convergence. We have to use a
blob approximation of the empirical measure, in the spirit of [20].

When γ ∈ (−2, 0), we use that the dissipation of entropy of the particle system
provides some regularity enough to control the singularity. By this way, we obtain
a convergence result, without rate, by using a tightness/uniqueness principle. We
follow here [16], where we studied a similar problem for the 2D Navier–Stokes
equation. However, a major difficulty appears: the entropy dissipation is actually
not sufficient, due to the lack of ellipticity of the matrix a. The diffusion coeffi-
cients in (1.9) may degenerate for almost aligned configurations. We thus have to
show such configurations almost never appear.

1.6. A convergence result with rate for γ ∈ (−1, 0). In that case, the singular-
ity is not too large, and we can use our strong/weak uniqueness principle to study
the propagation of chaos.

THEOREM 1.6. Assume that γ ∈ (−1, 0) and let f0 ∈ Pq(R3) for some
q ≥ 8 be such that H(f0) < ∞. Consider f the unique weak solution to (1.1)
defined in Theorem 1.3. For each N ≥ 2, consider an exchangeable family
(VN

i (0))i=1,...,N with supN≥2 E[|VN
1 (0)|4] < ∞ and the corresponding unique so-

lution (VN
i (t))i=1,...,N,t≥0 to (1.9) with some ηN ∈ (0,N−1/3). Denote by μN

t =
N−1 ∑N

1 δVN
i (t) the associated empirical measure. Then for α = (1 − 6/q)(2 +

2γ )/3, for all T > 0,

sup
[0,T ]

E
[
W 2

2
(
μN

t , ft

)] ≤ CT,q

(
N−α + N−1/2 +E

[
W 2

2
(
μN

0 , f0
)])

.

In particular, the propagation of molecular chaos holds true.



ON THE LANDAU EQUATION 3589

Recall (see [15]) that the best general rate we can hope for the expected squared
2-Wasserstein distance between an empirical measure of some i.i.d. R3-valued
random variables and their common law is in N−1/2. Hence, for γ ∈ (−1/4, 0),
and when the particles are initially i.i.d. and f0-distributed, the rate of convergence
is optimal as soon as f0 has a finite moment of sufficiently high order. Of course,
it is likely that N−1/2 is the true rate for all values of γ , while our rate deteriorates
considerably when approaching γ = −1. However, we are quite satisfied, since to
our knowledge, there are very few quantitative results of propagation of chaos for
systems with a singular interaction.

1.7. Trajectories. Our second method will prove a slightly stronger result (al-
though without rate): the convergence at the level of trajectories. We thus need to
introduce the stochastic paths associated to the Landau equation. These paths will
furthermore be used to prove the strong/weak estimates.

Given a Brownian motion (B(t))t≥0, independent of an initial condition V(0)

with law f0, we are interested in a continuous adapted R
3-valued process (V(t))t≥0

solution to

V(t) = V(0) +
∫ t

0
b
(
fs,V(s)

)
ds +

∫ t

0
σ
(
fs,V(s)

)
dB(s),(1.10)

where ft ∈ P(R3) is the law of V(t) and using notation (1.2). By adapted, we
mean adapted to the filtration Ft = σ(V(0), (B(s))s∈[0,t]).

The process (V(t))t≥0 represents the time evolution of the velocity of a typi-
cal particle in a plasma whose velocity distribution solves the Landau equation.
Such a probabilistic interpretation (in the case of the Boltzmann equation) was ini-
tiated by Tanaka [37]. See Funaki [17] for the case of the Landau equation. The
following results of existence and uniqueness are proved in [14], but with another
formulation involving a white noise. We will shortly prove them again, since we
need to extend them to another nonlinear SDE that we will introduce later.

PROPOSITION 1.7. Let γ ∈ (−2, 0) and f0 ∈ P2(R3) satisfy also H(f0) < ∞
and mq(f0) < ∞ for some q > q(γ ); recall (1.7).

(i) There exists a pathwise unique continuous adapted solution (V(t))t≥0 to
(1.10) such that f = (ft )t≥0 ∈ L∞

loc([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) for
some p ∈ (p1(γ ),p2(γ, q)).

(ii) Furthermore, f is the weak solution to the Landau equation (1.1) given by
Theorem 1.3.
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1.8. A convergence result without rate. We will assume the following hypoth-
esis on the initial conditions of (1.9) and (1.1):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) f0 ∈ P2
(
R

3)∩Pq

(
R

3) for some q > q(γ ) and H(f0) < ∞;
(ii) the sequence

(
VN

1 (0), . . . ,VN
N (0)

)
with law F N

0 is exchangeable and f0-chaotic;

(iii) supN≥2 E
[∣∣VN

1 (0)
∣∣2 + ∣∣VN

1 (0)
∣∣q] < ∞ and supN≥2 H

(
F N

0

)
< ∞.

(1.11)

All these conditions hold true if f0 satisfies point (i) and if (VN
1 (0), . . . ,VN

N (0))

are i.i.d. and f0-distributed.

THEOREM 1.8. Assume that γ ∈ (−2, 0). Consider f0 ∈ P(R3) and, for each
N ≥ 2, a family (VN

i (0))i=1,...,N of R3-valued random variables. Assume (1.11).
For each N ≥ 2, consider the unique solution (VN

i (t))i=1,...,N,t≥0 to (1.9) with
some ηN ∈ (0, 1). Let also (ft )t≥0 be the unique weak solution to (1.1) given by
Theorem 1.3 and (V(t))t≥0 the unique solution to (1.10) (see Proposition 1.7).
Then, as soon as limN→∞ ηN = 0, the sequence ((VN

i (t))t≥0)i=1,...,N is (V(t))t≥0-
chaotic. In particular, if we set

μN
t := 1

N

N∑
i=1

δVN
i (t),

then (μN
t )t≥0 goes in probability, in C([0,∞),P(R3)), to (ft )t≥0.

1.9. Comments. Propagation of chaos was initiated by Kac [23] as a step to
the derivation of the Boltzmann equation. Since then, many models have been
studied. For nonsingular interactions, things are more or less well understood and
there has even been recently some important progress to get uniform in time prop-
agation of chaos (see Mischler–Mouhot [26]), to which we refer for many refer-
ences including the important works of Sznitman [35, 36], Méléard [24]; see also
Mischler–Mouhot–Wennberg [27] and [21]. As already mentioned, most of the re-
sults concerning the Landau equation [4, 11, 12] concern the case where γ = 0 (or,
at least, where the singularity is removed).

The case of a singular interaction is much more complicated and there are only
very few works. Osada [28, 29] has obtained some remarkable results concerning
the convergence of the vortex model to the Navier–Stokes equation (in dimen-
sion 2, with a divergence-free interaction in 1/|x|), improved recently by the au-
thors and Mischler [16]. In dimension one, Cepa and Lepingle have also studied the
(very singular) Dyson model [5]. We shall also mention the case of a deterministic
particle system (with position and velocity) in singular interaction studied by the
second author and Jabin [20]. Here, the first quantitative method is in some sense
inspired from [20]. The second one (without rate) relies on the entropy dissipation
technique introduced in [16].



ON THE LANDAU EQUATION 3591

Finally, let us mention again the work in preparation [3], which treats a similar
problem when γ ∈ [0, 1), with more satisfactory results. Some of the techniques
used here are common with [3]. In particular, the introductory part of Section 3 is
reproduced from it.

1.10. Plan of the paper. In the next section, we prove several regularity es-
timates concerning the coefficients a and b, we check Proposition 1.5 (well-
posedness of the particle system) and Proposition 1.7 (well-posedness of the
nonlinear SDE). Section 3 is devoted to the proof of Theorem 1.4 (strong/weak
stability estimates). We prove the (uniform in N ) propagation of moments for the
particle system in Section 4. The proof of Theorem 1.6 [propagation of chaos with
rate when γ ∈ (−1, 0)] is given in Section 5. We next study precisely, in Section 6,
the ellipticity of a(μ, v) when μ is an empirical measure. We give the proof of
Theorem 1.8 (propagation of chaos without rate when γ ∈ (−2, 0)) in Section 7.
In Appendix A, we extend a coupling result of [21]. In Appendix B, we general-
ize slightly a result of Figalli [10] on the equivalence between PDEs and SDEs,
that we use several times. Finally, Appendix C about entropy and weighted Fisher
information lies at the end of the paper.

1.11. Final notation. We recall that a(v) = |v|γ (|v|2I − v ⊗ v) and that
b(v) = −2|v|γ v. We introduce σ(v) = (a(v))1/2 = |v|γ /2−1(|v|2I − v ⊗ v).

For η ∈ (0, 1), we recall that φη(x) = (3/(4πη3))1{|x|<η}. We introduce aη =
a 
 φη, bη = b 
 φη and ση = a

1/2
η , and we define, for f ∈ P(R3) and v ∈ R

3,

aη(f, v) =
∫
R3

aη(v − w)f (dw), bη(f, v) =
∫
R3

bη(v − w)f (dw) and

ση(f, v) = (
aη(f, v)

)1/2
.

Remark that it is very similar to the formula (1.2) which corresponds to the case
η = 0 with the convention that a0 = a and b0 = b.

For f ∈ P(R3), we put f η = f 
 φη. We observe that a(f η, v) = aη(f, v),
b(f η, v) = bη(f, v) and σ(f η, v) = ση(f, v).

We will use the standard notation x ∧ y = min{x, y} and x ∨ y = max{x, y} for
x, y ∈ R.

Finally, for M,N two 3 × 3 matrices, we set 〈〈M,N〉〉 = Tr MN∗ and ‖M‖2 =
Tr MM∗.

2. First regularity estimates and well-posedness of the nonlinear SDE.

2.1. Ellipticity. We recall the ellipticity estimate of Desvillettes–Villani [8],
Proposition 4. It is stated when γ > 0 but the proof only uses that γ + 2 > 0.
Section 6 will be devoted to the proof of a more general result.
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LEMMA 2.1. Let γ ∈ (−2, 0). For all f ∈ P2(R3) satisfying H(f ) < +∞,
there exists a constant κ0 > 0 depending only on γ , H(f ) and m2(f ) such that
for all v ∈ R

3,

inf|ξ |=1
ξ∗a(f, v)ξ ≥ κ0

(
1 + |v|)γ .

2.2. Rough regularity estimates and well-posedness of the particle system. We
will frequently use the following lemma stated in [12], Lemma 11 (with C = 1 but
with another norm).

LEMMA 2.2. There is a constant C > 0 such that for any pair of nonnegative
symmetric 3 × 3 matrices A,B ,∥∥A1/2 − B1/2∥∥ ≤ C‖A − B‖1/2 and∥∥A1/2 − B1/2∥∥ ≤ C

(∥∥A−1∥∥∧ ∥∥B−1∥∥)1/2‖A − B‖.

We next collect some rough regularity estimates on a, b and σ .

LEMMA 2.3. For any γ ∈ (−2, 0), there is a constant C such that for all
v,w ∈ R

3, ∣∣b(v) − b(w)
∣∣ ≤ C|v − w|(|v|γ + |w|γ ),∥∥a(v) − a(w)
∥∥ ≤ C|v − w|(|v|1+γ + |w|1+γ ),∥∥σ(v) − σ(w)
∥∥ ≤ C|v − w|(|v|γ /2 + |w|γ /2).

PROOF. The inequality concerning b is proved in [14], Remark 2.2. Since by
definition σ(v) = |v|γ /2−1(|v|2I − v ⊗ v), we see that σ is a C1 function outside
the origin and that ‖Dσ(v)‖ ≤ C|v|γ /2. To go from v to w, it is possible to find a
path S : [0, 1] → R

3, of length smaller than π |v − w|/2 and that always remains
in the crown {z ∈ R

3 : min{|v|, |w|} ≤ |z| ≤ max{|v|, |w|}}. For instance, some
circular arc will do the job. Then the claimed inequality follows from

∥∥σ(v) − σ(w)
∥∥ ≤

∫ 1

0

∥∥Dσ
(
S(t)

)∥∥∣∣S′(t)
∣∣dt ≤ C|v − w|max

{|v|γ /2, |w|γ /2}.
The inequality concerning a is proved similarly, using that ‖Da(v)‖ ≤ C|v|1+γ .
This proof may also be adapted to b, using that ‖Db(v)‖ ≤ C|v|γ . �

We next study aη, bη and ση.

LEMMA 2.4. Let γ ∈ (−2, 0).
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(i) For each η ∈ (0, 1), there is Cη such that for any y, z ∈ R
3, ‖(aη(y))−1‖ ≤

Cη(1 + |y|)|γ | and ∣∣bη(y) − bη(z)
∣∣ ≤ Cη|y − z|,∥∥ση(y) − ση(z)

∥∥+ ∥∥aη(y) − aη(z)
∥∥ ≤ Cη

(
1 + |y| + |z|)|y − z|.

(ii) There is C > 0 such that for all η ∈ (0, 1), all v ∈ R
3,∥∥aη(v) − a(v)

∥∥ ≤ Cη2(η + |v|)γ and

∣∣bη(v) − b(v)
∣∣ ≤

{
Cη

(
η + |v|)γ , if γ ∈ (−1, 0),

C min
{
η, |v|}|v|γ , if γ ∈ (−2,−1].

(iii) There is C > 0 such that for all η ∈ (0, 1), all f ∈P(R3), all v ∈ R
3,∥∥aη(f, v) − a(f, v)

∥∥ ≤ Cη2+γ and, if γ ∈ (−1, 0)∣∣bη(f, v) − b(f, v)
∣∣ ≤ Cη1+γ .

PROOF. We first check point (i). First, it holds that aη(y) = a(φη, y) when
using notation (1.2). But φη obviously belongs to P2(R3) and has a finite entropy.
Hence, Lemma 2.1 tells us that for all ξ ∈ R

3, all y ∈ R
3, ξ∗aη(y)ξ ≥ cη(1 +

|y|)γ |ξ |2, which implies that ‖(aη(y))−1‖ ≤ Cη(1 + |y|)|γ |.
We next use Lemma 2.3 to get

∣∣bη(y) − bη(z)
∣∣ ≤ Cη−3

∫
|u|<η

|y − z|(|y + u|γ + |z + u|γ )du ≤ Cη|y − z|,

as well as∥∥aη(y) − aη(z)
∥∥ ≤ Cη−3

∫
|u|<η

|y − z|(|y + u|γ +1 + |z + u|γ +1)du,

which is easily bounded by Cη|y − z| if γ ∈ (−2,−1) and by Cη|y − z|(1 +
|y|γ +1 + |z|γ +1) if γ ∈ [−1, 0). By using the second estimate of Lemma 2.2
and the estimate on ‖(aη(y))−1‖, we conclude that ‖(aη(y))1/2 − (aη(z))1/2‖ ≤
Cηh(|y|, |z|)|y − z|, where h(|y|, |z|) = min{(1 + |y|)|γ |/2, (1 + |z|)|γ |/2} if γ ∈
(−2,−1) and h(|y|, |z|) = min{(1 + |y|)|γ |/2, (1 + |z|)|γ |/2}(1 + |y| + |z|)1+γ if
γ ∈ [−1, 0). In any case, h(|y|, |z|) ≤ C(1 + |y| + |z|), which ends the proof of
point (i).

Concerning point (ii), we first study b and separate two cases. If |v| ≤ 2η,
then we have |b(v)| = 2|v|1+γ and |bη(v)| ≤ C|v|1+γ + Cη1+γ . Hence, |b(v) −
bη(v)| ≤ C|v|1+γ + Cη1+γ , which is smaller than Cη1+γ ≤ Cη(η + |v|)γ if
γ ∈ (−1, 0] and than C|v|1+γ ≤ min{η, |v|}|v|γ if γ ∈ (−2,−1]. If now |v| >

2η, we use that |b(y) − b(z)| ≤ C|y − z|(|y|γ + |z|γ ) by Lemma 2.3, so that
|b(v) − bη(v)| ≤ Cη

∫
R3(|v|γ + |v − u|γ )φη(u) du ≤ Cη|v|γ , which is bounded

by Cη(η + |v|)γ if γ ∈ (−1, 0] and by C min{η, |v|}|v|γ if γ ∈ (−2,−1].
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We now study ‖a(v) − aη(v)‖. If |v| ≤ 2η, we immediately get that ‖a(v) −
aη(v)‖ ≤ ‖a(v)‖ + ‖aη(v)‖ ≤ Cη2+γ ≤ Cη2(η + |v|)γ . If now |v| ≥ 2η, we use a
Taylor expansion: write, for |u| < η, that a(v − u) = a(v) − u∇a(v) + ζ(u, v),
where ‖ζ(u, v)‖ ≤ |u|2 supB(v,η) ‖D2a‖ ≤ Cη2|v|γ . Consequently, since φη is
symmetric,

∥∥a(v) − aη(v)
∥∥ =

∥∥∥∥
∫
|u|≤η

(
a(v) − a(v − u)

)
φη(u)du

∥∥∥∥
=

∥∥∥∥
∫
|u|≤η

ζ(u, v)φη(u) du

∥∥∥∥ ≤ Cη2|v|γ ,

which is controlled by Cη2(η + |v|)γ as desired.
We finally have to prove (iii). If γ ∈ (−1, 0), we have |bη(x) − b(x)| ≤ Cη1+γ

by (ii), whence
∣∣bη(f, v) − b(f, v)

∣∣ = ∣∣∣∣
∫
R3

[
bη(v − w) − b(v − w)

]
f (dw)

∣∣∣∣ ≤ Cη1+γ .

Now for any value of γ ∈ (−2, 0), we see from point (ii) that ‖aη(x) − a(x)‖ ≤
Cη2+γ , so that we obtain ‖aη(f, v) − a(f, v)‖ ≤ Cη2+γ by a simple integration.

�

At this point, we can prove the strong well-posedness of the particle system.

PROOF OF PROPOSITION 1.5. Let

bi(v1, . . . , vN) := b

(
1

N

N∑
j=1

δvj

 φηN

, vi

)
= 1

N

N∑
j=1

bηN
(vi − vj ),

σi(v1, . . . , vN) :=
[
a

(
1

N

N∑
j=1

δvj

 φηN

, vi

)]1/2

=
[

1

N

N∑
j=1

aηN
(vi − vj )

]1/2

.

These are the coefficients of the system of SDEs (1.9). We claim that these co-
efficients have at most linear growth and are locally Lipschitz continuous, from
which strong existence and uniqueness classically follow. First, bi is globally
Lipschitz continuous by Lemma 2.4(i). Next, it follows from Lemma 2.4(i) that
σi is locally Lipschitz continuous. Finally, recalling that ‖A‖ = Tr AA∗ and that
Tr(a(v)) = 2|v|γ +2, we find that

∥∥σi(v1, . . . , vN)
∥∥2 = 2

N

N∑
j=1

∫
R3

|vi − vj − u|γ +2φηN
(u)du

≤ 2

N

N∑
j=1

(|vi | + |vj | + ηN

)γ +2
.

Since γ + 2 ∈ (0, 2], we conclude that σi has at most linear growth. �
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2.3. Regularity estimates for the nonlinear SDE. We now give some growth
and regularity estimates on the fields a(f ), σ(f ) and b(f ) created by some prob-
ability f , that will allow us to study the well-posedness of the linear version of the
SDE (1.10), as well as that of a perturbed version of it.

LEMMA 2.5. Let γ ∈ (−2, 0) and f ∈ P2(R3). We have the following esti-
mates for all v,w ∈ R

3:

(i) In any case, ‖σ(f, v)‖2 ≤ 4 + 4m2(f ) + 4|v|γ +2.
(ii) If γ ∈ [−1, 0), then |b(f, v)| ≤ 2 + 2|v| + 2m1(f ).

(iii) If γ ∈ (−2,−1) and f ∈ Lp(R3) with p > 3/(4 + γ ), then |b(f, v)| ≤
2 + Cp‖f ‖Lp .

(iv) If f ∈ Lp(R3) with p > p1(γ ), then |b(f, v) − b(f,w)| ≤ Cp(1 +
‖f ‖Lp)|v − w|.

(v) If f ∈ Lp(R3) with p > p1(γ ), then ‖σ(f, v) − σ(f,w)‖2 ≤ Cp(1 +
‖f ‖Lp)|v − w|2.

(vi) If γ ∈ [−1, 0), then ‖a(f, v) − a(f,w)‖ ≤ C(1 + |v| + |w| + m1(f ))|v −
w|.

(vii) If γ ∈ (−2,−1) and f ∈ Lp(R3) with p > 3/(4 + γ ), then ‖a(f, v) −
a(f,w)‖ ≤ Cp(1 + ‖f ‖Lp)|v − w|.

PROOF. Recalling that Tr a(v) = 2|v|γ +2,
∥∥σ(f, v)

∥∥2 = Tr a(f, v) = 2
∫
R3

|v − w|γ +2f (dw).

Point (i) follows, since |v − w|γ +2 ≤ 2|v|γ +2 + 2|w|γ +2 ≤ 2 + 2|w|2 + 2|v|γ +2.
Next, |b(f, v)| ≤ 2

∫
R3 |v − w|γ +1f (dw). Point (ii) follows, since for γ ∈

[−1, 0), |v − w|γ +1 ≤ 1 + |v| + |w|. Point (iii) also follows, using (1.4) and that
p > 3/(4 + γ ).

Point (iv) is obtained by integration of the Lipschitz estimate on b given in
Lemma 2.3 and by using (1.4) [recall that p > p1(γ ) = 3/(3 + γ )]:

∣∣b(f, v) − b(f,w)
∣∣ ≤ C|v − w|

∫
R3

(|v − x|γ + |w − x|γ )f (dx)

≤ C|v − w|(1 + Cp‖f ‖Lp

)
.

For (v), we use a classical result (see, e.g., Stroock–Varadhan [34], Theo-
rem 5.2.3), which asserts that there is C > 0 such that for all A : R3 �→ S+

3 (the
set of symmetric nonnegative 3 × 3-matrices with real entries), ‖D(A1/2)‖∞ ≤
C‖D2A‖1/2∞ . Here, we apply it to A(v) = a(f, v). First,

∥∥D2A(v)
∥∥ =

∥∥∥∥
∫
R3

D2a(v − x)f (dx)

∥∥∥∥ ≤ C

∫
R3

|v − x|γ f (dx)

≤ C
(
1 + Cp‖f ‖Lp

)
,
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where we have used that ‖D2a(v)‖ ≤ |v|γ and (1.4) [since p > 3/(3 + γ )]. Con-
sequently,∥∥σ(f, v) − σ(f,w)

∥∥2 = ∥∥(A(v)
)1/2 − (

A(w)
)1/2∥∥2 ≤ ∥∥D(

A1/2)∥∥2
∞|v − w|2

is smaller than C(1 + Cp‖f ‖Lp)|v − w|2.
Finally, integrating the Lipschitz estimate on a given in Lemma 2.3, we find the

inequality ‖a(f, v) − a(f,w)‖ ≤ C|v − w| ∫
R3(|v − x|1+γ + |w − x|1+γ )f (dx).

Using the same arguments as in (ii) and (iii), points (vi) and (vii) immediately
follow. �

2.4. Well-posedness of the nonlinear SDE. We now have all the ingredients to
give the following.

PROOF OF THEOREM 1.7. Recall that f0 ∈ P2(R3) is assumed to satisfy
mq(f0) < ∞ for some q > q(γ ) and H(f0) < ∞. Let f ∈ L∞

loc([0,∞),P2(R
3))∩

L1
loc([0,∞),Lp(R3)) [for all p ∈ (p1(γ ),p2(γ, q))] be the unique weak solution

to (1.1); see Theorem 1.3. Let also V(0) be f0-distributed and consider a 3D Brow-
nian motion B independent of V(0).

Step 1: The linear SDE. Recalling that f is given, we prove here that there is
strong existence and uniqueness for the linear SDE

V(t) = V(0) +
∫ t

0
b
(
fs,V(s)

)
ds +

∫ t

0
σ
(
fs,V(s)

)
dB(s).(2.1)

Fix p ∈ (p1(γ ),p2(γ, q)) and recall that f ∈ L∞
loc([0,∞),P2(R

3))∩L1
loc([0,∞),

Lp(R3)). By Lemma 2.5(iv)–(v), the coefficients of this SDE are Lipschitz contin-
uous in v, with a Lipschitz constant (locally) integrable in time for b and (locally)
square integrable in time for σ . The conclusion follows from classical arguments;
see, for instance, [30], Theorem 3.17.

Step 2: Uniqueness for the linear PDE. Recalling that f is fixed, we consider
the Kolmogorov equation associated to (2.1):

∂tgt (v) = 1
2 divv

(
a(ft , v)∇gt (v) − b(ft , v)gt (v)

)
.(2.2)

As for the Landau equation, g ∈ L∞
loc([0,∞),P2(R

3)) is a weak solution if for all
ϕ ∈ C2

b(R3),∫
R3

ϕ(v)gt (dv) =
∫
R3

ϕ(v)g0(dv) +
∫ t

0

∫
R3

∫
R3

Lϕ(v, v∗)gs(dv)fs(dv∗) ds.

By Lemma 2.5(i)–(ii)–(iii), we know that ‖σ(ft , v)‖2 ≤ C(1 + |v|2) and
|b(ft , v)| ≤ C(1 +‖ft‖Lp)(1 + |v|), with ‖ft‖Lp ∈ L1

loc([0,∞)). Hence, Proposi-
tion B.1, which slightly extends [10], Theorem 2.6, tells us that any weak solution
(gt )t≥0 to (2.1) can be represented as the family of time marginals of a solution to
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(2.1). Consequently, step 1 implies the uniqueness of the solution to (2.1), for any
given g0 ∈P2(R3).

Step 3: Strong existence. From step 1, we know that there exists a solution V
to (2.1). Put gt = L(V(t)). A direct application of the Itô formula shows that g

is a weak solution to (2.2), with g0 = f0. But f , being a weak solution to the
Landau equation (1.1) [see also (1.3)], is also a weak solution to (2.2). By step 2,
we deduce that g = f as desired.

