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ON LARGE DEVIATIONS OF COUPLED DIFFUSIONS
WITH TIME SCALE SEPARATION

BY ANATOLII A. PUHALSKII

Institute for Problems in Information Transmission (IITP)

We consider two Itô equations that evolve on different time scales. The
equations are fully coupled in the sense that all of the coefficients may de-
pend on both the “slow” and the “fast” variables and the diffusion terms may
be correlated. The diffusion term in the slow process is small. A large devi-
ation principle is obtained for the joint distribution of the slow process and
of the empirical process of the fast variable. By projecting on the slow and
fast variables, we arrive at new results on large deviations in the averaging
framework and on large deviations of the empirical measures of ergodic dif-
fusions, respectively. The proof relies on the property that an exponentially
tight sequence of probability measures on a metric space is large deviation
relatively compact. The identification of the large deviation rate function is
accomplished by analyzing the large deviation limit of an exponential mar-
tingale.

1. Introduction. Consider the coupled diffusions specified by the stochastic
differential equations

dXε
t = A

(
Xε

t , x
ε
t

)
dt + √

εB
(
Xε
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ε
t

)
dWε

t ,
(1.1)
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)
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ε
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)
dWε

t ,

where ε > 0 is a small parameter. Here, A(u,x), where u ∈ R
n and x ∈ R

l , is an
n-vector, B(u, x) is an n × k-matrix, a(u, x) is an l-vector, b(u, x) is an l × k-
matrix, and Wε = (Wε

t , t ∈ R+) is an R
k-valued standard Wiener process. Ac-

cordingly, the stochastic process Xε = (Xε
t , t ∈ R+) takes values in R

n and the
stochastic process xε = (xε

t , t ∈ R+) takes values in R
l . The processes Xε and xε

are seen to evolve on different time scales in that time for xε is accelerated by a
factor of 1/ε. In a number of application areas, one is concerned with finding the
logarithmic asymptotics of large deviations for the “slow” process Xε as ε → 0,
which is usually expressed in the form of the large deviation principle (LDP). (As
a matter of fact, our interest in this setup has been aroused by an application to op-
timal portfolio selection.) When no diffusion term is present in the equation for the
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slow process, this sort of result is usually referred to as “the averaging principle;”
for contributions, see Freı̆dlin [17], Veretennikov [51, 53, 58, 59], Feng and Kurtz
[16], Section 11, and references therein. The results in the literature that obtain an
LDP and identify the large deviation rate function for Xε , with a nondegenerate
diffusion term being present in the first of equations (1.1), concern the time ho-
mogeneous case where the diffusion coefficient in the equation for the fast process
does not depend on the slow process, Veretennikov [55, 56, 59], Liptser [28], Feng
and Kurtz [16], Section 11. The latter restriction can be removed in the setting
of the averaging principle provided the state space of the fast process is compact,
Veretennikov [51, 57, 58].

A different perspective has been offered by Liptser [28] whose insight was to
consider the joint distribution of the slow process and of the empirical process as-
sociated with the fast variable. For the case where the processes Xε and xε are
one-dimensional, the coefficients a(u, x) and b(u, x) do not depend on the first
variable and the Wiener processes driving the diffusions can be taken independent,
they derived an LDP for the pair (Xε,με) and identified the associated large devi-
ation rate function, where με represents the empirical process associated with xε

t .
The large deviation principle for the slow process then follows by projection.

In this paper, we extend the joint LDP in Liptser [28] to the multidimensional
case. It is assumed that the process dimensions are arbitrary and that all coeffi-
cients may depend on both variables in a continuous fashion, on the time variable
in a measurable fashion, and on ε. The diffusions driving the slow and the fast
processes do not have to be uncorrelated. We obtain an LDP for the distribution of
(Xε,με) and produce the large deviation rate function. Projections on the first and
second coordinates yield LDPs for Xε and με , respectively.

For the time-homogeneous case, the continuity and nondegeneracy conditions
on the coefficients are similar to those in the literature, except that additional
smoothness properties are assumed of b(u, x) as a function of x, as it is done in
Liptser [28]. In return, we obtain that the probability measures for which the large
deviation rate function is finite must have weakly differentiable densities whose
square roots belong to the Sobolev space W

1,2(Rl). In particular, additional in-
sight is gained into the LDP for the empirical measures of ergodic diffusion pro-
cesses. On the other hand, the ergodicity requirements on the fast process in the
nongradiental case are more restrictive than those in some of the literature.

Also, this contribution fills in the gaps in the study of the LDP for Xε by tackling
a case of fully coupled diffusions in a noncompact state space. In addition, the
coefficients may depend on the time variable explicitly. The results cover both the
setup with a nondegenerate diffusion term and the setup with no diffusion term in
the equation for the slow process. The form of the large deviation rate function for
the slow process is new.

As in Liptser [28], an important part in our approach is played by the prop-
erty that exponential tightness implies large deviation relative compactness so that
once exponential tightness has been shown, establishing that a large deviation limit
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point is unique concludes an LDP proof. Liptser [28] identifies the large deviation
rate function by evaluating limits of the probabilities that the process in question
resides in small balls. We use a different device. The general idea is to consider a
characterisation of stochastic processes that admits taking the large deviation limit.
Such a characterisation may be the property that a certain process be a martingale,
it may also arise out of the description of the process dynamic. The large devia-
tion rate function is identified by the limiting relation; cf. Puhalskii [39, 40, 42],
Puhalskii and Vladimirov [43]. In this paper, similar to Puhalskii [39, 40], the large
deviation limit is taken in an exponential martingale problem that has the distribu-
tion of (Xε,με) as a solution. We then undertake a study of the limit equation. On
the one hand, regularity properties of solutions are investigated. That analysis has
much in common with and uses the results and methods of the regularity theory of
elliptic partial differential equations. On the other hand, the domain of the validity
of the equation is expanded. Put together, those tools enable us to show that the
equation has a unique solution and to identify that solution.

The rest of the paper is organized as follows. In Section 2, the main results are
stated, their implications are discussed, and earlier contributions are given a more
detailed consideration. Section 3 outlines the proof strategy. It is implemented in
Sections 4–8. The proof is completed in Section 9. Thanks to constraints on the size
of the publication, some pieces of reasoning are either omitted or merely outlined.
More detail can be found in Puhalskii [41].

We conclude the Introduction by giving a list of notation and conventions
adopted in the paper. The blackboard bold font is reserved for topological spaces,
the boldface font is used for entities associated with probability. Vectors are treated
as column vectors. The Euclidean length of vector x = (x1, . . . , xd) from R

d ,
where d ∈ N, is denoted by |x|, T stands for the transpose of a matrix or a vector.
For matrix A, ‖A‖ denotes the operator norm and A⊕ denotes the Moore–Penrose
pseudoinverse, if A is square then tr(A) represents the trace of A. Given positive
definite symmetric matrix � and matrix z of a suitable dimension, which may be a
vector, we define ‖z‖2

� = zT �z. Derivatives are understood as weak, or Sobolev,
derivatives. For the definitions and basic properties, the reader is referred either
to Adams and Fournier [1] or to Gilbarg and Trudinger [21]. For an R-valued
function f on R

d , Df denotes the gradient and D2f denotes the Hessian matrix
of f . If f assumes its values in R

d1 , then Df is the d × d1-matrix with entries
∂fi/∂xj and divf represents the divergence of f , where d1 ∈ N. The divergence
of a matrix is computed rowwise. Subscripts may be added to indicate that dif-
ferentiation is carried out with respect to a specific variable. For instance, for
an R-valued function f (t, u, x), where u = (u1, . . . , ud) and x = (x1, . . . , xd1),
Dxf and Duf refer to gradients in the third and the second variables, respec-
tively, D2

uuf is the matrix with entries ∂2f/∂ui ∂uj , D2
xxf is the matrix with

entries ∂2f/∂xi ∂xj , and D2
uxf is the matrix with entries ∂2f/∂ui ∂xj . If q > 1,
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we will denote by q ′ the conjugate: q ′ = q/(q − 1). We use standard notation
for spaces of differentiable functions, for example, C1,2(ϒ) denotes the space
of R-valued functions that are continuously differentiable once in the first vari-
able and twice in the second variable over a domain ϒ in R

d , C1,2
0 (ϒ) is the

subspace of C1,2(ϒ) of functions of compact support, C1
0(ϒ) is the space of con-

tinuously differentiable functions of compact support, and C
∞
0 (ϒ) is the space

of infinitely differentiable functions of compact support. Given a measurable
function c(x) on ϒ with values in the set of positive definite symmetric d × d-
matrices and an R+-valued measurable function m(x) on ϒ , we will denote
by L

2(ϒ,Rd, c(x),m(x) dx) the Hilbert space of R
d -valued measurable func-

tions on ϒ with the norm ‖f ‖c(·),m(·) = (
∫
ϒ ‖f (x)‖2

c(x)m(x) dx)1/2. If c(x) is

the identity matrix, the notation will be shortened to L
2(ϒ,Rd,m(x) dx) and

to L
2(ϒ,Rd) if, in addition, m(x) = 1. Spaces L

2(ϒ,m(x)dx) and L
2(ϒ) are

defined similarly and consist of R-valued functions. Space L
2(ϒ,Rd,μ(dx))

is defined via integration with respect to measure μ. Also, standard notation
for Sobolev spaces is adhered to, for example, W1,2(ϒ) is the Hilbert space of
R-valued functions f that possess the first Sobolev derivatives with the norm
‖f ‖W1,2(ϒ) = ‖f ‖L2(ϒ) + ‖Df ‖L2(ϒ,Rd ). The local version of a function space,

for example, W1,2
loc (ϒ), consists of functions whose products with arbitrary C

∞
0 -

functions belong to that space, that is, W1,2(ϒ) in this case, and is endowed with
the weakest topology under which the mappings that associate with functions such
products are continuous. We let W1,2(ϒ,m(x)dx) denote the set of functions f ∈
W

1,1
loc (ϒ) such that f ∈ L

2(ϒ,m(x)dx) and Df ∈ L
2(ϒ,Rd,m(x) dx) equipped

with the norm ‖f ‖W1,2(ϒ,m(x)dx) = ‖f ‖L2(ϒ,m(x)dx) + ‖Df ‖L2(ϒ,Rd ,m(x)dx) and
let H1,2(ϒ,m(x)dx) denote the completion of the set of functions from C

∞(ϒ)

having finite W
1,2(ϒ,m(x)dx)-norms with respect to ‖ · ‖W1,2(ϒ,m(x)dx). Ob-

viously, H1,2(ϒ,m(x)dx) ⊂ W
1,2(ϒ,m(x)dx). Spaces W

1,2(ϒ, c(x),m(x) dx)

and H
1,2(ϒ, c(x),m(x) dx) are defined similarly. We let L

1,2
0 (ϒ,Rd, c(x),

m(x)dx) represent the closure of the set of the gradients of functions from
C

∞
0 (ϒ) in L

2(ϒ,Rd, c(x),m(x) dx). The space of continuous functions on R+
with values in a metric space S is denoted by C(R+,S). It is endowed with the
compact-open topology. If function X = (Xs, s ∈ R+) from C(R+,Rd) is abso-
lutely continuous with respect to Lebesgue measure, Ẋs denotes its derivative at
s. We let M(Rd) [resp., M1(R

d)] represent the set of finite (resp., probability)
measures on R

d endowed with the weak topology (see, e.g., Topsøe [50]); P(Rd)

denotes the set of probability densities m(x) on R
d such that m ∈ W

1,1
loc (R

d) and√
m ∈ W

1,2(Rd). Topological spaces are equipped with Borel σ -algebras, except
for R+ which is equipped with the Lebesgue σ -algebra, products of topological
spaces are equipped with product topologies, and products of measurable spaces
are equipped with product σ -algebras. The “overbar” notation is reserved for the
closures of sets, 1� denotes the indicator function of set �, 
a� stands for the inte-
ger part of real number a, a ∧ b = min(a, b), a ∨ b = max(a, b), and a+ = a ∨ 0.
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Notation U ⊂⊂ V , where U and V are open subsets of Rd , is to signify that the
closure of U is a compact subset of V . Throughout, the conventions that inf∅ = ∞
and 0/0 = 0 are adopted. The terms “absolutely continuous,” “a.e.,” “almost all”
refer to Lebesgue measure unless specified otherwise. All suprema in the time
variable are understood as essential suprema with respect to Lebesgue measure.

We say that a net of probability measures Pε , where ε > 0, defined on metric
space S obeys the large deviation principle (LDP) with (tight) large deviation (rate)
function I for rate 1/ε as ε → 0 if I is a function from S to [0,∞] such that
the sets {z ∈ S : I(z) ≤ δ} are compact for all δ ∈ R+, lim infε→0 ε ln Pε(G) ≥
− infz∈G I(z) for all open sets G ⊂ S, and lim supε→0 ε ln Pε(F ) ≤ − infz∈F I(z)
for all closed sets F ⊂ S. We say that the net Pε is exponentially tight for rate 1/ε
if infK lim supε→0(P

ε(S\K))ε = 0 where K ranges over the collection of compact
subsets of S.

2. Main results. We will consider a time nonhomogeneous version of (1.1)
in which the coefficients may depend on ε as well:

dXε
t = Aε

t

(
Xε

t , x
ε
t

)
dt + √

εBε
t

(
Xε

t , x
ε
t

)
dWε

t ,(2.1a)

dxε
t = 1

ε
aε
t

(
Xε

t , x
ε
t

)
dt + 1√

ε
bεt

(
Xε

t , x
ε
t

)
dWε

t .(2.1b)

As above, Aε
t (u, x) is an n-vector, Bε

t (u, x) is an n × k-matrix, aε
t (u, x) is an

l-vector, bεt (u, x) is an l × k-matrix, and Wε = (Wε
t , t ∈ R+) is an R

k-valued
standard Wiener process. The stochastic process Xε = (Xε

t , t ∈ R+) takes values in
R

n and the stochastic process xε = (xε
t , t ∈ R+) takes values in R

l . We assume that
the functions Aε

t (u, x), a
ε
t (u, x), B

ε
t (u, x), and bεt (u, x) are measurable and locally

bounded in (t, u, x) and are such that the equations (2.1a) and (2.1b) admit weak
solution (Xε, xε) with trajectories in C(R+,Rn × R

l) for every initial condition
(Xε

0, x
ε
0). More specifically, we assume that there exists complete probability space

(	ε,Fε,Pε) with filtration Fε = (Fε
t , t ∈ R+) such that (Wε

t , t ∈R+) is a Wiener
process relative to Fε , the processes Xε = (Xε

t , t ∈ R+) and xε = (xε
t , t ∈R+) are

Fε-adapted, have continuous trajectories, and the relations (2.1a) and (2.1b) hold
for all t ∈ R+ Pε-a.s. (To ensure uniqueness which we do not assume apriori, one
may require, in addition to the above hypotheses, that the coefficients be Lipschitz
continuous.) For background information, see Ethier and Kurtz [15], Ikeda and
Watanabe [24], Stroock and Varadhan [49]. We note that since the dimensions n,
k, and l are arbitrary, the assumption that both Xε and xε are driven by the same
Wiener process does not constitute a loss of generality.

Let us denote Cε
t (u, x) = Bε

t (u, x)B
ε
t (u, x)

T and cεt (u, x) = bεt (u, x)b
ε
t (u, x)

T .
We introduce the boundedness and growth conditions that for all N > 0 and t > 0

lim sup
ε→0

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn:|u|≤N

∥∥cεs (u, x)∥∥ < ∞,(2.2a)
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lim sup
ε→0

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn:|u|≤N

∣∣Aε
s(u, x)

∣∣ < ∞,(2.2b)

lim sup
ε→0

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn

uT Aε
s (u, x)

1 + |u|2 < ∞(2.2c)

and

lim sup
ε→0

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn

‖Cε
s (u, x)‖

1 + |u|2 < ∞.(2.2d)

We also assume as given “limit coefficients”: At(u, x) is an n-vector, Bt(u, x)

is an n × k-matrix, at (u, x) is an l-vector, and bt (u, x) is an l × k-matrix. Let
Ct(u, x) = Bt(u, x)Bt(u, x)

T and ct (u, x) = bt (u, x)bt (u, x)
T . The following reg-

ularity properties will be needed.

CONDITION 2.1. The functions At(u, x), Bt(u, x), and bt (u, x) are measur-
able and are bounded locally in (t, u) and globally in x and are continuous in
(u, x), the function at (u, x) is measurable and locally bounded in (t, u, x) and is
Lipschitz continuous in x locally uniformly in (t, u), the functions at (u, x) and
ct (u, x) are continuous in u locally uniformly in t and uniformly in x, ct (u, x) is
of class C1 in x, with the first partial derivatives being bounded and Lipschitz con-
tinuous in x locally uniformly in (t, u), and divx ct (u, x) is continuous in (u, x).

Another set of regularity requirements is furnished by the next condition. We
introduce

Gt(u, x) = Bt(u, x)bt (u, x)
T .(2.3)

CONDITION 2.2. The matrix ct (u, x) is positive definite uniformly in x and
locally uniformly in (t, u). Either Ct(u, x) = 0 for all (t, u, x) and At(u, x) is
locally Lipschitz continuous in u locally uniformly in t and uniformly in x, or the
matrix Ct(u, x) − Gt(u, x)ct (u, x)

−1Gt(u, x)
T is positive definite uniformly in x

and locally uniformly in (t, u).

Finally, certain stability properties will be required: for all N > 0 and t > 0,

lim
M→∞ lim sup

ε→0
sup

s∈[0,t]
sup

x∈Rl :|x|≥M

sup
u∈Rn:|u|≤N

aε
s (u, x)

T x

|x| = −∞(2.4a)

and

lim|x|→∞ sup
s∈[0,t]

sup
u∈Rn:|u|≤N

as(u, x)
T x

|x| = −∞.(2.4b)

Let C↑(R+,M(Rl)) represent the subset of C(R+,M(Rl)) of functions μ =
(μt , t ∈ R+) such that μt −μs is an element of M(Rl) for t ≥ s and μt(R

l) = t . It
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is endowed with the subspace topology and is a complete separable metric space,
being closed in C(R+,M(Rl)). The stochastic process με = (με

t , t ∈ R+), where

με
t (
) =

∫ t

0
1


(
xε
s

)
ds,

for 
 ∈ B(Rl), is a random element of C↑(R+,M(Rl)). We will regard (Xε,με)

as a random element of C(R+,Rn) × C↑(R+,M(Rl)). It is worth noting that the
elements of C↑(R+,M(Rl)) can be also regarded as σ -finite measures on R+×R

l .
We will then use notation μ(dt, dx) for μ.