Step 4: Strong uniqueness. Consider another solution W [with L(W(t)) = ht ] to
the nonlinear SDE (1.10) (with the same initial condition and the same Brownian
motion). Assume also that h ∈ L∞

loc([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) for
some p ∈ (p1(γ ),p2(γ, q)). A direct application of the Itô formula shows that h

is a weak solution to (1.1), whence f = h by Theorem 1.3. Consequently, W also
solves the linear SDE (2.1), so that V = W by step 2. �

3. Fine regularity estimates and strong/weak stability principles. The goal
of this section is to prove Theorem 1.4, that is the strong/weak stability principles.
These principles will be proved using a coupling argument between two solutions
of the nonlinear SDE (1.10). Unfortunately, we cannot use the same Brownian mo-
tion for both solutions: this is due to the fact that we really need a fine estimate
and that the best coupling between two 3D Gaussian distribution N (0,�1) and
N (0,�2) does not consist in setting X1 = �

1/2
1 Y and X2 = �

1/2
2 Y for the same

Y with law N (0, I ). Actually, as shown in Givens–Shortt [18], the optimal cou-
pling is obtained when setting X1 = �

1/2
1 Y and X2 = �

1/2
2 U(�1,�2)Y , where

the orthogonal matrix U(�1,�2) is given by

U(�1,�2) = �
−1/2
2 �

−1/2
1

(
�

1/2
1 �2�

1/2
1

)1/2
.(3.1)

More precisely, we will use the following lemma.

LEMMA 3.1. For any probability measure m on a measurable space F , any
pair of measurable families of 3 × 3 matrices (σ1(x))x∈F and (σ2(x))x∈F , intro-
ducing the matrices �1 = ∫

F σ1(x)σ ∗
1 (x)m(dx) and �2 = ∫

F σ2(x)σ ∗
2 (x)m(dx),

it holds that∥∥�1/2
1 − �

1/2
2 U(�1,�2)

∥∥2 ≤
∫

F

∥∥σ1(x) − σ2(x)
∥∥2

m(dx).

PROOF. Developing both terms and using the definition (3.1) of U , we realize
that the issue is to prove that

Tr
(∫

F
σ1(x)σ ∗

2 (x)m(dx)

)
≤ Tr

((
�

1/2
1 �2�

1/2
1

)1/2)
.

By Givens and Shortt [18], proof of Proposition 7, we have Tr(M) ≤ Tr((�1/2
1 ×

�2�
1/2
1 )1/2) for all 3 × 3 matrix M such that(

�1 M

M∗ �2

)
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is nonnegative. But with M = ∫
F σ1(x)σ ∗

2 (x)m(dx),(
�1 M

M∗ �2

)
=

∫
F

(
σ1(x)

σ2(x)

)(
σ1(x)

σ2(x)

)∗
m(dx)

is clearly nonnegative. The conclusion follows. �

3.1. Main ideas of the proof of Theorem 1.4. Unfortunately, the rigorous proof
is very technical. Let us explain here the main ideas without justification. Let thus
f and g be two weak solutions to (1.1). We associate (with some work, using some
regularization) to these solutions (V(t))t≥0 [with L(V(t)) = ft ] and (Z(t))t≥0
[with L(Z(t)) = gt ] solving

dV(t) = a
(
ft ,V(t)

)
U(t) dB(t) + b

(
ft ,V(t)

)
dt and

dZ(t) = a
(
gt ,Z(t)

)
dB(t) + b

(
gt ,Z(t)

)
dt,

where U(t) = U(a(gt ,Z(t)), a(ft ,V(t))). Recalling that U takes values in the set
of orthogonal matrices, we realize that U(t) dB(t) is a Brownian motion. Hence,
V and Z are coupled solutions, with different initial values, to the nonlinear SDE
(1.10). We will of course bound W 2

2 (ft , gt ) by E[|V(t) − Z(t)|2]. Using the Itô
formula, we directly find that

d

dt
E
[∣∣Z(t) − V(t)

∣∣2] = �(Rt),(3.2)

where Rt = L(Z(t),V(t)) and where, for R a probability on R
3 × R

3, with
marginals μ and ν,

�(R) =
∫
R3×R3

(
2(z − v) · (b(μ, z) − b(ν, v)

)
+ ∥∥σ(μ, z) − σ(ν, v)U

(
a(μ, z), a(ν, v)

)∥∥2)
R(dz, dv).

Using Lemma 3.1 and that R has marginals μ and ν, we easily bound

�(R) ≤
∫
R3×R3

∫
R3×R3

�(z, z∗, v, v∗)R(dz∗, dv∗)R(dz, dv),

where �(z, z∗, v, v∗) := 2(z − v) · (b(z − z∗) − b(v − v∗)) + ‖σ(z − z∗) − σ(v −
v∗)‖2. A simple computation (see Lemma 3.3 below) shows that � = �1 + �2,
where �1 is antisymmetric and disappears when integrating, and where �2 can be
controlled explicitly. We have verified that

�(R) ≤ 8
∫
R3×R3

∫
R3×R3

|z − v|2 (|z − z∗| ∧ |v − v∗|)1+γ

|z − z∗| ∨ |v − v∗| R(dz∗, dv∗)R(dz, dv).

Assume first that γ ∈ (−1, 0). We get

�(R) ≤ 8
∫
R3×R3

∫
R3×R3

|z − v|2|z − z∗|γ R(dz∗, dv∗)R(dz, dv)

=
∫
R3×R3

∫
R3

|z − v|2|z − z∗|γ μ(dz∗)R(dz, dv).
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Using finally (1.4) with some p > p1(γ ),

�(R) ≤ Cp

(
1 + ‖μ‖Lp

) ∫
R3×R3

|z − v|2R(dz, dv).

Coming back to (3.2), we end with (d/dt)E[|Z(t) − V(t)|2] ≤ Cp(1 + ‖ft‖Lp) ×
E[|Z(t) − V(t)|2], whence, using the Grönwall lemma,

W 2
2 (ft , gt ) ≤ W 2

2 (f0, g0) exp
(

Cp

∫ t

0

(
1 + ‖fs‖Lp

)
ds

)
as desired. When now γ ∈ (−2,−1], a slightly more complicated study shows that

�(R) ≤ Cp,r

(
1 + ‖μ‖Lp + ‖ν‖Lr

) ∫
R3×R3

|z − v|2R(dz, dv),

for any p > p1(γ ) and any r > (2p − 3)/[(3 + γ )(p − 1) − 1].
3.2. Fine regularity estimates. The subsection is devoted to the proof of the

following estimate.

PROPOSITION 3.2. For f,g ∈ P2(R3), R ∈ �(g,f ) and 0 ≤ η ≤ ε < 1, we
set

�η,ε(R) =
∫
R3×R3

(
2(z − v) · (b(gη, z

)− b(f, v)
)

+ ∥∥σ (gη, z
)− σ(f, v)U

(
a
(
gε, z

)
, a

(
f ε, v

))∥∥2)
R(dz, dv).

Assume that f ∈ Lp(R3) for some p > p1(γ ).

(i) If γ ∈ (−1, 0), then

�η,ε(R) ≤ Cε2+2γ + Cp

(
1 + ∥∥f ε

∥∥
Lp

) ∫
R3×R3

|z − v|2R(dz, dv).

(ii) If γ ∈ (−2,−1], we assume also that g ∈ Lr for some r > (2p − 3)/[(3 +
γ )(p − 1) − 1]. There is δ > 0 (depending only on r,p, γ ) such that

�η,ε(R)

≤ Cr,p

(
1 + ‖f + g‖Lr

)(
1 + m1(f + g)

)
εδ + Cr,p

(
1 + ∥∥f ε

∥∥
Lp + ∥∥gε

∥∥
Lr

)
×
∫
R3×R3

|z − v|2R(dz, dv).

We start with a simple computation.

LEMMA 3.3. Assume that γ ∈ (−2, 0). Then for any v, v∗,w,w∗ in R
3,

�(v, v∗,w,w∗) := 2(v − w) · (b(v − v∗) − b(w − w∗)
)

+ ∥∥σ(v − v∗) − σ(w − w∗)
∥∥2

= �1(v, v∗,w,w∗) + �2(v, v∗,w,w∗),
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where

�1(v, v∗,w,w∗) = (
(v − w) + (v∗ − w∗)

) · (b(v − v∗) − b(w − w∗)
)

is antisymmetric [i.e., �1(v, v∗,w,w∗) = −�1(v∗, v,w∗,w)] and

�2(v, v∗,w,w∗) ≤ 4
(|v − w|2 + |v∗ − w∗|2)K(|v − v∗|, |w − w∗|),

where

K(x,y) = (x ∧ y)1+γ

x ∨ y
.(3.3)

Let us recall that for M,N two 3 × 3 matrices, 〈〈M,N〉〉 = Tr MN∗ and
‖M‖2 = Tr MM∗.

PROOF OF LEMMA 3.3. Defining �2 = � − �1, we find, with the notation
X = v − v∗ and Y = w − w∗,

�2 = (X − Y) · (b(X) − b(Y )
)+ ∥∥σ(X) − σ(Y )

∥∥2
.

Recalling that b(X) = −2X|X|γ , using that ‖σ(X)‖2 = 2|X|2+γ and that

〈〈
σ(X),σ (Y )

〉〉 = |X|1+γ /2|Y |1+γ /2
(

1 + (X · Y)2

|X|2|Y |2
)

≥ 2|X|γ /2|Y |γ /2(X · Y)

(we used that 1 + x2 ≥ 2x for the last inequality), one easily checks that

�2 ≤ 2(X · Y)
(|X|γ /2 − |Y |γ /2)2 ≤ 2|X‖Y |(|X|γ /2 − |Y |γ /2)2

witch equals 2(|X‖Y |)1+γ (|X||γ |/2 − |Y ||γ |/2)2. Next, remark that for α ∈ [0, 1]
and x, y ≥ 0,

∣∣xα −yα
∣∣ = (x∨y)α

(
1−

[
x ∧ y

x ∨ y

]α)
≤ (x∨y)α

(
1− x ∧ y

x ∨ y

)
= |x−y|(x∨y)α−1,

whence

�2 ≤ 2|X − Y |2(|X‖Y |)1+γ (|X| ∨ |Y |)|γ |−2

= 2|X − Y |2(|X| ∧ |Y |)1+γ (|X| ∨ |Y |)−1
.

One easily completes the proof, using that |X − Y |2 ≤ 2(|v − w|2 + |v∗ − w∗|2).
�

We next prove an intermediate result.
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LEMMA 3.4. Let γ ∈ (−2, 0). Consider f,g ∈ P2(R3) and R ∈ �(g,f ). For
any ε ∈ (0, 1),∫

R3×R3

(
2(z − v) · (b(gε, z

)− b
(
f ε, v

))
+ ∥∥σ (gε, z

)− σ
(
f ε, v

)
U
(
a
(
gε, z

)
, a

(
f ε, v

))∥∥2)
R(dz, dv)

≤ 8
∫
R3×R3

∫
R3×R3

|z − v|2K
(|z − z∗|, |v − v∗|)

× Rε(dz∗, dv∗)R(dz, dv),

where K was introduced in (3.3) and where Rε = ∫
R3×R3

∫
R3 δ(u+z,u+v)φε(u) du×

R(dz, dv) belongs to �(gε, f ε).

In other words, Rε(A) = ∫
R3×R3

∫
R3 1A(u + z,u + v)φε(u)R(dz, dv) du for all

A ∈ B(R3 ×R
3).

PROOF OF LEMMA 3.4. Let us denote by I the left-hand side of the desired
inequality. We claim that

(z − v) · (b(gε, z
)− b

(
f ε, v

))
=

∫
R3×R3

(z − v) · (b(z − z∗) − b(v − v∗)
)
Rε(dz∗, dv∗),

∥∥σ (gε, z
)− σ

(
f ε, v

)
U
(
a
(
gε, z

)
, a

(
f ε, v

))∥∥2

≤
∫
R3×R3

∥∥σ(z − z∗) − σ(v − v∗)
∥∥2

Rε(dz∗, dv∗).

The first point is obvious: it follows from the fact that the marginals of Rε are gε

and f ε . The second point relies on Lemma 3.1 applied with (here z, v ∈ R
3 are

fixed) F = R
3 × R

3, m = Rε(dz∗, dv∗), σ1(z∗, v∗) = σ(z − z∗) and σ2(z∗, v∗) =
σ(v − v∗). Indeed, since σ(x) = (a(x))1/2, we have∫

R3×R3
σ(z − z∗)σ ∗(z − z∗)Rε(dz∗, dv∗) = a

(
gε, z

)
,

∫
R3×R3

σ(v − v∗)σ ∗(v − v∗)Rε(dz∗, dv∗) = a
(
f ε, v

)
.

Recalling the notation of Lemma 3.3, we thus deduce that

I ≤
∫
R3×R3

∫
R3×R3

�(z, z∗, v, v∗)Rε(dz∗, dv∗)R(dz, dv).

By Lemma 3.3, we know that � = �1 + �2, whence, with obvious notation,
I ≤ I1 + I2. Using the substitution u �→ −u and that �1(z, z∗ − u, v, v∗ − u) =
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−�1(z∗, z + u, v∗, v + u),

I1 =
∫
R3×R3

∫
R3×R3

∫
R3

�1(z, z∗ + u, v, v∗ + u)φε(u) duR(dz∗, dv∗)R(dz, dv)

=
∫
R3×R3

∫
R3×R3

∫
R3

�1(z, z∗ − u, v, v∗ − u)φε(u) duR(dz∗, dv∗)R(dz, dv)

= −
∫
R3×R3

∫
R3×R3

∫
R3

�1(z∗, z + u, v∗, v + u)φε(u) duR(dz∗, dv∗)R(dz, dv)

= −I1,

so that I1 = 0. This computation is licit: recalling the expression of �1 and that
|b(x)| ≤ 2|x|γ +1,

κε(z, z∗, v, v∗)

:=
∫
R3

∣∣�1(z, z∗ + u, v, v∗ + u)
∣∣φε(u)du

≤ 2
(|z| + |v| + |z∗| + |v∗|)
×
∫
R3

(|z − z∗ − u|1+γ + |v − v∗ − u|1+γ )φε(u)du

≤ Cε

(
1 + |z| + |v| + |z∗| + |v∗|)2

.

For the last inequality, separate the cases γ ∈ [−1, 0) and γ ∈ (−2,−1). This last
expression is integrable against R(dz∗, dv∗)R(dz, dv) because f and g belong to
P2(R3) by assumption.

Finally, using again the substitution u �→ −u, it is easily checked that

I2 = 4
∫
R3×R3

∫
R3×R3

∫
R3

(|z − v|2 + |z∗ − v∗|2)
× K

(|z − z∗ − u|, |v − v∗ − u|)φε(u)duR(dz∗, dv∗)R(dz, dv)

= 8
∫
R3×R3

∫
R3×R3

∫
R3

|z − v|2

× K
(|z − z∗ − u|, |v − v∗ − u|)φε(u)duR(dz∗, dv∗)R(dz, dv),

which is nothing but the right-hand side of the target inequality. �

We can finally give the following.

PROOF OF PROPOSITION 3.2. Let thus γ ∈ (−2, 0), f,g ∈ P2(R3), R ∈
�(g,f ) and 0 ≤ η < ε < 1 be fixed. Let also p > p1(γ ) be fixed and assume
that f ∈ Lp(R3). If γ ∈ (−2,−1], we assume moreover that g ∈ Lr(R3) for some
fixed r > (2p − 3)/[(3 + γ )(p − 1) − 1] and that r < p without loss of generality.
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We start with �η,ε(R) = I0 + I1 + I2 + I3, where

I0 :=
∫
R3×R3

[
2(z − v) · (b(gε, z

)− b
(
f ε, v

))
+ ∥∥σ (gε, z

)− σ
(
f ε, v

)
U
(
a
(
gε, z

)
, a

(
f ε, v

))∥∥2]
R(dz, dv),

I1 := 2
∫
R3×R3

(z − v) · (b(gη, z
)− b

(
gε, z

)− b(f, v) + b
(
f ε, v

))
R(dz, dv),

I2 :=
∫
R3×R3

∥∥(σ (gε, z
)− σ

(
gη, z

))
− (

σ
(
f ε, v

)− σ(f, v)
)
U
(
a
(
gε, z

)
, a

(
f ε, v

))∥∥2
R(dz, dv),

I3 := 2
∫
R3×R3

Tr
[(

σ
(
gε, z

)− σ
(
f ε, v

)
U
(
a
(
gε, z

)
, a

(
f ε, v

)))
× ((

σ
(
gη, z

)
− σ

(
gε, z

))− (
σ(f, v) − σ

(
f ε, v

))
U
(
a
(
gε, z

)
, a

(
f ε, v

)))∗]
R(dz, dv).

Lemma 3.4 tells us that

I0 ≤ 8
∫
R3×R3

∫
R3×R3

|z − v|2K
(|z − z∗|, |v − v∗|)Rε(dz∗, dv∗)R(dz, dv),

with Rε ∈ �(gε, f ε) defined by Rε = ∫
R3×R3

∫
R3 δ(u+z,u+v)φε(u)R(dz, dv).

We now prove (i). We thus assume that γ ∈ (−1, 0). We start with I0. Since
γ ∈ (−1, 0), it holds that K(x,y) ≤ min{xγ , yγ } ≤ yγ , whence

I0 ≤ 8
∫
R3×R3

∫
R3×R3

|z − v|2|v − v∗|γ Rε(dz∗, dv∗)R(dz, dv).

Using that Rε has gε for second marginal, we see that supv

∫
R3×R3 |v − v∗|γ ×

Rε(dz∗, dv∗) = supv

∫
R3 |v − v∗|γ f ε(dv∗) ≤ 1 + Cp‖f ε‖Lp by (1.4), recall that

p > p1(γ ). Consequently,

I0 ≤ Cp

(
1 + ∥∥f ε

∥∥
Lp

) ∫
R3×R3

|z − v|2R(dz, dv).

Lemma 2.4(iii) tells us that |b(f, v) − b(f ε, v)| ≤ Cε1+γ and implies, since
η ∈ [0, ε), that |b(gη, z) − b(gε, z)| ≤ Cε1+γ . Using that x · y ≤ |x|2 + |y|2, we
thus find

I1 ≤ C

∫
R3×R3

(
ε2+2γ + |z − v|2)R(dz, dv)

= Cε2+2γ + C

∫
R3×R3

|z − v|2R(dz, dv).
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Using that ‖a − b‖2 ≤ 2(‖a‖2 + ‖b‖2), that U is an orthogonal matrix and then
Lemma 2.2, we see that

I2 ≤ 2
∫
R3×R3

(∥∥σ (gε, z
)− σ

(
gη, z

)∥∥2 + ∥∥σ (f ε, v
)− σ(f, v)

∥∥2)
R(dz, dv)

≤ C

∫
R3×R3

(∥∥a(gε, z
)− a

(
gη, z

)∥∥+ ∥∥a(f ε, v
)− a(f, v)

∥∥)R(dz, dv).

Lemma 2.4(iii) thus implies that I2 ≤ Cε2+γ , which is smaller than Cε2+2γ .
Finally, to bound I3, we start from the inequality

Tr(AB) ≤ ‖A‖‖B‖ ≤ 1
2

(
ε−γ ‖A‖2 + εγ ‖B‖2),

from which

I3 ≤ ε−γ
∫
R3×R3

∥∥σ (gε, z
)− σ

(
f ε, v

)
U
(
a
(
gε, z

)
, a

(
f ε, v

))∥∥2
R(dz, dv) + εγ I2.

First, we already know that I2 ≤ Cε2+γ . Next, using the same argument as in the
very beginning of the proof of Lemma 3.4, since Rε has gε and f ε for marginals,
we deduce that

I3 ≤ Cε2+2γ

+ ε−γ
∫
R3×R3

∫
R3×R3

∥∥σ(z − z∗) − σ(v − v∗)
∥∥2

Rε(dz∗, dv∗)R(dz, dv).

We then use Lemma 2.3 to write

I3 ≤ Cε2+2γ + Cε−γ
∫
R3×R3

(|z − v|2 + |z∗ − v∗|2)
× (|z − z∗|γ + |v − v∗|γ )Rε(dz∗, dv∗)R(dz, dv).

Recalling the definition of Rε and using some symmetry arguments, we find that

I3 ≤ Cε2+2γ

+ Cε−γ
∫
R3×R3

∫
R3×R3

∫
R3

|z − v|2(|z − z∗ + u|γ + |v − v∗ + u|γ )
× φε(u)duR(dz∗, dv∗)R(dz, dv).

But supx∈R3
∫
R3 |x − u|γ φε(u) du ≤ Cεγ , so that finally,

I3 ≤ Cε2+2γ + C

∫
R3×R3

|z − v|2R(dz, dv).

We next prove (ii) and thus assume that γ ∈ (−2,−1]. We need to improve the
estimates of (i), but the additional integrability allows us to do that. We first observe
that our conditions p > p1(γ ) and r > (2p − 3)/[(3 + γ )(p − 1) − 1] imply that
p > 3/2, that 0 ≤ p|1+γ |/(2p−3) < 1 and that p|1+γ |/(2p−3) < 4+γ −3/r .
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Hence, we can find δ ∈ (0, 1) such that δ < 4+γ −3/r and δ > p|1+γ |/(2p−3).
We fix such a δ for the whole proof.

We first treat I0. By the Young inequality,

K(x,y) = [min{x, y}]1+γ

max{x, y} ≤ x1+γ

y
+ yγ ≤ Cδ

(
x1+γ −δ + y−a)+ yγ ,

where a = (δ − 1 − γ )/δ. But a > |γ | (because δ < 1), whence finally

K(x,y) ≤ Cδ

(
1 + x1+γ −δ + y−(δ−1−γ )/δ).

Consequently,

I0 ≤ Cδ

∫
R3×R3

∫
R3×R3

|z − v|2(1 + |z − z∗|1+γ −δ + |v − v∗|−(δ−1−γ )/δ)
× Rε(dz∗, dv∗)R(dz, dv).

Using that the marginals of Rε are gε and f ε , as well as (1.4), we conclude that

I0 ≤ Cr,p,δ

(
1 + ∥∥gε

∥∥
Lr + ∥∥f ε

∥∥
Lp

) ∫
R3×R3

|z − v|2R(dz, dv),

provided that r > 3/[4 + γ − δ], i.e. δ < 4 + γ − 3/r , and p > 3/[3 − (δ − 1 −
γ )/δ], i.e. δ > p|1 + γ |/(2p − 3). Both hold true.

We next treat I1. Lemma 2.4(ii) implies that∣∣b(x) − bε(x)
∣∣ ≤ C min

{
ε, |x|}|x|γ ≤ Cεδ|x|1+γ −δ.

As a consequence,∣∣b(f, v) − b
(
f ε, v

)∣∣ = ∣∣b(f, v) − bε(f, v)
∣∣ ≤ Cεδ

∫
R3

|v − v∗|1+γ −δf (dv∗)

≤ Cr,δ

(
1 + ‖f ‖Lr

)
εδ

by (1.4) because r > 3/(4 + γ − δ). Using a similar computation for g, we easily
find

I1 ≤ Cr,δ

(
1 + ‖f ‖Lr + ‖g‖Lr

)(
m1(f ) + m1(g)

)
εδ.

As in point (i),

I2 ≤ C

∫
R3×R3

(∥∥a(gε, z
)− a

(
gη, z

)∥∥+ ∥∥a(f ε, v
)− a(f, v)

∥∥)R(dz, dv).

By Lemma 2.4(ii), we have ‖a(x)−aε(x)‖ ≤ Cε2(ε +|x|)γ ≤ Cε1+δ|x|1+γ −δ , so
that, with the same arguments as when bounding I1,∥∥a(f ε, v

)− a(f, v)
∥∥ ≤ Cε1+δ

∫
R3

|v − v∗|1+γ −δf (dv∗) ≤ Cr,δ

(
1 + ‖f ‖Lr

)
ε1+δ,

and the same holds for g. Consequently,

I2 ≤ Cr,δ

(
1 + ‖f ‖Lr + ‖g‖Lr

)
ε1+δ.
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To bound I3, we start as in (i): for any α > 0,

I3 ≤ εα
∫
R3×R3

∥∥σ (gε, z
)− σ

(
f ε, v

)
U
(
a
(
gε, z

)
, a

(
f ε, v

))∥∥2
R(dz, dv) + ε−αI2.

Exactly as in (i), we deduce that

I3 ≤ ε−αI2 + Cεα
∫
R3×R3

∫
R3×R3

∫
R3

|z − v|2(|z − z∗ + u|γ + |v − v∗ + u|γ )
× φε(u)duR(dz∗, dv∗)R(dz, dv).

But for all x ∈ R
3,

∫
R3 |x + u|γ φε(u) du ≤ C(ε + |x|)γ ≤ Cε−1+δ|x|1+γ −δ ,

whence

I3 ≤ Cε−αI2

+ Cr,δε
α−1+δ

∫
R3×R3

∫
R3×R3

∫
R3

|z − v|2(|z − z∗|1+γ −δ + |v − v∗|1+γ −δ)
× R(dz∗, dv∗)R(dz, dv).

With the same arguments as in the bound of I1, we conclude, using that R ∈
�(g,f ), that

I3 ≤ Cε−αI2 + Cr,δε
α−1+δ(1 + ‖f ‖Lr + ‖g‖Lr

) ∫
R3×R3

|z − v|2R(dz, dv)

≤ Cr,δ

(
1 + ‖f ‖Lr + ‖g‖Lr

)(
ε1+δ−α + εα−1+δ

∫
R3×R3

|z − v|2R(dz, dv)

)
.

Choosing α = 1 − δ, we end with

I3 ≤ Cr,δ

(
1 + ‖f ‖Lr + ‖g‖Lr

)(
ε2δ +

∫
R3×R3

|z − v|2R(dz, dv)

)
.

This completes the proof. �

3.3. Strong/weak stability principles. The rest of the section is devoted to the
following.

PROOF OF THEOREM 1.4. Let γ ∈ (−2, 0) and f0 ∈ P2(R3) satisfy also
H(f0) < ∞ and mq(f0) < ∞ for some q > q(γ ). We consider the unique
weak solution f to (1.1) starting from f0 built in Theorem 1.3, as well as an-
other weak solution g ∈ L∞

loc([0,∞),P2(R
3)) starting from g0 ∈ P2(R3). We

fix p ∈ (p1(γ ),p2(γ, q)). We know that f belongs to L∞
loc([0,∞),P2(R

3)) ∩
L1

loc([0,∞),Lp(R3)). If finally γ ∈ (−2,−1], we assume that g ∈ L1
loc([0,∞),

Lr(R3)) for some r > (2p − 3)/[(3 + γ )(p − 1) − 1]. We assume without loss of
generality that r < p.