Let � represent the set of (X,μ) such that the function X = (Xs, s ∈ R+) from
C(R+,Rn) is absolutely continuous with respect to Lebesgue measure on R+ and
the function μ = (μs, s ∈ R+) from C↑(R+,M(Rl)), when considered as a mea-
sure on R+ × R

l , is absolutely continuous with respect to Lebesgue measure on
R+ × R

l , that is, μ(ds, dx) = ms(x) dx ds, where ms(x), as a function of x, be-
longs to P(Rl) for almost all s. Given (X,μ) ∈ �, we define

I′(X,μ) =
∫ ∞

0
sup
λ∈Rn

(
λT

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)

− 1

2
‖λ‖2∫

Rl Cs(Xs,x)ms(x) dx

+ sup
h∈C1

0(R
l )

∫
Rl

(
Dh(x)T

(
1

2
divx

(
cs(Xs, x)ms(x)

)
(2.5)

− (
as(Xs, x)+ Gs(Xs, x)

T λ
)
ms(x)

)

− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
dx

)
ds.

We let I′(X,μ) = ∞ if (X,μ) /∈ �. It follows, on letting λ = 0, that if I′(X,μ) <

∞, then∫ t

0
sup

h∈C1
0(R

l )

∫
Rl

(
Dh(x)T

(
1

2
divx

(
cs(Xs, x)ms(x)

)

− as(Xs, x)ms(x)

)
− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
dx ds < ∞,

which is seen to imply [cf. (8.22) below], that for all λ ∈ R
n,∫ t

0
sup

h∈C1
0(R

l )

∫
Rl

(
Dh(x)T

(
1

2
divx

(
cs(Xs, x)ms(x)

)

− (
as(Xs, x)+ Gs(Xs, x)

T λ
)
ms(x)

)
− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
dx ds

< ∞.
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We introduce the following convergence condition.

CONDITION 2.3. If I′(X,μ) < ∞, then there exists a nonincreasing [0,1]-
valued C

1
0(R+)-function η(y) such that η(y) = 1 for y ∈ [0,1], η(y) = 0 for y ≥ 2,

and ∫ 2

1

|Dη(y)|2
1 − η(y)

dy < ∞,(2.6)

and, for arbitrary t ∈ R+ and λ ∈ R
n,

lim
r→∞

∫ t

0
sup

h∈C1
0(R

l )

∫
Rl

(
Dh(x)T

(
1

2
divx

(
cs(Xs, x)ms(x)

) − (
as(Xs, x)

+ Gs(Xs, x)
T λ

)
ms(x)

)
− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
η2

( |x|
r

)
dx ds

=
∫ t

0
sup

h∈C1
0(R

l )

∫
Rl

(
Dh(x)T

(
1

2
divx

(
cs(Xs, x)ms(x)

)

−(
as(Xs, x)+ Gs(Xs, x)

T λ
)
ms(x)

)
− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
dx ds,

where ms(x) = μ(ds, dx)/(ds dx).

We note that (2.6) is satisfied if η(y) = 1 − e−1/(y−1) in a right neighbor-
hood of 1. By Theorem 6.1 below, if I′(X,μ) < ∞ then

∫ t
0
∫
Rl |Dxms(x)|2/

ms(x) dx ds < ∞. Therefore, if∫ t

0

∫
Rl

∣∣as(Xs, x)
∣∣2ms(x) dx ds < ∞,(2.7)

then, assuming Condition 2.1 holds, Condition 2.3 is fulfilled. The next lemma,
whose proof is relegated to the Appendix, shows that the square integrability
in (2.7) holds if one requires that either a stronger version of the stability con-
dition (2.4b) hold or that the drift of the fast process be gradiental.

LEMMA 2.1. Let Conditions 2.1 and 2.2 hold. Suppose that I′(X,μ) < ∞.
Let either

lim sup
|x|→∞

sup
s∈[0,t]

as(Xs, x)
T x

|x|2 < 0(2.8)

or there exist real-valued function âs(x) which belongs to W
1,q
loc (R

l) in x, where
q > 2 and q ≥ l, such that

cs(Xs, x)
−1(

as(Xs, x)− 1
2 divx cs(Xs, x)

) = Dxâs(x).(2.9)

Then (2.7) holds, where ms(x) = μ(ds, dx)/(dx ds).
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We state the main result.

THEOREM 2.1. Let (2.2a)–(2.2d), (2.4a), (2.4b) and Conditions 2.1, 2.2
and 2.3 hold. If the net Xε

0 obeys the LDP in R
n with large deviation function I0

for rate 1/ε as ε → 0, the net xε
0 is exponentially tight in R

l for rate 1/ε as ε → 0,
and, for all t > 0 and N > 0, the convergences

lim
ε→0

sup
s∈[0,t]

sup
x∈Rl :|x|≤N

sup
u∈Rn:|u|≤N

(∣∣Aε
s(u, x)− As(u, x)

∣∣
+ ∣∣aε

s (u, x)− as(u, x)
∣∣ + ∥∥Bε

s (u, x)− Bs(u, x)
∥∥(2.10)

+ ∥∥bεs (u, x)− bs(u, x)
∥∥) = 0

hold, then the net (Xε,με) obeys the LDP in C(R+,Rn) × C↑(R+,M(Rl)) for
rate 1/ε as ε → 0 with large deviation function I defined as follows:

I(X,μ) =
{

I0(X0) + I′(X,μ), if (X,μ) ∈ �,

∞, otherwise.

REMARK 2.1. Condition 2.3 may be superfluous as far as the validity of The-
orem 2.1 is concerned. It is used at the final stage of the proof only; see Theo-
rem 8.1.

REMARK 2.2. By Lemma 6.7 below, I(X,μ) = 0 provided that a.e.

Ẋs =
∫
Rl

As(Xs, x)ms(x) dx

and ∫
Rl

(
1

2
tr

(
cs(Xs, x)D

2p(x)
) + Dp(x)T as(Xs, x)

)
ms(x) dx = 0,

where the latter equation holds for all p ∈ C
∞
0 (Rl) and X0 satisfies the equality

I0(X0) = 0. Consequently, ms(·) is the invariant density of the diffusion process
with the infinitesimal drift as(Xs, ·) and diffusion matrix cs(Xs, ·).

REMARK 2.3. Conditions 2.1 and (2.10) imply that

lim sup
ε→0

sup
s∈[0,t]

sup
x∈Rl :|x|≤N

sup
u∈Rn:|u|≤N

∣∣aε
s (u, x)

∣∣ < ∞.(2.11)

Conditions (2.2a)–(2.2d) and (2.10) imply that

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn:|u|≤N

∥∥cs(u, x)∥∥ < ∞,(2.12a)

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn:|u|≤N

∣∣As(u, x)
∣∣ < ∞,(2.12b)

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn

uT As(u, x)

1 + |u|2 < ∞(2.12c)
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and

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn

‖Cs(u, x)‖
1 + |u|2 < ∞.(2.12d)

In particular, some of the boundedness requirements in Condition 2.1 are conse-
quences of the other hypotheses of Theorem 2.1.

REMARK 2.4. If the matrices ct (u, x) and Ct(u, x) are positive definite uni-
formly in x and locally uniformly in (t, u), then since bt (u, x)

T ct (u, x)
−1bt (u, x)

is the orthogonal projection operator onto the range of bt (u, x)
T , the condition

that Ct(u, x) − Gt(u, x)ct (u, x)
−1Gt(u, x)

T be positive definite uniformly in x

and locally uniformly in (t, u) is implied by the following “angle condition”: for
any bounded region of (t, u), there exists 
 ∈ (0,1) such that |yT

1 y2| ≤ 
|y1||y2|
for all y1 and y2 from the ranges of Bt(u, x)

T and bt (u, x)
T , respectively, where

x is arbitrary and (t, u) belongs to the region. To put it another way, the condi-
tion requires that the angles between the elements of the range of Bt(u, x)

T , on
the one hand, and the elements of the range of bt (u, x)

T , on the other hand, be
bounded away from zero uniformly in x and locally uniformly in (t, u). It en-
sures that the processes Xε and xε are “sufficiently random” in relation to each
other. Under that condition, the ranges of Bt(u, x)

T and bt (u, x)
T do not have

common nontrivial subspaces and k ≥ n + l. On the other hand, if ‖Ct(u, x)‖
is bounded uniformly in x and locally uniformly in (t, u), as is the case under
the hypotheses of Theorem 2.1 according to (2.12d), the converse is also true:
if Ct(u, x) − Gt(u, x)ct (u, x)

−1Gt(u, x)
T is positive definite uniformly in x and

locally uniformly in (t, u), then the angle condition holds.

The solution of the variational problem in (2.5) plays an important part in the
proof below, so we proceed with describing it. Let c(x) represent a measurable
function defined for x ∈ R

d and taking values in the space of positive definite
symmetric d × d-matrices, let m(x) represent a probability density on R

d , and
let Si represent an open ball of radius i centered at the origin in R

d , where
d ∈ N and i ∈ N. For function ψj ∈ L

1,2
0 (Sj ,R

d, c(x),m(x) dx) and j ≥ i,
where j ∈ N, we let πjiψj denote the orthogonal projection of the restric-
tion of ψj to Si onto L

1,2
0 (Si,R

d, c(x),m(x) dx) in L
2(Si,R

d, c(x),m(x) dx).

Thus, the function πjiψj is the element of L
1,2
0 (Si,R

d, c(x),m(x) dx) such
that

∫
Si
Dp(x)T c(x)πjiψj (x)m(x)dx = ∫

Si
Dp(x)T c(x)ψj (x)m(x)dx for all

p ∈ C
∞
0 (Si). We note that if the density m(x) is locally bounded away from

zero, then πjiψj is a certain gradient: πjiψj = Dχji , where χji is the weak
solution of the Dirichlet problem div(c(x)m(x)Dχji(x)) = div(c(x)m(x)ψj (x))

for x ∈ Si with a zero boundary condition (cf. the proof of Lemma 7.3). Since,
for i ≤ j ≤ k, πji ◦ πkj = πki , the family (L

1,2
0 (Sj ,R

d, c(x),m(x) dx),πji)

is a projective (or inverse) system in the category of sets. Given a function
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φ ∈ L
2
loc(R

d,Rd, c(x),m(x) dx), the orthogonal projections φi of the restric-

tions of φ to Si onto L
1,2
0 (Si,R

d, c(x),m(x) dx) in L
2(Si,R

d, c(x),m(x) dx)

are such that πjiφj = φi , provided i ≤ j , so they specify an element of the
projective (or inverse) limit of (L

1,2
0 (Sj ,R

d, c(x),m(x) dx),πji), which we de-
note by �c(·),m(·)φ. On extending the φi by zero outside of Si , one has that,
for i ≤ j , ‖φj‖2

c(·),m(·) − ‖φi‖2
c(·),m(·) = ‖φj − φi‖2

c(·),m(·), where the norms are

taken in R
d . Hence, if limi→∞ ‖φi‖2

c(·),m(·) < ∞, then the sequence φi converges

in L
2(Rd,Rd, c(x),m(x) dx) as i → ∞ and one can identify �c(·),m(·)φ with

the limit, so �c(·),m(·)φ ∈ L
2(Rd,Rd, c(x),m(x) dx). It is uniquely specified by

the requirements that �c(·),m(·)φ ∈ L
1,2
0 (Rd,Rd, c(x),m(x) dx) and that, for all

p ∈ C
∞
0 (Rd),∫

Rd
Dp(x)T c(x)�c(·),m(·)φ(x)m(x)dx =

∫
Rd

Dp(x)T c(x)φ(x)m(x)dx.(2.13)

In particular, if φ is an element of L2(Rd,Rd, c(x),m(x) dx), then �c(·),m(·)φ is
the orthogonal projection of φ onto L

1,2
0 (Rd,Rd, c(x),m(x) dx). For results on

the existence and uniqueness for equation (2.13) when �c(·),m(·)φ is a gradient;
see Pardoux and Veretennikov [35].

In the setting of Theorem 2.1, d = l. Since, under the hypotheses of Theo-
rem 2.1, the matrix functions ct (u, ·)−1Gt(u, ·)T are bounded, the matrix func-
tion �ct (u,·),m(·)(ct (u, ·)−1Gt(u, ·)T ), whose columns are the projections of the n

columns of ct (u, ·)−1Gt(u, ·)T onto the space L
1,2
0 (Rl ,Rl, ct (x),m(x) dx), is a

well defined element of the space L
2(Rl ,Rl×n, ct (u, x),m(x) dx) and we denote

it by �t,m(·),u. We also define

Qt,m(·)(u, x) = Ct(u, x) − ∥∥�t,m(·),u(x)
∥∥2
ct (u,x)

.(2.14)

The function Qt,m(·)(u, x) assumes values in the space of positive semi-definite
n × n-matrices. If the matrix Ct(u, x) − Gt(u, x)ct (u, x)

−1Gt(u, x)
T is pos-

itive definite uniformly in x and locally uniformly in (t, u), then the ma-
trix

∫
Rl Qt,m(·)(u, x)m(x)dx is positive definite locally uniformly in (t, u). We

also introduce �t,m(·),u = �ct (u,·),m(·)(ct (u, ·)−1(at (u, ·)− divx ct (u, ·)/2)). Since
at (u, ·) is not necessarily square integrable with respect to m(x)dx, the function
�ct (u,·),m(·)(ct (u, ·)−1(at (u, ·) − divx ct (u, ·)/2)), as a function of x ∈ R

l , might
not be an element of L2(Rl ,Rl, ct (u, x),m(x) dx).

For future reference, we note that, according to (2.13), a.e.,∫
Rl

Dp(x)T cs(u, x)�s,m(·),u(x)m(x)dx

(2.15a)
=

∫
Rl

Dp(x)T Gs(u, x)
T m(x)dx
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and, provided �s,m(·),u ∈ L
2(Rl ,Rl, cs(u, x),m(x) dx),∫

Rl
Dp(x)T cs(u, x)�s,m(·),u(x)m(x)dx

(2.15b)

=
∫
Rl

Dp(x)T
(
as(u, x)− 1

2
divx cs(u, x)

)
m(x)dx,

for all p ∈ C
∞
0 (Rl). In addition, (2.15a) extends to Dp representing an arbitrary

element of L
1,2
0 (Rl ,Rl, cs(u, x),m(x) dx). A similar extension property holds

for (2.15b), provided as(u, ·) ∈ L
2(Rl ,Rl , cs(u, x),m(x) dx).

PROPOSITION 2.1. If, under the hypotheses of Theorem 2.1, I′(X,μ) < ∞,
then �s,ms(·),Xs belongs to the space L

2(Rl ,Rl, cs(Xs, x),ms(x) dx) for almost
all s and

Ẋs −
∫
Rl

As(Xs, x)ms(x) dx

−
∫
Rl

Gs(Xs, x)

(
Dxms(x)

2ms(x)
− �s,ms(·),Xs (x)

)
ms(x) dx

belongs to the range of
∫
Rl Qs,ms(·)(Xs, x)ms(x) dx for almost all s. Furthermore,

�s,ms(·),Xs (x) and �s,ms(·),Xs (x) are measurable in (s, x) so that in the statement
of Theorem 2.1,

I(X,μ) = I0(X0) + 1

2

∫ ∞
0

(∫
Rl

∥∥∥∥Dxms(x)

2ms(x)
− �s,ms(·),Xs (x)

∥∥∥∥2

cs(Xs,x)

ms(x) dx

+
∥∥∥∥Ẋs −

∫
Rl

As(Xs, x)ms(x) dx −
∫
Rl

Gs(Xs, x)

(
Dxms(x)

2ms(x)
(2.16)

− �s,ms(·),Xs (x)

)
ms(x) dx

∥∥∥∥
2

(
∫
Rl Qs,ms (·)(Xs,x)ms(x) dx)⊕

)
ds.

REMARK 2.5. If m(x) is an element of W
1,1
loc (R

l), then Dm(x) = 0 for
almost all x on the set where m(x) = 0, so we will assume throughout that
Dm(x)/m(x) = 0 a.e. on that set.

REMARK 2.6. The expression on the right-hand side of (2.16) serves both
the case where Ct(u, x) = 0 for all (t, u, x) and At(u, x) is locally Lipschitz
continuous in u locally uniformly in t and uniformly in x, and the case where
Ct(u, x)−Gt(u, x)ct (u, x)

−1Gt(u, x)
T is positive definite uniformly in x and lo-

cally uniformly in (t, u). In each of the two cases, however, it simplifies as follows.
If Ct(u, x) = 0 for all (t, u, x) and At(u, x) is locally Lipschitz continuous in u
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locally uniformly in t and uniformly in x, then Qs,ms(·)(u, x) = 0 for all (s, u, x),
so, in order for I(X,μ) to be finite, it is necessary that, a.e.,

Ẋs =
∫
Rl

As(Xs, x)ms(x) dx

so that

I(X,μ) = I0(X0)
(2.17)

+ 1

2

∫ ∞
0

∫
Rl

∥∥∥∥Dxms(x)

2ms(x)
− �s,ms(·),Xs (x)

∥∥∥∥
2

cs(Xs,x)

ms(x) dx ds.

If Ct(u, x) − Gt(u, x)ct (u, x)
−1Gt(u, x)

T is positive definite uniformly in x and
locally uniformly in (t, u), then the matrix

∫
Rl Qs,ms(·)(Xs, x)ms(x) dx is invert-

ible, so its pseudo-inverse is the same as the inverse and the range condition in the
statement of Proposition 2.1 is superfluous.

REMARK 2.7. By Theorem 6.1, in order for I(X,μ) to be finite it is necessary
that

∫ t
0
∫
Rl (|Dxms(x)|2/ms(x) + |�s,ms(·),Xs (x)|2) dx ds < ∞ for all t ∈ R+.