Step 1. By Lemma 2.5(i)–(ii)–(iii), we see that σ(gt , z) and b(gt , z) satisfy
the assumptions of Proposition B.1. Indeed, ‖σ(gt , z)‖2 ≤ C(1 + |z|2) and, if
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γ ∈ [−1, 0), |b(gt , z)| ≤ C(1 + |z|). If now γ ∈ (−2,−1), since r > 3/(4 + γ ),
b(gt , z) ≤ C(1 + ‖ft‖Lr ), which belongs to L1

loc([0,∞)) by assumption. Conse-
quently, we can find, on some probability space, a Brownian motion (B(t))t≥0,
independent of a g0-distributed random variable Z(0) such that there is a solution
(Z(t))t≥0 to

Z(t) = Z(0) +
∫ t

0
b
(
gs,Z(s)

)
ds +

∫ t

0
σ
(
gs,Z(s)

)
dB(s)

satisfying L(Z(t)) = gt for all t ≥ 0.
Step 2. Let V(0) with law f0 be such that E[|V(0) −Z(0)|2] = W 2

2 (f0, g0). Re-
call that the function U , taking value in the set of orthogonal matrices, was defined
in (3.1). We claim that for any ε ∈ (0, 1), there is a strong solution (Vε(t))t≥0 to

Vε(t) = V(0) +
∫ t

0
b
(
fs,Vε(s)

)
ds

(3.4)

+
∫ t

0
σ
(
fs,Vε(s)

)
U
(
a
(
gε

s ,Z(s)
)
, a

(
f ε

s ,Vε(s)
))

dBs,

where f ε
s := fs 
 φε and that furthermore, L(Vε(t)) = ft for all t ≥ 0.

Recalling that (Z(t))t≥0 has already been built in step 1, the strong unique-
ness for (3.4) classically follows the following facts that we will check a few
lines below: v �→ b(fs, v) is Lipschitz (with a Lipschitz constant locally inte-
grable in time), v �→ σ(fs, v) is Lipschitz (with a Lipschitz constant locally
square-integrable in time) and finally, v �→ U(a(gε

s ,Z(s)), a(f ε
s , v)) is uniformly

bounded and locally Lipschitz.
Next, recalling that U(�1,�2) is orthogonal for all symmetric positive matrices

�1 and �2, we deduce that β(t) = ∫ t
0 U(a(fs,Vε(s)), a(gs,Z(s))) dB(s) is also

a 3D Brownian motion: it suffices to note that β is a 3D martingale and that its
quadratic variation matrix is I3t . Hence, Vε also solves the linear SDE (2.1), with
initial condition V(0) and Brownian motion (β(t))t≥0, associated with the weak
solution f to (1.1). Consequently, one can check as in the proof of Theorem 1.7,
step 2, that L(Vε(t)) = ft for all t ≥ 0.

As already seen in step 1 of the proof of Theorem 1.7, using the fact that
f ∈ L∞

loc([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) and Lemma 2.5(iv)–(v), we see
that b(fs, v) is Lipschitz continuous in v, with a Lipschitz constant (locally)
integrable in time and that σ(fs, v) is Lipschitz continuous in v, with a Lips-
chitz constant (locally) square integrable in time as desired. It only remains to
check that v �→ U(a(gε

s ,Z(s)), a(f ε
s , v)) is locally Lipschitz continuous. First,

we obviously have, by convexity and invariance by translation of the entropy,
H(f ε

s ) = H(fs 
 φε) ≤ H(φε) ≤ Cε , while m2(f ε
s ) ≤ 2m2(fs) + 2ε2. The same

arguments apply for gε
s , so that, since the second moment of f and g are (locally)

bounded in time by assumption, we get that

sup
s∈[0,T ]

[
H
(
f ε

s

)+ H
(
gε

s

)+ m2
(
f ε

s

)+ m2
(
gε

s

)] ≤ Cε,T .
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Consequently, we can apply Proposition 2.1 and deduce that, for s ∈ [0, T ] and
v ∈ R

3, ∥∥(a(f ε
s , v

))−1∥∥+ ∥∥(a(gε
s , v

))−1∥∥ ≤ Cε,T

(
1 + |v|)|γ |

.(3.5)

By Lemma 2.5(i), we also see that∥∥a(f ε
s , v

)∥∥+ ∥∥a(gε
s , v

)∥∥ ≤ C
(
1 + |v|)2

.(3.6)

Using next Lemma 2.5(vi)–(vii) and that ‖f ε
t ‖Lp ≤ ‖φε‖Lp ≤ Cε ,∥∥a(f ε

s , v
)− a

(
f ε

s , v′)∥∥ ≤ Cε

(
1 + |v| + ∣∣v′∣∣)∣∣v − v′∣∣.(3.7)

From the definition (3.1) and Lemma 2.2, it is tedious but straightforward to
see that there is i > 0 and C > 0 such that for all symmetric positive matrices
�1,�2,�′

2,∥∥U(�1,�2) − U
(
�1,�′

2
)∥∥

≤ C
(∥∥�−1/2

1

∥∥+ ∥∥�1/2
1

∥∥+ ∥∥�−1/2
2

∥∥+ ∥∥�1/2
2

∥∥+ ∥∥(�′
2
)−1/2∥∥

+ ∥∥(�′
2
)1/2∥∥)i∥∥�2 − �′

2
∥∥.

Using this inequality with �1 = a(gε
s ,Z(s)), �2 = a(f ε

s , v) and �′
2 = a(f ε

s , v′),
using also (3.5), (3.6) and (3.7), we conclude that indeed,∥∥U (

a
(
gε

s ,Z(s)
)
, a

(
f ε

s , v
))− U

(
a
(
gε

s ,Z(s)
)
, a

(
f ε

s , v′))∥∥
≤ Cε,T

(
1 + |v| + ∣∣v′∣∣+ ∣∣Z(s)

∣∣)j ∣∣v − v′∣∣
for some j > 0. This completes the step.

Step 3. Recall that L(Z(t)) = gt and L(Vε(t)) = ft [for any value of ε ∈ (0, 1)].
We will bound W 2

2 (ft , gt ) by E[|Z(t) − Vε(t)|2]. Applying the Itô formula, we
directly find that

d

dt
E
[∣∣Z(t) − Vε(t)

∣∣2]
= E

[
2
(
Z(t) − Vε(t)

) · (b(gt ,Z(t)
)− b

(
ft ,Vε(t)

))
+ ∥∥σ (gt ,Z(t)

)− σ
(
ft ,Vε(t)

)
U
(
a
(
gε

t ,Z(t)
)
, a

(
f ε

t ,Vε(t)
))∥∥2]

.

Setting Rε,t = L(Z(t),Vε(t)), which belongs to �(g,f ), we realize that with the
notation of Lemma 3.2,

d

dt
E
[∣∣Z(t) − Vε(t)

∣∣2] = �0,ε(Rε,t ).

Step 4: Proof of point (i). We thus assume that γ ∈ (−1, 0). Applying Proposi-
tion 3.2(i), we conclude that

d

dt
E
[∣∣Z(t) − Vε(t)

∣∣2] ≤ Cε2+2γ + Cp

(
1 + ∥∥f ε

t

∥∥
Lp

)
E
[∣∣Z(t) − Vε(t)

∣∣2].
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But E[|Z(0) − V(0)|2] = W 2
2 (f0, g0), so that, by the Grönwall lemma,

E
[∣∣Z(t) − Vε(t)

∣∣2] ≤ (
W 2

2 (f0, g0) + Cε2+2γ ) exp
(

Cp

∫ t

0

(
1 + ∥∥f ε

s

∥∥
Lp

)
ds

)
.

Since finally L(Vε(t)) = ft and L(Z(t)) = gt , it holds that W 2
2 (ft , gt ) ≤

E[|Z(t) − Vε(t)|2]. To complete the proof, it suffices to let ε tend to 0, noting
that ‖f ε

t ‖Lp ≤ ‖ft‖Lp for all ε ∈ (0, 1).
Step 5: Proof of point (ii). We assume here that γ ∈ (−2,−1). Applying Propo-

sition 3.2(ii), we conclude that there is δ > 0 such that

d

dt
E
[∣∣Z(t) − Vε(t)

∣∣2] ≤ Cr,p

(
1 + ∥∥f ε

t

∥∥
Lp + ∥∥gε

t

∥∥
Lr

)
E
[∣∣Z(t) − Vε(t)

∣∣2]
+ Cr,p

(
1 + ‖ft‖Lr + ‖gt‖Lr

)(
1 + m1(ft ) + m1(gt )

)
εδ.

Using that E[|Z(0) − V(0)|2] = W 2
2 (f0, g0), that (1 + ‖ft‖Lr + ‖gt‖Lr )(1 +

m1(ft ) + m1(gt )) is (locally) time-integrable because f,g ∈ L∞
loc([0,∞),

P2(R3)) ∩ L1
loc([0,∞),Lr(R3)) by assumption, the Grönwall lemma, that

W 2
2 (ft , gt ) ≤ E[|Vε(t) − Z(t)|2] for any ε ∈ (0, 1) and letting ε tend to 0, we

find that

W 2
2 (ft , gt ) ≤ W 2

2 (f0, g0) exp
(

Cr,p

∫ t

0

(
1 + ‖fs‖Lp + ‖gs‖Lr

)
ds

)
.

The proof is complete. �

4. Moment estimates for the particle system. The goal of this section is to
check the following propagation of moments. When γ ∈ [−1, 0), we could handle
a simpler proof, but the case γ ∈ (−2,−1) really requires a tedious computation.

PROPOSITION 4.1. Let γ ∈ (−2, 0). Let N ≥ 2 and ηN ∈ (0, 1). Assume that
the initial condition (VN

i (0))i=1,...,N is exchangeable and that E[|VN
1 (0)|r ] < ∞

for some r ≥ 2. Consider the unique solution (VN
i )i=1,...,N to (1.9). For all T > 0,

there is a finite constant CT,r (not depending on N ) such that

sup
[0,T ]

E
[∣∣VN

1 (t)
∣∣r ] ≤ CT,rE

[∣∣VN
1 (0)

∣∣r ].
PROOF. By the Itô formula, setting ϕ(x) = |x|r ,

E
[∣∣VN

1 (t)
∣∣r ] = E

[∣∣VN
1 (0)

∣∣r ]+ r

∫ t

0
E
[∣∣VN

1 (s)
∣∣r−2VN

1 (s) · b
(
μ̃N

s ,VN
1 (s)

)]
ds

+ 1

2

∫ t

0
E
[
Tr
(∇2ϕ

(
VN

1 (s)
)
a
(
μ̃N

s ,VN
1 (s)

))]
ds

=: E[∣∣VN
1 (0)

∣∣r ]+ IN
t + J N

t .
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Using that b(μ̃N
s ,VN

1 (s)) = N−1 ∑N
j=1(b 
 φηN

)(VN
1 (s) − VN

j (s)), that (b 


φηN
)(0) = 0 and exchangeability, we find

IN
t = r(N − 1)

N

∫ t

0
E
[∣∣VN

1 (s)
∣∣r−2VN

1 (s) · (b 
 φηN
)
(
VN

1 (s) − VN
2 (s)

)]
ds.

Using again exchangeability [and that (b 
 φηN
)(−x) = −(b 
 φηN

)(x)], we can
symmetrize the expression, which gives

IN
t = r(N − 1)

2N

∫ t

0
E
[
(b 
 φηN

)
(
VN

1 (s) − VN
2 (s)

)
× (

VN
1 (s)

∣∣VN
1 (s)

∣∣r−2 − VN
2 (s)

∣∣VN
2 (s)

∣∣r−2)]
ds.

Finally, we observe that since b(x) = −2|x|γ x and since ηN ∈ (0, 1), |(b 


φηN
)(x)| ≤ C(1 + |x|γ +1) for all x ∈ R

3. Furthermore, |x|x|r−2 − y|y|r−2| ≤
Cr |x − y|(1 + |x|r−2 + |y|r−2). All this implies that

IN
t ≤ Cr

∫ t

0
E
[(

1 + ∣∣VN
1 (s) − VN

2 (s)
∣∣γ +1)∣∣VN

1 (s) − VN
2 (s)

∣∣
× (

1 + ∣∣VN
1 (s)

∣∣r−2 + ∣∣VN
2 (s)

∣∣r−2)]
ds.

Since γ ∈ (−2, 0), we easily check that (1 + |v − w|γ +1)|v − w|(1 + |v|r−2 +
|w|r−2) ≤ Cr(1 + |v|r + |w|r ), whence finally

IN
t ≤ Cr

∫ t

0
E
[
1 + ∣∣VN

1 (s)
∣∣r + ∣∣VN

2 (s)
∣∣r]ds ≤ Cr

∫ t

0
E
[
1 + ∣∣VN

1 (s)
∣∣r ]ds

by exchangeability.
Using next the easy estimate ‖a(μ̃N

s ,VN
1 (s))‖ = ‖N−1 ∑N

j=1(a 
φηN
)(VN

1 (s)−
VN

j (s))‖ ≤ CN−1 ∑N
j=1(1 + |VN

1 (s) − VN
j (s)|γ +2) [because ηN ∈ (0, 1)], that

|D2ϕ(x)| ≤ Cr |x|r−2, and exchangeability,

J N
t ≤ Cr

∫ t

0
E

[∣∣VN
1 (s)

∣∣r−2
(

1 + 1

N

∑
j �=1

∣∣VN
1 (s) − VN

j (s)
∣∣γ +2

)]
ds

≤ Cr

∫ t

0
E
[∣∣VN

1 (s)
∣∣r−2(1 + ∣∣VN

1 (s)
∣∣γ +2 + ∣∣VN

2 (s)
∣∣γ +2)]

ds.

Using the Hölder inequality and exchangeability again, we easily conclude that

J N
t ≤ Cr

∫ t

0
E
[
1 + ∣∣VN

1 (s)
∣∣r+γ ]

ds ≤ Cr

∫ t

0
E
[
1 + ∣∣VN

1 (s)
∣∣r ]ds.

We have checked that E[|VN
1 (t)|r ] ≤ E[|VN

1 (0)|r ]+Cr

∫ t
0 E[1+|VN

1 (s)|r ]ds. The
conclusion follows from the Grönwall lemma. �
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5. Chaos with rate. The goal of this section is to give the proof of The-
orem 1.6. We first introduce a suitable coupling between our particle system
(VN

i )i=1,...,N and an i.i.d. family (WN
i )i=1,...,N of solutions to the nonlinear SDE

(1.10). We next prove that we can control the L2-norm of a blob approximation
of the empirical measure of the family (WN

i (t))i=1,...,N . This allows us to apply
our strong/weak stability principle to estimate the mean squared distance between
VN

1 (t) and WN
1 (t).

In the whole section, we assume that γ ∈ (−1, 0), that f0 ∈ P2(R3) satisfies
H(f0) < ∞ and mq(f0) < ∞ for some q ≥ 8. Observe that 8 > q(γ ), recall (1.7),
because γ ∈ (−1, 0). Hence, we can apply Theorem 1.3 and we denote by f the
unique weak solution to the Landau equation (1.1), which furthermore belongs to
L1

loc([0,∞),Lp(R3)) for any p ∈ [1,p2(γ, q)). Actually, we will only use this
estimate with p = 2, which is indeed smaller than p2(γ, q), since q ≥ 8 and γ ∈
(−1, 0).

We fix N ≥ 2, an independent family of 3D Brownian motions (Bi )i=1,...,N ,
as well as an exchangeable family (VN

i (0))i=1,...,N , with E[|VN
1 (0)|4] bounded

(uniformly in N ). We consider ηN ∈ (0,N−1/3) as in the statement and the unique
solution (VN

i (t))i=1,...,N,t≥0 to (1.9) with this ηN . Finally, we fix δ ∈ (0, 1) (close
to 0) and εN = N−(1−δ)/3. Observe that ηN < εN .

5.1. The coupling. We recall that for ε > 0 and u ∈R
3, φε(u) = (4πε3/3)−1×

1{|u|<ε}, that μN
t = N−1 ∑N

i=1 δVN
i (t), that μ̃N

t = μN
t 
 φηN

and we introduce

μ̄N
t = μN

t 
 φεN
. For i = 1, . . . ,N , by definition

VN
i (t) = VN

i (0) +
∫ t

0
b
(
μ̃N

s ,VN
i (s)

)
ds +

∫ t

0
σ
(
μ̃N

s ,VN
i (s)

)
dBi (s).(5.1)

By Proposition A.1, we can introduce an i.i.d. family (WN
i (0))i=1,...,N of f0-

distributed random variables such that, denoting by F N
0 the law of (VN

i (0))i=1,...,N ,
the following properties hold true:

E

[
N∑
1

∣∣VN
i (0) −WN

i (0)
∣∣2] = W 2

2
(
F N

0 , f ⊗N
0

)
,(5.2)

the family
{(
VN

i (0),WN
i (0)

)
, i = 1, . . . ,N

}
is exchangeable,(5.3)

a.s., W 2
2

(
N−1

N∑
1

δVN
i (0),N−1

N∑
1

δWN
i (0)

)

(5.4)

= N−1
N∑
1

∣∣VN
i (0) −WN

i (0)
∣∣2.
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We finally introduce the system of SDEs with unknown (WN
i (t))t≥0,i=1,...,N :

WN
i (t) = WN

i (0) +
∫ t

0
b
(
fs,WN

i (s)
)
ds(5.5)

+
∫ t

0
σ
(
fs,WN

i (s)
)
U
(
a
(
μ̄N

s ,VN
i (s)

)
, a

(
ν̄N

s ,WN
i (s)

))
dBi (s)(5.6)

with the notation νN
t = N−1 ∑N

i=1 δWN
i (t) and ν̄N

t = νN
t 
 φεN

.

LEMMA 5.1. The system (5.5) has a unique strong solution
(WN

i (t))t≥0,i=1,...,N . Furthermore, the family ((WN
i (t))t≥0)i=1,...,N is indepen-

dent and, for each i = 1, . . . ,N , the process (WN
i (t))t≥0 has the same law as the

unique solution (V(t))t≥0 to the nonlinear SDE (1.10).

PROOF. The existence and uniqueness can be checked as in step 2 of the
proof of Theorem 1.4: the only additional difficulty is to show that the map
(w1, . . . ,wN) �→ U(a(μ̄N

s ,VN
i (s)), a(N−1 ∑N

k=1 δwk

 φεN

,wi)) is locally Lips-
chitz continuous, which is not very hard using that μ̄N

s and N−1 ∑N
k=1 δwk


 φεN

are bounded probability density functions (recall that εN > 0 is fixed here).
Since for each i = 1, . . . ,N , the matrix UN

i (s) = U(a(μ̄N
s ,VN

i (s)), a(ν̄N
s ,

WN
i (s))) is orthogonal, it follows that the family βN

i (t) = ∫ t
0 UN

i (s) dBi(s) con-
sists of N independent 3D Brownian motion. To get convinced, it suffices to ob-
serve that these are continuous martingales and to compute the quadratic variation
matrix. We thus can write

WN
i (t) =WN

i (0) +
∫ t

0
b
(
fs,WN

i (s)
)
ds +

∫ t

0
σ
(
fs,WN

i (s)
)
dβN

i (s),

and the family ((WN
i (t))t≥0)i=1,...,N consists of N i.i.d. solutions to the nonlinear

SDE (2.1). �

REMARK 5.2. The family {(VN
i (t),WN

i (t))t≥0, i = 1, . . . ,N} is exchange-
able. This follows from (5.3) and from the symmetry and well-posedness of the
systems (5.1) and (5.5).

5.2. Preliminaries. We start with two easy lemmas.

LEMMA 5.3. Here, we only use that f ∈ L1
loc([0,∞),L2(R3)) and that

m2(ft ) = m2(f0) for all t ≥ 0:

(i) There is a constant c0 > 0 such that for all t ≥ 0, ‖ft‖L2 ≥ c0.
(ii) For any T ≥ 0, we can find 0 = tN

0 < tN
1 < · · · < tN

KN
≤ T ≤ tN

KN+1, with

KN ≤ 2T N1/3, such that sup�=0,...,KN
(tN

�+1 − tN
� ) ≤ N−1/3 and such that, setting

hN(t) =
KN+1∑
�=1

∥∥f (
tN
�

)∥∥
L21{t∈(tN�−1,tN� ]},
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it holds that
∫ T

0 hN(t) dt ≤ 2
∫ T

0 ‖f (t)‖L2 dt .

PROOF. For point (i), we recall that
∫
R3 ft (dv) = ∫

R3 f0(dv) = 1 and
m2(ft ) = m2(f0). We put M = √

2m2(f0) and we infer from the Cauchy–
Schwarz inequality that ‖ft‖2

L2 ≥ ‖ft1B(0,M)‖2
L2 ≥ (3/(4πM3))(ft (B(0,M)))2.

Here, ft (B(0,M)) = ∫
B(0,M) ft (dv). Next, ft (B(0,M)) = 1 − ft (B(0,M)c) ≥

1 − m2(ft )/M2 = 1/2. We conclude with c0 = (3/(16πM3))1/2.
Point (ii) is not difficult: consider a� = �N−1/3/2 for � = 0, . . . ,KN + 1, with

KN = �2T N1/3�. Put tN
0 = 0 and, for each i = 1, . . . ,KN + 1, consider tN

� ∈
(a�−1, a�] such that ‖f (tN

� )‖L2 ≤ 2N1/3 ∫ a�
a�−1

‖f (t)‖L2 (here, 2N1/3 is the length
of (a�−1, a�]). One easily checks that all the conditions are satisfied. �

The second lemma states a few easy and standard properties of the solution to
the nonlinear SDE (which actually hold true for any SDE of which the coefficients
have at most linear growth).

LEMMA 5.4. Recall that γ ∈ (−1, 0), and that mq(f0) < ∞ for some q > 6.
Consider the unique solution V to the nonlinear SDE (1.10); see Proposition 1.7.
For all T > 0,

E

[
sup

t∈[0,T ]
∣∣V(t)

∣∣q +
(

sup
0≤s<t≤T

|V(t) − V(s)|
|t − s|1/3

)q]
≤ CT,q .

PROOF. Since γ ∈ (−1, 0) and since m2(ft ) = m2(f0) for all t ≥ 0, we
know from Lemma 2.5(i)–(ii) that b(ft , ·) and σ(ft , ·) have at most linear
growth, uniformly in t ≥ 0. Since E[|V(0)|q] = mq(f0) < ∞, standard com-
putations involving the Burkholder–Davis–Gundy inequality show that for all
T > 0, E[supt∈[0,T ] |V(t)|q] ≤ CT,q . Standard computations again show that for
all 0 ≤ s < t ≤ T , E[|V(t) − V(s)|q] ≤ CT,q |t − s|q/2. By the Kolmogorov cri-
terion (see Revuz–Yor [31], Theorem 2.1, page 26), we conclude that for any
α ∈ (0, 1/2 − 1/q),

E

[(
sup

0≤s<t≤T

|V(t) − V(s)|
|t − s|α

)q]
≤ CT,q .

The choice α = 1/3 is licit since q > 6. �

5.3. On the L2 norm of the blob limit empirical measure. The following
proposition is an important step. Similar considerations were used in [20].

PROPOSITION 5.5. Recall that γ ∈ (−1, 0), that f is the unique weak solu-
tion to (1.1) starting from f0 ∈ P(R3) with a finite entropy and a finite moment of
order q > 6. Fix T > 0 and consider hN built in Lemma 5.3. Consider the solution
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(WN
i )i=1,...,N to (5.5) and recall that νN

t = N−1 ∑N
1 δWN

i (t) and ν̄N
t = νN

t 
 φεN

with εN = N−(1−δ)/3. We have

Pr
(∀t ∈ [0, T ],∥∥ν̄N

t

∥∥
L2 ≤ 173hN(t)

) ≥ 1 − CT,q,δN
1−δq/3.

Of course, 173 is not at all the optimal constant.

PROOF OF PROPOSITION 5.5. It is quite complicated, so we break it into sev-
eral steps.

Step 1. We introduce the event �1
T ,N on which

∀i = 1, . . . ,N

sup
[0,T +1]

∣∣WN
i (t)

∣∣+ sup
0≤s<t≤T +1

(t − s)−1/3∣∣WN
i (t) −WN

i (s)
∣∣ ≤ Nδ/3

and we prove that

Pr
((

�1
T ,N

)c) ≤ CT,qN1−δq/3.

Since each WN
i has the same law as the solution V to (1.10),

Pr
((

�1
T ,N

)c) ≤ N Pr
(

sup
[0,T +1]

∣∣V(t)
∣∣+ sup

0≤s<t≤T +1
(t − s)−1/3∣∣V(t) −V(s)

∣∣ ≥ Nδ/3
)
.

Thus, Lemma 5.4 and the Markov inequality give us Pr((�1
T ,N)c) ≤

CT,qN · N−δq/3.
Step 2. We consider the natural partition PN of R

3 in cubes with edge
length εN and call Pδ

N the subset of its elements that intercept B(0,Nδ/3). Ob-
serve that #(Pδ

N) ≤ (2(Nδ/3 + 1)ε−1
N )3 ≤ 64Nδε−3

N = 64N . We claim that for
any (x1, . . . , xN) ∈ B(0,Nδ/3)N and any (y1, . . . , yN) ∈ B(0,Nδ/3)N such that
supi=1,...,N |xi − yi | ≤ εN ,∥∥∥∥∥

(
N−1

N∑
1

δyi

)

 φεN

∥∥∥∥∥
2

L2

≤ 3731

N2ε3
N

∑
D∈Pδ

N

(
#{i : xi ∈ D})2

.

We start with(
N−1

N∑
1

δyi

)

 φεN

(v) = 3

4πNε3
N

#
{
i : yi ∈ B(v, εN)

}

≤ 3

4πNε3
N

#
{
i : xi ∈ B(v, 2εN)

}
,

whence(
N−1

N∑
1

δyi

)

 φεN

(v) ≤ 3

4πNε3
N

∑
D∈Pδ

N

#{i : xi ∈ D}1{D∩B(v,2εN ) �=∅}.
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Consequently, setting A = ‖(N−1 ∑N
1 δyi

) 
 φεN
‖2

L2 ,

A ≤ 9

16π2N2ε6
N

∑
D,D′∈Pδ

N

#{i : xi ∈ D}#{i : xi ∈ D′}

×
∫
R3

1{D∩B(v,2εN ) �=∅,D′∩B(v,2εN ) �=∅} dv.

Using that 2xy ≤ x2 + y2 and a symmetry argument, we find that

A ≤ 9

16π2N2ε6
N

∑
D∈Pδ

N

(
#{i : xi ∈ D})2

∫
R3

1{D∩B(v,2εN ) �=∅}

× ∑
D′∈Pδ

N

1{D′∩B(v,2εN ) �=∅} dv.

But for each v ∈ R
3,

∑
D′∈Pδ

N
1{D′∩B(v,2εN ) �=∅} = #{D′ ∈ Pδ

N : D′ ∩ B(v, 2εN) �=
∅} ≤ 53 and for each D ∈ Pδ

N , we easily check that
∫
R3 1{D∩B(v,2εN ) �=∅} dv ≤

4π(5εN)3/3. Finally, we have verified that

A ≤ 9

16π2N2ε6
N

× 534π(5εN)3

3

∑
D∈Pδ

N

(
#{i : xi ∈ D})2

≤ 3731

N2ε3
N

∑
D∈Pδ

N

(
#{i : xi ∈ D})2

.

Step 3. We now fix t ∈ [0, T + 1], we consider the event

�2
t,N =

{
N−2ε−3

N

∑
D∈Pδ

N

(
#
{
i : WN

i (t) ∈ D
})2 ≤ 8‖ft‖2

L2

}

and we prove that there are some positive constants C and c (depending only on δ

and c0, recall that ‖ft‖L2 ≥ c0 by Lemma 5.3) such that

Pr
((

�2
t,N

)c) ≤ C exp
(−cNδ/2).

To this end, we introduce, for D ∈ Pδ
N , ZD = #{i : WN

i (t) ∈ D}. It follows a
Binomial(N,ft (D))-distribution. It thus holds that

Pr(ZD ≥ x) ≤ exp(−x/8) for all x ≥ 2Nft(D).(5.7)

Indeed, E[exp(ZD)] = exp(N log(1 + ft (D)(e − 1))) ≤ exp(N(e − 1)ft (D)),
whence Pr(ZD ≥ x) ≤ exp(−x + N(e − 1)ft (D)) ≤ exp(−x + (e − 1)x/2) if
x ≥ 2Nft(D). And 1 − (e − 1)/2 > 1/8 holds true. We next observe that on the
one hand, by the Cauchy–Schwarz inequality,

‖ft‖2
L2 ≥ ∑

D∈Pδ
N

∫
D

f 2
t (v) dv ≥ ε−3

N

∑
D∈Pδ

N

(
ft (D)

)2
,
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and on the other hand, since #(Pδ
N) ≤ 64Nδε−3

N ,

‖ft‖2
L2 ≥ 64−1N−δε3

N

∑
D∈Pδ

N

‖ft‖2
L2 .

All in all,

8‖ft‖2
L2 ≥ ∑

D∈Pδ
N

(
4ε−3

N

(
ft (D)

)2 + 16−1N−δε3
N‖ft‖2

L2

)
.

Consequently, on the event (�2
t,N )c, there is at least one D ∈ Pδ

N for which there

holds Z2
D ≥ N2ε3

N [4ε−3
N (ft (D))2 + 16−1N−δε3

N‖ft‖2
L2], whence

Pr
((

�2
t,N

)c) ≤ ∑
D∈Pδ

N

Pr
(
ZD ≥ Nε

3/2
N

[
4ε−3

N ft (D) + 16−1N−δε3
N‖ft‖2

L2

]1/2)
.

But xN := Nε
3/2
N [4ε−3

N (ft (D))2 + 16−1N−δε3
N‖ft‖2

L2]1/2 ≥ Nε
3/2
N ×

(4ε−3
N (ft (D))2)1/2 which equals 2Nft(D), so that we can apply (5.7). Since we

also have the inequality xN ≥ Nε
3/2
N 4−1N−δ/2ε

3/2
N ‖ft‖L2 = Nδ/2‖ft‖L2/4, we

conclude that

Pr
((

�2
t,N

)c) ≤ ∑
D∈Pδ

N

exp
(−Nδ/2‖ft‖L2/32

) ≤ 64N exp
(−c0Nδ/2/32

)
.

We used that #(Pδ
N) ≤ 64N , that Nε3

N = Nδ and that ‖ft‖L2 ≥ c0. This completes
the step.

Step 4. We finally introduce the event

�T,N = �1
T ,N ∩

(
KN+1⋂
�=1

�2
tN� ,N

)
,

where 0 = tN
0 < tN

1 < · · · < tN
KN

< T < tN
KN+1, with KN ≤ 2T N1/3 and

sup�=0,...,KN
(tN

�+1 − tN
� ) ≤ N−1/3, were defined in Lemma 5.3. Recall also that

we introduced hN(t) = ∑KN+1
�=1 ‖f (tN

� )‖L21{t∈(tN�−1,tN� ]}.
We first claim that, Pr(�T,N) ≥ 1 − CT,q,δN

1−qδ/3. This follows from the fact
that KN ≤ 2T N1/3 and from steps 1 and 3: we have Pr(�c

T,N) ≤ Pr((�1
T ,N)c) +∑KN+1

�=1 Pr((�2
tN� ,N

)c) ≤ CT,qN1−qδ/3 + C(KN + 1) exp(−cNδ/2) ≤ CT,q,δ ×
N1−qδ/3. The claim follows.

It only remains to prove that indeed, ‖ν̄N
t ‖L2 ≤ 173hN(t) for all t ∈ [0, T ] on

�T,N . Recall that ν̄N
t = (N−1 ∑N

1 δWN
i (t)) 
 φεN

. On �T,N , we know that:

• WN
i (t) belongs to B(0,Nδ/3) for all i = 1, . . . ,N and all t ∈ [0, T + 1]

(thanks to �1
T ,N );
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• for all � = 1, . . . ,KN + 1, all t ∈ [tN
�−1, tN

� ], all i = 1, . . . ,N , |WN
i (t) −

WN
i (tN

� )| ≤ Nδ/3|tN
� − tN

�−1| ≤ Nδ/3−1/3 = εN (due to �1
T ,N again);

• for all � = 1, . . . ,KN + 1, N−2ε−3
N

∑
D∈Pδ

N
(#{i : WN

i (tN
� ) ∈ D})2 ≤ 8‖ftN�

‖2

(due to �2
tN� ,N

).

Using step 2, we conclude that indeed, on �T,N , for all t ∈ [0, T ], defining � as
the index such that t ∈ (tN

�−1, tN
� ],

∥∥ν̄N
t

∥∥2
L2 ≤ 3731N−2ε−3

N

∑
D∈Pδ

N

(
#
{
i : Wi

(
tN
�

) ∈ D
})2

≤ 3731 × 8
∥∥ftN�

∥∥2

= 29,848
(
hN(t)

)2
.

This completes the proof, since
√

29,848 < 173. �

5.4. Computation of the mean squared error. Here is the main computation of
the section.

PROPOSITION 5.6. Recall that γ ∈ (−1, 0), that f is the unique weak solu-
tion to (1.1) starting from f0 ∈ P(R3) with a finite entropy and with m8(f0) <

∞. Recall that ηN ∈ (0,N−1/3), that εN = N−(1−δ)/3 and that (VN
i )i=1,...,N

and (WN
i )i=1,...,N are the solutions to (5.1) and (5.5). Recall that μN

t =
N−1 ∑N

1 δVN
i (t), νN

t = N−1 ∑N
1 δWN

i (t), μ̃N
t = μN

t 
 φηN
, μ̄N

t = μN
t 
 φεN

and

ν̄N
t = νN

t 
 φεN
. Fix T > 0, recall that hN was defined in Lemma 5.3 and consider

the stopping time

τN = inf
{
t ≥ 0 : ∥∥ν̄N

t

∥∥
L2 ≥ 173hN(t)

}
.

There is a constant CT,δ > 0 such that for all t ∈ [0, T ],
E
[∣∣VN

1 (t ∧ τN) −WN
1 (t ∧ τN)

∣∣2]
≤ CT,δ

(
N−(1−δ)(2+2γ )/3 + N−1/2 +E

[∣∣VN
1 (0) −WN

1 (0)
∣∣2]).

It seems that we could remove the term N−1/2 with some work, but this would
not improve the final result of Theorem 1.6.

PROOF OF PROPOSITION 5.6. We put ut = E[|VN
1 (t ∧ τN) −WN

1 (t ∧ τN)|2].
To lighten notation, we also set UN

i (s) = U(a(μ̄N
s ,VN

i (s)), a(ν̄N
s ,WN

i (s))). By
Lemma 5.4, we know that sup[0,T ] m8(ft ) < ∞.
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Step 1. A direct application of the Itô formula gives

ut = E

[∣∣VN
1 (0) −WN

1 (0)
∣∣2

+
∫ t∧τN

0

(
2
(
VN

1 (s) −WN
1 (s)

) · (b(μ̃N
s ,VN

1 (s)
)− b

(
fs,WN

1 (s)
))

+ ∥∥σ (μ̃N
s ,VN

1 (s)
)− σ

(
fs,WN

1 (s)
)
UN

1 (s)
∥∥2)

ds

]

= E
[∣∣VN

1 (0) −WN
1 (0)

∣∣2]+E

[∫ t∧τN

0
(Is + Js + Ks)ds

]
,

where

Is := 2
(
VN

1 (s) −WN
1 (s)

) · (b(μ̃N
s ,VN

1 (s)
)− b

(
νN

s ,WN
1 (s)

))
+ ∥∥σ (μ̃N

s ,VN
1 (s)

)− σ
(
νN

s ,WN
1 (s)

)
UN

1 (s)
∥∥2

,

Js := 2
(
VN

1 (s) −WN
1 (s)

) · (b(νN
s ,WN

1 (s)
)− b

(
fs,WN

1 (s)
))

,

Ks := ∥∥σ (μ̃N
s ,VN

1 (s)
)− σ

(
fs,WN

1 (s)
)
UN

1 (s)
∥∥2

− ∥∥σ (μ̃N
s ,VN

1 (s)
)− σ

(
νN

s ,WN
1 (s)

)
UN

1 (s)
∥∥2

.

Let us notice at once that

Js ≤ ∣∣VN
1 (s) −WN

1 (s)
∣∣2 + ∣∣b(νN

s ,WN
1 (s)

)− b
(
fs,WN

1 (s)
)∣∣2

=: ∣∣VN
1 (s) −WN

1 (s)
∣∣2 + J 1

s

and, using that ‖A − B‖2 − ‖A − B ′‖2 ≤ ‖B − B ′‖2 + 2‖A − B ′‖‖B ′ − B‖ and
that UN

1 (s) is an orthogonal matrix,

Ks ≤ K1
s +

√
MsK1

s ,

where

K1
s := ∥∥σ (fs,WN

1 (s)
)− σ

(
νN

s ,WN
1 (s)

)∥∥2
,

Ms := ∥∥σ (μ̃N
s ,VN

1 (s)
)− σ

(
νN

s ,WN
1 (s)

)
UN

1 (s)
∥∥2

.

Step 2. Using exchangeability, we realize that

E

[∫ t∧τN

0
Is ds

]

= E

[∫ t∧τN

0

1

N

N∑
i=1

(
2
(
VN

i (s) −WN
i (s)

)(
b
(
μ̃N

s ,VN
i (s)

)− b
(
νN

s ,WN
i (s)

))

+ ∥∥σ (μ̃N
s ,VN

i (s)
)− σ

(
νN

s ,WN
i (s)

)
× U

(
a
(
μ̄N

s ,VN
i (s)

)
, a

(
ν̄N

s ,WN
i (s)

))∥∥2)
ds

]
.
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Setting RN
t = N−1 ∑N

1 δ(VN
i (s),WN

i (s)), which belongs to �(μN
t , νN

t ), observing

that μ̃N
s = (μN

s )ηN , μ̄N
s = (μN

s )εN and ν̄N
s = (νN

s )εN , and recalling the notation of
Proposition 3.2, this directly gives

E

[∫ t∧τN

0
Is ds

]
= E

[∫ t∧τN

0
�ηN ,εN

(
RN

s

)
ds

]
.

We thus use Proposition 3.2(i) [with p = 2 which is indeed greater than p1(γ )]
and obtain, since ‖ν̄N

s ‖L2 ≤ 173hN(s) for all s ≤ τN ,

E

[∫ t∧τN

0
Is ds

]

≤ Ctε
2+2γ
N + CE

[∫ t∧τN

0

(
1 + hN(s)

) 1

N

N∑
i=1

∣∣VN
i (s) −WN

i (s)
∣∣2 ds

]
.

Using exchangeability again, we end with

E

[∫ t∧τN

0
Is ds

]
≤ Ctε

2+2γ
N + C

∫ t

0

(
1 + hN(s)

)
us ds.

Step 3. We now check that E[J 1
s + K1

s ] ≤ CT N−1 for all s ∈ [0, T ]. This will
imply that

E

[∫ t∧τN

0

(
Js + K1

s

)
ds

]
≤ CT N−1 +

∫ t

0
us ds.

Recall that m2(ft ) = m2(f0) and H(ft ) ≤ H(f0) for all t ≥ 0 (see Theo-
rem 1.3), so that Lemma 2.1 ensures us that ‖(a(ft , v))−1‖ ≤ C(1 + |v|)|γ | for
all t ≥ 0 and all v ∈ R

3. Consequently, using Lemma 2.2, we deduce that K1
s ≤

C(1 + |WN
1 (s)|)|γ |‖a(νN

s ,WN
1 (s)) − a(fs,WN

1 (s))‖2. By the Cauchy–Schwarz
inequality, and since L(WN

1 (s)) = fs ,

E
[
K1

s

] ≤ C
(
1 + m2|γ |(fs)

)1/2
E
[∥∥a(νN

s ,WN
1 (s)

)− a
(
fs,WN

1 (s)
)∥∥4]1/2

≤ CT E
[∥∥a(νN

s ,WN
1 (s)

)− a
(
fs,WN

1 (s)
)∥∥4]1/2

.

We also have J 1
s = |b(νN

s ,WN
1 (s)) − b(fs,WN

1 (s))|2, so that, using the Cauchy–
Schwarz inequality again,

E
[
J 1

s

] ≤ CE
[∥∥b(νN

s ,WN
1 (s)

)− b
(
fs,WN

1 (s)
)∥∥4]1/2

.

To conclude the step, it thus suffices to prove that for ϕ : R3 �→ R with at most
quadratic growth (which is the case of all the entries of a and b), with the notation
ϕ(μ,x) = ∫

R3 ϕ(x − y)μ(dy),

E
[∣∣ϕ(νN

s ,WN
1 (s)

)− ϕ
(
fs,WN

1 (s)
)∣∣4] ≤ CT,ϕN−2.
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To this end, let us recall that there is a constant C > 0 such that for any sequence
of i.i.d. real-valued random variables (Xn)n≥1 (see Rosenthal [33] for a much more
general inequality),

E

[∣∣∣∣∣N−1
N∑
1

(
Xi −E[X1])

∣∣∣∣∣
4]

≤ C
(
1 +E

[
X4

1
])

N−2.(5.8)

But the family (WN
i (s))i=1,...,N is i.i.d. with common law fs . Let us denote by

E1 the expectation concerning only WN
1 , and by E2,N the expectation concerning

only WN
2 , . . . ,WN

N . We have ϕ(WN
1 (s), νN

s ) = N−1 ∑N
i=1 ϕ(WN

1 (s) − WN
i (s))

and it holds by independence that ϕ(WN
1 (s), fs) = (N − 1)−1 ∑N

i=2 E2,N ×
[ϕ(WN

1 (s) −WN
i (s))]. As a consequence, since (x + y)4 ≤ 8x4 + 8y4,

E
[∣∣ϕ(νN

s ,WN
1 (s)

)− ϕ
(
fs,WN

1 (s)
)∣∣4]

≤ 8E

[∣∣∣∣∣
(

1

N
− 1

N − 1

) N∑
1

ϕ
(
WN

1 (s) −WN
i (s)

)∣∣∣∣∣
4]

+ 8E1

[
E2,N

[∣∣∣∣∣ 1

N − 1

N∑
2

ϕ
(
WN

1 (s) −WN
i (s)

)

−E2,N

[
1

N − 1

N∑
2

ϕ
(
WN

1 (s) −WN
i (s)

)]∣∣∣∣∣
4]]

=: 8AN + 8BN.

Using that |ϕ(x)| ≤ Cϕ(1 + |x|2), we easily get AN ≤ Cϕ(1 + m8(fs))N
−4 ≤

Cϕ,T N−4. Since the random variables ϕ(WN
1 (s) − WN

i (s)) are i.i.d. under E2,N ,
we may apply (5.8), which gives

BN ≤ CN−2
E1

[
1 +E2,N

(
ϕ4(WN

1 (s) −WN
i (s)

))]
.

Using again that |ϕ(x)| ≤ Cϕ(1 + |x|2), we deduce that BN ≤ Cϕ(1 + m8(fs)) ×
N−2 ≤ Cϕ,T N−2.

Step 4. We finally show that sup[0,T ]E[Ms] ≤ CT . This will imply, by step 3

and the Cauchy–Schwarz inequality, that E[
√

K1
s Ms] ≤ CT N−1/2, whence

E

[∫ t∧τN

0

√
K1

s Ms ds

]
≤ CT N−1/2.

Thanks to Lemma 2.5(i), we have

Ms ≤ C
(
1 + m2

(
μ̃N

s

)+ m2
(
νN

s

)+ ∣∣VN
1 (s)

∣∣2+γ + ∣∣WN
1 (s)

∣∣2+γ )
.

Using exchangeability, that ηN ≤ 1 and that 0 ≤ γ + 2 ≤ 2, we see that

E[Ms] ≤ C
(
1 +E

[∣∣VN
1 (s)

∣∣2 + ∣∣WN
1 (s)

∣∣2]).
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We conclude the step using that E[|WN
1 (s)|2] = m2(fs) = m2(f0) and that, by

Proposition 4.1, sup[0,T ]E[|VN
1 (s)|2] is bounded (uniformly in N ).

Step 5. We now gather everything:

ut ≤ u0 + C

∫ t

0

(
1 + hN

s

)
us ds + CT

(
ε

2γ +2
N + N−1/2).

Using the Grönwall lemma, we get

sup
[0,T ]

ut ≤ CT

(
u0 + ε

2γ +2
N + N−1/2) exp

(
C

∫ T

0
hN(s) ds

)

≤ CT

(
u0 + ε

2γ +2
N + N−1/2),

since
∫ T

0 hN(s) ds ≤ 2
∫ T

0 ‖f (s)‖L2 ds by Lemma 5.3 and since f ∈ L1
loc([0,∞),

L2(R3)). This completes the proof. �

5.5. Conclusion. We finally can give the following.

PROOF OF THEOREM 1.6. Recall that q ≥ 8, fix δ = 6/q and recall that τN =
inf{t ≥ 0 : ‖ν̄N

t ‖L2 ≥ 173hN(t)}. By Proposition 5.5, we know that Pr(τN ≤ T ) ≤
CT,q,δN

1−qδ/3 = CT,qN−1. We then write, for t ∈ [0, T ],
E
[∣∣VN

1 (t) −WN
1 (t)

∣∣2]
≤ E

[∣∣VN
1 (t ∧ τN) −WN

1 (t ∧ τN)
∣∣2]+E

[∣∣VN
1 (t) −WN

1 (t)
∣∣21{τN≤T }

]
≤ CT,δ

(
E
[∣∣VN

1 (0) −WN
1 (0)

∣∣2]+ N−(1−δ)(2γ +2)/3 + N−1/2)
+ CE

[∣∣VN
1 (t)

∣∣4 + ∣∣WN
1 (t)

∣∣4]1/2(Pr(τN ≤ T )
)1/2

by Proposition 5.6 and the Cauchy–Schwarz inequality. By assumption,
E[|VN

1 (0)|4] is bounded (uniformly in N ), so that Proposition 4.1 implies that
E[|VN

1 (t)|4] ≤ CT . Next, Lemma 5.4 gives us E[|WN
1 (t)|4] ≤ CT . As a conclu-

sion,

sup
[0,T ]

E
[∣∣VN

1 (t) −WN
1 (t)

∣∣2]

≤ CT,δ

(
E
[∣∣VN

1 (0) −WN
1 (0)

∣∣2]+ N−(1−δ)(2γ +2)/3 + N−1/2),
whence, by exchangeability,

sup
[0,T ]

E
[
W 2

2
(
μN

t , νN
t

)]

≤ sup
[0,T ]

E

[
1

N

N∑
1

∣∣VN
i (t) −WN

i (t)
∣∣2]
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≤ CT,δ

(
E

[
1

N

N∑
1

∣∣VN
i (0) −WN

i (0)
∣∣2]+ N−(1−δ)(2γ +2)/3 + N−1/2

)

≤ CT,δ

(
E
[
W 2

2
(
μN

0 , νN
0
)]+ N−(1−δ)(2γ +2)/3 + N−1/2),

where we used (5.4) for the last inequality. But for each t ∈ [0, T ], νN
t is,

by Lemma 5.1, the empirical measure of N i.i.d. ft -distributed random vari-
ables. We thus infer from [15], Theorem 1 (with d = 3, p = 2 and q = 5), that
E[W 2

2 (νN
t , ft )] ≤ C(m5(ft ))

2/5N−1/2 ≤ CT N−1/2 for any t ∈ [0, T ]. As a con-
clusion,

sup
[0,T ]

E
[
W 2

2
(
μN

t , ft

)] ≤ 2 sup
[0,T ]

E
[
W 2

2
(
μN

t , νN
t

)+ W 2
2
(
νN

t , ft

)]

≤ 2CT,δ

(
E
[
W 2

2
(
μN

0 , νN
0
)]+ N−(1−δ)(2γ +2)/3 + N−1/2).

Observing that E[W 2
2 (μN

0 , νN
0 )] ≤ 2E[W 2

2 (μN
0 , f0)] + 2E[W 2

2 (νN
0 , f0)] ≤

2E[W 2
2 (μN

0 , f0)] + CN−1/2 completes the proof. �

6. More ellipticity estimates. We now turn to the proof of our second result:
the propagation of chaos without rate when γ ∈ (−2, 0).

To control the singularity of the coefficients, we will need some regularity of the
law of the particle system. Such regularity will be obtained thanks to the diffusion.
We thus will need to show that the diffusion coefficients a(μN, v) are sufficiently
elliptic. Lemma 2.1, which proves some ellipticity of a(f, v), requires the finite-
ness of the entropy of f , and thus cannot apply to empirical measures. We will
rather use the following lemmas. They all rely on a geometric condition on triplet
of points, saying roughly that they are far enough from being aligned.

DEFINITION 6.1. Let δ > 0. We say that a triplet of points (x1, x2, x3) satisfy
the δ-nonalignment condition if

|x2 − x1| ≥ 6
√

δ,
∣∣p(x2−x1)⊥(x3 − x1)

∣∣ ≥ 24δ + 2
√

δ|x3 − x1|,(6.1)

where p(x2−x1)⊥ is the projection onto the plane orthogonal to x2 − x1.

This condition is not invariant by permutation of the three points. Also, a triplet
satisfying the δ-nonalignment condition also satisfy the δ′-nonalignment condition
for all δ′ ∈ [0, δ].

LEMMA 6.2. Let γ ∈ (−2, 0), δ ∈ (0, 1) and R > 1. There exists a constant
κ > 0 depending only on γ, δ,R such that, for any triplet of points (x1, x2, x3)

belonging to B(0,R) and satisfying the δ-nonalignment condition, for any f ∈
P(R3),

inf|ξ |=1
ξ∗a(f, v)ξ ≥ κ

(
1 + |v|)γ inf

k=1,2,3
f
(
B(xk, δ)

)
.
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The proof of this lemma is strongly inspired by that of Desvillettes–Villani [8],
Proposition 4 (which is recalled in Lemma 2.1). In fact, [8], Proposition 4, may be
seen as a consequence of Lemma 6.2, thanks to the following lemma.

LEMMA 6.3. Let � ∈ N
∗, H0 > 0 and E0 > 0 be fixed. There exist some con-

stants δ ∈ (0, 1), R > 0 and κ > 0 such that for any f ∈ P(R3) with H(f ) ≤ H0
and m2(f ) ≤ E0, there are x1, x2, x3 belonging to B(0,R), satisfying the (�δ)-
nonalignment condition and such that

inf
k=1,2,3

f
(
B(xk, δ)

) ≥ κ.

We will actually need the following time-dependent version of Lemma 6.3.

LEMMA 6.4. Let γ ∈ (−2, 0) and q > q(γ ). Let f0 ∈ P2(R3) satisfy also
H(f0) < ∞ and mq(f0) < ∞. Let T > 0, let p ∈ (p1(γ ),p2(γ, q)), and let
f ∈ L∞

loc([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) be the solution of (1.1) given
by Theorem 1.3. There exist four constants δ0 ∈ (0, 1), R0 > 0, κ0 > 0 and τ0 > 0
such that for any t ∈ [0, T ], we can find three points xt

1, xt
2, xt

3 in B(0,R0) satisfy-
ing the (4δ0)-nonalignment condition and such that

inf
s∈[t,t+τ0]

inf
k=1,2,3

fs

(
B
(
xt

k, δ0
)) ≥ κ0.

We now prove all these lemmas.

PROOF OF LEMMA 6.2. We fix (x1, x2, x3) ∈ B(0,R)3 satisfying the δ-
nonalignment condition, we fix v ∈ R

3 and ξ ∈ R
3 such that |ξ | = 1, and we divide

the proof into two steps.
Step 1. A geometric claim. We introduce the cone C centered at v, with axis ξ

and angle arcsin[δ/(2 + R + |v|)] that can also be defined by

C =
{
v∗ ∈ R

3 : |pξ⊥(v − v∗)|
|v − v∗| ≤ δ

2 + R + |v|
}
.

We claim that the cone C cannot intersect the three balls B2δ
k := B(xk, 2δ).

We thus assume that C intersects the balls B2δ
1 and B2δ

2 and show it does not in-
tersect B2δ

3 . We first check that ξ and ξ0 := (x2 − x1)/|x2 − x1| are almost aligned,
in the sense that ∣∣pξ⊥(ξ0)

∣∣ ≤ √
δ and

∣∣pξ⊥
0

(ξ)
∣∣ ≤ √

δ.(6.2)

We may find w1,w2 ∈ C such that |w1 −x1| ≤ 2δ and |w2 −x2| ≤ 2δ. This implies
that |wi | ≤ R +2δ ≤ R +2 for i = 1, 2. Starting from x2 −x1 = (x2 −w2)+ (w2 −
v) + (v − w1) + (w1 − x1), we write∣∣pξ⊥(x2 − x1)

∣∣ ≤ 2δ + ∣∣pξ⊥(v − w2)
∣∣+ ∣∣pξ⊥(v − w1)

∣∣+ 2δ

≤ 4δ + δ

2 + R + |v|
(|v − w2| + |v − w1|) ≤ 6δ.
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We conclude that |pξ⊥(ξ0)| ≤ 6δ/|x2 − x1| ≤ √
δ thanks to the first assumption

in (6.1). Since finally ξ0 and ξ are unit vectors, |pξ⊥(ξ0)| ≤ √
δ means that |ξ ·

ξ0|2 ≥ 1 − δ, whence |pξ⊥
0

(ξ)| ≤ √
δ.