REMARK 2.8. The large deviation function in (2.16) can also be written as

I(X,μ) = I0(X0) + 1

2

∫ ∞
0

∫
Rl

∣∣Bs(Xs, x)
T λ̂s + bs(Xs, x)

T ĝs(x)
∣∣2ms(x) dx ds,

where the pair (λ̂s, ĝs(x)) attains the supremum in (2.5), with ĝs assuming the role
of Dh:

λ̂s =
(∫

Rl
Qs,ms(·)(Xs, x)ms(x) dx

)⊕(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

−
∫
Rl

Gs(Xs, x)

(
Dxms(x)

2ms(x)
− �s,ms(·),Xs (x)

)
ms(x) dx

)

and

ĝs(x) = Dxms(x)

2ms(x)
− �s,ms(·),Xs (x) − �s,ms(·),Xs (x)λ̂s .

In the symmetric case where ct (u, x)
−1(2at (u, x) − divx ct (u, x)) = Dxm̂t (u,

x)/m̂t (u, x), for some positive probability density m̂t (u, ·) from W
1,1
loc (R

l), one
can identify �t,mt (·),u with Dxm̂t (u, ·)/(2m̂t (u, ·)). [We note that the diffusion
process with the infinitesimal drift coefficient at (u, ·) and diffusion matrix ct (u, ·)
has m̂t (u, ·) as an invariant density.] One can then write the large deviation function
in (2.17) by using a Dirichlet form:

I(X,μ) = I0(X0) + 1

2

∫ ∞
0

∫
Rl

∥∥∥∥Dx

√
ms(x)

m̂s(Xs, x)

∥∥∥∥
2

cs(Xs,x)

m̂s(Xs, x) dx ds,

provided Dxm̂t (u, ·)/m̂t (u, ·) ∈ L
2(Rl ,Rl, ct (x),mt(x) dx).
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Let us look at a one-dimensional example:

dXε
t = At

(
Xε

t , x
ε
t

)
dt + √

εBt

(
Xε

t , x
ε
t

)
dWε

1,t ,

dxε
t = 1

ε
at

(
Xε

t , x
ε
t

)
dt + 1√

ε
bt

(
Xε

t , x
ε
t

)
dWε

2,t ,

where all coefficients are scalars and Wε
1,t and Wε

2,t are one-dimensional stan-
dard Wiener processes. Assuming that Eε(Wε

1,tW
ε
2,t ) = ρt , where |ρ| < 1, this

setup can be cast as (2.1a) and (2.1b) with Wε
t = (Wε

1,t ,W
ε
3,t )

T , Bε
t (u, x) =

(Bt (u, x),0), and bεt (u, x) = (ρbt (u, x),

√
1 − ρ2bt (u, x)), where Wε

3,t represents
a standard one-dimensional Wiener process that is independent of Wε

1,t . If Bt(u, x)

is bounded away from zero, the large deviation function in (2.16) takes the form

I(X,μ)

= I0(X0) +
∫ ∞

0

(
1

8

∫
R

∣∣∣∣Dxms(x)

ms(x)
− Dxm̂s(Xs, x)

m̂s(Xs, x)

∣∣∣∣
2

bs(Xs, x)
2ms(x) dx

+ 1

2(1 − ρ2)

1∫
R
Bs(Xs, x)2ms(x) dx

∣∣∣∣Ẋs −
∫
R

As(Xs, x)ms(x) dx

− ρ

2

∫
R

Bs(Xs, x)bs(Xs, x)

(
Dxms(x)

ms(x)
− Dxm̂s(Xs, x)

m̂s(Xs, x)

)
ms(x) dx

∣∣∣∣
2)

ds.

If Bt(u, x) = 0, then according to (2.17),

I(X,μ) = I0(X0)

+ 1

8

∫ ∞
0

∫
R

∣∣∣∣Dxms(x)

ms(x)
− Dxm̂s(Xs, x)

m̂s(Xs, x)

∣∣∣∣
2

bs(Xs, x)
2ms(x) dx ds,

provided Ẋs = ∫
Rl As(Xs, x)ms(x) dx a.e. For the special case that As(u, x) and

Bs(u, x) do not depend on s, as(u, x) and bs(u, x) do not depend on either s or u,
and ρ = 0, this large deviation function appears in Liptser [28].

We now project to obtain an LDP for Xε . The device of Lemma 6.5 and the
minimax theorem (see, e.g., Theorem 7 on page 319 in Aubin and Ekeland [3])
yield the following expression for infμ I(X,μ).

COROLLARY 2.1. Under the hypotheses of Theorem 2.1, the net Xε obeys the
LDP in C(R+,Rn) for rate 1/ε as ε → 0 with large deviation function IX defined
as follows. If function X = (Xs, s ∈R+) from C(R+,Rn) is absolutely continuous
with respect to Lebesgue measure on R+, then

IX(X) = I0(X0) +
∫ ∞

0
sup
λ∈Rn

(
λT Ẋs − sup

m∈P(Rl )

(
λT

∫
Rl

As(Xs, x)m(x)dx

+ 1

2
‖λ‖2∫

Rl Cs(Xs,x)m(x)dx
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− sup
h∈C1

0(R
l )

∫
Rl

(
Dh(x)T

(
1

2
divx

(
cs(Xs, x)m(x)

)

− (
as(Xs, x)+ Gs(Xs, x)

T λ
)
m(x)

)

− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

m(x)

)
dx

))
ds.

Otherwise, IX(X) = ∞.

If Xε is decoupled from xε , that is, At(u, x) and Bt(u, x) do not depend
on x, then Corollary 2.1 yields the LDP for Itô processes with small diffusions
(cf. Freı̆dlin and Wentzell [18]): with As(u, x) = As(u), Bs(u, x) = Bs(u), and
Cs(u) = Bs(u)Bs(u)

T ,

IX(X) = I0(X0) +
∫ ∞

0

1

2

∥∥Ẋs − As(Xs)
∥∥2
Cs(Xs)⊕ ds,

provided Ẋs − As(Xs) belongs to the range of Cs(Xs) a.e. and IX(X) = ∞, oth-
erwise.

If one projects the LDP of Theorem 2.1 on the second variable, then an LDP
for με is obtained. In particular, if xε is decoupled from Xε so that at (u, x) and
bt (u, x) do not depend on u, we have the following results on the large deviations
of the empirical processes and empirical measures of diffusion processes.

COROLLARY 2.2. Suppose that

dx̃ε
t = 1

ε
ãε
t

(
x̃ε
t

)
dt + 1√

ε
b̃εt

(
x̃ε
t

)
dW̃ ε

t ,

where x̃ε
t ∈ R

l , ãε
t (x) ∈R

l , b̃εt (x) ∈ R
l×k , and W̃ ε

t ∈ R
k , with the coefficients being

locally bounded. Assume that, for all t ∈ R+,

lim sup
ε→0

sup
s∈[0,t]

sup
x∈Rl

∥∥b̃εs (x)b̃εs (x)T ∥∥ < ∞,

lim
M→∞ lim sup

ε→0
sup

s∈[0,t]
sup

x∈Rl :|x|≥M

ãε
s (x)

T x

|x| = −∞.

If, for all t ∈R+ and all N ∈ R+,

lim
ε→0

sup
s∈[0,t]

sup
x∈Rl :|x|≤N

(∣∣ãε
s (x) − ãs(x)

∣∣ + ∥∥b̃εs (x) − b̃s(x)
∥∥) = 0,

the matrix c̃t (x) = b̃t (x)b̃t (x)
T is positive definite uniformly in x and locally

uniformly in t , is of class C
1 in x, with the first partial derivatives being

Lipschitz continuous and bounded in x locally uniformly in t , ãt (x) is Lip-
schitz continuous in x locally uniformly in t , sups∈[0,t] supx∈Rl ‖c̃s(x)‖ < ∞,
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lim sup|x|→∞ sups∈[0,t] ãs(x)T x/|x|2 < 0 for all t ∈ R+, and the net xε
0 is expo-

nentially tight in R
l for rate 1/ε as ε → 0, then the net μ̃ε , where μ̃ε

t (dx) =∫ t
0 1dx(x̃

ε
s ) ds, obeys the LDP in C↑(R+,M(Rl)) for rate 1/ε as ε → 0 with large

deviation function J defined as follows.
If function μ = (μs, s ∈ R+) from C↑(R+,M(Rl)), when considered as a mea-

sure on R+ × R
l , is absolutely continuous with respect to Lebesgue measure on

R+ × R
l , that is, μ(ds, dx) = ms(x) dx ds, ms(x), as a function of x, belongs to

P(Rl) for almost all s, and �̃s,ms(·), which represents �c̃s(·),ms(·)(c̃s(·)−1(ãs(·) −
divx c̃s(·)/2)), is an element of L2(Rl ,Rl , c̃s(x),ms(x) dx) for almost all s, then

J(μ) =
∫ ∞

0
sup

h∈C1
0(R

l )

∫
Rl

(
Dh(x)T

(
1

2
divx

(
c̃s(x)ms(x)

) − ãs(x)ms(x)

)

− 1

2

∥∥Dh(x)
∥∥2
c̃s (x)

ms(x)

)
dx ds

= 1

2

∫ ∞
0

∫
Rl

∥∥∥∥Dxms(x)

2ms(x)
− �̃s,ms(·)(x)

∥∥∥∥
2

c̃s (x)

ms(x) dx ds.

Otherwise, J(μ) = ∞.

COROLLARY 2.3. Suppose that

dYt = ă(Yt ) dt + b̆(Yt ) dW̆t , Y0 = 0,

where Yt ∈ R
l , ă(x) ∈ R

l , b̆(x) ∈ R
l×k , and W̆t ∈ R

k , with the coefficients being
locally bounded.

If the matrix c̆(x) = b̆(x)b̆(x)T is uniformly positive definite, ‖c̆(x)‖ is bounded,
c̆(·) ∈ C

1(Rl ,Rł×l), with Lipschitz continuous bounded first partial derivatives,
ă(·) is Lipschitz continuous, and lim sup|x|→∞ ă(x)T x/|x|2 < 0, then the empir-
ical measures (1/t)

∫ t
0 1dx(Ys) ds obey the LDP in M1(R

l) for rate t as t → ∞
with the large deviation function

J̆(μ) = sup
h∈C1

0(R
l )

∫
Rl

(
Dh(x)T

(
1

2
div

(
c̆(x)m(x)

) − ă(x)m(x)

)

− 1

2

∥∥Dh(x)
∥∥2
c̆(x)m(x)

)
dx

= 1

2

∫
Rl

∥∥∥∥Dm(x)

2m(x)
− �̆m(·)(x)

∥∥∥∥
2

c̆(x)

m(x) dx

provided probability measure μ on R
l has density m, which is an element

of P(Rl), and �̆m(·) = �c̆(·),m(·)(c̆(·)−1(ă(·) − div c̆(·)/2)) is an element of
L

2(Rl ,Rl, c̆(x),m(x) dx). Otherwise, J̆(μ) = ∞.



LARGE DEVIATIONS OF COUPLED DIFFUSIONS 3127

In order to derive Corollary 2.3 from Corollary 2.2, one takes ε = 1/t and de-
fines x̃ε

s = Yst .
One can thus write the large deviation function of Theorem 2.1 as

I(X,μ) = I0(X0) +
∫ ∞

0
sup
λ∈Rn

(
λT

(
Ẋs −

∫
Rl

As(Xs, x)νs(dx)

)
(2.18)

− 1

2
‖λ‖2∫

Rl Cs(Xs,x)νs(dx)
+ Js,Xs,λ(νs)

)
ds,

where νs(dx) = ms(x) dx, and the large deviation function of Corollary 2.1 as

IX(X) = I0(X0) +
∫ ∞

0
sup
λ∈Rn

(
λT Ẋs − sup

ν∈M1(R
l )

(
λT

∫
Rl

As(Xs, x)ν(dx)

(2.19)

+ 1

2
‖λ‖2∫

Rl Cs(Xs,x)ν(dx)
− Js,Xs,λ(ν)

))
ds,

where Js,u,λ represents the large deviation function for the empirical measures
ν
s,u,λ
t (dx) = (1/t)

∫ t
0 1dx(y

s,u,λ
r ) dr for rate t as t → ∞ and

dy
s,u,λ
t = (

as
(
u,y

s,u,λ
t

) + Gs

(
u,y

s,u,λ
t

)T
λ
)
dt + bs

(
u,y

s,u,λ
t

)
dwt , y

s,u,λ
0 = 0,

(wt ) being a k-dimensional standard Wiener process. In particular, if Gt(u, x) = 0
so that the diffusions driving the slow and the fast processes are virtually uncor-
related, then Js,u,λ does not depend on λ and by Corollaries 2.2, 2.3 and (2.18)
the large deviation function I(X,μ) is the sum of the large deviation function of
the slow process, with the coefficients being averaged over the “current” empirical
measure of the fast variable, and of the large deviation function of the empirical
process of the fast variable, with the coefficients “frozen” at the current value of
the slow variable.

The first results on large deviation asymptotics for the system (1.1) in the setup
of the averaging principle available in the literature appear in Freı̆dlin [17]; see also
the exposition in Freı̆dlin and Wentzell [18], Section 9 of Chapter 7. Freı̆dlin [17]
considers the equations

ẋε
t = b

(
xε
t , y

ε
t

)
,

ẏε
t = 1

ε

[
B

(
xε
t , y

ε
t

) + g
(
yε
t

)] + 1√
ε
c
(
yε
t

)
ẇt .

It is assumed that the state space is a compact manifold. A noncompact setting is
considered by Veretennikov [53]. Veretennikov [51, 57, 58] allows the diffusion
coefficient in the fast process to depend on both variables:

dXε
t = f

(
Xε

t , Y
ε
t

)
dt,

dY ε
t = ε−2B

(
Xε

t , Y
ε
t

)
dt + ε−1C

(
Xε

t , Y
ε
t

)
dWt .

The state space of the fast process is a compact manifold.
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Veretennikov [55, 56, 59] tackles the case where the slow process has a small
diffusion term and the state space of the fast process may be noncompact but the
diffusion coefficient in the equation for the fast process does not depend on the
slow process so that

dXε
t = f

(
Xε

t , Y
ε
t

)
dt + ε

(
σ1

(
Xε

t , Y
ε
t

)
dW 1

t + σ3
(
Xε

t , Y
ε
t

)
dW 3

t

)
,

(2.20)
dY ε

t = ε−2B
(
Xε

t , Y
ε
t

)
dt + ε−1(

C1
(
Y ε
t

)
dW 1

t + C2
(
Y ε
t

)
dW 2

t

)
,

where the Wiener processes are independent. The stability condition on the slow
process is similar to (2.4a) and (2.4b).

In those papers, results on the LDP for the slow processes are obtained in the
space of continuous functions on the [0,L] interval endowed with uniform norm,
where L> 0. The large deviation rate functions are of the form

I(X) =
∫ L

0
sup
λ

(
λT Ẋt − H(Xt, λ)

)
dt,

provided Xt, t ∈ [0,L], is an absolutely continuous function with a suitable initial
condition. Otherwise, I(X) = ∞. Here, with the notation of (2.20),

H(u,λ) = lim
t→∞

1

t
ln E exp

(∫ t

0

(
λT f

(
u,yu,λ

s

) + 1

2
λT (

σ1σ
T
1

(
u,yu,λ

s

)
(2.21)

+ σ3σ
T
3

(
u,yu,λ

s

))
λ

)
ds

)
,

where

dy
u,λ
t = (

B
(
u,y

u,λ
t

) + C1
(
y
u,λ
t

)
σ1

(
u,y

u,λ
t

)T
λ
)
dt + (

C1
(
Y

u,λ
t

)
dW 1

t

+ C2
(
Y

u,λ
t

)
dW 2

t

)
, y

u,λ
0 = 0.

Let us note that if one assumes the LDP at rate t as t → ∞ of the empirical mea-
sures νu,λ

t (dx) = (1/t)
∫ t

0 1dx(y
u,λ
s ) ds with large deviation rate function Ju,λ, then

in view of Varadhan’s lemma and (2.21), under suitable assumptions,

H(u,λ) = sup
ν∈M1(R

l )

(∫
Rl

(
λT f (u, x)

+ 1

2
λT (

σ1σ
T
1 (u, x)+ σ3σ

T
3 (u, x)

)
λ

)
ν(dx) − Ju,λ(ν)

)
,

which is consistent with (2.19).
Section 11.6 of Feng and Kurtz [16] is concerned with the process Xε satis-

fying equations (1.1). Conditions for the LDP to hold are obtained. They require
the existence of functions with certain properties and are not easily translated into
conditions on the coefficients. When the authors give explicit conditions on the co-
efficients, they need, in particular, b(u, x) not to depend on u (see Lemma 11.60 on
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page 278). The large deviation rate function is identified as having the form (2.19)
corresponding to the time-homogeneous setting, provided B(u, x)b(u, x)T = 0
and certain additional hypotheses hold (see Theorem 11.6.5 on page 282). The
authors choose not to pursue the setup of the averaging principle.

The LDP for the empirical measures of continuous-time Markov processes,
such as in Corollary 2.3, is a well-explored subject; see Donsker and Varadhan
[11, 12], Deuschel and Stroock [10]. The canonical form of the large deviation rate
function is supf

∫
Rl −Lf/f dμ, where L represents the infinitesimal generator of

the Markov process; see, for example, Theorem 4.2.43 in Deuschel and Stroock
[10]. The form in Corollary 2.3 follows by taking f (x) = e−h(x). Gärtner [19] and
Veretennikov [52] characterize the large deviation functions via limits similar to
that in (2.21), the latter author allowing discontinuous coefficients. Theorem 12.7
on page 291 of Feng and Kurtz [16] tackles associated empirical processes; cf.
Corollary 2.2.