Next, for any w ∈ C \ {v}, we show that there is a point w∗ on the line (v,w)

(whence w∗ ∈ C) that is very close to x1, in the sense that |w∗ − x1| ≤ 6δ. Let thus

w∗ = v + λ∗(w − v) with λ∗ = (w1 − v) · ξ

(w − v) · ξ
,

which satisfies w∗ · ξ = w1 · ξ , whence |w1 − w∗| = |pξ⊥(w1 − w∗)|. Then∣∣w1 − w∗∣∣ ≤ ∣∣pξ⊥(w1 − v)
∣∣+ ∣∣pξ⊥

(
v − w∗)∣∣

≤ δ

2 + R + |v|
(|w1 − v| + ∣∣w∗ − v

∣∣)

≤ δ

2 + R + |v|
(
2|w1 − v| + ∣∣w∗ − w1

∣∣).
We conclude that [recall that δ ∈ (0, 1), that R > 1 and that |w1| ≤ R + 2]∣∣w∗ − w1

∣∣ ≤ 2|w1 − v|δ
2 + R + |v| − δ

≤ 4δ,

whence |w∗ − x1| ≤ 6δ as desired.
This allows us to conclude that C is included in a narrow cone centered at x1

and directed by ξ0. More precisely, for any w ∈ C,∣∣pξ⊥
0

(w − x1)
∣∣ ≤ 18δ + 2

√
δ|w − x1|.(6.3)

Indeed, consider w∗ as previously, recall that |w∗ − x1| ≤ 6δ and write∣∣pξ⊥
0

(w − x1)
∣∣ ≤ 6δ + ∣∣pξ⊥

0

(
w − w∗)∣∣

≤ 6δ + ∣∣pξ⊥
0

(
pξ⊥

(
w − w∗))∣∣+ ∣∣(w − w∗) · ξ

∣∣∣∣pξ⊥
0

(ξ)
∣∣,

because x = pξ⊥(x) + (x · ξ)ξ for all x (since ξ is unitary). But |pξ⊥
0

(ξ)| ≤ √
δ

by (6.2). Also, since w − w∗ = (1 − λ∗)(w − v) and since w belongs to C, we
have |pξ⊥(w − w∗)|/|w − w∗| ≤ δ/(2 + R + |v|). All in all,

∣∣pξ⊥
0

(w − x1)
∣∣ ≤ 6δ + δ

2 + R + |v|
∣∣w − w∗∣∣+ √

δ
∣∣w − w∗∣∣ ≤ 6δ + 2

√
δ
∣∣w − w∗∣∣.

Using finally that |w −w∗| ≤ |w −x1|+ |x1 −w∗| ≤ |w −x1|+6δ, the conclusion
follows.

Assume finally that there is w3 ∈ B2δ
3 ∩ C. Then, using (6.3) with w = w3, one

finds that ∣∣pξ⊥
0

(x3 − x1)
∣∣ <

∣∣pξ⊥
0

(w3 − x1)
∣∣+ 2δ ≤ 20δ + 2

√
δ|w3 − x1|

≤ 24δ + 2
√

δ|x3 − x1|.
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But ξ0 = (x2 − x1)/|x2 − x1| so that pξ⊥
0

= p(x2−x1)⊥ : this contradicts (6.1).

Step 2. Conclusion. We choose k ∈ {1, 2, 3} such that C does not intersect B2δ
k

and we write, recalling that a(f, v) = ∫
R3 a(v−v∗)f (dv∗) and the expression of a,

ξ∗a(f, v)ξ =
∫
R3

|v − v∗|γ +2
(

1 − ((v − v∗) · ξ)2

|v − v∗|2
)

f (dv∗)

=
∫
R3

|v − v∗|γ +2 |pξ⊥(v − v∗)|2
|v − v∗|2 f (dv∗).

Since now C does not intersect B(xk, δ) ⊂ B2δ
k , we find that

ξ∗a(f, v)ξ ≥
(

δ

2 + R + |v|
)2 ∫

B(xk,δ)

∣∣v − v∗
∣∣γ +2

f (dv∗)

≥
(

δ

2 + R + |v|
)2

f
(
B(xk, δ)

)
inf

v∗∈B(xk,δ)

∣∣v − v∗
∣∣γ +2

.

Since moreover v /∈ B2δ
k (because v ∈ C), one easily bounds the infimum by

inf
v∗∈B(xk,δ)

|v − v∗|γ +2 ≥ max
{|v| − R − 1, δ

}γ +2 ≥
(

(1 + |v|)δ
R + 3

)γ +2

.

The last inequality is easily checked separating the cases |v| ≤ R + 2 and |v| >

R + 2. Finally, we have checked that

ξ∗a(f, v)ξ ≥ δ2

(2 + R + |v|)2

(
(1 + |v|)δ

R + 3

)γ +2

f
(
B(xk, δ)

)
≥ κ

(
1 + |v|)γ f

(
B(xk, δ)

)
with κ := [δ/(R + 3)]4+γ . This concludes the proof. �

PROOF OF LEMMA 6.3. Let thus f ∈ P(R3) with m2(f ) ≤ E0, H(f ) ≤ H0
and let � ∈ N

∗. We set R := 1 + √
2E0 and observe that f (B(0,R)) ≥ 1 −

m2(f )/R2 ≥ 1/2.
By Lemma C.1(ii), there is a universal constant C > 0 such that for any Borelian

A ⊂ R
3 (here | · | stands for the Lebesgue measure)

|A| ≤ exp
(−4(C + H0 + E0)

)
implies f (A) ≤ 1/4.

We now fix

δ = min
{

exp(−4(C + H0 + E0))

2πR�2(24 + 4R)2 ,

(
exp(−4(C + H0 + E0))

1000�3/2

)2/3}
.

For any couple of points y1, y2 in B(0,R), we introduce the zone

Dy1,y2 := {
y ∈ B(0,R) : ∣∣p(y2−y1)⊥(y − y1)

∣∣ ≤ 24�δ + 2
√

�δ|y − y1|}.
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Using the rough upper bound |y − y1| ≤ 2R, we see that Dy1,y2 is included in a
truncated cylinder with length 2R and radius 24�δ + 4R

√
�δ, so that |Dy1,y2 | ≤

2πR(24�δ + 4R
√

�δ)2 ≤ 2πR�2(24 + 4R)2δ. By definition of δ, we deduce
that |Dy1,y2 | ≤ exp(−4(C + H0 + E0)), whence f (Dy1,y2) ≤ 1/4. Similarly, for
any x ∈ R

3, |B(x, 6
√

�δ)| ≤ 1000�3/2δ3/2 ≤ exp(−4(C + H0 + E0)), so that
f (B(x, 6

√
�δ)) ≤ 1/4.

Since we can cover B(0,R) with (10Rδ−1)3 balls of radius δ [and centered in
B(0,R)] and since f (B(0,R)) ≥ 1/2, we can find x1 ∈ B(0,R) such that

f
(
B(x1, δ)

) ≥ 1

2

(
δ

10R

)3

.

But we know that f (B(x1, 6
√

�δ)) ≤ 1/4, so that f (B(0,R) \ B(x1, 6
√

�δ)) ≥
1/4. Of course, B(0,R) \ B(x1, 6

√
�δ) can also be covered by (10Rδ−1)3 balls

of radius δ [and centered in B(0,R) \ B(x1, 6
√

�δ)]. We deduce that there is x2 ∈
B(0,R) \ B(x1, 6

√
�δ) such that

f
(
B(x2, δ)

) ≥ 1

4

(
δ

10R

)3

.

We obviously have |x1 − x2| ≥ 6
√

�δ. We finally recall that f (Dx1,x2) ≤ 1/4,
whence f (B(0,R) \ Dx1,x2) ≥ 1/4. We thus we can find, as usual, x3 ∈ B(0,R) \
Dx1,x2 such that

f
(
B(x3, δ)

) ≥ 1

4

(
δ

10R

)3

.

By definition of Dx1,x2 , and since |x1 − x2| ≥ 6
√

�δ, the triplet (x1, x2, x3)

satisfies the (�δ)-nonalignment condition. This completes the proof, with κ :=
(δ/(10R))3/4. �

PROOF OF LEMMA 6.4. Recalling that H(ft ) ≤ H(f0) and m2(ft ) = m2(f0)

for all t ≥ 0, we can apply Lemma 6.3, with � = 8, with the same constants for all
times: there are δ ∈ (0, 1), R0 > 1 and κ > 0 such that for all t ∈ [0, T ], there are
three points (xt

1, xt
2, xt

3) in B(0,R0) satisfying the (8δ)-nonalignment condition
and such that ft (B(xt

k, δ)) ≥ κ for k = 1, 2, 3.
Next, we choose a smooth function h : R3 �→ [0, 1] such that 1{|x|≤1} ≤ h ≤

1{|x|≤2}. For k = 1, 2, 3, we define, for 0 ≤ t ≤ s,

wt
k(s) :=

∫
R3

h

(
v − xt

k

δ

)
fs(dv).

By construction, we have wt
k(t) ≥ ft (B(xt

k, δ)) ≥ κ . Using the weak formulation
(1.5) and the bound (1.4) with the smooth function ϕ = h(δ−1(· − xt

k)), we get
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[recall that p ∈ (p1(γ ),p2(γ, q)) is fixed and consider p′ ∈ (p1(γ ),p)], for 0 ≤
t ≤ s ≤ T + 1,∣∣wt

k(s) − wt
k(t)

∣∣ ≤ Cδ

∫ s

t

∫
R3

∫
R3

(|v − v∗|γ +1 + |v − v∗|γ +2)fu(dv)fu(dv∗) du

≤ Cδ

∫ s

t

∫
R3

∫
R3

(
1 + |v|2 + |v∗|2 + |v − v∗|γ )fu(dv)fu(dv∗) du

≤ Cδ

∫ s

t

(
1 + m2(fu) + ‖fu‖Lp′

)
du.

The last inequality uses (1.6). Since fu is a probability density function and since
p > p′, we have ‖fu‖Lp′ ≤ ‖fu‖a

Lp with a = [p(p′ − 1)]/[p′(p − 1)] ∈ (0, 1).
Using the Hölder inequality and that 1 + m2(fu) + ‖fu‖Lp ∈ L1([0, T + 1]), we
deduce that, still for 0 ≤ t ≤ s ≤ T + 1,∣∣wt

k(s) − wt
k(t)

∣∣ ≤ Cδ,T (s − t)1−a.

From this and since wt
k(t) ≥ κ for all t ∈ [0, T ], it is clear that there exists τ0 such

that, setting κ0 = κ/2,

∀t ∈ [0, T ],∀s ∈ [t, t + τ0] wt
k(s) ≥ κ0.

The bound is valid for k = 1, 2, 3. By definition of wt
k , this implies that

inf
t∈[0,T ] inf

s∈[t,t+τ0]
inf

k=1,2,3
fs

(
B
(
xt

k, 2δ
)) ≥ κ0.

Setting δ0 = 2δ completes the proof: since 8δ = 4δ0, the points xt
k satisfy the (4δ0)-

nonalignment condition. �

7. Chaos without rate. The goal of this section is to prove Theorem 1.8.
When applying the methods of [16], the main difficulty is that the matrix a is
not uniformly elliptic. Ellipticity is important, since it provides the regularity that
allows us to show that the singularity of the coefficients is not too much visited.
In the particle system (1.9), there is a lack of diffusion in some directions when
the particles are almost aligned. We thus will proceed as follows. We will first
introduce a perturbed particle system, by adding some diffusion when particles are
in a bad (almost aligned) configuration. We then will prove propagation of chaos
for this perturbed system. Finally, we will show that the artificial noise is used only
with a very small probability (as N → ∞).

In the rest of that section, we consider γ ∈ (−2, 0) and f0 ∈ P2(R3) sat-
isfying H(f0) < ∞ and mq(f0) < ∞ for some q > q(γ ). We consider the
unique solution f belonging to L∞

loc([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) for
all p ∈ (p1(γ ),p2(γ, q)) to (1.1) given by Theorem 1.3. We recall that it satisfies
H(ft ) ≤ H(f0) < ∞ and m2(ft ) = m2(f0) < ∞. We also fix an arbitrary final
time T . We finally consider, for each N ≥ 2, an exchangeable initial condition
(VN

1 (0), . . . ,VN
N (0)) satisfying the set of conditions (1.11).



3628 N. FOURNIER AND M. HAURAY

7.1. Definition of a perturbed system. We first introduce some notation.

NOTATION 7.1. (i) Recall the constants R0 > 0, δ0 > 0, κ0 > 0 and τ0 > 0
introduced in Lemma 6.4. We also denote by n0 = �T/τ0�, so that

[0, T ] ⊂
n0⋃

l=0

⌊
lτ0, (l + 1)τ0

⌋
.

Lemma 6.4 implies that for each l = 0, . . . , n, we can find three points xl
1, xl

2, xl
3

in B(0,R0) satisfying the (4δ0)-nonalignment condition (6.1) and such that

inf
l=0,...,n0

inf
t∈[lτ0,(l+1)τ0]

inf
k=1,2,3

ft

(
B
(
xl

k, δ0
)) ≥ κ0.(7.1)

(ii) Let h :R3 �→ [0, 1] and χ : [0,∞) �→ [0, 1] be smooth and satisfy 1{|v|≤1} ≤
h(v) ≤ 1{|v|≤2} and 1{r≤1} ≤ χ(r) ≤ 1{r≤2}. For l = 0, . . . , n0 and g ∈ P(R3), we
put

cl(g) :=
3∑

k=1

χ

(
4

κ0

∫
R3

h

(
v − xl

k

2δ0

)
g(dv)

)
∈ [0, 3].

We also shorten the notation of the coefficients of the particle system.

NOTATION 7.2. For vN = (v1, . . . , vN) ∈ (R3)N , we introduce

bN
i

(
vN ) = b

(
1

N

N∑
1

δvj

 φηN

, vi

)
and aN

i

(
vN ) = a

(
1

N

N∑
1

δvj

 φηN

, vi

)
,

and σN
i (vN) = (aN

i (vN))1/2. For l = 1, . . . , n0, we set

cN
l

(
vN ) = cl

(
1

N

N∑
1

δvj

)
.

We will use the following properties.

PROPOSITION 7.3. Let γ ∈ (−2, 0). Let g ∈ P(R3), vN = (v1, . . . , vN) ∈
(R3)N , and l ∈ {0, . . . , n0}:

(i) We have cl(g) = 0 if infk=1,2,3 g(B(xl
k, 2δ0)) ≥ κ0/2.

(ii) We have cl(g) ≥ 1 as soon as infk=1,2,3 g(B(xl
k, 4δ0)) ≤ κ0/4.

(iii) There is a constant C > 0 such that

∣∣∇vi
cN
l

(
vN )∣∣ ≤ C

Nκ0δ0
.
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(iv) There is κ1 > 0 such that for all ξ ∈ R
3,

ξ∗aN
i

(
vN )

ξ + |ξ |2cN
l

(
vN ) ≥ κ1

(
1 + |vi |)γ |ξ |2.

(v) cl(ft ) = 0 for all t ∈ [lτ0, (l + 1)τ0].
(vi) There is a constant C > 0 such that for all g1, g2 ∈ P(R3),

∣∣cl(g1) − cl(g2)
∣∣ ≤ C

κ0δ0
W1(g1, g2) ≤ C

κ0δ0
W2(g1, g2).

We need the following easy remark.

LEMMA 7.4. For all δ > 0, there is cδ > 0 such that for all x ∈ R
3, all μ ∈

P(R3), all η ∈ (0, 1),

(μ 
 φη)
(
B(x, δ)

)≥ cδμ
(
B(x, δ)

)
.

PROOF. It of course suffices to treat the case where x = 0. Let thus δ > 0
be fixed. For z ∈ B(0, δ), we introduce Cz := {u ∈ B(0, δ/2) : u · z ≤ −|u‖z|/2}.
Clearly, the Lebesgue measure pδ of Cz does not depend on z and is positive. We
next claim that for any u ∈ Cz and η ∈ (0, 1), |z + ηu| < δ. Indeed, this is obvious
if |z| ≤ δ/2, while one easily checks that |z + ηu|2 ≤ |z|2 < δ2 when |z| ∈ [δ/2, δ).
Consequently,

(μ 
 φη)
(
B(0, δ)

) = 3

4π

∫
R3

μ(dz)

∫
B(0,1)

du1{|z+ηu|<δ}

≥ 3

4π

∫
B(0,δ)

μ(dz)

∫
Cz

du,

which is greater than (3pδ/(4π))μ(B(0, δ)) as desired. �

PROOF OF PROPOSITION 7.3. Point (i) is immediate: for example, g(B(xl
k,

2δ0)) ≥ κ0/2 implies that (4/κ0)
∫
R3 h((v − xl

k)/(2δ0))g(dv) ≥ 2, from which
we deduce that χ((4/κ0)

∫
R3 h((v − xl

k)/(2δ0))g(dv)) = 0. Point (ii) is also
obvious: if there is k such that g(B(xl

k, 4δ0)) ≤ κ0/4, then (4/κ0)
∫
R3 h((v −

xl
k)/(2δ0))g(dv) ≤ 1, hence χ((4/κ0)

∫
R3 h((v − xl

k)/(2δ0))g(dv)) = 1. Point (iii)
follows from the fact that h and χ are smooth (with bounded derivatives), since

cN
l

(
vN ) =

3∑
k=1

χ

(
4

Nκ0

N∑
i=1

h

(
vN

i − xl
k

δ0

))
.

We next check (iv), recalling that aN
i (vN) = a(μN 
 φηN

, vi) and cN
l (vN) =

cl(μ
N), with μN = N−1 ∑N

1 δvi
. Assume first that infk=1,2,3 μN(B(xl

k, 4δ0)) ≥
κ0/4. Then by Lemma 7.4, we have infk=1,2,3(μN 
 φηN

)(B(xl
k, 4δ0)) ≥ cδ0κ0/4.
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Since now the triplet (xl
1, xl

2, xl
3) satisfy the (4δ0)-nonalignment condition, we can

apply Lemma 6.2 and obtain

ξ∗aN
i

(
vN )

ξ ≥ κ
(
1 + |vi |)γ |ξ |2 inf

k=1,2,3

(
μN 
 φηN

)(
B
(
xl

k, 4δ0
))

≥ κcδ0κ0

4

(
1 + |vi |)γ |ξ |2.

Assume next that infk=1,2,3 μN(B(xl
k, 4δ0)) ≤ κ0/4. Then cN

l (vN) ≥ 1 by point
(ii), so that

|ξ |2cN
l

(
vN ) ≥ |ξ |2 ≥ (

1 + |vi |)γ |ξ |2
since γ ≤ 0. We conclude with the choice κ1 := (κcδ0κ0/4) ∧ 1. Point (v) is a
direct consequence of (7.1) and of point (i). Finally, to prove point (vi), we con-
sider g1, g2 ∈ P(R3) and R ∈ �(g1, g2) such that

∫
R3×R3 |v1 − v2|R(dv1, dv2) =

W1(g1, g2). Then we write, using that χ and h are globally Lipschitz-continuous
and bounded,∣∣cl(g1) − cl(g2)

∣∣
=

∣∣∣∣χ
(

4

κ0

∫
R3

h

(
v − xl

k

2δ0

)
g1(dv)

)
− χ

(
4

κ0

∫
R3

h

(
v − xl

k

2δ0

)
g2(dv)

)∣∣∣∣
≤ C

κ0

∣∣∣∣
∫
R3

h

(
v − xl

k

2δ0

)
g1(dv) −

∫
R3

h

(
v − xl

k

2δ0

)
g2(dv)

∣∣∣∣
= C

κ0

∣∣∣∣
∫
R3×R3

[
h

(
v1 − xl

k

2δ0

)
− h

(
v2 − xl

k

2δ0

)]
R(dv1, dv2)

∣∣∣∣
≤ C

κ0δ0

∫
R3×R3

|v1 − v2|R(dv1, dv2),

from which the conclusion follows. �

We now introduce our perturbed particle system UN = (UN
1 , . . . ,UN

N ), defined
on the time interval [0, T ], as the solution to

UN
i (t) = VN

i (0) +
∫ t

0
bN

i

(
UN

s

)
ds +

∫ t

0
σN

i

(
UN

s

)
dBi (s)

(7.2)

+
∫ t

0
cN�s/τ0�

(
UN

s

)
dWi (s) +

∫ t

0
cN�s/τ0�

(
UN

s

)∇vi
cN�s/τ0�

(
UN

s

)
ds,

for all i = 1, . . . ,N . Here, ((Wi (t))t∈[0,T ])i=1,...,N is an independent family of 3D

standard Brownian motions independent of (VN
i (0), (Bi (t))t∈[0,T ])i=1,...,N .

PROPOSITION 7.5. Recall that γ ∈ (−2, 0), that ηN ∈ (0, 1) is fixed and that
the initial condition (VN

i (0))i=1,...,N is exchangeable. There is strong existence
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and uniqueness for (7.2). Moreover, if E[|VN
1 (0)|r ] < ∞ for some r ≥ 2, then

sup
N≥2

sup
[0,T ]

E
[∣∣UN

1 (t)
∣∣r] < CT,r ,

for some constant CT,r not depending on N .

PROOF. The strong existence and uniqueness is clear, since all the coeffi-
cients are locally Lipschitz continuous and have at most linear growth: this has
already been seen in the proof of Proposition 1.5 for bN

i and σN
i , and cN�s/τ0� and

cN�s/τ0�∇vi
cN�s/τ0� are obviously bounded and smooth in x (recall that here, N is

fixed). Concerning the moment estimates, it suffices to handle the same proof as
that of Proposition 4.1. The additional terms cause no difficulty (and are much
easier to treat) because cN�s/τ0� is uniformly bounded (by 3) and cN�s/τ0�∇vi

cN�s/τ0� is
uniformly bounded [by 3C/(Nκ0δ0) ≤ C] thanks to Proposition 7.3(iii). �

We will first study propagation of chaos for the perturbed particle system. We
thus introduce the corresponding nonlinear process (U(t))t∈[0,T ], solution to

U(t) = V(0) +
∫ t

0
b
(
gs,U(s)

)
ds +

∫ t

0
σ
(
gs,U(s)

)
dB(s)

(7.3)

+
∫ t

0
c�s/τ0�(gs) dW(s),

where V(0) is f0-distributed, independent of the (independent) 3D-Brownian mo-
tions (B(t))t∈[0,T ] and (W(t))t∈[0,T ], and where gt ∈ P(R3) is the law of U(t).
Observe that for (U(t))t∈[0,T ] a solution to (7.3), its family (gt )t∈[0,T ] of time
marginals is a weak solution to

∂tgt (v) = 1
2 divv

(
a(gt , v)∇gt (v) − b(gt , v)gt (v) + c2�t/τ0�(gt )∇gt (v)

)
.(7.4)

PROPOSITION 7.6. Recall that γ ∈ (−2, 0) and that f0 ∈ P2(R3) satisfies
H(f0) < ∞ and mq(f0) < ∞ for some q > q(γ ):

(i) There exists a unique weak solution (gt )t∈[0,T ] to (7.4) such that g0 = f0
and such that (gt )t∈[0,T ] ∈ L∞([0, T ],P2(R3)) ∩ L1([0, T ],Lp(R3)) for some
p ∈ (p1(γ ),p2(γ, q)). Furthermore, it holds that (gt )t∈[0,T ] = (ft )t∈[0,T ], where
(ft )t≥0 is the unique weak solution to the Landau equation (1.1) built in Theo-
rem 1.3.

(ii) There is a pathwise unique continuous adapted solution (U(t))t∈[0,T ]
to (7.3) such that, setting gt = L(U(t)), (gt )t∈[0,T ] ∈ L∞([0, T ],P2(R3)) ∩
L1([0, T ],Lp(R3)) for some p ∈ (p1(γ ),p2(γ, q)). Furthermore, (gt )t∈[0,T ] =
(ft )t∈[0,T ].

(iii) Finally (U(t))t∈[0,T ] equals (V(t))t∈[0,T ], the unique solution to (1.10) (see
Theorem 1.7).
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PROOF. Consider the unique solution (V(t))t≥0 to the nonlinear SDE (1.10),
the unique weak solution f ∈ L∞

loc([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) to
(1.1), and recall that ft = L(V(t)). Then we know from Proposition 7.3(v) that
c�t/τ0�(ft ) = 0 for all t ∈ [0, T ]. Consequently, (V(t))t≥0 also solves (7.3) and
(ft )t∈[0,T ] also solves (7.4) [compare with (1.3)]. Next, we claim that once the
uniqueness of the weak solution to (7.4) is established, the pathwise uniqueness
of the solution (U(t))t∈[0,T ] to (7.3) can be checked exactly as in the proof of
Theorem 1.7. We thus only have to prove the uniqueness part in point (i).

Let thus p ∈ (p1(γ ),p2(γ, q)) be fixed, and consider two solutions (gt )t∈[0,T ],
(kt )t∈[0,T ] to (7.4), both lying in L∞

loc([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)).
Exactly as in the proof of Theorem 1.4—steps 1–2, we can build, for each ε >

0, two processes (Z(t))t∈[0,T ] and (Vε(t))t∈[0,T ] with respective families of time
marginals (gt )t∈[0,T ] and (kt )t∈[0,T ], solving

Z(t) = V(0) +
∫ t

0
b
(
gs,Z(s)

)
ds +

∫ t

0
σ
(
gs,Z(s)

)
dB(s)

+
∫ t

0
c�s/τ0�(gs) dW(s),

Vε(t) = V(0) +
∫ t

0
b
(
ks,Vε(s)

)
ds

+
∫ t

0
σ
(
ks,Vε(s)

)
U
(
a
(
gε

s ,Z(s)
)
, a

(
kε

s ,Vε(s)
))

dBs

+
∫ t

0
c�s/τ0�(ks) dW(s).

We can then reproduce exactly the same computations as in Theorem 1.4—steps 3–
4–5 to prove uniqueness in the class L∞

loc([0,∞),P2(R
3))∩L1

loc([0,∞),Lp(R3))

(some strong/weak stability estimates could also be checked here). When com-
puting (d/dt)E[|Z(t) − Vε(t)|2], there is the additional term 3(c�t/τ0�(gt ) −
c�t/τ0�(kt ))

2. But this is controlled, using Proposition 7.3, by CW 2
2 (gt , kt ) which

is itself bounded by CE[|Z(t) − Vε(t)|2]. This term thus causes no difficulty. �

7.2. Regularity estimate for the perturbed particle system. We now need to in-
troduce the entropy and weighted Fisher information. These functionals are studied
in detail in the Appendix.

NOTATION 7.7. For VN a random variable with law F ∈ P((R3)N) with a
density, we define

H
(
VN ) = H(F) := 1

N

∫
(R3)N

F
(
vN )

log
(
F
(
vN ))

dvN,

Iγ

(
VN ) = Iγ (F ) := 1

N

∫
(R3)N

|∇γ F (vN)|2
F(vN)

dvN,
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where the differential operator ∇γ is the weighted gradient

∇γ F := ((
1 + |v1|2)γ /4∇v1F, . . . ,

(
1 + |vN |2)γ /4∇vnF

)
.

If F has no density, we simply set H(VN) = H(F) = ∞ and Iγ (VN) = Iγ (F ) =
∞.

The following lemma uses strongly the perturbation.

PROPOSITION 7.8. For each N ≥ 2, we consider the solution (UN
1 (t), . . . ,

UN
N (t))t∈[0,T ] to (7.2). For each t ∈ [0, T ], we denote by GN

t the law of
UN(t) = (UN

1 (t), . . . ,UN
N (t)). Recall that by (1.11), supN≥2 H(GN

0 ) < ∞ and
supN≥2 E[|UN

1 (0)|q] < ∞ for some q > q(γ ). It holds that

sup
N≥2

sup
t∈[0,T ]

H
(
GN

t

)
< ∞ and sup

N≥2

∫ T

0
Iγ

(
GN

t

)
dt < ∞.

PROOF. The first step is to derive the master (or Kolmogorov) equation for
the time marginals GN

t . Applying the Itô formula to compute the expectation of
ϕ(UN

t ), we deduce that for all ϕ ∈ C2
b((R3)N),∫

(R3)N
ϕ
(
vN )

GN
t

(
dvN )

=
∫

(R3)N
ϕ
(
vN )

GN
0
(
dvN )

+
∫ t

0

∫
(R3)N

N∑
i=1

∇vi
ϕ
(
vN )

× [
bN

i

(
vN )+ cN�s/τ0�

(
vN )∇vi

cN�s/τ0�
(
vN )]

GN
s

(
dvN )

ds

+ 1

2

∫ t

0

∫
(R3)N

N∑
i=1

3∑
k,l=1

∂vikvil
ϕ
(
vN )((

aN
i

(
vN ))

kl

+ (
cN�s/τ0�

(
vN ))2

δkl

)
GN

s

(
dvN )

ds.

Recall now that bk = ∑3
l=1 ∂lalk . Hence, we see that GN is a weak solution to

∂tG
N
t

(
vN ) = 1

2

N∑
i=1

3∑
k,l=1

∂vik

[{(
aN

i

(
vN ))

kl + (
cN�t/τ0�

(
vN ))2

δkl)
}
∂vil

GN
t

(
vN )]

− 1

2

N∑
i=1

3∑
k=1

∂vik

[(
bN

i

(
vN ))

kG
N
t

(
vN )]

,
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or equivalently to

∂tG
N
t = 1

2

N∑
i=1

divvi

[{
aN

i + (
cN�t/τ0�

)2
I
}∇vi

GN
t

]− 1

2

N∑
i=1

divvi

[
bN

i GN
t

]
.

We thus have, performing some integrations by parts,

d

dt
H
(
GN

t

) = 1

N

∫
(R3)N

(
1 + log GN

t

(
vN ))

∂tG
N
t

(
vN )

dvN

= − 1

2N

N∑
i=1

∫
(R3)N

∇vi
log GN

t

× [
aN

i

(
vN )+ (

cN�t/τ0�
(
vN ))2

I
]∇vi

log GN
t

(
vN )

GN
t

(
dvN )

− 1

2N

N∑
i=1

∫
(R3)N

div bN
i

(
vN )

GN
t

(
dvN )

.

We next use Proposition 7.3(iv) for the diffusion term and, for the drift term,
that div b(v) = −(6 + 2γ )|v|γ , whence −div(b 
 φηN

)(v) = (6 + 2γ )
∫
R3 |v −

z|γ φηN
(z) dz ≤ C|v|γ , and exchangeability. We find that

d

dt
H
(
GN

t

) ≤ − κ1

2N

N∑
i=1

∫
(R3)N

(1 + |vi |)γ |∇vi
GN

t (vN)|2
GN

t (vN)
dvN

+ C

∫
(R3)N

|v1 − v2|γ GN
t

(
dvN )

≤ −2γ /2−1κ1Iγ

(
GN

t

)+ CE
[∣∣UN

1 (t) − UN
2 (t)

∣∣γ ].
We used that (1 + x)γ ≥ 2γ /2(1 + x2)γ /2. Denote by GN

t,2 the law of (UN
1 (t),

UN
2 (t)). We now apply Lemma C.4 with κ = −γ . Since q > q(γ ) = γ 2/(2 + γ ),

we have α := max{2, q} > |γ |max{1, κ/(2 − κ)}, whence, with r := α/(α − γ ),

d

dt
H
(
GN

t

) ≤ −2γ /2−1κ1Iγ

(
GN

t

)+ Cγ,q

(
1 + Iγ

(
GN

t,2
)r(1 + mα

(
GN

2,t

)1−r))
≤ −2γ /2−1κ1Iγ

(
GN

t

)+ CT,γ,q

(
1 + Iγ

(
GN

t

)r)
.

We finally used the moment bound proved in Proposition 7.5 [and the moment
assumption in (1.11)] and Lemma C.2(i), from which Iγ (GN

t,2) ≤ Iγ (GN
t ). Since

r ∈ (0, 1), we easily conclude, using the Young inequality, that

d

dt
H
(
GN

t

) ≤ −2γ /2−2κ1Iγ

(
GN

t

)+ CT,γ,q .

Integrating this inequality and using again (1.11), we get, for any t ∈ [0, T ],
H
(
GN

t

)+ κ1

8

∫ t

0
Iγ

(
GN

s

)
ds ≤ H

(
F N

0
)+ CT,γ,q t ≤ CT,γ,q .
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We immediately deduce that H(F N
t ) is bounded uniformly in N and t ∈ [0, T ].

Finally, it follows from the fact that supN≥2 sup[0,T ]E[|UN
1 (t)|2] < ∞ [by (1.11)

and Proposition 7.5] and Lemma C.1(i) that infN≥2 H(F N
T ) > −∞. Consequently,∫ T

0 Iγ (F N
s ) ds is also uniformly bounded. This completes the proof. �

7.3. Some more estimates. We will of course need, in several steps, to control
the singularity of b. Also, to verify that the limit points of the empirical measure
of the particle system belong, in some sense, to L∞([0, T ],P2(R

3)), we will need
to control E[sup[0,T ] |UN

1 (s)|2], with the supremum inside the expectation. All this
is more or less obvious when γ ∈ (−1, 0), but requires a little work when γ ∈
(−2,−1], based on the regularity estimate checked in the previous subsection.

LEMMA 7.9. For each N ≥ 2, we consider the solution (UN
1 (t), . . . ,

UN
N (t))t∈[0,T ] to (7.2). Recall that by (1.11), supN≥2 E[|UN

1 (0)|q ] < ∞ for some
q > q(γ ). It holds that

(i) supN≥2 E[supt∈[0,T ] |UN
1 (s)|2] < ∞;

(ii) supN≥2
∫ T

0 E[|UN
1 (s) − UN

2 (s)|γ ]ds < ∞.

Here, we prove point (i) using point (ii), but it seems that a refinement of the
proof of Proposition 4.1 could also work.

PROOF OF LEMMA 7.9. We put α = 2 ∨ q and recall that
supN≥2 supt∈[0,T ]E[|UN

1 (s)|α] < ∞ by Proposition 7.5. We first prove (ii). De-
note by GN

s,2 the two-marginal of GN
s , which is the law of (UN

1 (s),UN
2 (s)). Ob-

serve that α > |γ |max{1, |γ |/(2 + γ )} [because α ≥ 2 and α ≥ q > q(γ ) =
γ 2/(2 + γ )]. By Lemma C.4, we know that, with r = α/(α − γ ), E[|UN

1 (s) −
UN

2 (s)|γ ] ≤ Cκ,α(1 + (Iγ (GN
s,2))r(1 + mα(GN

s,2))1−r ) ≤ Cκ,α,T (1 + Iγ (GN
s,2)) be-

cause r ∈ (0, 1) and mα(GN
s,2) = E[|UN

1 (s)|α] is controlled uniformly in N ≥ 2

and s ∈ [0, T ]. Finally, we know from Lemma C.2(i) that Iγ (GN
s,2) ≤ Iγ (GN

s ),

whence E[|UN
1 (s) −UN

2 (s)|γ ] ≤ Cκ,α(1 + Iγ (GN
s )). Integrating in time and using

Proposition 7.8 completes the proof of (ii).
To prove (i), we start from sup[0,T ] |UN

1 (t)|2 ≤ C[|UN
1 (0)|2 + IN +J N +KN +

LN ], where

IN := sup
[0,T ]

(∫ t

0
bN

1
(
UN(s)

)
ds

)2

,

J N := sup
[0,T ]

(∫ t

0
σN

1
(
UN(s)

)
dB1(s)

)2

,

KN := sup
[0,T ]

(∫ t

0
cN�s/τ0�

(
UN(s)

)
dW1(s)

)2

,
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LN = sup
[0,T ]

(∫ t

0
cN�s/τ0�

(
UN(s)

)∇v1c
N�s/τ0�

(
UN(s)

)
ds

)2

.

First, supN E[|UN
1 (0)|2] < ∞ by assumption (1.11) and E[KN +LN ] is uniformly

bounded because cN
l and ∇v1c

N
l are uniformly bounded; see Proposition 7.3. By

Doob’s inequality,

E
[
J N ] ≤ C

∫ T

0
E
[∥∥σN

1
(
UN(s)

)∥∥2]
ds

≤ C

∫ T

0
E

[
1

N

N∑
j=1

∥∥(a 
 φηN

(
UN

1 − UN
j (s)

))∥∥]ds.

Using exchangeability and that ‖(a 
 φηN
)(v)‖ ≤ C(1 + |v|γ +2) ≤ C(1 + |v|2),

E
[
J N ] ≤ C

∫ T

0
E
[
1 + ∣∣UN

1 (s) − UN
2 (s)

∣∣2]ds ≤ C

∫ T

0
E
[
1 + ∣∣UN

1 (s)
∣∣2]ds,

which is also uniformly bounded. Finally, Hölder’s inequality, exchangeability and
the inequality |(b 
 φηN

)(v)| ≤ C(1 + |v|γ +1) lead us to

E
[
IN ] ≤ CT

∫ T

0
E
[∣∣(b 
 φηN

)
(
UN

1 (s) − UN
2 (s)

)∣∣2]ds

≤ CT

∫ T

0
E
[
1 + ∣∣UN

1 (s) − UN
2 (s)

∣∣2γ +2]
ds.

If γ ∈ [−1, 0), we bound E[|UN
1 (s) − UN

2 (s)|2γ +2] by CE[1 + |UN
1 (s)|2 +

|UN
2 (s)|2] ≤ C(1 +E[|UN

1 (s)|2]) and immediately deduce that E[IN ] is uniformly
bounded. If now γ ∈ (−2,−1), then it holds true that γ < 2γ + 2 < 0, so that also
we conclude, using point (ii), that E[IN ] is uniformly bounded. �

7.4. Tightness for the perturbed particle system. We can now prove the tight-
ness of our perturbed particle system.

PROPOSITION 7.10. We still assume (1.11) and consider, for each N ≥ 2, the
unique solution (UN

1 (t), . . . ,UN
N (t))t∈[0,T ] to (7.2). We also set

QN := 1

N

N∑
i=1

δ(UN
i (t))t∈[0,T ] .

(i) The family {L((UN
1 (t))t∈[0,T ]),N ≥ 2} is tight in P(C([0, T ],R3)).

(ii) The family {L(QN),N ≥ 2} is tight in P(P(R× C([0, T ],R3))).
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PROOF. As is well known, point (ii) is implied by point (i) and the exchange-
ability of the system; see Sznitman [36], I-Proposition 2.2. To prove point (i),
we use the shortened notation bN

i (s) = bN
i (UN

s ), σN
i (s) = σN

i (UN
s ) and cN(s) =

cN�s/τ0�(U
N
s ), we write

UN
1 (t) = VN

1 (0) +
∫ t

0
bN

1 (s) ds +
∫ t

0
σN

1 (s) dB1(s) +
∫ t

0
cN(s) dW1(s)

+
∫ t

0
cN(s)∇v1c

N(s) ds

= VN
1 (0) + IN(t) + J N(t) + KN(t) + LN(t)

and prove separately that each term is tight.
First, {VN

1 (0)}N≥2 is tight by (1.11)(iii). Next, the families {(KN(t))t∈[0,T ]}N≥2

and {(LN(t))t∈[0,T ]}N≥2 are obviously tight (use the Kolmogorov criterion for
KN ), because cN and ∇v1c

N(s) are uniformly bounded, see Proposition 7.3(iii).
To prove that {(J N(t))t∈[0,T ]}N≥2 is tight, we use the Kolmogorov criterion

(see, e.g., Stroock–Varadhan [34], Corollary 2.1.4): it suffices to show that there
are some constants p > 0, β > 1 and C such that for all N ≥ 2, all 0 ≤ s ≤ t ≤ T ,

E
[∣∣J N(t) − J N(s)

∣∣p] ≤ C|t − s|β.

We consider p = 4/(2 + γ ) > 2. By the Burkholder–Davis–Gundy inequality and
since [σN

1 (s)]2 = aN
1 (s), we have, for 0 ≤ s ≤ t ≤ T ,

E
[∣∣J N(t) − J N(s)

∣∣p] ≤ CE

[(∫ t

s

∥∥aN
1 (u)

∥∥du

)p/2]

≤ CE

[(∫ t

s

1

N

∑
j �=1

∥∥(a 
 φηN
)
(
UN

1 (u) − UN
j (u)

)∥∥du

)p/2]
.

Recalling next that ‖(a 
 φηN
)(v)‖ ≤ C(1 + |v|γ +2) and using the Hölder inequal-

ity,

E
[∣∣J N(t) − J N(s)

∣∣p]
≤ C(t − s)p/2−1

∫ t

s
E

[(
1 + 1

N

∑
j �=1

∣∣UN
1 (u) − UN

j (u)
∣∣2+γ

)p/2]
du

≤ C(t − s)p/2 sup
[0,T ]

E

[
1 + 1

N

∑
j �=1

∣∣UN
1 (u) − UN

j (u)
∣∣2]

since p/2 > 1 and (2 + γ )p/2 = 2. Using finally exchangeability and the moment
bound proved in Lemma 7.5 [together with (1.11)], we deduce that E[|J N(t) −
J N(s)|p] ≤ Cp(t − s)p/2. Since p/2 > 1, the tightness of {(J N(t))t≥0}N≥2 fol-
lows.
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The remaining term IN(t) is the more difficult, since it is singular [when γ ∈
(−2,−1)]. For some p > 1 to be chosen later, we write

∣∣IN(t) − IN(s)
∣∣ = ∣∣∣∣

∫ t

s
bN

1 (s) ds

∣∣∣∣≤ (t − s)1−1/p

(∫ t

s

∣∣bN
1 (s)

∣∣p ds

)1/p

.

Thus, with α = 1 − 1/p > 0,

sup
0≤s<t≤T

|IN(t) − IN(s)|
|t − s|α ≤

(∫ T

0

[
bN

1 (s)
]p

ds

)1/p

.

Taking expectations and using the Hölder inequality, we get

E

[
sup

0≤s<t≤T

|IN(t) − IN(s)|
|t − s|α

]
≤
(∫ T

0
E
[(

bN
1 (s)

)p]
ds

)1/p

.

Using the expression of bN
1 (s) = N−1 ∑N

j=2(b
φηN
)(UN

1 (s)−UN
j (s)), the Hölder

inequality and exchangeability, we find

E

[
sup

0≤s<t≤T

|IN(t) − IN(s)|
|t − s|α

]p

≤ C

∫ T

0
E
[
1 + ∣∣UN

1 (s) − UN
2 (s)

∣∣(γ +1)p]
ds.

If γ ∈ (−1, 0), we choose p = 2/(1 + γ ). By the boundedness of the moment of
order two obtained in Proposition 7.5, we get, with α = (1 − γ )/2,

E

[
sup

0≤s<t≤T

|IN(t) − IN(s)|
|t − s|α

]p

≤ C.

If γ = −1, we choose p = 2 (or any other value) and deduce that, with α = 1/2,

E

[
sup

0≤s<t≤T

|IN(t) − IN(s)|
|t − s|α

]2

≤ C.

We now consider the case where γ ∈ (−2,−1). Since γ < 2γ + 2 < 0, we deduce
from Lemma 7.9(ii) that supN≥2

∫ T
0 E[|UN

1 (s) − UN
2 (s)|2(γ +1)]ds < ∞. Conse-

quently, we may choose p = 2 and get, with α = 1/2,

E

[
sup

0≤s<t≤T

|IN(t) − IN(s)|
|t − s|α

]2

≤ C.

In any case, the tightness of the family {(IN(t))t∈[0,T ]} follows from the Ascoli
theorem. �

7.5. Propagation of chaos for the perturbed system. With the several esti-
mates obtained in the previous subsections, we can now prove the propagation
of chaos for the perturbed system. The proof uses some martingale techniques, as
was initiated by Sznitman [36]. The only difficulty in the present case is to control
the singularity of b (when γ ∈ (−2,−1]).
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PROPOSITION 7.11. Assume (1.11). For each N ≥ 2, let (UN
1 (t), . . . ,

UN
N (t))t∈[0,T ] be the unique solution to (7.2). Let (U(t))t∈[0,T ] be the solution

to the perturbed nonlinear SDE (7.3), given by Proposition 7.6. The sequence
((UN

1 (t))t∈[0,T ], . . . , (UN
N (t))t∈[0,T ]) is (U(t))t∈[0,T ]-chaotic.

PROOF. We define S as the set of all probability measures g ∈ P(C([0, T ],
R

3)) such that g is the law of (U(t))t∈[0,T ] solution to the perturbed nonlinear
SDE (7.3) associated with f0 and satisfying, for gt ∈ P(R3) the law of U(t),

(gt )t∈[0,T ] ∈ L1([0, T ],Lp(
R

3)) and
(7.5)

(gt )t∈[0,T ] ∈ L∞([0, T ],P2
(
R

3))
for some p > p1(γ ). The uniqueness result shown in Proposition 7.6 implies that
the set S contains only one element.

We recall that QN = N−1 ∑N
i=1 δ(UN

i (t))t∈[0,T ] stands for the empirical distribu-
tion of the trajectories. By Proposition 7.10, this sequence is tight, we thus can
consider a (not relabeled) subsequence of QN going in law to some Q. We will
show that Q almost surely belongs to S . This will conclude the proof, since S
contains only one element. The definition of propagation of chaos was recalled in
Definition 1.1. We recall that GN

t = L(UN
1 (t), . . . ,UN

N (t)).
Step 1. Consider the identity map X : C([0, T ],R3) �→ C([0, T ],R3). Using the

classical theory of martingale problems, we realize that g belongs to S as soon as

(a) g ◦ X−1
0 = f0;

(b) setting gt = g ◦ X−1
t , (7.5) holds true;

(c) for all 0 < t1 < · · · < tk < s < t ≤ T , all ϕ1, . . . , ϕk ∈ Cb(R3), all ϕ ∈
C2

b(R3),

F(g) :=
∫ ∫

g(dβ)g(dβ̃)ϕ1(βt1) · · ·ϕk(βtk )

×
[
ϕ(βt ) − ϕ(βs) −

∫ t

s
1{βu �=β̃u}b(βu − β̃u) · ∇ϕ(βu) du

− 1

2

∫ t

s

[
a(βu − β̃u):∇2ϕ(βu)

]
du

− 1

2

∫ t

s
c2�u/τ0�(gu)�ϕ(βu) du

]
= 0.

Here and below, we use the notation A: B = ∑3
k,l=1 AklBkl for two 3 × 3-matrices

A and B .

Indeed, let (U(t))t≥0 be g-distributed. Then (a) implies that U(0) is f0-
distributed and (b) says that the requirement (7.5) is fulfilled. Finally, point (c)
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tells us that for all ϕ ∈ C2
b(R2),

ϕ
(
U(t)

)− ϕ
(
U(0)

)−
∫ t

0

∫
1{U(s) �=β̃s}b

(
U(s) − β̃s

) · ∇ϕ
(
U(s)

)
g(dβ̃) ds

− 1

2

∫ t

0

∫ [
a
(
U(s) − β̃s

)
:∇2ϕ

(
U(s)

)]
g(dβ̃) ds

− 1

2

∫ t

0
c2�s/τ0�(gs)�ϕ

(
U(s)

)
ds

is a martingale. Observe that
∫

1{U(s) �=β̃s}b(U(s) − β̃s)g(dβ̃) ds = ∫
R3 1{U(s) �=x} ×

b(U(s) − x)gs(dx) = ∫
R3 b(U(s) − x)gs(dx) = b(gs,U(s)). We used here that gs

does not weight points, since it has a density by point (b). Similarly,
∫

a(U(s) −
β̃s)g(dβ̃) = a(gs,U(s)). All this classically implies the existence of two indepen-
dent 3D-Brownian motions (B(t))t≥0 and (W(t))t≥0 such that

U(t) = U(0) +
∫ t

0
b
(
gs,U(s)

)
ds +

∫ t

0
σ
(
gs,U(s)

)
dB(s)

+
∫ t

0
c�s/τ0�(gs) dW(s).

Hence, (U(t))t∈[0,T ] solves (7.3) as desired.
We thus only have to prove that Q a.s. satisfies points (a), (b) and (c). For each

t ∈ [0, T ], we set Qt =Q ◦ X−1
t and QN

t = QN ◦ X−1
t = N−1 ∑N

1 δUN
i (t).

Step 2. We know from (1.11) that the sequence GN
0 = F N

0 is f0-chaotic, which
implies that QN

0 = QN ◦ X−1
0 (this is nothing but the law of N−1 ∑N

1 δVN
i (0)) goes

weakly to f0 in law (and thus in probability since f0 is deterministic), whence
Q0 = f0 a.s. Hence, Q satisfies (a).

Step 3. Point (b) follows from Lemma 7.9, Proposition 7.5 and Corollary C.6.
First, Lemma 7.9(i) tells us that supN E[sup[0,T ] |UN

1 (s)|2] < ∞, which implies
by exchangeability that supN E[sup[0,T ] m2(QN

t )] < ∞. Since Q is a weak limit
of QN , we easily conclude that E[sup[0,T ] m2(Qt )] < ∞, whence (Qt )t∈[0,T ] ∈
L∞([0, T ],P2(R

3)) a.s.
The integrability condition is slightly more complicated. Since QN

t goes in
law to Qt for each t ∈ [0, T ], we may apply Corollary C.6 and deduce that
E[Iγ (Qt )] ≤ lim infN Iγ (GN

t ). By the Fatou lemma, this yields∫ T

0
E
[
Iγ (Qs)

]
ds ≤

∫ T

0
lim inf

N
Iγ

(
GN

t

)
dt ≤ lim inf

N

∫ T

0
Iγ

(
GN

t

)
dt < ∞

by Proposition 7.8. Next, we know from Proposition 7.5 and from (1.11) that,
for α = max{2, q} [with q > q(γ )], supN sup[0,T ]E[|UN

1 (s)|α] < ∞. Using ex-
changeability, this gives supN sup[0,T ]E[mα(QN

t )] < ∞, from which we deduce
that sup[0,T ]E[mα(Qt )] < ∞. Consider now p ∈ (max{3/2,p1(γ )}, max{(6 +
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3|γ |)/(2 + 3|γ |),p2(γ, q)}) [observe that (6 + 3|γ |)/(2 + 3|γ |) > 3/2 because
|γ | < 2]. We always have p ∈ (3/2, 3) [because p2(γ, q) < 3]. Set r = (3p −
3)/(2p), which belongs to (1/2, 1) and a = |γ |r/(1 − r) = |γ |(3p − 3)/(3 − p).
Then, applying Lemma C.3, we get

‖Qt‖Lp ≤ C
(
Iγ (Qt )

)r(1 + ma(Qt )
)1−r

whence, by the Hölder inequality,

E
[‖Qt‖Lp

] ≤ CE
[
Iγ (Qt )

]r
E
[
1 + ma(Qt )

]1−r
.

But a ≤ α. Indeed, just use that p < [(6 + 3|γ |)/(2 + 3|γ |)] ∨ p2(γ, q). But p ≤
(6+3|γ |)/(2+3|γ |) implies that a ≤ 2 ≤ α and p ≤ p2(γ, q) = (3q +3|γ |)/(q +
3|γ |) gives us a ≤ q ≤ α. Consequently, recalling that sup[0,T ]E[mα(Qt )] < ∞,
we get

E
[‖Qt‖Lp

] ≤ CE
[
Iγ (Qt )

]r ≤ C
(
1 +E

[
Iγ (Qt )

])
.

Integrating in time, we deduce that
∫ T

0 E[‖Qt‖Lp ]dt < ∞, whence finally,∫ T
0 ‖Qt‖Lp dt < ∞ a.s. We have checked that Q satisfies point (b).

Step 4. From now on, we consider some fixed F : P(C([0, T ],R3)) �→ R as in
point (c). We will check that F(Q) = 0 a.s. and this will complete the proof.

Step 4.1. Here, we prove that for all N ≥ 2,

E
[∣∣F(

QN )∣∣] ≤ CF
(
N−1/2 + ηN

)
.

To this end, we recall that ϕ ∈ C2
b(R3) is fixed and we define, for i = 1, . . . ,N ,

ON
i (t) := ϕ

(
UN

i (t)
)

− 1

N

N∑
j=1

∫ t

0
1{UN

i (s) �=UN
j (s)}b

(
UN

i (s) − UN
j (s)

) · ∇ϕ
(
UN

i (s)
)
ds

− 1

2N

N∑
j=1

∫ t

0

[
a
(
UN

i (s) − UN
j (s)

)
:∇2ϕ

(
UN

i (s)
)]

ds

− 1

2

∫ t

0

[
cN�s/τ0�

(
UN(s)

)]2
�ϕ

(
UN

i (s)
)
ds.

By definition of F , we have

F
(
QN ) = 1

N

N∑
i=1

ϕ1
(
UN

i (t1)
) · · ·ϕk

(
UN

i (tk)
)[

ON
i (t) − ON

i (s)
]
.

Applying the Itô formula to compute ϕ(UN
i (t)), we realize that, for i = 1, . . . ,N ,

ON
i (t) = ϕ(UN

i (0)) + MN
i (t) + �N

i (t), where

MN
i (t) =

∫ t

0
∇ϕ

(
UN

i (s)
) · [σN

i

(
UN(s)

)
dBi (s) + cN�s/τ0�

(
UN(s)

)
dW i (s)

]
,
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�N
i (t) =

∫ t

0
∇ϕ

(
UN

i (s)
) ·

[
cN�s/τ0�

(
UN(s)

)∇vi
cN�s/τ0�

(
UN(s)

)

+ 1

N

N∑
j=1

1{UN
i (s) �=UN

j (s)}(b 
 φηN
− b)

(
UN

i (s) − UN
j (s)

)]
ds

+
∫ t

0

1

2N

N∑
j=1

[
(a 
 φηN

− a)
(
UN

i (s) − UN
j (s)

)
:∇2ϕ

(
UN

i (s)
)]

ds.