3. Some generalities. This section contains general results on the LDP that
underlie the proof of Theorem 2.1; cf. Puhalskii [40]. Let � represent a directed
set, let Pσ , where σ ∈ �, represent a net of probability measures on a metric
space S indexed with the elements of � and let rσ represent an R+-valued func-
tion which tends to infinity as σ ∈ �. A [0,∞]-valued function I on S is referred
to as a large deviation function if the sets Kδ = {z ∈ S : I(z) ≤ δ} are compact for
all δ ∈ R+. We say that the net Pσ obeys the LDP with a large deviation function
I for rate rσ as σ ∈ � if lim infσ∈� r−1

σ ln Pσ (G) ≥ − infz∈G I(z) for all open sets
G ⊂ S and lim supσ∈� r−1

σ ln Pσ (F ) ≤ − infz∈F I(z) for all closed sets F ⊂ S. We
say that I is a large deviation (LD) limit point of Pσ for rate rσ if there exists a
subsequence σi , where i ∈ N, such that Pσi satisfies the LDP with I for rate rσi
as i → ∞. We say that the net Pσ is sequentially large deviation (LD) relatively
compact for rate rσ as σ ∈ � if any subsequence Pσi of Pσ contains a further
subsequence Pσij

which satisfies the LDP for rate rσij
with some large deviation

function as j → ∞. We say that the net Pσ is exponentially (or large deviation)
tight for rate rσ as σ ∈ � if for arbitrary κ > 0 there exists compact K ⊂ S such
that lim supσ∈� Pσ (S \ K)1/rσ < κ . We say that the net Pσ is sequentially expo-
nentially tight for rate rσ as σ ∈ � if any subsequence Pσi is exponentially tight
for rate rσi as i → ∞. We say that a net Yσ of random elements of S obeys the
LDP, respectively, is sequentially LD relatively compact, respectively, is exponen-
tially tight, respectively, is sequentially exponentially tight if the net of their laws
has the indicated property.

The cornerstone of our approach is the next result (Puhalskii [36, 37, 40, 44],
see also Feng and Kurtz [16] and references therein).

THEOREM 3.1. If the net Pσ is sequentially exponentially tight for rate rσ as
σ ∈ �, then the net Pσ is sequentially LD relatively compact for rate rσ as σ ∈ �.

The proof of the following theorem is standard.
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THEOREM 3.2. If the net Pσ is sequentially LD relatively compact for rate rσ
as σ ∈ � and I is a unique LD limit point of the Pσ , then the net Pσ satisfies the
LDP with I for rate rσ as σ ∈ �.

The next theorem is essentially Varadhan’s lemma; see, for example, Deuschel
and Stroock [10]. It will be used to obtain equations for LD limit points.

THEOREM 3.3. Suppose the net Pσ is sequentially exponentially tight for rate
rσ as σ ∈ � and let I represent an LD limit point of Pσ . Let Uσ be a net of uni-
formly bounded real valued functions on S such that

∫
S

exp(rσUσ (z))Pσ (dz) = 1.
If Uσ → U uniformly on compact sets as σ ∈ �, where the function U is continu-
ous, then supz∈S(U(z) − I(z)) = 0.

Identification of LD limit points will be carried out with the aid of the next
result.

THEOREM 3.4. Suppose I is a large deviation function on S and U is a col-
lection of functions on S such that supz∈S(U(z) − I(z)) = 0 for all U ∈ U . Let
I∗∗(z) = supU∈U U(z) and Kδ = {z ∈ S : I(z) ≤ δ}, where δ ∈R+.

1. Let Ũ represent a set of functions U such that supz∈Kδ
(U(z) − I(z)) = 0

for suitable δ ∈ R+. Suppose ẑ ∈ S is such that I∗∗(ẑ) = Û (ẑ) for some func-
tion Û ∈ Ũ . Suppose there exists sequence Ui ∈ Ũ with the following properties:
supz∈Kδ

(Ui(z) − I(z)) = 0 for some common δ, the functions Ui are continuous
when restricted to Kδ and if zi is a convergent sequence of elements of Kδ such that
Ui(zi) = I(zi), then Ui(zi) → Û (ẑ) and zi → ẑ as i → ∞. Then I(ẑ) = I∗∗(ẑ).

2. If for every z ∈ S such that I∗∗(z) < ∞ there exists a sequence of points zi
such that I(zi) = I∗∗(zi), zi → z, and I∗∗(zi) → I∗∗(z) as i → ∞, then I(z) =
I∗∗(z) for all z ∈ S.

PROOF. Let us first note that I(z) ≥ I∗∗(z) for all z, so, one needs to prove that
I(z) ≤ I∗∗(z) if I∗∗(z) < ∞. We prove part 1. Since supz∈Kδ

(Ui(z) − I(z)) = 0,
Kδ is compact, and Ui(z) − I(z) is upper semicontinuous when restricted to Kδ ,
there exist zi ∈ Kδ such that Ui(zi) = I(zi). One may assume that the sequence
converges. Since Ui(zi) → Û (ẑ), zi → ẑ and I is lower semicontinuous, Û (ẑ) ≥
I(ẑ), so I∗∗(ẑ) ≥ I(ẑ). The proof of part 2 is similar. �

In the rest of the paper, the above framework is used to prove Theorem 2.1. In
Section 4, LD relative compactness is established; see Theorem 4.1. In Section 5,
equations along the lines of Theorem 3.3 are derived; see Theorem 5.1. Section 6
is concerned with regularity properties of (X,μ) for which the function I∗∗ as
defined in Theorem 3.4 assumes finite values. It is also shown to be of the form
given in Proposition 2.1; see Theorem 6.1. In Theorem 7.1 of Section 7, the large
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deviation function is identified for a large class of (X,μ), which implements the
recipe of part 1 of Theorem 3.4. In Theorem 8.1 of Section 8, it is proved that that
class is dense in the sense of part 2 of Theorem 3.4. In Section 9, the proof of
Theorem 2.1 is completed.

4. LD relative compactness. The main result of this section is the following
theorem.

THEOREM 4.1. Suppose that conditions (2.2a)–(2.2d) and (2.4a) hold and
that the net (Xε

0, x
ε
0) is exponentially tight for rate 1/ε as ε → 0. Then the net

(Xε,με) is sequentially LD relatively compact in C(R+,Rn) × C↑(R+,M(Rl))

for rate 1/ε as ε → 0.

We precede the proof with a criterion of sequential LD relative compactness in
C(R+,M(Rl)). Let d(·, ·) represent the Lipschitz metric on M(Rl): d(μ̃, μ̂) =
sup{| ∫

Rl f (x)μ̃(dx) − ∫
Rl f (x)μ̂(dx)|}, with the supremum being taken over

functions f : Rl → R such that supx∈Rl |f (x)| ≤ 1 and supx,y∈Rl ,x �=y |f (x) −
f (y)|/|x − y| ≤ 1; see, for example, page 395 in Dudley [13]. The proof of the
next lemma is done in a standard fashion (cf., Billingsley [5], Chapter 2) and is
omitted.

LEMMA 4.1. 1. A net {νε, ε > 0}, where νε = (νε,t , t ∈ R+), of random ele-
ments of C(R+,M(Rl)) defined on respective probability spaces (	ε,Fε,Pε) is
sequentially exponentially tight for rate 1/ε as ε → 0 if and only if for all t ∈ R+
and all η > 0,

lim
N→∞ lim sup

ε→0
Pε

(
νε,t

(
x ∈ R

l : |x| >N
)
> η

)ε = 0

and

lim
δ→0

lim sup
ε→0

sup
s1∈[0,t]

Pε

(
sup

s2∈[s1,s1+δ]
d(νε,s1, νε,s2) > η

)ε = 0.

2. A net {Yε, ε > 0}, where Yε = (Yε,t , t ∈ R+), of random elements of C(R+,Rn)

defined on respective probability spaces (	ε,Fε,Pε) is sequentially exponentially
tight for rate 1/ε as ε → 0 if and only if

lim
N→∞ lim sup

ε→0
Pε

(|Yε,0| >N
)ε = 0

and, for all t ∈ R+ and all η > 0,

lim
δ→0

lim sup
ε→0

sup
s1∈[0,t]

Pε

(
sup

s2∈[s1,s1+δ]
|Yε,s2 − Yε,s1 | > η

)ε = 0.

REMARK 4.1. The form of the conditions is due to Feng and Kurtz [16].
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PROOF OF THEOREM 4.1. Since C(R+,Rn) × C↑(R+,M(Rl)) is a closed
subset of C(R+,Rn) × C(R+,M(Rl)) and Pε((Xε,με) ∈ C(R+,Rn) × C↑(R+,

M(Rl))) = 1, it is sufficient to prove that the net ((Xε,με), ε > 0) is sequentially
LD relatively compact in C(R+,Rn)×C(R+,M(Rl)). By Theorem 3.1, the latter
property holds if (Xε,με) is sequentially exponentially tight, which is the case if
the nets Xε and με are each sequentially exponentially tight.

We show that the net Xε is sequentially exponentially tight first. By (2.1a) and
Itô’s lemma, on denoting g1(x) = D2 ln(1 + |x|2),

ln
(
1 + ∣∣Xε

t

∣∣2)
= ln

(
1 + ∣∣Xε

0

∣∣2) +
∫ t

0

2(Xε
s )

T Aε
s (X

ε
s , x

ε
s )

1 + |Xε
s |2

ds

+ ε

2

∫ t

0
tr

(
Cε

s

(
Xε

s , x
ε
s

)
g1

(
Xε

s

))
ds + √

ε

∫ t

0

2(Xε
s )

T

1 + |Xε
s |2

Bε
s

(
Xε

s , x
ε
s

)
dWε

s .

Given N > 0, let τ ε
N = inf{s ∈ R+ : |Xε

s | ≥ N}. Since τ ε
N is an Fε-stopping time

and

exp
(

1√
ε

∫ t

0

2(Xε
s )

T

1 + |Xε
s |2

Bε
s

(
Xε

s , x
ε
s

)
dWε

s − 1

2ε

∫ t

0

∥∥∥∥ 2Xε
s

1 + |Xε
s |2

∥∥∥∥
2

Cε
s (X

ε
s ,x

ε
s )

ds

)
,

t ∈ R+,

is an Fε-local martingale,

Eε exp
(

1

ε
ln

(
1 + ∣∣Xε

t∧τ ε
N

∣∣2) − 1

ε
ln

(
1 + ∣∣Xε

0

∣∣2) − 1

ε

∫ t∧τ ε
N

0

2(Xε
s )

T Aε
s (X

ε
s , x

ε
s )

1 + |Xε
s |2

ds

− 1

2

∫ t∧τ ε
N

0
tr

(
Cε

s

(
Xε

s , x
ε
s

)
g1

(
Xε

s

))
ds(4.1)

− 1

2ε

∫ t∧τ ε
N

0

∥∥∥∥ 2Xε
s

1 + |Xε
s |2

∥∥∥∥
2

Cε
s (X

ε
s ,x

ε
s )

ds

)
≤ 1.

Since

tr
(
Cε

s

(
Xε

s , x
)
g1

(
Xε

s

)) ≤
√

trg1
(
Xε

s

)2
√

trCε
s

(
Xε

s , x
)2

(4.2)

≤ 2n
√
n
‖Cε

s (X
ε
s , x

ε
s )‖

1 + |Xε
s |2

,

on recalling (2.2c) and (2.2d), we have that there exists L > 0, which does not
depend either on t or on N , such that for all ε > 0 small enough,

Eε exp
(

1

ε
ln

(
1 + ∣∣Xε

t∧τ ε
N

∣∣2) − 1

ε
ln

(
1 + ∣∣Xε

0

∣∣2) − Lt

ε

)
≤ 1.
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For Ñ > 0,

Pε
(

sup
s∈[0,t]

∣∣Xε
s

∣∣ ≥ N
)

= Pε(∣∣Xε
t∧τ ε

N

∣∣ ≥ N
) ≤ Pε(∣∣Xε

0

∣∣ > Ñ
)

+ Eε exp
(

1

ε
ln

(
1 + ∣∣Xε

t∧τ ε
N

∣∣2) − 1

ε
ln

(
1 + N2))

1{|Xε
0|≤Ñ}

≤ Pε(∣∣Xε
0

∣∣ > Ñ
) + exp

(
1

ε
ln

(
1 + Ñ2) + Lt

ε
− 1

ε
ln

(
1 + N2))

,

so

lim sup
N→∞

lim sup
ε→0

Pε
(

sup
s∈[0,t]

∣∣Xε
s

∣∣ >N
)ε ≤ lim sup

ε→0
Pε(∣∣Xε

0

∣∣ > Ñ
)ε
.

Since Xε
0 is exponentially tight and Ñ is arbitrary, we conclude that

lim
N→∞ lim sup

ε→0
Pε

(
sup

s∈[0,t]
∣∣Xε

s

∣∣ >N
)ε = 0.(4.3)

By (2.1a), for s ∈ [0, t], δ > 0, and η > 0,

Pε
(

sup
s̃∈[s,s+δ]

∣∣Xε
s̃ − Xε

s

∣∣ > η
)

≤ Pε(τ ε
N ≤ t

) + Pε

(
sup

|u|≤N

sup
x∈Rl

∣∣Aε
s(u, x)

∣∣δ
+ √

ε sup
s̃∈[s,s+δ]

∣∣∣∣
∫ s̃∧τ ε

N

s∧τ ε
N

Bε
r

(
Xε

r , x
ε
r

)
dWε

r

∣∣∣∣ > η

)
.

Let ei , for i = 1,2, . . . , n, denote the ith unit vector of R
n. Thanks to (2.2b)

and (2.2d), for small enough δ and arbitrary α > 0, provided ε > 0 is small enough,
on using Doob’s inequality,

Pε
(

sup
s̃∈[s,s+δ]

∣∣Xε
s̃ − Xε

s

∣∣ > η
)

≤ Pε(τ ε
N ≤ t

) + Pε

(√
ε sup
s̃∈[s,s+δ]

∣∣∣∣
∫ s̃∧τ ε

N

s∧τ ε
N

Bε
r

(
Xε

r , x
ε
r

)
dWε

r

∣∣∣∣ > η

2

)

≤ Pε(τ ε
N ≤ t

) +
n∑

i=1

Pε

(√
ε sup
s̃∈[s,s+δ]

(
eTi

∫ s̃∧τ ε
N

s∧τ ε
N

Bε
r

(
Xε

r , x
ε
r

)
dWε

r

)
>

η

2n

)

≤ Pε(τ ε
N ≤ t

) +
n∑

i=1

Pε

(
sup

s̃∈[s,s+δ]
exp

(
α√
ε
eTi

∫ s̃∧τ ε
N

s∧τ ε
N

Bε
r

(
Xε

r , x
ε
r

)
dWε

r

− α2

2ε

∫ s̃∧τ ε
N

s∧τ ε
N

eTi C
ε
r

(
Xε

r , x
ε
r

)
ei dr

)
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> eαη/(2nε) exp
(
−α2δ

2ε
sup

r∈[0,t]
sup

|u|≤N

sup
x∈Rl

∥∥Cε
r (u, x)

∥∥))

≤ Pε
(

sup
s̃∈[0,t]

∣∣Xε
s̃

∣∣ ≥ N
)

+ ne−αη/(2nε) exp
(
α2δ

2ε
sup

r∈[0,t]
sup

|u|≤N

sup
x∈Rl

∥∥Cε
r (u, x)

∥∥)
.

By (2.2d), (4.3) and the fact that α can be chosen arbitrarily great,

lim sup
δ→0

lim sup
ε→0

sup
s∈[0,t]

Pε
(

sup
s̃∈[s,s+δ]

∣∣Xε
s̃ − Xε

s

∣∣ > η
)ε = 0.

The sequential exponential tightness of Xε follows from part 2 of Lemma 4.1.
We prove now that με is sequentially exponentially tight. Let f represent an

R-valued twice continuously differentiable function on R
l . By (2.1b) and Itô’s

lemma,

f
(
xε
t

) = f
(
xε

0
) + 1

ε

∫ t

0
Df

(
xε
s

)T
aε
s

(
Xε

s , x
ε
s

)
ds

+ 1

2ε

∫ t

0
tr

(
cεs

(
Xε

s , x
ε
s

)
D2f

(
xε
s

))
ds + 1√

ε

∫ t

0
Df

(
xε
s

)T
bεs

(
Xε

s , x
ε
s

)
dWε

s .

Therefore, on identifying με with measure με(dt, dx), we have that, in analogy
with (4.1),

Eε exp
(
f

(
xε
t∧τ ε

N

) − f
(
xε

0
) − 1

ε

∫ t∧τ ε
N

0

∫
Rl

Df (x)T aε
s

(
Xε

s , x
)
με(ds, dx)

− 1

2ε

∫ t∧τ ε
N

0

∫
Rl

tr
(
cεs

(
Xε

s , x
)
D2f (x)

)
με(ds, dx)

− 1

2ε

∫ t∧τ ε
N

0

∫
Rl

∥∥Df (x)
∥∥2
cεs (X

ε
s ,x)

με(ds, dx)

)
≤ 1.

Let g2(u), where u ∈ R+, be an R+-valued nondecreasing C
2-function with a

bounded second derivative such that Dg2(0) = D2g2(0) = 0 and g2(u) = u for
u ≥ 1. For given N̆ > 0, we let f (x) = g2((|x| − N̆)+), where x ∈ R

l . By (2.4a),
if N̆ is great enough, then for all ε small enough, (x/|x|)T aε

s∧τ ε
N
(Xε

s∧τ ε
N
, x) ≤ 0

provided |x| ≥ N̆ . Since g2 is a nondecreasing function,

Df (x)T aε
s∧τ ε

N

(
Xε

s∧τ ε
N
, x

) = Dg2
((|x| − N̆

)+)(
x/|x|)T aε

s∧τ ε
N

(
Xε

s∧τ ε
N
, x

) ≤ 0.

In addition, as in (4.2), tr(cεs (X
ε
s , x)D

2|x|) ≤ l
√
l − 1‖cεs (Xε

s , x)‖/|x|. We obtain
that

Eε exp
(
−f

(
xε

0
) − 1

ε

∫ t∧τ ε
N

0

∫
|x|>N̆+1

xT

|x|a
ε
s

(
Xε

s , x
)
με(ds, dx)

− 1

2ε

∫ t∧τ ε
N

0

∫
N̆≤|x|≤N̆+1

(
tr

(
cεs

(
Xε

s , x
)
D2f (x)

)
(4.4)
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+ ∥∥Df (x)
∥∥2
cεs (X

ε
s ,x)

)
με(ds, dx)

− 1

2ε

∫ t∧τ ε
N

0

∫
|x|>N̆+1

(√
l − 1

|x| l
∥∥cεs (Xε

s , x
)∥∥ +

∥∥∥∥ x

|x|
∥∥∥∥

2

cεs (X
ε
s ,x)

)
με(ds, dx)

)

≤ 1.

Since ‖cεs (u, x)‖ is asymptotically bounded locally in (s, u) and globally in x,
see (2.2a), there exists L̃ > 0 such that | tr(cε

s∧τ ε
N
(Xε

s∧τ ε
N
, x)D2f (x)) +

‖Df (x)‖2
cε
s∧τε

N
(Xε

s∧τε
N
,x)

| ≤ L̃ for all s ≤ t , all N̆ , and all x such that |x| ∈
[N̆, N̆ + 1], provided ε > 0 is small enough. We can also assume that L̃ is an
upper bound for ‖cε

s∧τ ε
N
(Xε

s∧τ ε
N
, x)‖. We thus obtain from (4.4), on recalling that

με([0, t],Rl) = t , that provided ε is small enough and N̆ is great enough,

Eε exp
(
−f

(
xε

0
) + 1

ε
Mεμε

([
0, t ∧ τ ε

N

]
,
{
x : |x| > N̆ + 1

} − 3L̃t

2ε

))
≤ 1,

where

Mε = − sup
s∈[0,t]

sup
u∈Rn:|u|≤N

sup
x∈Rl :|x|>N̆+1

xT

|x|a
ε
s (u, x) > 0.

It follows that for arbitrary δ > 0, all ε small enough, and all N̆ great enough:

Pε(με([0, t ∧ τ ε
N

]
,
{
x ∈ R

l : |x| > N̆ + 1
})

> δ
)

≤ Pε(∣∣xε
0

∣∣ > N̆
)

+ Eε exp
(
Mε

ε
με([0, t ∧ τ ε

N

]
,
{
x : |x| > N̆ + 1

}))
1{|xε

0 |≤N̆} exp
(
−Mε

ε
δ

)

≤ Pε(∣∣xε
0

∣∣ > N̆
) + exp

(
3L̃t

2ε
− Mεδ

ε
+ g2(0)

)
,

so by the facts that lim infε→0 M
ε → ∞ and lim supε→0 Pε(|xε

0 | ≥ N̆)ε → 0 as
N̆ → ∞, and that (4.3) holds, we obtain that

lim
N̆→∞

lim sup
ε→0

Pε(με([0, t], {x ∈ R
l : |x| > N̆ + 1

})
> δ

)ε = 0.

Since |με
t (
)−με

s(
)| ≤ |t − s|, for 
 ∈ B(Rl), the sequential exponential tight-
ness of με follows from part 1 of Lemma 4.1. �

REMARK 4.2. Since (Xε,με) is continuous in ε in distribution, one can prove
that (Xε,με) is exponentially tight.
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5. The equation for the large deviation function. In this section, we derive
the equation for large deviation limit points of (Xε,με) that is to be used for iden-
tifying the large deviation function. For 0 = t0 < t1 < · · · < ti , let

λ(t,X) =
i∑

j=1

λj (Xtj−1)1[tj−1,tj )(t),(5.1)

where X = (Xs, s ∈ R+) ∈ C(R+,Rn) and the functions λj (u), for u ∈ R
n, are

R
n-valued and continuous. We define∫ t

0
λ(s,X)dXs =

i∑
j=1

λi(Xtj−1∧t )
T (Xt∧tj − Xt∧tj−1).(5.2)

Let f (t, u, x) represent a C
1,2,2(R+ × R

n × R
l)-function with compact sup-

port in x locally uniformly in (t, u) and let, with (X,μ) ∈ C(R+,Rn) ×
C↑(R+,M(Rl)),

U
λ(·),f
t (X,μ) =

∫ t

0
λ(s,X)dXs −

∫ t

0

∫
Rl

λ(s,X)T As(Xs, x)μ(ds, dx)

−
∫ t

0

∫
Rl

Dxf (s,Xs, x)
T as(Xs, x)μ(ds, dx)

− 1

2

∫ t

0

∫
Rl

tr
(
cs(Xs, x)D

2
xxf (s,Xs, x)

)
μ(ds, dx)

(5.3)

− 1

2

∫ t

0

∫
Rl

∥∥λ(s,X)
∥∥2
Cs(Xs,x)

μ(ds, dx)

− 1

2

∫ t

0

∫
Rl

∥∥Dxf (s,Xs, x)
∥∥2
cs(Xs,x)

μ(ds, dx)

−
∫ t

0

∫
Rl

λ(s,X)T Gs(Xs, x)Dxf (s,Xs, x)μ(ds, dx).

Under Condition 2.1, Uλ(·),f
t (X,μ) is a continuous function of (X,μ).

Let τ(X,μ) represent a continuous function of (X,μ) ∈ C(R+,Rn) ×C↑(R+,

M(Rl)) that is also a stopping time relative to the flow G = (Gt , t ∈ R+) on
C(R+,Rn) × C↑(R+,M(Rl)), where the σ -algebra Gt is generated by the map-
pings X → Xs and μ → μs for s ≤ t . (We note that the flow G is not right con-
tinuous, so τ is a strict stopping time; see Jacod and Shiryaev [25].) Let us also
assume that Xt∧τ(X,μ) is a bounded function of (X,μ).

THEOREM 5.1. Suppose that Conditions 2.1, (2.2a), (2.2b), (2.2d) and (2.10)
hold. If Ĩ is a large deviation limit point of (Xε,με) for rate 1/ε as ε → 0, then

sup
(X,μ)∈C(R+,Rn)×C↑(R+,M(Rl ))

(
U

λ(·),f
t∧τ(X,μ)(X,μ)− Ĩ(X,μ)

) = 0.(5.4)
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PROOF. The process (λ(t,Xε), t ∈ R+) is Fε-adapted so that by (2.1a)
and (5.2), ∫ t

0
λ
(
s,Xε)dXε

s =
∫ t

0
λ
(
s,Xε)T Aε

s

(
Xε

s , x
ε
s

)
ds

(5.5)

+ √
ε

∫ t

0
λ
(
s,Xε)T Bε

s

(
Xε

s , x
ε
s

)
dWε

s .

By (2.1a), (2.1b) and Itô’s lemma,

f
(
t,Xε

t , x
ε
t

) = f
(
0,Xε

0, x
ε
0
) +

∫ t

0

∂f (s,Xε
s , x

ε
s )

∂s
ds

+
∫ t

0
Duf

(
s,Xε

s , x
ε
s

)T
Aε

s

(
Xε

s , x
ε
s

)
ds

+ √
ε

∫ t

0
Duf

(
s,Xε

s , x
ε
s

)T
Bε

s

(
Xε

s , x
ε
s

)
dWε

s

+ 1

ε

∫ t

0
Dxf

(
s,Xε

s , x
ε
s

)T
aε
s

(
Xε

s , x
ε
s

)
ds

(5.6)

+ 1√
ε

∫ t

0
Dxf

(
s,Xε

s , x
ε
s

)T
bεs

(
Xε

s , x
ε
s

)
dWε

s

+ ε

2

∫ t

0
tr

(
Cε

s

(
Xε

s , x
ε
s

)
D2

uuf
(
s,Xε

s , x
ε
s

))
ds

+ 1

2ε

∫ t

0
tr

(
cεs

(
Xε

s , x
ε
s

)
D2

xxf
(
s,Xε

s , x
ε
s

))
ds

+
∫ t

0
tr

(
Gε

s

(
Xε

s , x
ε
s

)
D2

uxf
(
s,Xε

s , x
ε
s

))
ds,

where Gε
s(u, x) = Bε

s (u, x)b
ε
s (u, x)

T . We denote

Uε
t (X,μ) =

∫ t

0
λ(s,X)dXs −

∫ t

0

∫
Rl

λ(s,X)T Aε
s (Xs, x)μ(ds, dx)

−
∫ t

0

∫
Rl

Dxf (s,Xs, x)
T aε

s (Xs, x)μ(ds, dx)

− 1

2

∫ t

0

∫
Rl

tr
(
cεs (Xs, x)D

2
xxf (s,Xs, x)

)
μ(ds, dx)

− 1

2

∫ t

0

∫
Rl

∥∥λ(s,X)
∥∥2
Cε
s (Xs,x)

μ(ds, dx)

− 1

2

∫ t

0

∫
Rl

∥∥Dxf (s,Xs, x)
∥∥2
cεs (Xs,x)

μ(ds, dx)

−
∫ t

0

∫
Rl

λ(s,X)T Gε
s (Xs, x)Dxf (s,Xs, x)μ(ds, dx)
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and

V ε
t (X,μ) = f (t,Xt , x

ε
t ) − f (0,X0, x

ε
0) −

∫ t

0

∫
Rl

∂f (s,Xs, x)

∂s
μ(ds, dx)

−
∫ t

0

∫
Rl

Duf (s,Xs, x)
T Aε

s (Xs, x)μ(ds, dx)

− ε

2

∫ t

0

∫
Rl

tr
(
Cε

s (Xs, x)D
2
uuf (s,Xs, x)

)
μ(ds, dx)

−
∫ t

0

∫
Rl

tr
(
Gε

s(Xs, x)D
2
uxf (s,Xs, x)

)
μ(ds, dx)

− ε

2

∫ t

0

∫
Rl

∥∥Duf (s,Xs, x)
∥∥2
Cε
s (Xs,x)

μ(ds, dx)

−
∫ t

0

∫
Rl

λ(s,X)T Cε
s (Xs, x)Duf (s,Xs, x)μ(ds, dx)

−
∫ t

0

∫
Rl

Duf (s,Xs, x)
T Gε

s (Xs, x)Dxf (s,Xs, x)μ(ds, dx).

Since the function λ(s, u) is locally bounded, the function f (s, u, x) and its deriva-
tives are locally bounded and are of compact support in x, conditions (2.2a), (2.2b),
(2.2d) and (2.11) hold, and Xt∧τ(X,μ) is bounded; we have that there exists number
R(t) > 0 such that for all ε small enough uniformly over (X,μ),∣∣Uε

t∧τ(X,μ)(X,μ)
∣∣ + ∣∣V ε

t∧τ(X,μ)(X,μ)
∣∣ ≤ R(t).(5.7)

Since Xε
s and με

s are Fε
s -measurable, τ(Xε,με) is a stopping time relative

to Fε . By (5.5), (5.6) and (5.7), the process (exp((1/ε)Uε
t∧τ(Xε,με)(X

ε,με) +
V ε
t∧τ(Xε,με)(X

ε,με)), t ∈R+) is a bounded Fε-martingale, so

Eε exp
(

1

ε
Uε

t∧τ(Xε,με)

(
Xε,με) + V ε

t∧τ(Xε,με)

(
Xε,με)) = 1.

Since the function f (s, u, x) is of compact support in x, the convergence
hypotheses in (2.10) and the bound in (5.7) imply that Uε

t∧τ(X,μ)(X,μ) →
U

λ(·),f
t∧τ(X,μ)(X,μ) as ε → 0 uniformly over compact sets. By Theorem 3.3,

sup(X,μ)∈C(R+,Rn)×C↑(R+,M(Rl ))(U
λ(·),f
t∧τ(X,μ)(X,μ)− Ĩ(X,μ)) = 0. �

REMARK 5.1. One can see that there exists compact K ⊂ C(R+,Rn) ×
C↑(R+,M(Rl)) such that sup(X,μ)∈K(U

λ(·),f
t∧τ(X,μ)(X,μ)− Ĩ(X,μ)) = 0.

6. Regularity properties. Let Ĩ represent a large deviation limit point of
(Xε,με) for rate 1/ε as ε → 0 under the hypotheses of Theorem 2.1 such that
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Ĩ(X,μ) = ∞ unless X0 = û, where û is a preselected element of Rn. Let, as in
Theorem 3.4, for (X,μ) ∈C(R+,Rn) ×C↑(R+,M(Rl)),

I∗∗(X,μ) = sup
λ(·),f,t,τ

U
λ(·),f
t∧τ(X,μ)(X,μ),(6.1)

with the supremum being taken over λ(t,X), f (t, u, x), and τ(X,μ) satisfying the
requirements of Theorem 5.1 and over t ≥ 0. We note that, under Condition 2.1,
I∗∗(X,μ) is a lower semicontinuous function of (X,μ) and that by Theorem 5.1,

I∗∗(X,μ) ≤ Ĩ(X,μ).(6.2)

The rest of the paper is concerned mostly with proving that equality prevails
in (6.2), provided X0 = û. Since the case where I∗∗(X,μ) < ∞ needs to be con-
sidered only, in this section we undertake a study of the properties of (X,μ)

such that I∗∗(X,μ) < ∞. We prove that if I∗∗(X,μ) < ∞ and X0 = û, then
I∗∗(X,μ) = I(X,μ), where I(X,μ) is given in the statements of Theorem 2.1
and Proposition 2.1 with I0(û) = 0; see Theorem 6.1. We assume throughout Con-
ditions 2.1, 2.2, (2.4b), (2.12c) and (2.12d) to hold.

LEMMA 6.1. If μ ∈ C↑(R+,M(Rl)), then μ is of the form μ(ds, dx) =
νs(dx) ds, where νs(dx) is a transition probability kernel from R+ to R

l . If
(X,μ) ∈ C(R+,Rn) × C↑(R+,M(Rl)) is such that I∗∗(X,μ) < ∞, then X is
absolutely continuous with respect to Lebesgue measure.

PROOF. We have that μ(ds, dx) = νs(dx)μ(ds,Rl), where νs(dx) is a tran-
sition kernel from R+ to R

l ; see, for example, Theorem 8.1 on page 502 of
Ethier and Kurtz [15]. Since μ(ds,Rl) is Lebesgue measure on R+, μ(ds, dx) =
νs(dx) ds.

On taking f = 0 in (5.3) and assuming λ(s,X) not to depend on X, so the piece
of notation λ(s) can be used instead, we have by (5.3), (6.1) and the part of the
lemma just proved that if I∗∗(X,μ) < ∞, then∫ t

0
λ(s) dXs ≤

∫ t

0

∫
Rl

λ(s)T As(Xs, x)νs(dx) ds

+ 1

2

∫ t

0

∫
Rl

∥∥λ(s)∥∥2
Cs(Xs,x)

νs(dx) ds + I∗∗(X,μ).

Replacing λ(s) with δλ(s), where δ > 0, dividing through by δ, and minimising
the right-hand side over δ obtains that∫ t

0
λ(s) dXs ≤

∫ t

0

∫
Rl

λ(s)T As(Xs, x)νs(dx) ds

+ √
2
√

I∗∗(X,μ)

√∫ t

0

∫
Rl

∥∥λ(s)∥∥2
Cs(Xs,x)

νs(dx) ds.

It follows that X is absolutely continuous with respect to ds. �
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By Lemma 6.1, if I∗∗(X,μ) < ∞, then (5.3) takes the form

U
λ(·),f
t (X,μ) =

∫ t

0
λ(s,X)T Ẋs ds −

∫ t

0

∫
Rl

λ(s,X)T As(Xs, x)νs(dx) ds

−
∫ t

0

∫
Rl

Dxf (s,Xs, x)
T as(Xs, x)νs(dx) ds

− 1

2

∫ t

0

∫
Rl

tr
(
cs(Xs, x)D

2
xxf (s,Xs, x)

)
νs(dx) ds

(6.3)

− 1

2

∫ t

0

∫
Rl

∥∥λ(s,X)
∥∥2
Cs(Xs,x)

νs(dx) ds

− 1

2

∫ t

0

∫
Rl

∥∥Dxf (s,Xs, x)
∥∥2
cs(Xs,x)

νs(dx) ds

−
∫ t

0

∫
Rl

λ(s,X)T Gs(Xs, x)Dxf (s,Xs, x)νs(dx) ds.

The next step is to show that νs(dx) has to be absolutely continuous with re-
spect to dx and establish its integrability properties. We need, however, to lay
the groundwork. The proofs of the following two key lemmas are omitted. The
first one is essentially due to Röckner and Zhang [45], pages 204–205, [46]; see
also Bogachev, Krylov and Röckner [6]. The second one is a local version of the
result by Bogachev, Krylov and Röckner [6] that if b ∈ L

2(Rd,m(x) dx) then√
m ∈ W

1,2(Rd), and is proved along similar lines; see also Metafune, Pallara
and Rhandi [31].

LEMMA 6.2. Let d ∈ N and let O represent either Rd or an open ball in R
d .

If m(x) is an R+-valued measurable function on R
d such that m ∈ W

1,1
loc (R

d) and√
m ∈ W

1,2(O), then H
1,2(O,m(x)dx) =W

1,2(O,m(x)dx).

LEMMA 6.3. For d ∈N and x ∈ R
d , let c(x) represent a locally Lipschitz con-

tinuous function with values in the set of symmetric positive definite d×d-matrices
and let b(x) represent an R

d -valued measurable function. Suppose m(x) is a prob-
ability density on R

d such that m(lnm)2 ∈ L
1
loc(R

d), b ∈ L
2
loc(R

d,Rd,m(x) dx),
and ∫

Rd
tr

(
c(x)D2p(x)

)
m(x)dx +

∫
Rd

Dp(x)T b(x)m(x)dx = 0

for all p ∈ C
∞
0 (Rd), where we assume that 0(ln 0)2 = 0.

Then m ∈ W
1,1
loc (R

d) and
√
m ∈ W

1,2
loc (R

d). Furthermore, given open ball S from
R

d , there exists constant M which depends on S, on the Lipschitz constant of c(x)
on S, and on infx∈S xT c(x)x/|x|2 only, such that∫

S

|Dm(x)|2
m(x)

dx ≤ M

(
1 +

∫
S

(
lnm(x)

)2
m(x)dx +

∫
S

∣∣b(x)∣∣2m(x)dx

)
.(6.4)
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For the next lemma, we recall that, according to our conventions, q ′ = q/

(q − 1), provided q > 1.

LEMMA 6.4. Suppose that I∗∗(X,μ) < ∞, where μ(ds, dx) = νs(dx) ds.
Then, for almost all s, the transition kernel νs(dx) is absolutely continuous
with respect to Lebesgue measure, the density ms(x) = νs(dx)/dx is an ele-
ment of Lβ

loc(R
l) for all β ∈ [1, l/(l − 1)) and is an element of W1,α

loc (R
l) for all

α ∈ [1,2l/(2l − 1)), and
√
ms(·) ∈ W

1,2
loc (R

l). Furthermore, for arbitrary t > 0
and open ball S ⊂ R

l , ∫ t

0

∫
S

|Dms(x)|2
ms(x)

dx ds < ∞.(6.5)

If, in addition,
√
ms(·) ∈ W

1,2(Rl), then Dms(·)/ms(·) ∈ L
1,2
0 (Rl ,Rl,ms(x) dx).