We used here that (b 
 φηN
)(x) = 1{x �=0}(b 
 φηN

)(x) since (b 
 φηN
)(0) = 0 by

symmetry. Performing now some classical stochastic calculus, using that 0 < t1 <

· · · < tk < s < t , that ϕ1, . . . , ϕk,∇ϕ and cN
l are uniformly bounded and that the

Brownian motions B1, . . . ,BN and W1, . . . ,WN are independent, we easily ob-
tain

E

[(
1

N

N∑
i=1

ϕ1
(
UN

i (t1)
) · · ·ϕk

(
UN

i (tk)
)[

MN
i (t) − MN

i (s)
])2]

≤ CF
N2

N∑
i=1

∫ t

s
E
[
1 + ∥∥σN

i

(
UN(s)

)∥∥2]
ds ≤ CF

N
,

where we have used the fact that ‖σN
i (UN(s))‖2 ≤ CN−1 ∑N

j=1(1 + |UN
i (s) −

UN
j (s)|2+γ ), exchangeability, and the moment estimate of Proposition 7.5 (since

γ + 2 ∈ (0, 2]).
Next, we use exchangeability and the boundedness of ϕ1, . . . , ϕk,∇ϕ,∇2ϕ to

write

E

[∣∣∣∣∣ 1

N

N∑
i=1

ϕ1
(
UN

i (t1)
) · · ·ϕk

(
UN

i (tk)
)[

�N
i (t) − �N

i (s)
]∣∣∣∣∣
]

≤ CFE
[
IN + J N + KN ]

,

where

IN :=
∫ t

0

∣∣cN�s/τ0�
(
UN(s)

)∇v1c
N�s/τ0�

(
UN(s)

)∣∣ds,

J N :=
∫ t

0

∣∣(b 
 φηN
− b)

(
UN

1 (s) − UN
2 (s)

)∣∣ds,

KN :=
∫ t

0

∥∥(a 
 φηN
− a)

(
UN

1 (s) − UN
2 (s)

)∥∥ds.

Since cN
l ∇v1c

N
l is bounded by C/N by Proposition 7.3(iii), we immediately find

that E[IN ] ≤ C/N . Next, using Lemma 2.4(ii),

E
[
J N ] ≤ CηN

∫ t

0
E
[∣∣UN

s (s) − UN
2 (s)

∣∣γ ]ds ≤ CtηN
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by Lemma 7.9(ii). Finally, using again Lemma 2.4(ii),

E
[
KN ] ≤ Cη2

N

∫ t

0
E
[∣∣UN

s (s) − UN
2 (s)

∣∣γ ]ds ≤ CtηN .

Step 4.2. We introduce, for ε ∈ (0, 1), a smooth and bounded approximation
bε : R3 → R

3 satisfying bε(x) = b(x) for |x| ≥ ε and |bε(x)| ≤ |b(x)| = 2|x|1+γ

for all x. This smoothing is useless if γ ∈ [−1, 0), but we treat all the cases sim-
ilarly to avoid repetitions. We also introduce Fε defined as F with b replaced by
bε . The diffusion coefficient a is continuous and so remains unchanged. For each
fixed ε ∈ (0, 1), for every M > 0, the map g �→ Fε(g) is continuous and bounded
on the set g ∈ P(C([0, T ],R3)),

∫
(sup[0,T ] |βs |2)g(dβ) ≤ M . This is not hard to

check, using that ϕ1, . . . , ϕk, ϕ,∇ϕ,∇2ϕ are continuous and bounded, that bε(z)

and a(z) are continuous and bounded by Cε(1 + z2), and finally that cl is bounded
(by 3) and Lipschitz continuous for the W2 topology by Proposition 7.3(vi).
Since QN goes in law to Q and since supN E[∫ (sup[0,T ] |βs |2)QN(dβ)] =
supN E[sup[0,T ] |UN

1 (s)|2] < ∞ by exchangeability and Lemma 7.9(i), we deduce
that for any ε ∈ (0, 1),

E
[∣∣Fε(Q)

∣∣] = lim
N

E
[∣∣Fε

(
QN )∣∣].

Step 4.3. We now prove that for all N ≥ 2, all ε ∈ (0, 1),

E
[∣∣F(

QN )−Fε

(
QN )∣∣] ≤ CFε.

Using that all the functions (including the derivatives) involved in F are bounded
and that |bε(x) − b(x)| ≤ 2|x|1+γ 1{|x|<ε}, we get∣∣F(g) −Fε(g)

∣∣
≤ CF

∫∫ ∫ T

0
1{0<|βt−β̃t |<ε}|βt − β̃t |1+γ dt g(dβ̃)g(dβ)(7.6)

≤ CFε

∫∫ ∫ T

0
1{βt �=β̃t }|βt − β̃t |γ dt g(dβ̃)g(dβ).

Thus,

∣∣F(
QN )−Fε

(
QN )∣∣ ≤ CF

ε

N2

∑
i �=j

∫ T

0

∣∣UN
i (t) − UN

j (t)
∣∣γ dt.

It suffices to take expectations, to use exchangeability and then Lemma 7.9(ii) to
complete the step.

Step 4.4. We next check that a.s.,

lim
ε→0

∣∣F(Q) −Fε(Q)
∣∣ = 0.
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Starting from (7.6), using (1.4) and that (Qt )t∈[0,T ] ∈ L1([0, T ],Lp(R3)) a.s. for
some p > p1(γ ) by step 3, we get

∣∣F(Q) −Fε(Q)
∣∣ ≤ CFε

∫ T

0

∫
R3

∫
R3

|x − y|γQt (dx)Qt (dy)

≤ CFε

∫ T

0

(
1 + ‖Qt‖Lp

)
dt,

whence the conclusion.
Step 4.5. We finally conclude: for any ε ∈ (0, 1), we write, using steps 4.1, 4.2

and 4.3,

E
[∣∣F(Q)

∣∣∧ 1
] ≤ E

[∣∣Fε(Q)
∣∣]+E

[∣∣F(Q) −Fε(Q)
∣∣∧ 1

]
= lim

N→+∞E
[∣∣Fε

(
QN )∣∣]+E

[∣∣F(Q) −Fε(Q)
∣∣∧ 1

]
≤ lim sup

N→+∞
E
[∣∣F(

QN )∣∣]+ lim sup
N→+∞

E
[∣∣F(

QN )−Fε

(
QN )∣∣]

+E
[∣∣F(Q) −Fε(Q)

∣∣∧ 1
]

≤ CFε +E
[∣∣F(Q) −Fε(Q)

∣∣∧ 1
]
.

Now we let ε → 0 and use that limε E[|F(Q)−Fε(Q)|∧ 1] = 0 thanks to step 4.4
by dominated convergence. Consequently, E[|F(Q)| ∧ 1] = 0, whence F(Q) = 0
a.s. as desired. �

7.6. Asymptotic annihilation of the perturbation. We finally show that the per-
turbed and unperturbed particle systems are asymptotically the same. This uses the
propagation of chaos for the perturbed system.

PROPOSITION 7.12. Recall that γ ∈ (−2, 0), assume (1.11) and consider, for
each N ≥ 2, the solution (VN(t))t≥0 to (1.9) and the solution (UN(t))t∈[0,T ] to
(7.2), with the same initial conditions UN

i (0) = VN
i (0), i = 1, . . . ,N and same

Brownian motions Bi , i = 1, . . . ,N . Then

lim
N

Pr
[(
VN(t)

)
t∈[0,T ] = (

UN(t)
)
t∈[0,T ]

] = 1.

PROOF. By the strong uniqueness for the particle system (1.9) (see Proposi-
tion 1.5), we see that (VN(t))t∈[0,T ] = (UN(t))t∈[0,T ] as soon as cN�t/τ0�(U

N(t)) =
0 for all t ∈ [0, T ]. Recalling the definition of cl (see Notation 7.1), it thus suffices
to prove that

lim
N

Pr
[∀l = 0, . . . , n0,∀t ∈ [

lτ0, (l + 1)τ0
]
, cN

l

(
UN(t)

) = 0
] = 1.(7.7)

We denote by d : P(C([0, T ],R3)) �→R
+ the function defined by

d(g) := inf
l=0,...,n0

inf
t∈[lτ0,(l+1)τ0]

inf
k=1,2,3

∫
R3

h

(
v − xl

k

δ0

)
gt (dv),
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where h : R3 → [0, 1] (a smooth function satisfying 1{|v|≤1} ≤ h ≤ 1{|v|≤2}), the
xl

k’s and δ0 have been introduced in Notation 7.1. Remark first that d is continuous
(and bounded) with respect to the weak topology of measure on P(C([0, T ],R3)).
Consequently, we know from Proposition 7.11 that d(QN) goes in law to
d(g), where QN = N−1 ∑N

1 δ(UN
i (t))t∈[0,T ] and where g = L((U(t))t∈[0,T ]), where

(U(t))t∈[0,T ] is the unique solution to the perturbed nonlinear SDE (7.3). But we
also know, from Proposition 7.6 that gt = ft for all t ∈ [0, T ], where f is the
unique weak solution to the Landau equation (1.1). We finally recall (7.1)

inf
l=0,...,n0

inf
t∈[lτ0,(l+1)τ0]

inf
k=1,2,3

ft

(
B
(
xl

k, δ0
)) ≥ κ0,

which implies that d(g) ≥ κ0. Consequently, it holds that

lim
N→+∞ Pr

[
d
(
QN ) ≥ κ0

2

]
= 1,

whence

lim
N→+∞ Pr

[
inf

l=0,...,n0
inf

t∈[lτ0,(l+1)τ0]
inf

k=1,2,3
QN

t

(
B
(
xl

k, 2δ0
)) ≥ κ0

2

]
= 1.

Using Proposition 7.3(i) [which implies that cl(μ) = 0 as soon as
infk=1,2,3 μ(B(xl

k, 2δ0)) ≥ κ0/2] and that cN
l (UN

t ) = cl(QN
t ) by definition (see

Notation 7.1 again), we conclude that indeed, (7.7) holds true. �

7.7. Conclusion. We now have all the weapons to give the proof of our main
result.

PROOF OF THEOREM 1.8. We know from Proposition 7.11 that the per-
turbed system (UN(t))t∈[0,T ] is (U(t))t∈[0,T ]-chaotic, where (U(t))t∈[0,T ] is the
unique solution to the perturbed nonlinear SDE (7.3). But Proposition 7.6 tells
us that (U(t))t∈[0,T ] = (V(t))t∈[0,T ], where (V(t))t∈[0,T ] is the unique solution
to the (nonperturbed) nonlinear SDE (7.3), while Proposition 7.12 tells us that
limN Pr((VN(t))t∈[0,T ] = (UN(t))t∈[0,T ]) = 1. We immediately conclude that
(VN(t))t∈[0,T ] is (V(t))t∈[0,T ]-chaotic. Recalling that T > 0, which has been fixed
at the beginning of the section, can be chosen arbitrarily large, we deduce that
the sequence (VN(t))t≥0 is (V(t))t≥0-chaotic. As already mentioned (see Def-
inition 1.1), this implies that QN := N−1 ∑N

1 δ(VN
i (t))t≥0

goes in probability to

L((V(t))t≥0) as N → ∞ in P(C([0,∞),R3)). But L(V(t)) = ft for all t ≥ 0.
It is not hard to conclude, that for μN

t := N−1 ∑N
1 δVN

i (t), the sequence (μN
t )t≥0

goes in probability to (ft )t≥0 in C([0,∞),P(R3)). �
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APPENDIX A: A COUPLING RESULT

We reformulate and extend a result found in [21], Proposition 2.4, for the dis-
tance W1. Here, | · | is any fixed norm in R

d .

PROPOSITION A.1. Let p > 0 and d ≥ 1. For N ≥ 2, let FN and GN be two
symmetric probability measures in Pp((Rd)N). There exists (X1, . . . ,XN) with
law F N and (Y1, . . . , YN) with law GN enjoying the following properties:

(a) The coupling is optimal in the sense that E[∑N
1 |Xi − Yi |p] =

inf{E[∑N
1 |Ui − Vi |p]}, the infimum being taken over all random vectors (U1, . . . ,

UN) and (V1, . . . , VN) with laws F N and GN .
(b) The family {(Xi, Yi), i = 1, . . . ,N} is exchangeable.
(c) Almost surely, W

p
p (N−1 ∑N

1 δXi
,N−1 ∑N

1 δYi
) = N−1 ∑N

1 |Xi − Yi |p .

PROOF. We only sketch the proof, since it is very similar to [21], Proposi-
tion 2.4.

We start with a coupling X̃ = (X̃1, . . . , X̃N), Ỹ = (Ỹ1, . . . , ỸN ) of F N and GN

satisfying only point (a). Such an optimal coupling is well known to exist; see, for
example, Villani [40].

Next, we consider a (uniform) random σ ∈ SN , the set of permutations of
{1, . . . ,N}, independent of X̃, Ỹ , and we put X̂i = X̃σ(i) and Ŷi = Ỹσ (i). It is
straightforward to check that X̂ = (X̂1, . . . , X̂N), Ŷ = (Ŷ1, . . . , ŶN ) is still a cou-
pling between F N and GN (because these distributions are symmetric), still satis-
fies (a), and now satisfies (b).

We finally introduce, for x = (x1, . . . , xN) and y = (y1, . . . , yN) in (Rd)N ,

Sx,y =
{

τ ∈SN : Wp
p

(
N−1

N∑
1

δxi
,N−1

N∑
1

δyi

)
= N−1

N∑
1

|xi − yτ(i)|p
}

.

Conditionally on X̂ and Ŷ , we consider a random permutation τ uniformly cho-
sen in S

X̂,Ŷ
and we set Xi = X̂i and Yi = Ŷτ (i). It remains to prove that X =

(X1, . . . ,XN), Y = (Y1, . . . , YN) is a coupling between F N and GN satisfying
points (a), (b) and (c). Point (c) is satisfied because τ ∈ S

X̂,Ŷ
a.s. By definition of

τ , we see that
∑N

1 |Xi − Yi |p ≤ ∑N
1 |X̂i − Ŷi |p a.s., so that (a) is satisfied. And of

course, X is F N -distributed, since X = X̂.
To check point (b), let σ ∈ SN be fixed. For x ∈ (Rd)N , we put xσ =

(xσ(1), . . . , xσ(N)). We observe that for any x, y ∈ (Rd)N , it holds that Sxσ ,yσ =
σ−1Sx,yσ . Thus, conditionally on X̂ and Ŷ , σ−1 ◦ τ ◦ σ is uniformly distributed
on S

X̂σ ,Ŷσ
. Hence, by exchangeability of (X̂, Ŷ ), the triple (X̂, Ŷ , τ ) has the same

law as the triple (X̂σ , Ŷσ , σ−1 ◦τ ◦σ). Thus, (X̂, Ŷτ )
d= (X̂σ , Ŷτ◦σ ). In other words,

(X,Y ) has the same law as (Xσ ,Yσ ).
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We finally check that Y is GN -distributed. Consider a bounded measurable ϕ :
(R3)N �→ R and its symmetrization ϕ̃(y1, . . . , yN) = (N !)−1 ∑

σ∈SN
ϕ(yσ(1), . . . ,

yσ(n)). Using the exchangeability of (Y1, . . . , YN), we can write E[ϕ(Y1, . . . ,

YN)] = E[ϕ̃(Y1, . . . , YN)]. But ϕ̃ being symmetric, we a.s. have ϕ̃(Y1, . . . , YN) =
ϕ̃(Ŷ1, . . . , ŶN ), whence E[ϕ(Y1, . . . , YN)] = E[ϕ̃(Ŷ1, . . . , ŶN )]. Using finally the
exchangeability of (Ŷ1, . . . , ŶN), we deduce the equality E[ϕ(Y1, . . . , YN)] =
E[ϕ(Ŷ1, . . . , ŶN )]. This completes the proof. �

APPENDIX B: SOLUTIONS TO A SDE ASSOCIATED TO WEAK
SOLUTIONS OF A PDE

Here, we extend a result of Figalli [10], Theorem 2.6.

PROPOSITION B.1. Let α : [0,∞) ×R
3 �→M3×3(R) and β : [0,∞) ×R

3 �→
R

3 be measurable and satisfy ‖α(t, x)‖ ≤ ρ(t)(1 + |x|2) and |β(t, x)| ≤ ρ(t)(1 +
|x|) for some ρ ∈ L1

loc([0,∞)). Consider (μt )t≥0 ∈ L∞
loc([0,∞),P2(R

3)), weak
solution to

∂tμt = −
3∑

k=1

∂xk

(
β(t)μt

)+ 1

2

3∑
k,l=1

∂xkxl

(
αkl(t)μt

)
.(B.1)

There exists, on some probability space, a μ0-distributed random variable X0,
independent of a d-dimensional Brownian motion (Bt )t≥0 and a solution (Xt)t≥0
to

Xt = X0 +
∫ t

0
β(s,Xs) ds +

∫ t

0

(
α(s,Xs)

)1/2
dBs,(B.2)

which furthermore satisfies that L(Xt) = μt for all t ≥ 0.

We follow the proof of [10], which concerns the case where α and β are
bounded.

PROOF OF PROPOSITION B.1. It suffices to prove the result when ρ ≡ 1. In-
deed, consider, in the general case, the time change h(t) = ∫ t

0 (1 + ρ(s)) ds, its
inverse function g(t) = h−1(t) and set μ̄t := μg(t). Then (μ̄t )t≥0 still belongs to
L∞

loc([0,∞),P2(R
3)) and solves (B.1) with α and β replaced by

ᾱ(t, x) = (
1 + ρ

(
g(t)

))−1
α
(
g(t), x

)
and β̄(t, x) = (

1 + ρ
(
g(t)

))−1
β
(
g(t), x

)
.

These functions satisfy ‖ᾱ(t, x)‖ ≤ 1 + |x|2 and |β̄(t, x)| ≤ 1 + |x|. Thus, if we
have proved the result when ρ ≡ 1, we can find a solution (X̄t )t≥0 to X̄t = X̄0 +∫ t

0 β̄(s, X̄s) ds + ∫ t
0 (ᾱ(s, X̄s))

1/2 dBs and such that L(X̄t ) = μ̄t . It is then not hard
to see that Xt := X̄h(t) satisfies L(Xt) = μt and solves Xt = X0 +∫ t

0 β(s,Xs) ds +



3648 N. FOURNIER AND M. HAURAY

∫ t
0 (α(s,Xs))

1/2 dWs , where Wt = ∫ h(t)
0 (1 + ρ(g(s)))−1/2 dBs is still a Brownian

motion.
From now on, we thus assume that ‖α(t, x)‖ ≤ 1 + |x|2 and |β(t, x)| ≤ 1 + |x|

and we consider (μt )t≥0 as in the statement. We divide the proof in several steps.
Step 1. We introduce φt (x) = (2πt)−d/2e−|x|2/(2t) and με

t := μt 
 φε(1+t). For
each t ≥ 0, με

t is a positive smooth function. Then (με
t )t≥0 solves (B.1) with α and

β replaced by

αε(t) := (α(t)μt ) 
 φε(1+t)

με
t

+ εId and βε(t) := (β(t)μt ) 
 φε(1+t)

με
t

.(B.3)

We now check that there is a constant C [not depending on ε ∈ (0, 1)] such that∣∣βε(t, x)
∣∣ ≤ C

(
1 +√

m2(μt ) + |x|) and
∥∥αε(t, x)

∥∥ ≤ C
(
1 + m2(μt ) + |x|2).

First, since β(t, x) ≤ 1 + |x|,
∣∣βε(t, x)

∣∣ ≤
∫
R3 |β(t, y)|φε(1+t)(x − y)μt(dy)∫

R3 φε(1+t)(x − y)μt (dy)

≤ 1 +
∫
R3 |y|φε(1+t)(x − y)μt(dy)∫
R3 φε(1+t)(x − y)μt (dy)

.

We next introduce R := √
2m2(μt ), for which μt(B(0,R)) ≥ 1/2, and write

∣∣βε(t, x)
∣∣ ≤ 1 + 2|x| + R +

∫
|y−x|≥|x|+R |y|φε(1+t)(x − y)μt(dy)∫

|y−x|≤|x|+R φε(1+t)(x − y)μt (dy)
.

But φε is radially symmetric and decreasing, so that∫
|y−x|≥|x|+R

|y|φε(1+t)(x − y)μt (dy) ≤ φε(1+t)

(|x| + R
)√

m2(μt )

and [observe that B(0,R) ⊂ B(x, |x| + R)]∫
|y−x|≤|x|+R

φε(1+t)(x − y)μt (dy) ≥ φε(1+t)

(|x| + R
)
μt

(
B
(
x, |x| + R

))

≥ φε(1+t)(|x| + R)

2
.

This gives∣∣βε(t, x)
∣∣ ≤ 1 + 2|x| + R + 2

√
m2(μt ) ≤ 1 + 2|x| + 4

√
m2(μt )

as desired. The very same arguments show that∥∥αε(t, x)
∥∥ ≤ 1 + (

2|x| + R
)2 + 2m2(μt ) ≤ 1 + 8|x|2 + 6m2(μt ).

Finally, it is easy to check that for all ε ∈ (0, 1), all T > 0, all R > 0,

sup
t∈[0,T ]

sup
|x|≤R

(∣∣Dαε(t, x)
∣∣+ ∣∣Dβε(t, x)

∣∣) < ∞.
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Step 2. The coefficient βε(t, ·) is locally Lipschitz continuous (locally uniformly
in time) and has at most linear growth, while αε(t, ·) is locally Lipschitz contin-
uous (locally uniformly in time) and has at most quadratic growth. Since further-
more αε(t, ·) is uniformly elliptic (for ε fixed), we can apply Lemma 2.2 and obtain
that (αε(t, ·))1/2 is also locally Lipschitz. It is thus classical that for a given initial
condition Xε

0 with law με
0 and a given Brownian motion (Bt )t≥0, there exists a

pathwise unique solution to

Xε
t = Xε

0 +
∫ t

0
βε(s,Xε

s

)
ds +

∫ t

0

(
αε(s,Xε

s

))1/2
dBs,(B.4)

which furthermore satisfies L(Xε
t ) = με

t , by uniqueness of the weak solution to
the PDE (B.1) with α and β replaced by αε and βε .

Step 3. Here, we check that the family {(Xε
t )t≥0, ε > 0} is tight. Since μ0

has only a moment of order two, we cannot directly apply the Kolmogorov
criterion and have to use another approximation procedure. For R > 0, we
consider (X

R,ε
t )t≥0 the pathwise unique solution to X

R,ε
t = Xε

01{|Xε
0|≤R} +∫ t

0 βε(s,XR,ε
s ) ds + ∫ t

0 (αε(s,XR,ε
s ))1/2 dBs .

Recall that sups∈[0,T ],ε∈(0,1)(|βε(s, x)|2 +‖αε(s, x)‖) ≤ CT (1+|x|2) by step 1.
It is thus completely standard to check, using the Kolmogorov criterion, that for
each R > 0, the family {(XR,ε

t )t≥0, ε > 0} is tight: for all A > 0, we can find
a compact subset K(R,A) of C([0,∞),R3) such that supε∈(0,1) Pr((XR,ε

t )t≥0 /∈
K(R,A)) ≤ 1/A.

But by pathwise uniqueness, we have that (Xε
t )t≥0 = (X

R,ε
t )t≥0 on the event

{|Xε
0| ≤ R}. And it holds that Pr(|Xε

0| > R) ≤ m2(με
0)/R2 ≤ (1 + m2(μ0))/R2.

Consequently,

sup
ε∈(0,1)

Pr
((

Xε
t

)
t≥0 /∈ K(R,A)

) ≤ 1

A
+ 1 + m2(μ0)

R2 .

Choosing KB = K(
√

2B(1 + m2(μ0)), 2B), we find that supε∈(0,1) Pr((Xε
t )t≥0 /∈

KB) ≤ 1/B , which ends the step.
Step 4. We thus can find a sequence εn ↘ 0 such that (X

εn
t )t≥0 goes in law (for

the uniform topology on compact time intervals) to some (Xt)t≥0. For all t ≥ 0, we
have L(Xt) = μt because L(X

εn
t ) = μ

εn
t → μt . It thus only remains to prove that

(Xt)t≥0 solves (B.2). By the theory of martingale problems, it suffices to prove
that for any 0 < s1 < · · · < sk < s < t , any ϕ1, . . . , ϕk ∈ Cb(R3), any ϕ ∈ C2

c (R3),
we have E[F(X)] = 0, where F : C([0,∞),R3) �→R is defined by

F(γ ) = ϕ1(γs1) · · ·ϕk(γsk
)

(
ϕ(γt ) − ϕ(γs)

−
∫ t

s

[
∇ϕ(γu) · β(u, γu) + 1

2

3∑
k,l=1

∂xkxl
ϕ(γu)αkl(u, γu)

]
du

)
.
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We also introduce some continuous functions α̃ : [0,∞) × R
3 �→ M3×3(R) and

β̃ : [0,∞) ×R
3 �→R

3 (that will be chosen later very close to α and β). We define
α̃ε and β̃ε defined exactly as in (B.3), but with α̃ and β̃ . We finally define F̃ (resp.,
Fε , resp., F̃ε) as F but with α̃ and β̃ (resp., αε and βε , resp., α̃ε and β̃ε) instead
of α and β .

We of course start from the identity E[Fεn(X
εn)] = 0, and write

∣∣E[F(X)
]∣∣ ≤ ∣∣E[F(X)

]−E
[
F̃(X)

]∣∣+ ∣∣E[F̃(X)
]−E

[
F̃
(
Xεn

)]∣∣
+ ∣∣E[F̃(

Xεn
)]−E

[
F̃εn

(
Xεn

)]∣∣
+ ∣∣E[F̃εn

(
Xεn

)]−E
[
Fεn

(
Xεn

)]∣∣.
First, since α̃ and β̃ are continuous, it easy to show that F̃ : C([0,∞),R3) �→
R is continuous (for the topology of uniform convergence on compact time
intervals) and bounded (recall that ϕ is compactly supported). Consequently,
limn |E[F̃(X)] −E[F̃(Xεn)]| = 0. Next, there is a constant C such that∣∣E[F(X)

]−E
[
F̃(X)

]∣∣
≤ C

∫ t

0
E
[∥∥α(u,Xu) − α̃(u,Xu)

∥∥+ ∣∣β(u,Xu) − β̃(u,Xu)
∣∣]du

= C

∫ t

0

∫
R3

[∥∥α(u, x) − α̃(u, x)
∥∥+ ∣∣β(u, x) − β̃(u, x)

∣∣]μu(dx) du.