If κ ≥ 0, q ≥ 2, and q > l, then

sup
(X,μ):I∗∗(X,μ)≤κ

∫ t

0

∫
S
ms(x)

q ′
dx ds < ∞.(6.6)

PROOF. By taking λ(s,X) = 0 and f (s, u, x) = φ(s, x) in (6.1) and (6.3),
where φ ∈ C

1,2(R+ ×R
l) and the support of φ in x is bounded locally uniformly

in s, we have that

−1

2

∫ t

0

∫
Rl

tr
(
cs(Xs, x)D

2
xxφ(s, x)

)
νs(dx) ds

−
∫ t

0

∫
Rl

Dxφ(s, x)T as(Xs, x)νs(dx) ds

≤ I∗∗(X,μ)+ 1

2

∫ t

0

∫
Rl

∥∥Dxφ(s, x)
∥∥2
cs(Xs,x)

νs(dx) ds.

Replacing φ(s, x) with δφ(s, x), where δ > 0, dividing through by δ, and mini-
mizing the right-hand side over δ yields

−1

2

∫ t

0

∫
Rl

tr
(
cs(Xs, x)D

2
xxφ(s, x)

)
νs(dx) ds

−
∫ t

0

∫
Rl

Dxφ(s, x)T as(Xs, x)νs(dx) ds(6.7)

≤ √
2I∗∗(X,μ)1/2

(∫ t

0

∫
Rl

∥∥Dxφ(s, x)
∥∥2
cs(Xs,x)

νs(dx) ds

)1/2

.

Let L1,2
0 ([0, t] × R

l ,Rl, cs(Xs, x), νs(dx) ds) denote the closure in L
2([0, t] ×

R
l ,Rl, cs(Xs, x), νs(dx) ds) of the space of functions Dxφ. By (6.7), the left-hand

side extends to a continuous functional Tt (g) on L
1,2
0 ([0, t] × R

l ,Rl , cs(Xs, x),
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νs(dx) ds). By the Riesz representation theorem, there exists a unique ψ ∈
L

1,2
0 ([0, t] ×R

l ,Rl , cs(Xs, x), νs(dx) ds) such that

Tt (g) =
∫ t

0

∫
Rl

g(s, x)T cs(Xs, x)ψ(s, x)νs(dx) ds,

for all g ∈ L
1,2
0 ([0, t] ×R

l ,Rl, cs(Xs, x), νs(dx) ds), and(∫ t

0

∫
Rl

∥∥ψ(s, x)
∥∥2
cs(Xs,x)

νs(dx) ds

)1/2

≤ √
2I∗∗(X,μ)1/2.(6.8)

By uniqueness, ψ can be extended to a function on R+ ×R
l so that for all t > 0,

−1

2

∫ t

0

∫
Rl

tr
(
cs(Xs, x)D

2
xxφ(s, x)

)
νs(dx) ds

−
∫ t

0

∫
Rl

Dxφ(s, x)T as(Xs, x)νs(dx) ds(6.9)

=
∫ t

0

∫
Rl

Dxφ(s, x)T cs(Xs, x)ψ(s, x)νs(dx) ds.

It follows that for almost all s and for all h ∈ C
2
0(R

l),

−1

2

∫
Rl

tr
(
cs(Xs, x)D

2h(x)
)
νs(dx)

(6.10)
=

∫
Rl

Dh(x)T as(Xs, x)νs(dx) +
∫
Rl

Dh(x)T cs(Xs, x)ψ(s, x)νs(dx).

Since ψ ∈ L
1,2
0 ([0, t] × R

l ,Rl, cs(Xs, x), νs(dx) ds), we have that, for almost all
s, ψ(s, ·) belongs to the closure of the set of the Dxh in L

2(Rl ,Rl, cs(Xs, x),

νs(dx)). In particular,
∫
Rl |ψ(s, x)|2νs(dx) < ∞. Since as(Xs, ·) and ψ(s, ·) are

locally integrable with respect to νs(dx) and cs(Xs, ·) is uniformly positive definite
and is of class C1, (6.10) and Theorem 2.1 in Bogachev, Krylov and Röckner [8]
imply that the measure νs(dx) has density ms(x) with respect to Lebesgue measure
which belongs to L

β
loc(R

l) for all β < l′. It follows since as(Xs, ·) and cs(Xs, ·) are
locally bounded and

∫
Rl |ψ(s, x)|2νs(dx) < ∞, that for arbitrary open ball S in R

l ,
there exists M > 0 such that for all h ∈ C

2
0(S):∣∣∣∣

∫
S

tr
(
cs(Xs, x)D

2h(x)
)
ms(x) dx

∣∣∣∣ ≤ M‖Dh‖
L2β′

(S,Rl )
.

Since cs(u, ·) is uniformly positive definite and is of class C
1, by Theorem 6.1

in Agmon [2], the density ms(·) belongs to W
1,α
loc (S) for all α < 2l/(2l − 1).

The inclusion
√
ms(·) ∈ W

1,2
loc (R

l) follows from Lemma 6.3 and (6.10). For in-
equality (6.5), we also recall (6.4) and (6.8). The property that Dms(·)/ms(·) ∈
L

1,2
0 (Rl ,Rl ,ms(x) dx) when

√
ms(·) ∈ W

1,2(Rl) follows from Lemma 6.2 and

the fact that L
1,2
0 (Rl ,Rl,ms(x) dx) is the closure of the space of the gra-
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dients of C
∞-functions whose gradients belong to L

2(Rl ,Rl,ms(x) dx) in
L

2(Rl ,Rl,ms(x) dx); cf., Theorem 1.27 on page 23 of Heinonen, Kilpeläinen
and Martio [23].

We now adapt the proof of Theorem 2.1 in Bogachev, Krylov and Röckner [8]
in order to obtain the bound in (6.6). Let S1 represent an open ball which con-
tains S. By (6.8), (6.9) and local boundedness of as(u, x) and cs(u, x), assuming
that φ(s, x) in (6.9) is supported by S1 in x for all s ∈ [0, t], we have that there
exists L1 > 0 such that for all (X,μ) that satisfy the inequality I∗∗(X,μ) ≤ δ,∣∣∣∣

∫ t

0

∫
S1

tr
(
cs(Xs, x)D

2
xxφ(s, x)

)
ms(x) dx ds

∣∣∣∣
(6.11)

≤ L1

(∫ t

0
sup
x∈S1

∣∣Dxφ(s, x)
∣∣2 ds)1/2

.

An approximation argument shows that one may assume that φ(s, x) is measurable
in (s, x) and is of class C

2 in x. Let ζ(x) represent a C
∞
0 -function on R

l with
support in S1 that equals 1 on S and let ϕ(s, x) be a measurable function that is of
class C∞ in x. On letting φ(s, x) = ζ(x)ϕ(s, x) in (6.11), we have that there exists
L2 > 0 such that for all ϕ(s, x),∣∣∣∣

∫ t

0

∫
S1

tr
(
cs(Xs, x)D

2
xxϕ(s, x)

)
ζ(x)ms(x) dx ds

∣∣∣∣
≤ L2

(∫ t

0

(
sup
x∈S1

∣∣ϕ(s, x)∣∣2 + sup
x∈S1

∣∣Dxϕ(s, x)
∣∣2)

ds

)1/2

.

By Sobolev’s imbedding, W2,q(S1) is continuously imbedded in W
1,∞(S1) pro-

vided q > l (see, e.g., Theorem 4.12 on page 85 in Adams and Fournier [1]), hence,∣∣∣∣
∫ t

0

∫
S1

tr
(
cs(Xs, x)D

2
xxϕ(s, x)

)
ζ(x)ms(x) dx ds

∣∣∣∣
(6.12)

≤ L3

(∫ t

0

∥∥ϕ(s, ·)∥∥2
W2,q (S1)

ds

)1/2

,

where L3 > 0. The latter inequality extends to ϕ(s, ·) ∈ C
2(S1). Given a bounded

continuous function f (s, x) such that f (s, ·) ∈ C
∞
0 (S1), let ϕ(s, ·) ∈ C

2(S1) be
such that tr(cs(Xs, x)D

2
xxϕ(s, x)) = f (s, x) and ϕ(s, x) = 0 on the boundary of

S1; see Theorem 6.14 on page 107 of Gilbarg and Trudinger [21]. By Theorem 9.13
on page 239 in Gilbarg and Trudinger [21], where we take 	′ = 	 = S1, and on
recalling that the norms ‖cs(u, ·)‖W2,q (S1)

are bounded locally in (s, u), we have
that ∥∥ϕ(s, ·)∥∥

W2,q (S1)
≤ L4

(∥∥ϕ(s, ·)∥∥
Lq (S1)

+ ∥∥f (s, ·)∥∥
Lq (S1)

)
locally uniformly in s. By Theorem 9.1 on page 220 in Gilbarg and Trudinger [21],
supx∈S1

|ϕ(s, x)| ≤ L5‖f (s, ·)‖Lq (S1) locally uniformly in s. We obtain that there
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exists L6 > 0 such that ‖ϕ(s, ·)‖W2,q (S1)
≤ L6‖f (s, ·)‖Lq (S1). By (6.12), if q ≥ 2,

then, for some L7 > 0,∣∣∣∣
∫ t

0

∫
S1

f (s, x)ζ(x)ms(x) dx ds

∣∣∣∣ ≤ L7

(∫ t

0

∫
S1

∣∣f (s, x)
∣∣q dx ds

)1/q

.

Since the functions f (s, x) are dense in L
q([0, t] × S1),(∫ t

0

∫
S1

∣∣ζ(x)ms(x)
∣∣q ′

dx ds

)1/q ′
≤ L7,

which yields the required bound (6.6) if one recalls that ζ(x) = 1 on S. �

REMARK 6.1. As a byproduct of the proof, the function ψ(s, ·) is an element
of L1,2

0 (Rl ,Rl , cs(Xs, x),ms(x) dx) for almost all s.

We now work toward proving that I∗∗ is the same as I in Theorem 2.1 and
Proposition 2.1. The following lemma will be useful for calculating I∗∗; cf.
Lemma A.2 on page 460 in Puhalskii [40].

LEMMA 6.5. Let V represent a complete separable metric space, let U rep-
resent a dense subspace, and let R-valued function f (s, y) be defined on R+ ×V ,
be measurable in s and continuous in y. Suppose also that f (s, λ(s)) is locally in-
tegrable with respect to Lebesgue measure for all measurable functions λ(s) that
assume values in U . Then, for all t ∈ R+,

sup
λ(·)∈�

∫ t

0
f

(
s, λ(s)

)
ds =

∫ t

0
sup
y∈U

f (s, y) ds,

where � represents the set of measurable functions assuming values in U .

In the rest of the paper, we denote Dx by D, divergencies are understood with
respect to x. The next lemma is a key to proving that

√
ms(·) ∈ W

1,2(Rl) in the
statement of Theorem 2.1.

LEMMA 6.6. Let ms(x), where x ∈ R
l and s ∈ R+, represent an R+-

valued measurable function which is a probability density on R
l and an ele-

ment of W1,1
loc (R

l) for almost all s. If, for some t > 0 and L1 > 0, we have that∫ t
0
∫
S |Dms(x)|2/ms(x) dx ds < ∞, for all open balls S, and∫ t

0
sup

h∈C1
0(R

l )

∫
Rl

(
Dh(x)T

(
1

2
div

(
cs(Xs, x)ms(x)

) − as(Xs, x)ms(x)

)
(6.13)

− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
dx ds ≤ L1,
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then there exists L2 > 0, which depends on L1 and t only, such that∫ t

0

∫
Rl

|Dms(x)|2
ms(x)

dx ds ≤ L2.

PROOF. Due to space constraints, we resort to a proof outline. Let η(x)

represent a [0,1]-valued twice continuously differentiable nonincreasing func-
tion defined for x ≥ 0 such that η(x) = 1 for x ∈ [0,1] and η(x) = 0 for
x ≥ 2. Let ηr(x) = η(|x|/r) where x ∈ R

l and r > 0. We note that the bound
in (6.13) extends to functions h(x) from the closure H

1,2
0 (S2r+1,ms(x) dx) of

C
∞
0 (S2r+1) in W

1,2(S2r+1,ms(x) dx), where S2r+1 represents the open ball of
radius 2r + 1 centered at the origin in R

l . Let δ > 1. Since (the restriction of)
ln(ms(·)∧ δ∨ δ−1) to S2r+1 is an element of W1,2(S2r+1,ms(x) dx) a.e. and since
by Lemma 6.2, W

1,2(S2r+1,ms(x) dx) = H
1,2(S2r+1,ms(x) dx), we have that

ln(ms(·) ∧ δ ∨ δ−1) ∈ H
1,2(S2r+1,ms(x) dx). So, ln(ms(·) ∧ δ ∨ δ−1)ηr(·)2 is an

element of H1,2
0 (S2r+1,ms(x) dx). Hence, one can take h(x) = (1/4) ln(ms(x) ∧

δ ∨ δ−1)ηr(x)
2 in (6.13). The bound in (6.13) implies that there exist L1 > 0 and

M1 > 0 such that, given arbitrary δ > 1 and κ ∈ (0,1/2), for all r great enough
(depending on δ),

∫ t

0

∫
Rl

‖Dms(x)‖2
cs(Xs,x)

ms(x)
ηr(x)

21{δ−1≤ms(x)≤δ}(x) dx ds

≤ 16

1 − 2κ
(L1 + M1t),

which implies the assertion of the lemma by letting r → ∞ and δ → ∞. �

The next theorem establishes the equality I∗∗(X,μ) = I(X,μ) provided
I∗∗(X,μ) < ∞, X0 = û, and I0(û) = 0.

THEOREM 6.1. Suppose that Conditions 2.1, 2.2, (2.4b), (2.12c) and (2.12d)
hold and that I∗∗(X,μ) < ∞. Then μ(ds, dx) = ms(x) dx ds, where ms(·) ∈
P(Rl) a.e. We have that

∫ t
0
∫
Rl |xT as(Xs, x)|/|x|ms(x) dx ds < ∞ and∫ t

0
∫
Rl |Dms(x)|2/ms(x) dx ds < ∞ for all t ∈ R+. The projection �s,ms(·),Xs (x)

belongs to L
2(Rl ,Rl, cs(Xs, x),ms(x) dx) as a function of x for almost every s,

�s,ms(·),Xs (x) and �s,ms(·),Xs (x) are measurable in (s, x), and∫ t
0
∫
Rl ‖�s,ms(·),Xs (x)‖2ms(x) dx ds < ∞ for all t ∈R+. We also have that

I∗∗(X,μ)

=
∫ ∞

0
sup
λ∈Rn

(
λT

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)

− 1

2
‖λ‖2∫

Rl Cs(Xs,x)ms(x) dx
(6.14)
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+ sup
h∈C1

0(R
l )

∫
Rl

(
Dh(x)T

(
1

2
div

(
cs(Xs, x)ms(x)

)

− (
as(Xs, x)+ Gs(Xs, x)

T λ
)
ms(x)

)

− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
dx

)
ds

=
∫ ∞

0
sup
λ∈Rn

(
λT

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)

− 1

2
‖λ‖2∫

Rl Cs(Xs,x)ms(x) dx

(6.15)

+ sup
g∈L1,2

0 (Rl ,Rl ,cs (Xs,x),ms(x) dx)

∫
Rl

(
g(x)T cs(Xs, x)

(
Dms(x)

2ms(x)

− �s,ms(·),Xs (x) − �s,ms(·),Xs (x)λ

)
− 1

2

∥∥g(x)∥∥2
cs(Xs,x)

)
ms(x) dx

)
ds.

The vector Ẋs − ∫
Rl As(Xs, x)ms(x) dx − ∫

Rl Gs(Xs, x)(Dms(x)/(2ms(x)) −
�s,ms(·),Xs (x))ms(x) dx is in the range of

∫
Rl Qs,ms(·)(Xs, x)ms(x) dx a.e. and

the supremum in (6.15) is attained at

λ̂s =
(∫

Rl
Qs,ms(·)(Xs, x)ms(x) dx

)⊕(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

(6.16)

−
∫
Rl

Gs(Xs, x)

(
Dms(x)

2ms(x)
− �s,ms(·),Xs (x)

)
ms(x) dx

)

and

ĝs(x) = Dms(x)

2ms(x)
− �s,ms(·),Xs (x) − �s,ms(·),Xs (x)λ̂s(6.17)

so that

I∗∗(X,μ) =
∫ ∞

0

(
1

2

∫
Rl

∥∥∥∥Dms(x)

2ms(x)
− �s,ms(·),Xs (x)

∥∥∥∥
2

cs(Xs,x)

ms(x) dx

+ 1

2

∥∥∥∥Ẋs −
∫
Rl

As(Xs, x)ms(x) dx −
∫
Rl

Gs(Xs, x)

(
Dms(x)

2ms(x)
(6.18)

− �s,ms(·),Xs (x)

)
ms(x) dx

∥∥∥∥2

(
∫
Rl Qs,ms (·)(Xs,x)ms(x) dx)⊕

)
ds.

PROOF. We recall the expression (6.1) for I∗∗(X,μ), where the supremum is
taken over t ∈ R+, functions λ(s,X) given by (5.1), and C

1,2,2(R+ × R
n × R

l)-
functions f (s, u, x) that are compactly supported in x locally uniformly in (t, u).
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According to Lemma 6.4, if I∗∗(X,μ) < ∞, then νs(dx) = ms(x) dx, where
ms(·) ∈ W

1,1
loc (R

l), so one can integrate by parts in (6.3) to obtain

U
λ(·),f
t (X,μ)

=
∫ t

0

(
λ(s,X)T

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)

− 1

2

∫
Rl

∥∥λ(s,X)
∥∥2
Cs(Xs,x)

ms(x) dx

(6.19)

+
∫
Rl

Df (s,Xs, x)
T

(
1

2
div

(
cs(Xs, x)ms(x)

) − as(Xs, x)ms(x)

)
dx

− 1

2

∫
Rl

∥∥Df (s,Xs, x)
∥∥2
cs(Xs,x)

ms(x) dx

−
∫
Rl

λ(s,X)T Gs(Xs, x)Df (s,Xs, x)ms(x) dx

)
ds.