Similarly,∣∣E[F̃εn

(
Xεn

)]−E
[
Fεn

(
Xεn

)]∣∣
≤ C

∫ t

0

∫
R3

(∥∥αεn(u, x) − α̃εn(u, x)
∥∥+ ∣∣βεn(u, x) − β̃εn(u, x)

∣∣)μεn
u (dx) du

≤ C

∫ t

0

∫
R3

( [(‖α(u) − α̃(u)‖μu + |β(u) − β̃(u)|μu) 
 φεn(1+u)](x)

μ
εn
u (x)

+ εn

)

× μεn
u (dx) du

≤ C

∫ t

0

∫
R3

∫
R3

(∥∥α(u, x) − α̃(u, x)
∥∥+ ∣∣β(u, x) − β̃(u, x)

∣∣)
× φεn(1+u)(y − x)μu(dx) dy du + Ctεn.

Using that φεn(1+u) has mass 1, we conclude that

lim sup
n

∣∣E[F̃εn

(
Xεn

)]−E
[
Fεn

(
Xεn

)]∣∣
≤ C

∫ t

0

∫
R3

[∥∥α(u, x) − α̃(u, x)
∥∥+ ∣∣β(u, x) − β̃(u, x)

∣∣]μu(dx) du.
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Finally,∣∣E[F̃(
Xεn

)]−E
[
F̃εn

(
Xεn

)]∣∣
≤ C

∫ t

0

∫
R3

(∥∥α̃(u, x) − α̃εn(u, x)
∥∥+ ∣∣β̃(u, x) − β̃εn(u, x)

∣∣)μεn
u (dx) du

≤ C

∫ t

0

∫
R3

(∥∥α̃(u, x) − α̃(u, y)
∥∥+ ∣∣β̃(u, x) − β̃(u, y)

∣∣)
× φεn(1+u)(y − x)dyμu(dx) du + Cεnt.

Since α̃ and β̃ are continuous, this clearly tends to 0 as n → ∞. All in all, we have
checked that

∣∣E[F(X)
]∣∣ ≤ C

∫ t

0

∫
R3

[∥∥α(u, x) − α̃(u, x)
∥∥+ ∣∣β(u, x) − β̃(u, x)

∣∣]μu(dx)du.

But this holds true for any choice of continuous functions α̃ and β̃ . And since
μs(dx) ds is a Radon measure, we can find α̃ and β̃ continuous and arbitrarily
close to α and β in L1([0, T ] ×R

3,μs(dx) ds). We conclude that |E[F(X)]| = 0
as desired. �

APPENDIX C: ENTROPY AND FISHER INFORMATION

In this section, we present a series of results involving the Boltzmann entropy
H and some fractional (or weighted) Fisher information I r and Iγ . They provide
key estimates in order to exploit the regularity of the objects we deal with.

C.1. Notation. For F ∈ P((R3)N) with a density (and a finite moment of
positive order for the entropy), the Boltzmann entropy H , the weighted Fisher in-
formation Iγ (for γ < 0) and the fractional Fisher information I r [for r ∈ (1/2, 1)]
of F are defined as

H(F) := 1

N

∫
(R3)N

F
(
vN )

log F
(
vN )

dvN,

Iγ (F ) := 1

N

∫
(R3)N

|∇γ F (vN)|2
F(vN)

dvN = 1

N

∫
(R3)N

∣∣∇γ log F
(
vN )∣∣2F

(
dvN )

,

I r(F N ) := 1

N

∫
(R3)N

|∇F(vN)|2r
2r

F (vN)2r−1 dvN = 1

N

∫
(R3)N

∣∣∇ log F
(
vN )∣∣2r

2rF
(
dvN )

,

with the notation vN = (v1, . . . , vN), where the differential operator ∇γ is the
weighted gradient

∇γ F
(
vN ) := (〈v1〉γ /2∇v1F

(
vN )

, . . . , 〈vn〉γ /2∇vnF
(
vN ))

,
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where 〈v〉 = (1 + |v|2)1/2 and where the norm | · |2r is the �2r norm on (R3)N

defined by

∣∣vN
∣∣2r
2r :=

N∑
i=1

|vi |2r .

If F ∈ P((R3)N) has no density, we simply put H(F) = +∞. If F ∈ P((R3)N)

has no density or if its density has no gradient, we put Iγ (F ) = I r(F ) = +∞. The
somewhat unusual normalization by 1/N is made in order that for any f ∈ P(R3),

H
(
f ⊗N ) = H(f ), Iγ

(
f ⊗N ) = Iγ (f ) and I r(f ⊗N ) = I r(f ).

Recall finally that the moment of order q is defined, for any F ∈ Psym((R3)N), by

mq(F ) :=
∫

(R3)N
|v1|qF

(
dvN )

.

C.2. First properties and estimates. We make use of the two following prop-
erties.

LEMMA C.1.

(i) For any q,λ ∈ (0,∞), there is a constant Cq,λ ∈ R such that for any N ≥ 1,
any F ∈ Pq((R3)N)

H(F) ≥ −Cq,λ − λmq(F ).

(ii) Consider the constant C = 1 + |C2,1| [with C2,1 introduced in (i)]. For any
f ∈ P2(R3), any measurable A ⊂R

3 with Lebesgue measure |A| < 1,

f (A) ≤ C + H(f ) + m2(f )

− log |A| .

In particular, |A| ≤ exp(−4(C + H(f ) + m2(f ))) implies that f (A) ≤ 1/4.

PROOF. The first estimate is classical. See the comments before [21], Lem-
ma 3.1, for a proof. To prove the second one, we decompose f as

f = f (A)f1 + (
1 − f (A)

)
f2 where f1 = 1A

f (A)
f and f2 = 1Ac

1 − f (A)
f.

The entropy of f may be rewritten as

H(f ) = f (A) log f (A) + (
1 − f (A)

)
log

(
1 − f (A)

)+ f (A)H(f1)

+ (
1 − f (A)

)
H(f2).
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Since m2(f2) ≤ (1 −f (A))−1m2(f ), the application of (i) (with q = 2 and λ = 1)
to f2 leads us to H(f2) ≥ −C2,1 − (1 − f (A))−1m2(f ). Since x log x ≥ −1/2 for
x ∈ [0, 1], we find

H(f ) ≥ −1 − (
1 − f (A)

)
C2,1 − m2(f ) + f (A)H(f1)

≥ −C − m2(f ) + f (A)H(f1).

But Supp f1 ⊂ A classically implies, by the Jensen inequality, that H(f1) ≥
− log |A|. Hence,

H(f ) ≥ −C − m2(f ) − f (A) log |A|.
The conclusion follows. �

We now state two useful properties of the fractional and weighted Fisher infor-
mation.

LEMMA C.2. Let γ < 0 and r ∈ (1/2, 1).

(i) The weighted and fractional Fisher information are super-additive: for all
N ≥ 1, all F ∈ Psym((R3)N), all k = 1, . . . ,N , denoting by Fk ∈ Psym((R3)k) the
k-marginal of F ,

I r(Fk) ≤ I r(F ) and Iγ (Fk) ≤ Iγ (F ).

(ii) The fractional Fisher information can be controlled by weighted Fisher in-

formation: for all N ≥ 1, all F ∈ Psym(R3N
),

I r(F ) ≤ Cq

(
Iγ (F )

)r(1 + mq(F )
)1−r with q := |γ |r

1 − r
.

PROOF. Since F is symmetric, we can write

I r(F ) =
∫

(R3)N

∣∣∇v1 log F
(
vN )∣∣2r

F
(
dvN )

and

Iγ (F ) =
∫

(R3)N
〈v1〉γ

∣∣∇v1 log F
(
vN )∣∣2F

(
dvN )

.

The super-additivity of the fractional Fisher information is a consequence of the
convexity of the function �r :R+∗ ×R

3 �→ R
+ defined by

�r(a, b) := |b|2r

a2r−1 .

Computing its Hessian matrix, we find

∇2�r(a, b) = 2r(2r − 1)|b|2r−2

a2r+1

⎛
⎝ |b|2 −ab∗

−ab
a2

2r − 1

(
I3 + (2r − 2)

bb∗

|b|2
)⎞
⎠

≥ 2r(2r − 1)|b|2r−2

a2r+1

⎛
⎝ |b|2 −ab∗

−ab a2 bb∗

|b|2

⎞
⎠ ,
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which is always nonnegative if 2r − 1 ≥ 0. Then, we have, for 1 ≤ k ≤ N , setting
vN

k = (v1, . . . , vk) and vN
N−k = (vk+1, . . . , vN), by the Jensen inequality,

|∇v1Fk(vN
k )|2r

Fk(vN
k )2r−1

= �r

(
Fk

(
vN

k

)
,∇v1Fk

(
vN

k

))
= �r

(∫
(R3)N−k

F
(
vN

k , vN
N−k

)
dvN

N−k,

∫
(R3)N

∇v1F
(
vN

k , vN
N−k

)
dvN

N−k

)

≤
∫

(R3)N−k
�r

(
F
(
vN

k , vN
N−k

)
,∇v1F

(
vN

k , vN
N−k

))
dvN

N−k

=
∫

(R3)N−k

|∇v1F(vN
k , vN

N−k)|2r

F (vN
k , vN

N−k)
2r−1

dvN
N−k.

Integrating this inequality in vN
k , we obtain I r(Fk) ≤ I r(F ). Choosing next r = 1,

multiplying the inequality by 〈v1〉γ and integrating in vN
k we obtain Iγ (Fk) ≤

Iγ (F ).
For the second point, we use the Hölder inequality:

I r(F ) =
∫

(R3)N

(∣∣∇v1 log F
(
vN )∣∣2r

F r(vN )〈v1〉γ r)(F 1−r(vN )〈v1〉−γ r)dvN

≤ [
Iγ (F )

]r(∫
(R3)N

〈v1〉−γ r/(1−r)F
(
dvN ))1−r

.

Recalling that q = |γ |r/(1 − r), the conclusion follows. �

We next establish some kind of Gagliardo–Nirenberg–Sobolev inequality in R
3

involving fractional and weighted Fisher informations.

LEMMA C.3. Let γ < 0. For any r ∈ (1/2, 1), for p := 3/(3 − 2r) and q :=
|γ |r/(1 − r), for any f ∈ P(R3),

‖f ‖Lp ≤ CrI
r(f ) ≤ Cr,γ

(
Iγ (f )

)r(1 + mq(f )
)1−r

.

PROOF. Using the Hölder inequality, we can write, for any p′ ∈ (0, 2r)

‖∇f ‖p′
Lp′ =

∫
R3

( |∇f |2r

f 2r−1

)p′/(2r)

f (2r−1)p′/(2r)

≤
(∫

R3

|∇f |2r

f 2r−1

)p′/(2r)(∫
R3

f (2r−1)p′/(2r−p′)
)2r−p′/(2r)

,

whence

‖∇f ‖
Lp′ ≤ (

I r(f )
)1/2r‖f ‖1−1/2r

L(2r−1)p′/(2r−p′) .
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Together with the Gagliardo–Nirenberg–Sobolev inequality, it comes, with 1/p =
1/p′ − 1/3 (which is well defined since p′ < 2)

‖f ‖Lp ≤ Cp′‖∇f ‖
Lp′ ≤ Cp′

(
I r(f )

)1/2r‖f ‖1−1/2r

L(2r−1)p′/(2r−q)
.

This inequality becomes really interesting when p = (2r − 1)p′/(2r − p′), which
leads to the choice p′ = 3/[2(2 − r)]. It that case p = 3/(3 − 2r) and we find

‖f ‖Lp ≤ CrI
r(f ).

Using finally Lemma C.2(ii) completes the proof. �

We deduce that pairs of particles of which the law has a finite weighted Fisher
information are not too close.

LEMMA C.4. Let γ < 0. Consider F ∈ P(R3 × R
3) and (X1,X2) a F -

distributed random variable. For any κ ∈ (0, 2) and any q > |γ |max{1, κ/(2−κ)},
there exists Cκ,q such that, with r := q/(q − γ ) ∈ (1/2, 1),

E
(|X1 −X2|−κ) =

∫
R3×R3

F(dx1, dx2)

|x1 − x2|κ ≤ Cκ,q

[(
Iγ (F )

)r(1 + mq(F )
)1−r + 1

]
.

PROOF. We introduce the unitary linear transformation � : R3 ×R
3 �→ R

3 ×
R

3 defined by

�(x1, x2) = 1√
2
(x1 − x2, x1 + x2) =: (y1, y2).

Let F̃ := F ◦ �−1 and f̃ the first marginal of F̃ [f̃ is the law of 2−1/2(X1 −X2)].
A simple substitution shows that I r(F̃ ) ≤ CrI

r(F ) for some constant Cr . Next, we
cannot apply Lemma C.2(i) because F̃ is not symmetric, but we obviously have
I r(f̃ ) ≤ 2I r(F̃ ). We now write

∫
R3×R3

F(x1, x2)

|x1 − x2|κ dx1 dx2 = 2κ/2
∫
R3×R3

F̃ (y1, y2)

|y1|κ dy1 dy2 = 2κ/2
∫
R3

f̃ (y)

|y|κ dy,

which is smaller than Cκ,p(1 + ‖f̃ ‖Lp) by (1.4), with p := 3(q − γ )/(q − 3γ ) >

3/(3 − κ) (thanks to our condition on q). We then use Lemma C.3 [we have p =
3/(3 − 2r)] to get∫

R3×R3

F(x1, x2)

|x1 − x2|κ dx1 dx2 ≤ Cκ,q

(
1 + I r(f̃ )

) ≤ Cκ,q

(
1 + I r(F )

)
.

Lemma C.2(ii) [observe that q = |γ |r/(1 − r)] allows us to conclude. �
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C.3. Many-particle weighted Fisher information. We finally need a result
showing that if the particle distribution of the N -particle system has a uniformly
bounded weighted Fisher information, then any limit point of the associated em-
pirical measure has finite expected weighted Fisher information. Such a result is
a consequence of some representation identities for level-3 functionals as first ob-
served by Robinson–Ruelle in [32] for the entropy in a somewhat different set-
ting. Recently in [21], this kind of representation identity has been extended to the
Fisher information. The proof is mainly based on the De Finetti–Hewitt–Savage
representation theorem [6, 22] (see also [21]). Unfortunately, we cannot apply di-
rectly the results of [21].

THEOREM C.5. Let γ < 0. Consider, for each N ≥ 2, a probability measure
F N ∈ Psym((R3)N). For j ≥ 1, denote by F N

j ∈ P((R3)j ) the j th marginal of

F N . Assume that there exists a compatible sequence (πj ) of symmetric probability
measures on (R3)j so that F N

j → πj in the weak sense of measures in P((R3)j ).

Denoting by π ∈ P(P(R3)) the probability measure associated to the sequence
(πj ) thanks to the De Finetti–Hewitt–Savage theorem, there holds∫

P(R3)
Iγ (f )π(df ) = sup

j≥1
Iγ (πj ) ≤ lim inf

N→∞ Iγ

(
F N )

.

The De Finetti–Hewitt–Savage theorem asserts that for a sequence (πj ) of sym-
metric probability measures on Ej (for some measurable space E), compatible in
the sense that the k-marginal of πj is πk for all 1 ≤ k ≤ j , there exists a unique
probability measure π ∈ P(P(E)) such that πj = ∫

P(E) f ⊗jπ(df ) for all j ≥ 1.
See, for instance, [21], Theorem 5.1.

COROLLARY C.6. Let γ < 0. Consider, for each N ≥ 2, a probability mea-
sure F N ∈ Psym((R3)N), and (XN

1 , . . . ,XN
N ) with law F N . Assume that μN :=

N−1 ∑N
1 δXN

i
goes in law to some (possibly random) μ ∈ P(R3). Then

E
[
Iγ (μ)

] ≤ lim inf
N→∞ Iγ

(
F N )

.

PROOF. Denote by π ∈ P(P(R3)) the law of μ and, for j ≥ 1, by πj =∫
P(E) f ⊗jπ(df ). The corollary immediately follows from Theorem C.5 once we

have checked that for all j ≥ 1, F N
j goes weakly to πj . But this is an easy and

classical consequence of the fact that μN goes in law to μ; see, for example, Sznit-
man [36], I-Proposition 2.2 and Remark 2.3 or [21], Lemma 2.8. �

Theorem C.5 is a consequence of [21], Lemma 5.6, and of the following series
of properties.



ON THE LANDAU EQUATION 3657

LEMMA C.7. Let γ < 0. The weighted Fisher information satisfies the follow-
ing properties:

(i) For any j ≥ 1, Iγ : P((R3)j ) →R∪ {+∞} is nonnegative, convex, proper
and lower semi-continuous for the weak convergence.

(ii) For all j ≥ 1, all f ∈ P(R3), Iγ (f ⊗j ) = Iγ (f ).
(iii) For all F ∈ Psym((R3)j ), all �,n ≥ 1 with j = �+n, there holds jIγ (F ) ≥

�Iγ (F�) + nIγ (Fn), where F� ∈P((R3)�) stands for the �-marginal of F .
(iv) The functional Iγ : P(P(R3)) →R∪ {∞} defined by

Iγ (π) := sup
j≥1

Iγ (πj ) where πj :=
∫
P(R3)

f ⊗jπ(df ) ∈ P
((
R

3)j )

is affine in the following sense. For any π ∈ P(P(R3)) and any partition of P(R3)

by some sets ωi , 1 ≤ i ≤ M , such that ωi is an open set in R
3 \ (ω1 ∪ · · · ∪ ωi−1)

for any 1 ≤ i ≤ M − 1 and π(ωi) > 0 for any 1 ≤ i ≤ M , defining

αi := π(ωi) and γ i := 1

αi

1ωi
π ∈ P

(
P
(
R

3))
so that

π = α1γ 1 + · · · + αMγ M and α1 + · · · + αM = 1,

there holds

Iγ (π) = α1Iγ

(
γ 1)+ · · · + αMIγ

(
γ M)

.

PROOF. We only sketch the proof, which is roughly an adaptation to the
weighted case of the proof of [21], Lemma 5.10.

Step 1. We first prove point (i). Let us present an alternative expression of the
weighted Fisher information: for F ∈ P((R3)j ), it holds that

Iγ (G) := 1

j
sup

ψ∈C1
c ((R3)j )3j

{
−
∫

(R3)j
divV ψF(dV ) −

j∑
i=1

∫ |ψi |2
4

〈vi〉−γ F
(
dV j )}.

Again, the right-hand side term is well defined in R because the function |ψ |2/4 −
divX ψ is continuous and bounded for any ψ ∈ C1

c ((R3)j )3j . We immediately de-
duce that Iγ is convex, lower semi-continuous and proper so that point (i) holds.

Step 2. Point (ii) is obvious from the definition of Iγ .
Step 3. We now prove (iii), reproducing the proof of the same super-additivity

property established for the usual Fisher information in [21], Lemma 3.7. We de-
fine for any i ≤ j

ιi := iIγ (Fi) = sup
ψ∈C1

c ((R3)i )3i

{∫
(R3)i

(
∇V Fi · ψ − Fi

∑
j≤i

|ψj |2
4

〈vj 〉−γ

)}
,
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where the sup is taken on all ψ = (ψ1, . . . ,ψi), with all ψ� : (R3)i →R
3. We then

write the previous equality for ιj and restrict the supremum over all ψ such that
for some i ≤ j :

• the i first ψ� depend only on (v1, . . . , vi), with the notation ψi = (ψ1, . . . ,ψi),
• the j − i last ψ� depend only on (vi+1, . . . , vj ), with the notation ψj−i =

(ψi+1, . . . ,ψj ).
We then have the inequality

ιj ≥ sup
ψi,ψj−i

∫
(R3)j

[
∇iF · ψi + ∇j−iF · ψj−i

− F
1

4

(∑
�≤i

|ψ�|2〈v�〉−γ +∑
�>i

|ψ�|2〈v�〉−γ

)]

= sup
ψi∈C1

c ((R3)i )3i

∫
(R3)i

[
∇iFi · ψi − Fi

4

∑
�≤i

|ψ�|2〈v�〉−γ

]

+ sup
ψj−i∈C1

c ((R3)j−i )3(j−i)

∫
(R3)j−i

[
∇j−iGj−i · ψj−i − Fj−i

4

∑
�>i

|ψ�|2〈v�〉−γ

]

= ιi + ιj−i .

Step 3. We do not prove here the affine character of Iγ and refer to [21],
Lemma 5.10, where the same property for the usual Fisher information is checked:
the presence of the bounded weight does not raise any difficulty. �
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[30] PARDOUX, E. and RĂŞCANU, A. (2014). Stochastic Differential Equations, Backward
SDEs, Partial Differential Equations. Stochastic Modelling and Applied Probability 69.
Springer, Cham. MR3308895

[31] REVUZ, D. and YOR, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed.
Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin. MR1725357

http://www.ams.org/mathscinet-getitem?mr=2375067
http://www.ams.org/mathscinet-getitem?mr=2475665
http://www.ams.org/mathscinet-getitem?mr=2525721
http://www.ams.org/mathscinet-getitem?mr=2718931
http://www.ams.org/mathscinet-getitem?mr=2502525
http://www.ams.org/mathscinet-getitem?mr=3383341
http://www.ams.org/mathscinet-getitem?mr=3254330
http://www.ams.org/mathscinet-getitem?mr=0791288
http://www.ams.org/mathscinet-getitem?mr=0752258
http://arxiv.org/abs/1412.0146
http://www.ams.org/mathscinet-getitem?mr=3377068
http://www.ams.org/mathscinet-getitem?mr=3188710
http://www.ams.org/mathscinet-getitem?mr=0076206
http://www.ams.org/mathscinet-getitem?mr=0084985
http://www.ams.org/mathscinet-getitem?mr=1431299
http://www.ams.org/mathscinet-getitem?mr=2765750
http://www.ams.org/mathscinet-getitem?mr=3069113
http://www.ams.org/mathscinet-getitem?mr=3304746
http://www.ams.org/mathscinet-getitem?mr=0839794
http://www.ams.org/mathscinet-getitem?mr=0933829
http://www.ams.org/mathscinet-getitem?mr=3308895
http://www.ams.org/mathscinet-getitem?mr=1725357


3660 N. FOURNIER AND M. HAURAY

[32] ROBINSON, D. W. and RUELLE, D. (1967). Mean entropy of states in classical statistical
mechanics. Comm. Math. Phys. 5 288–300. MR0225553

[33] ROSENTHAL, H. P. (1970). On the subspaces of Lp(p > 2) spanned by sequences of indepen-
dent random variables. Israel J. Math. 8 273–303. MR0271721

[34] STROOCK, D. W. and VARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes.
Grundlehren der Mathematischen Wissenschaften 233. Springer, Berlin. MR0532498

[35] SZNITMAN, A.-S. (1984). Équations de type de Boltzmann, spatialement homogènes.
Z. Wahrsch. Verw. Gebiete 66 559–592. MR0753814

[36] SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In École d’Été de Probabilités
de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin.
MR1108185

[37] TANAKA, H. (1978/79). Probabilistic treatment of the Boltzmann equation of Maxwellian
molecules. Z. Wahrsch. Verw. Gebiete 46 67–105. MR0512334

[38] VILLANI, C. (1998). On a new class of weak solutions to the spatially homogeneous Boltzmann
and Landau equations. Arch. Ration. Mech. Anal. 143 273–307. MR1650006

[39] VILLANI, C. (2002). A review of mathematical topics in collisional kinetic theory. In Hand-
book of Mathematical Fluid Dynamics, Vol. I 71–305. North-Holland, Amsterdam.
MR1942465

[40] VILLANI, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58.
Amer. Math. Soc., Providence, RI. MR1964483

LABORATOIRE DE PROBABILITÉS

ET MODÈLES ALÉATOIRES

UMR 7599, UPMC, CASE 188
4 PL. JUSSIEU

F-75252 PARIS CEDEX 5
FRANCE

E-MAIL: nicolas.fournier@upmc.fr

INSTITUT DE MATHÉMATIQUES DE MARSEILLE

UMR 7353, UNIVERSITÉ D’AIX-MARSEILLE

39 RUE F. JOLIOT CURIE

F-13453 MARSEILLE CEDEX 13
FRANCE

E-MAIL: maxime.hauray@univ-amu.fr

http://www.ams.org/mathscinet-getitem?mr=0225553
http://www.ams.org/mathscinet-getitem?mr=0271721
http://www.ams.org/mathscinet-getitem?mr=0532498
http://www.ams.org/mathscinet-getitem?mr=0753814
http://www.ams.org/mathscinet-getitem?mr=1108185
http://www.ams.org/mathscinet-getitem?mr=0512334
http://www.ams.org/mathscinet-getitem?mr=1650006
http://www.ams.org/mathscinet-getitem?mr=1942465
http://www.ams.org/mathscinet-getitem?mr=1964483
mailto:nicolas.fournier@upmc.fr
mailto:maxime.hauray@univ-amu.fr

	Introduction and main results
	The Landau equation
	Some notation
	Well-posedness and strong/weak stability
	Entropy dissipation and a priori bounds
	The particle system
	A convergence result with rate for gammain(-1,0)
	Trajectories
	A convergence result without rate
	Comments
	Plan of the paper
	Final notation

	First regularity estimates and well-posedness of the nonlinear SDE
	Ellipticity
	Rough regularity estimates and well-posedness of the particle system
	Regularity estimates for the nonlinear SDE
	Well-posedness of the nonlinear SDE

	Fine regularity estimates and strong/weak stability principles
	Main ideas of the proof of Theorem 1.4
	Fine regularity estimates
	Strong/weak stability principles

	Moment estimates for the particle system
	Chaos with rate
	The coupling
	Preliminaries
	On the L2 norm of the blob limit empirical measure
	Computation of the mean squared error
	Conclusion

	More ellipticity estimates
	Chaos without rate
	Deﬁnition of a perturbed system
	Regularity estimate for the perturbed particle system
	Some more estimates
	Tightness for the perturbed particle system
	Propagation of chaos for the perturbed system
	Asymptotic annihilation of the perturbation
	Conclusion

	Appendix A: A coupling result
	Appendix B: Solutions to a SDE associated to weak solutions of a PDE
	Appendix C: Entropy and Fisher information
	Notation
	First properties and estimates
	Many-particle weighted Fisher information

	References
	Author's Addresses