An approximation argument using mollifiers implies that the supremum will
not change if λ(s,X) is assumed bounded and measurable in s and if f (s, u, x)

is assumed measurable, continuously differentiable in x with bounded first partial
derivatives and compactly supported in x locally uniformly in (s, u). Therefore,
on noting that X is kept fixed,

I∗∗(X,μ) = sup
∫ t

0

(
λ(s)T

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)

− 1

2

∥∥λ(s)∥∥2∫
Rl Cs(Xs,x)ms(x) dx

+
∫
Rl

Dφ(s, x)T
(

1

2
divx

(
cs(Xs, x)ms(x)

) − as(Xs, x)ms(x)

)
dx

− 1

2

∫
Rl

∥∥Dφ(s, x)
∥∥2
cs(Xs,x)

ms(x) dx

−
∫
Rl

λ(s)T Gs(Xs, x)Dφ(s, x)ms(x) dx

)
ds,

where the supremum is taken over t ∈ R+, bounded measurable functions λ(s),
and measurable functions φ(s, x) that are continuously differentiable in x with
bounded first partial derivatives and are compactly supported in x locally uni-
formly in s. By Lemma 6.5, one can optimize with respect to λ(s) and Dφ(s, x) in-
side the ds-integral which yields (6.14). In some more detail, we apply Lemma 6.5
with U being the Cartesian product of the closed ball of radius i in R

n and of the
set Ui = {Dh : h ∈ C

1
0(R

l), supx∈Rl |Dh(x)| ≤ i and h(x) = 0 if |x| ≥ i} and with
V being the Cartesian product of the closed ball of radius i and of the closure of
Ui in the space of continuous functions with support in the open ball of radius i



3148 A. A. PUHALSKII

centered at the origin in R
l that are bounded above by i in absolute value; the latter

space being endowed with the sup-norm topology, where i ∈N, and let i → ∞.
Integration by parts in (6.10), with νs(dx) = ms(x) dx, yields∫

Rl
Dh(x)T

(
1

2
div

(
cs(Xs, x)ms(x)

) − as(Xs, x)ms(x)

)
dx

=
∫
Rl

Dh(x)T cs(Xs, x)ψ(s, x)ms(x) dx.

On recalling that ψ(s, ·) ∈ L
1,2
0 (Rl ,Rl , cs(Xs, x),ms(x) dx) for almost all s

by Remark 6.1, we have that the function −ψ(s, x) represents the orthog-
onal projection of cs(Xs, x)

−1(as(Xs, x) − (1/2)div(cs(Xs, x)ms(x))/ms(x))

onto L
1,2
0 (Rl ,Rl, cs(Xs, x),ms(x) dx). Since by (6.14), Lemmas 6.4 and 6.6,

Dms(x)/ms(x) is a member of L
1,2
0 (Rl ,Rl, cs(Xs, x),ms(x) dx) for almost

all s, we have that the function −ψ(s, x) + (1/2)Dms(x)/ms(x) belongs to
L

1,2
0 (Rl ,Rl , cs(Xs, x),ms(x) dx) for almost all s, so, by (2.15b), it equals

�s,ms(·),Xs (x).
We show that �s,ms(·),Xs (x) and �s,ms(·),Xs (x) are properly measurable. Let

Us represent the closure of the set {cs(Xs, ·)1/2√ms(·)Dp(·) : p ∈ C
∞
0 (Rl ,Rn)} in

L
2(Rl ,Rl×n). Introducing ϕs(x) = cs(Xs, x)

−1/2Gs(Xs, x)
T
√
ms(x) and ϕ̂s(x) =

cs(Xs, x)
1/2�s,ms(·),Xs (x)

√
ms(x), we have that ϕ̂s is the orthogonal projection of

ϕs onto Us [see (2.15a) and (2.3)]. By Corollary 8.2.13 on page 317 in Aubin
and Frankowska [4], ϕ̂s is a measurable function from R+ to L

2(Rl ,Rl×n). (We
note that s → Us is a measurable set-valued map by part (vi) of Theorem 8.1.4
on page 310 in Aubin and Frankowska [4].) This implies that the mapping
(s, x) → �s,ms(·),Xs (x) is measurable. The reasoning for �s,ms(·),Xs is similar.

The representation in (6.15) follows from (2.15a), (2.15b), (2.3) and (6.14).
Since the function

g̃s(x) = Dms(x)

2ms(x)
− �s,ms(·),Xs (x) − �s,ms(·),Xs (x)λ

is a member of L
1,2
0 (Rl ,Rl, cs(Xs, x),ms(x) dx), it attains the supremum

in (6.15), which yields

I∗∗(X,μ)

=
∫ ∞

0
sup
λ∈Rn

(
λT

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)
− 1

2
‖λ‖2∫

Rl Cs(Xs,x)ms(x) dx

(6.20)

+ 1

2

∫
Rl

∥∥∥∥�s,ms(·),Xs (x) − Dms(x)

2ms(x)

− �s,ms(·),Xs (x)λ

∥∥∥∥
2

cs(Xs,x)

ms(x) dx

)
ds.
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Since the matrix Qs,ms(·)(u, x) = Cs(u, x) − ‖�s,ms(·),u(x)‖2
cs(u,x)

[see (2.14)]
is positive semidefinite, the supremum over λ in (6.20) is attained at

λ̃ =
(∫

Rl
Qs,ms(·)(Xs, x)ms(x) dx

)⊕(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

−
∫
Rl

�s,ms(·),Xs (x)
T cs(Xs, x)

(
�s,ms(·),Xs (x) − Dms(x)

2ms(x)

)
ms(x) dx

)

and equals

1

2

∫
Rl

∥∥∥∥Dms(x)

2ms(x)
− �s,ms(·),Xs

∥∥∥∥
2

cs(Xs,x)

ms(x) dx

+ 1

2
‖λ̃‖2

(
∫
Rl Qs,ms (·)(Xs,x)ms(x) dx)⊕,

provided

Ẋs −
∫
Rl

As(Xs, x)ms(x) dx

−
∫
Rl

�s,ms(·),Xs (x)
T cs(Xs, x)

(
Dms(x)

2ms(x)
− �s,ms(·),Xs (x)

)
ms(x) dx

is in the range of
∫
Rl Qs,ms(·)(Xs, x)ms(x) dx a.e. Otherwise, the supremum equals

infinity. The fact that λ̃ = λ̂s and the expression in (6.18) follow from (2.15a)
and (6.20). The properties that

∫ t
0
∫
Rl |Dms(x)|2/ms(x) dx ds and∫ t

0
∫
Rl ‖�s,ms(·),Xs (x)‖2 dx ds are finite follow from Lemma 6.6, (6.14), and (6.18).

The integral
∫ t

0
∫
Rl |xT as(Xs, x)|/|x|ms(x) dx ds being finite follows from (6.14)

if one lets λ = 0, takes as h(x) a smoothing of the function −(|x| ∧ δ)η(|x|/r),
where η(y) satisfies the hypotheses of Condition 2.3, and lets r → ∞, first, and
δ → ∞, next. �

Motivated by (6.18) in Theorem 6.1, let us introduce, provided I∗∗(X,

μ) < ∞ so that μ(ds, dx) = ms(x) dx ds, where ms(·) ∈ P(Rl), and Ẋs −∫
Rl As(Xs, x)ms(x) dx−∫

Rl Gs(Xs, x)(Dms(x)/(2ms(x))−�s,ms(·),Xs )ms(x) dx

is in the range of
∫
Rl Qs,ms(·)(Xs, x)ms(x) dx a.e.,

I∗∗
t (X,μ) =

∫ t

0

(
1

2

∫
Rl

∥∥∥∥Dms(x)

2ms(x)
− �s,ms(·),Xs (x)

∥∥∥∥
2

cs(Xs,x)

ms(x) dx

+ 1

2

∥∥∥∥Ẋs −
∫
Rl

As(Xs, x)ms(x) dx −
∫
Rl

Gs(Xs, x)

(
Dms(x)

2ms(x)
(6.21)

− �s,ms(·),Xs (x)

)
ms(x) dx

∥∥∥∥
2

(
∫
Rl Qs,ms (·)(Xs,x)ms(x) dx)⊕

)
ds.
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As in the proof of Theorem 6.1, we also have that

I∗∗
t (X,μ) =

∫ t

0
sup
λ∈Rn

(
λT

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)

− 1

2
‖λ‖2∫

Rl Cs(Xs,x)ms(x) dx

+ sup
h∈C1

0(R
l )

∫
Rl

(
Dh(x)T

(
1

2
div

(
cs(Xs, x)ms(x)

)
(6.22)

− (
as(Xs, x)+ Gs(Xs, x)

T λ
)
ms(x)

)

− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
dx

)
ds.

For the proof of Theorem 8.1, it will be needed to extend (X,μ) defined on [0, t]
past t in such a way that I∗∗

t (X,μ) = I∗∗(X,μ). That is done in the following
lemma which also concerns the zeros of I∗∗(X,μ).

LEMMA 6.7. For t ∈ R+ and z ∈ R
n, the system of equations

Ẋs =
∫
Rl

As+t (Xs, x)ms(x) dx, X0 = z,(6.23)

∫
Rl

(
1

2
tr

(
cs+t (Xs, x)D

2p(x)
) + as+t (Xs, x)

T Dp(x)

)
ms(x) dx = 0,(6.24)

where p ∈ C
∞
0 (Rl) is otherwise arbitrary, has a solution (X†, (m†

s (x))) such that
X† is locally Lipschitz continuous, m†

s (x) is measurable, and m†
s (·) ∈ P(Rl). If,

given (X,μ) such that I∗∗(X,μ) < ∞, one defines (X̂, μ̂) by the relations X̂s =
Xs and μ̂s = μs for s ≤ t , and X̂s = X

†
s−t and μ̂s(dx) = μt(dx)+∫ s−t

0 m†
r (dx) dr

for s > t , where z = Xt , then I∗∗(X̂, μ̂) = I∗∗
t (X,μ). In particular, if t = 0, then

I∗∗(X†,μ†) = 0.

PROOF. Since as(u, x) is locally bounded, since cs(u, x) is bounded, is posi-
tive definite and is of class C1 in x, and since as(u, x)

T x/|x| → −∞ as |x| → ∞
by (2.4b), applications of Theorem 1.4.1 in Bogachev, Krylov and Rëkner [7] [with

V (x) =
√

1 + |x|2] and of Theorem 2.2 and Proposition 2.4 in Metafune, Pallara
and Rhandi [31], show that for every s, t ∈ R+ and u ∈ R

n there exists a unique
probability density ms(x) satisfying the equation

∫
Rl

(
1

2
tr

(
cs+t (u, x)D

2p(x)
) + Dp(x)T as+t (u, x)

)
ms(x) dx = 0.(6.25)
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We apply the method of successive approximations: let X0
s = z and, for i ∈ N,∫

Rl

(
1

2
tr

(
cs+t

(
Xi

s, x
)
D2p(x)

) + Dp(x)T as+t

(
Xi

s, x
))

mi
s(x) dx = 0,(6.26)

Ẋi+1
s =

∫
Rl

As+t

(
Xi+1

s , x
)
mi

s(x) dx, Xi+1
0 = z.(6.27)

We note that mi
s(x) is a measurable function of (s, x) (one can use, e.g., Theo-

rem 8.2.9 on page 315 in Aubin and Frankowska [4]). By (2.12c), we have that
given L > 0, there exists M > 0 such that a.e. in s ∈ [0,L], d|Xi+1

s |2/ds ≤
M(1 + |Xi+1

s |2). Gronwall’s inequality implies that supi∈N sups∈[0,L] |Xi
s | < ∞.

By (6.27) and (2.12b), the derivatives Ẋi+1
s are bounded uniformly in i ∈ N and

s ∈ [0,L], so the sequence (Xi
s, s ∈ [0,L]) is relatively compact for the uniform

norm on [0,L]. Let X†
s represent a limit point. It is a locally Lipschitz continuous

function.
As in Metafune, Pallara and Rhandi [31], Proposition 2.4, we have that, for

arbitrary δ > 0 and L> 0,

sup
s∈[0,L]

sup
i∈N

∫
Rl

eδ|x|mi
s(x) dx < ∞.(6.28)

In some more detail, let for a function p which is twice differentiable at x,

Li
sp(x) = 1

2 tr
(
cs+t

(
Xi

s, x
)
D2p(x)

) + Dp(x)T as+t

(
Xi

s, x
)
.

Since, for |x| > 0,

Li
se

δ|x| =
(

1

2
tr

(
cs+t

(
Xi

s, x
)( δ

|x|
(
I − xxT

|x|2
)

+ δ2 xx
T

|x|2
))

+ δai
s+t

(
Xi

s, x
)T x

|x|
)
eδ|x|,

where I represents the l× l identity matrix, and supi∈N as+t (X
i
s, x)

T x/|x| → −∞
as |x| → ∞, there exists R > 1 such that Li

se
δ|x| ≤ 0 and eδ|x| ≤ |Li

se
δ|x|| for all

s ∈ [0, t] and all i ∈ N provided |x| > R. Let F be a C
∞(Rl)-function such that

F(x) = eδ|x| if |x| ≥ 1. Arguing as in the proof of Proposition 2.3 in Metafune,
Pallara and Rhandi [31], one can see that∫

x∈Rl :|x|>R

∣∣Li
se

δ|x|∣∣mi
s(x) dx ≤

∫
x∈Rl :|x|≤R

Li
sF (x)mi

s(x) dx

so that ∫
x∈Rl :|x|>R

eδ|x|mi
s(x) dx ≤

∫
x∈Rl :|x|≤R

Li
sF (x)mi

s(x) dx,(6.29)

which implies (6.28).
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Hence, given s ∈ [0,L], the sequence of probability measures mi
s(x) dx is tight.

Proposition 2.16 in Bogachev, Krylov and Röckner [8] implies that the mi
s(x) con-

verge in the variation norm along a subsequence to a density m†
s (x). Since the

local Lq -norms of the mi
s(x) are uniformly bounded for all q > 1 (see (2.26) in

Bogachev, Krylov and Röckner [8]), supi∈N |as+t (X
i
s, x)| grows no faster than lin-

early with x by Lipschitz continuity and supx∈Rl supi∈N ‖cis+t (X
i
s, x)‖ < ∞ (see

Condition 2.1), and supi∈N
∫
Rl eδ|x|mi

s(x) dx < ∞, on taking a limit in (6.26), we
have by dominated convergence that (6.24) holds. Since density m†

s (x) is specified
uniquely by (6.24) mi

s(x) → m†
s (x) as i → ∞ along a subsequence such that the

Xi converge to X†. Since supi∈N supx∈Rl |As+t (X
i
s, x)| < ∞ by (2.12b), a similar

reasoning shows that taking the above subsequential limit in (6.27) obtains (6.23).
Since (6.28) implies that

∫
Rl |as(Xs, x)|2m†

s (x) dx < ∞, by Theorem 1.1 in Bo-

gachev, Krylov and Röckner [6],
√
m

†
s (·) ∈ W

1,2(Rl).
On noting that (6.25) can be written as∫

Rl
Dp(x)T

(
as+t (u, x)− 1

2
div cs+t (u, x)

)
ms(x) dx

= 1

2

∫
Rl

Dp(x)T cs+t (u, x)Dms(x) dx,

we have that �
s+t,m

†
s (·),X†

s
(x) = Dm†

s (x)/(2m
†
s (x)) which implies, by (6.18)

and (6.21), that I∗∗(X̂, μ̂) = I∗∗
t (X,μ). �

REMARK 6.2. By Proposition 2.4 and Theorem 6.1 (with β = 1) in Metafune,
Pallari and Randi [31], m†

s (·) decays exponentially at infinity. It is also positive and
Hölder continuous; see Bogachev, Krylov and Röckner [8], Theorem 2.8, Corol-
laries 2.10, 2.11 and Bogachev, Krylov and Rëkner [7].

7. Identifying the large deviation function. The purpose of this section is to
show that Ĩ = I∗∗ for sufficiently regular functions (X,μ). More specifically, we
will prove the following theorem.

THEOREM 7.1. Suppose that Conditions 2.1, 2.2, (2.4b) and (2.12d) hold.
Suppose that Ĩ is a large deviation function that satisfies the assertion of The-
orem 5.1 and is such that Ĩ(X,μ) = ∞ unless X0 = û. Suppose that (X̂, μ̂) is
such that X̂0 = û, I∗∗(X̂, μ̂) < ∞, X̂ is locally Lipschitz continuous and that
m̂s(x) = μ̂(ds, dx)/(ds dx) is of the form

m̂s(x) = Ms

(
m̃s(x)η̂

2
( |x|

r

)
+ e−α|x|

(
1 − η̂2

( |x|
r

)))
,

where m̃s(x) is a probability density in x which is locally bounded away from zero
and belongs to C

1(Rl) as a function of x, with |Dms(x)| being locally bounded
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in (s, x), η̂(y) is a nonincreasing [0,1]-valued C
1
0(R+)-function, where y ∈ R+,

that equals 1 for y ∈ [0,1] and equals 0 for y ≥ 2, r > 0, α > 0, and Ms is the
normalizing constant. Then, for given m̃s(x), η̂(y), and r , there exists α0 > 0 such
that Ĩ(X̂, μ̂) = I∗∗(X̂, μ̂) for all α > α0.

We assume throughout the section the hypotheses of Theorem 7.1 to hold.
We start by extending the assertion of Theorem 5.1 to a larger set of functions
(λ(·), f ). For economy of notation, we denote γ = (X,μ) and recall that � rep-
resents the set of γ such that X is absolutely continuous and μ admits density
ms(x) that is an element of P(Rl) in x, for almost all s. Let λ(s,X), where s ∈ R+
and X ∈ C(R+,Rn), represent an R

n-valued measurable function and let hs(u, x),
where s ∈ R+, u ∈ R

n and x ∈ R
l , represent an R-valued measurable function,

which is an element of W1,1
loc (R

l) in x and is of bounded support in x locally uni-
formly over (s, u). If, for all t ∈ R+ and all γ ∈ C(R+,Rn) × C↑(R+,M(Rl)),∫ t

0
∫
Rl (|λ(s,X)|2 + |Dhs(Xs, x)|2)μ(dx, ds) < ∞, we define, given N ∈ N,

τN(γ ) = inf
{
t ∈ R+ :

∫ t

0

∫
Rl

(∥∥λ(s,X)
∥∥2
Cs(Xs,x)

(7.1a)

+ ∥∥Dhs(Xs, x)
∥∥2
cs(Xs,x)

)
μ(dx, ds)+ X∗

t + t ≥ N

}
and, provided γ ∈ �,

θN(γ ) =
∫ τN (γ )

0

(
λ(s,X)T

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)

− 1

2

∥∥λ(s,X)
∥∥2∫

Rl Cs(Xs,x)ms(x) dx

+
∫
Rl

(
Dhs(Xs, x)

T

(
1

2
div

(
cs(Xs, x)ms(x)

) − as(Xs, x)ms(x)

)
(7.1b)

− 1

2

∥∥Dhs(Xs, x)
∥∥2
cs(Xs,x)

ms(x)

)
dx

−
∫
Rl

λ(s,X)T Gs(Xs, x)Dhs(Xs, x)ms(x) dx

)
ds.

For the latter definition, we assume that, in addition,∫ t

0

(
|Ẋs |2 +

∫
Rl

|Dms(x)|2
ms(x)

dx

)
ds < ∞,(7.2)

for all t ∈ R+, and use the piece of notation X∗
t = sups∈[0,t] |Xs |. [The definition

of θN(γ ) is modeled on the expression for U
λ(·),f
t (X,μ) in (6.19).] We note that

τN(γ ) ≤ N . Furthermore, we have the following lemma, for which we reuse the
piece of notation of Theorem 3.4 that, for δ ∈ R+,

Kδ = {
γ : Ĩ(γ ) ≤ δ

}
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and recall that Kδ is a compact in C(R+,Rn)×C↑(R+,M(Rl)) and that Kδ ⊂ �.
Theorem 6.1 implies that (7.2) holds on Kδ . For the definition of the essential
supremum of a family of measurable functions used in the next lemma, see, for
example, Proposition II.4.1 on page 44 of Neveu [34].

LEMMA 7.1. Let λi(s,X) and hi
s(u, x) be sequences of functions satisfying

the same hypotheses as λ(s,X) and hs(u, x), respectively, and let τN,i(γ ) and
θN,i(γ ) be defined by the respective equations (7.1a) and (7.1b), with λi(s,X) and
hi
s(u, x) being substituted for λ(s,X) and hs(u, x), respectively. If, in addition,

the functions hi
s(u, x) are of bounded support in x uniformly over i and locally

uniformly over (s, u),∫ N

0
ess sup
γ∈Kδ

∣∣λ(s,X)
∣∣2 ds

(7.3)

+
∫ N

0
ess sup
γ∈Kδ

∫
Rl

∣∣Dhs(Xs, x)
∣∣2ms(x) dx ds < ∞,

lim
i→∞ sup

γ∈Kδ

∫ N

0

∣∣λ(s,X) − λi(s,X)
∣∣2 ds = 0(7.4a)

and

lim
i→∞ sup

γ∈Kδ

∫ N

0

∫
Rl

∣∣Dhs(Xs, x)− Dhi
s(Xs, x)

∣∣2ms(x) dx ds = 0,(7.4b)

then

lim
i→∞ sup

γ∈Kδ

∣∣τN(γ ) − τN,i(γ )
∣∣ = 0(7.5a)

and

lim
i→∞ sup

γ∈Kδ

∣∣θN(γ ) − θN,i(γ )
∣∣ = 0.(7.5b)

PROOF. Let us note that under the hypotheses,

lim
i→∞ sup

γ∈Kδ

∫ N

0

∫
Rl

∣∣∥∥λi(s,X)
∥∥2
Cs(Xs,x)

(7.6a)
− ∥∥λ(s,X)

∥∥2
Cs(Xs,x)

∣∣ms(x) dx ds = 0,

lim
i→∞ sup

γ∈Kδ

∫ N

0

∫
Rl

∣∣∥∥Dhi
s(Xs, x)

∥∥2
cs(Xs,x)

(7.6b)
− ∥∥Dhs(Xs, x)

∥∥2
cs(Xs,x)

∣∣ms(x) dx ds = 0,
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lim
i→∞ sup

γ∈Kδ

∫ N

0

∣∣∣∣(λi(s,X) − λ(s,X)
)T

(7.6c)

×
(
Ẋs −

∫
Rl

As(Xs, x)ms(x)

)
dx

∣∣∣∣ds = 0

and

lim
i→∞ sup

γ∈Kδ

∫ N

0

∣∣∣∣
∫
Rl

(
Dhi

s(Xs, x)− Dhs(Xs, x)
)T

(7.6d)

×
(

1

2
div

(
cs(Xs, x)ms(x)

) − as(Xs, x)ms(x)

)
dx

∣∣∣∣ds = 0.

The first two convergences are implied by (7.4a), (2.12d) and (7.4b), (2.12a), re-
spectively, and (7.3). The convergence in (7.6c) follows via Cauchy’s inequality
from (7.4a) and the fact that, according to (6.18) in Theorem 6.1,

sup
(X,μ):I∗∗(X,μ)≤δ

∫ N

0

∣∣∣∣Ẋs −
∫
Rl

As(Xs, x)ms(x) dx

∣∣∣∣
2

ds < ∞.(7.7)

Similarly, (7.6a) is a consequence of (7.4b), if one recalls that the functions in-
volved are of uniformly bounded support in x and takes into account part (6.5) of
Lemma 6.4.

The convergence in (7.5a) follows from (7.6a), (7.6b) and the observation that
by (7.1a)∣∣τN(γ ) − τN,i(γ )

∣∣
≤

∫ N

0

∣∣∣∣
∫
Rl

(∥∥λ(s,X)
∥∥2
Cs(Xs,x)

− ∥∥λi(s,X)
∥∥2
Cs(Xs,x)

+ ∥∥Dhs(Xs, x)
∥∥2
cs(Xs,x)

− ∥∥Dhi
s(Xs, x)

∥∥2
cs(Xs,x)

)
ms(x) dx

∣∣∣∣ds.
The convergence in (7.5b) follows by (7.1b), (7.5a), (7.6a)–(7.6d) and (7.7), if one
notes that, thanks to (7.3),

sup
γ∈Kδ

∫ t

0

∣∣λ(s,X)
∣∣2 ds, sup

γ∈Kδ

∫ t

0

∫
Rl

∣∣Dhs(Xs, x)
∣∣2ms(x) dx ds

and

sup
γ∈Kδ

∫ t

0

∫
Rl

Dhs(Xs, x)
T

(
1

2
div

(
cs(Xs, x)ms(x)

) − as(Xs, x)ms(x)

)
dx ds

are continuous functions of t ∈ [0,N]. �

LEMMA 7.2. Let λs(u) represent an R
n-valued function of (s, u) ∈ R+ ×

R
n, which is measurable in s, is continuous in u for almost all s and is
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such that
∫ N

0 sup|u|≤L |λs(u)|2 ds < ∞ for all L > 0. Suppose that the function

hs(u, x), in addition to being measurable and being of class W
1,1
loc in x, van-

ishes when x is outside of some open ball in R
l locally uniformly in (s, u), that

the function Dhs(u, x) is continuous in (u, x) for almost all s ∈ R+, and that∫ N
0 supu∈Rn:|u|≤L

∫
Rl |Dhs(u, x)|q dx ds < ∞ for all q > 1 and L > 0. Then, un-

der the hypotheses of Theorem 7.1, the function θN(γ ), where λ(s,X) = λs(Xs),
is continuous in γ when restricted to Kδ ,

sup
γ∈�

(
θN(γ ) − Ĩ(γ )

) = 0

and the latter supremum is attained. Furthermore,

sup
γ∈K2N+2

(
θN(γ ) − Ĩ(γ )

) = 0.

PROOF. The functions |λs(u)|1{|λs(u)|≥r}(s, u) are upper semicontinuous
in u and monotonically decreasing in r , so by Dini’s theorem |λs(u)|2 ×
1{|λs(u)|≥r}(s, u) → 0 as r → ∞ uniformly on {u ∈ R

n : |u| ≤ L}. Let ri

be such that
∫ N

0 supu∈Rn:|u|≤L |λs(u)|21{|λs(u)|≥ri}(s, u) ds < 1/i, where L =
supγ∈Kδ

sups∈[0,t] |Xs | and i ∈ N. Since λs(u) is a Carathéodory function, as a
consequence of the Scorza–Dragoni theorem (see, e.g., page 235 in Ekeland and
Temam [14]), there exists a measurable function λ̆i

s(u) that is continuous in (s, u),
is bounded above in absolute value by ri , and is such that

∫ N
0 1{λs(·) �=λ̆i

s (·)}(s) ds <
2/(ir2

i ). Letting λi(s,X) = λ̆i
j (i)s�/j (i)(X
j (i)s�/j (i)), where j (i) is great enough
and j (i) → ∞ as i → ∞, we have that (7.4a) holds.

Similarly, let

hi
s(u, x) =

∫
R×Rl

ρ1/i(s̃, y)hs−s̃ (u, x − y)ds̃ dy,

where ρκ(s̃, y) = (ρ̃1(s̃/κ)/κ)(ρ̃2(y/κ)/κ
l), ρ̃1(s̃) is a mollifier on R such that

ρ̃1(s̃) = 0 if |s̃| > 1, ρ̃2(y) is a mollifier on R
l such that ρ̃2(y) = 0 if |y| > 1, and

hs(u, x) = 0 if s ≤ 0. The function hi
s(u, x) is an element of C

∞(R+ × R
l) in

(s, x) for all u and Dhi
s(u, x) = ∫

R×Rl ρ1/i(s̃, y)Dhs−s̃ (u, x − y)ds̃ dy; cf. The-
orem 2.29 on page 36 in Adams and Fournier [1]. In addition, Dhi

s(u, x) is a
continuous function for every i. We also have that, for all open balls S, all L > 0
and all q > 1,

lim
i→∞

∫ N

0
sup

u∈Rn:|u|≤L

∫
S

∣∣Dhs(u, x) − Dhi
s(u, x)

∣∣q dx ds = 0,(7.8)

which can be shown as follows. If, in addition, Dhs(u, x) is continuous in all
variables, then Dhi

s(u, x) converges to Dhs(u, x) locally uniformly in (s, u, x)

(cf. Theorem 2.29 on page 36 in Adams and Fournier [1]). So, (7.8) holds.
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In the general case, in analogy with the above reasoning, there exist rj such
that

∫ N+1
0 supu∈Rn:|u|≤L

∫
S̃
|Dhs(u, x)|q1{|Dhs(u,x)|≥rj }(s, u, x) dx ds < 1/j where

S̃ represents the open ball in R
l centered at the origin of radius one greater than

that of S, and there exists a continuous function h̆
j
s (u, x), which is bounded above

in absolute value by rj , such that
∫ N+1

0 1{Dhs(·,·) �=h̆
j
s (·,·)}(s) ds < 2/(jrqj ). Calcula-

tions show that∫ N

0
sup

u∈Rn:|u|≤L

∫
S

∣∣Dhs(u, x) − h̆j
s (u, x)

∣∣q dx ds ≤ 2q−1

j
+ 2q+1

j

and∫ N

0
sup

u∈Rn:|u|≤L

∫
S

∣∣∣∣Dhi
s(u, x)−

∫
R×Rl

ρ1/i(s̃, y)h̆
j

s−s̃
(u, x − y)ds̃ dy

∣∣∣∣
q

dx ds

≤ 2q−1

j
+ 2q+1V (S)

j
,

where V (S) represents the volume of the ball S. Hence, (7.8) holds.
By an application of Hölder’s inequality, it follows from (7.8), (6.6) in

Lemma 6.4 and hs(u, x) having compact support in x locally uniformly over (s, u)
that (7.4b) holds. Also, (7.3) holds.

Let τN,i and θN,i be defined as in Lemma 7.1. The functions hi
s(u, x), λ

i(s,X),
and τN,i(X,μ) satisfy the requirements imposed on the respective functions
f (s, u, x), λ(s,X) and τ(X,μ) when deriving (5.4). Furthermore, integration by
parts on the right-hand side of (5.3) with μ(ds, dx) = ms(x) dx ds, implies that

θN,i(γ ) = U
λi(·),hi

N∧τN,i (γ )
(γ ) provided γ ∈ �. In addition, by (7.1a), |XτN,i(γ )| ≤ N

and τN,i(γ ) is a continuous function of γ ∈ C(R+,Rn)×C(R+,M(Rl)); cf. The-
orem 2 on page 510 and Theorem 3 on page 511 in Liptser and Shiryayev [29]. We
obtain by equation (5.4) of Theorem 5.1 and the fact that Ĩ(γ ) = ∞ unless γ ∈ �

(see Theorem 6.1) that

sup
γ∈�

(
θN,i(γ ) − Ĩ(γ )

) = 0.(7.9)

Let us show that, for all δ > 2N + 1,

sup
γ∈Kδ

(
θN,i(γ ) − Ĩ(γ )

) = 0.(7.10)

Let, for γ ∈ �,

θ̃N,i(γ ) =
∫ τN,i (γ )

0

(
2λi,j (s,X)T

(
Ẋs −

∫
Rl

As(Xs, x)ms(x) dx

)

− 1

2

∫
Rl

∥∥2λi,j (s,X)
∥∥2
Cs(Xs,x)

ms(x) dx
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+
∫
Rl

(
2Dhi

s(Xs, x)
T

(
1

2
div

(
cs(Xs, x)ms(x)

) − as(Xs, x)ms(x)

)

− 1

2

∥∥2Dhi
s(Xs, x)

∥∥2
cs(Xs,x)

ms(x)

)
dx

−
∫
Rl

4λi,j (s,X)T Gs(Xs, x)Dhi
s(Xs, x)ms(x) dx

)
ds.

By (5.3), θ̃N,i(γ ) = U
2λi(·),2hi

N∧τN,i (γ )
(γ ), provided γ ∈ �, so in analogy with (7.9),

sup
γ∈�

(
θ̃N,i(γ ) − Ĩ(γ )

) = 0.

On noting that θ̃N,i(γ ) ≥ 2θN,i(γ ) − 2N , we have that, for M > 0,

sup
γ :θN,i (γ )≥M

(
θN,i(γ ) − Ĩ(γ )

) ≤ sup
γ :θN,i (γ )≥M

(
2θN,i(γ ) − Ĩ(γ )

) − M

≤ sup
γ :θN,i (γ )≥M

(
θ̃N,i(γ ) − Ĩ(γ )

) + 2N − M

≤ 2N − M.

Since, by (7.9),

0 = sup
γ∈�

(
θN,i(γ ) − Ĩ(γ )

)

≤ sup
γ∈Kδ

(
θN,i(γ ) − Ĩ(γ )

) ∨ sup
γ :θN,i (γ )≥M

(
θN,i(γ ) − Ĩ(γ )

) ∨ (M − δ),

we conclude, on choosing M = 2N + 1, that (7.10) holds for δ > 2N + 1.
Since by Lemma 7.1, for arbitrary δ ∈R+,

lim
i→∞ sup

γ∈Kδ

∣∣θN(γ ) − θN,i(γ )
∣∣ = 0,(7.11)

we obtain by (7.10) that

sup
γ∈Kδ

(
θN(γ ) − Ĩ(γ )

) = 0.(7.12)

Since θN,i(γ ) = U
λi(·),hi

τN,i (γ )
(γ ), the latter function is continuous in γ , and Kδ is

compact, (7.11) implies that θN(γ ) is continuous on Kδ . Since Ĩ(γ ) is a lower
semicontinuous function of γ , the supremum in (7.12) is attained. On the other
hand, if Ĩ(γ ) < ∞, then by (7.9) and (7.11), supγ∈�(θN(γ ) − Ĩ(γ )) ≤ 0. �

In order to prove that Ĩ = I∗∗, we will use λ̂ and ĝ defined in (6.16) and (6.17),
respectively, as λs(u) and Dhs(u, x) in the preceding lemma. We therefore need
�s,ms(·),u and �s,ms(·),u to be sufficiently regular. The next lemma addresses both
regularity and growth-rate properties.
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LEMMA 7.3. Suppose that Conditions 2.1, 2.2, (2.4b) and (2.12d) hold. Let
ms(x) represent an R+-valued measurable function that is a probability density
in x for almost every s. Suppose ms(x) is bounded away from zero on bounded
sets of (s, x), ms(·) ∈ C

1(Rl), with |Dms(x)| being locally bounded in (s, x), and
ms(x) = Mse

−α|x| for all |x| great enough locally uniformly in s, where α > 0.
Then there exist R-valued measurable function ws(u, x) and R

n-valued measur-
able function vs(u, x) such that ws(u, ·) ∈ W

2,q
loc (R

l) and vs(u, ·) ∈ W
2,q
loc (R

l ,Rn),
where q > 1 is otherwise arbitrary, �s,ms(·),u(·) = Dws(u, ·) and �s,ms(·),u(·) =
Dvs(u, ·) for almost all s ∈ R+ and all u ∈ R

n, that is,∫
Rl

Dp(x)T
(
as(u, x) − 1

2
div cs(u, x)

)
ms(x) dx

(7.13a)
=

∫
Rl

Dp(x)T cs(u, x)Dws(u, x)ms(x) dx

and ∫
Rl

Dp(x)T Gs(u, x)
T ms(x) dx

(7.13b)
=

∫
Rl

Dp(x)T cs(u, x)Dvs(u, x)ms(x) dx

for all p ∈ C
∞
0 (Rl). Furthermore, ws(u, x), Dws(u, x), vs(u, x), and Dvs(u, x)

are continuous in (u, x) for almost all s ∈ R+, and, for all open balls S ⊂ R
l , all

L> 0 and all t > 0,

sup
s∈[0,t]

sup
u:|u|≤L

(∥∥ws(u, ·)
∥∥
W2,q (S) + ∥∥vs(u, ·)∥∥W2,q (S,Rn)

+ ∥∥Dws(u, ·)
∥∥
L2(Rl ,Rl ,ms(x) dx)

+ ∥∥Dvs(u, ·)
∥∥
L2(Rl ,Rl×n,ms(x) dx)

)
< ∞.

Also, there exists α0 which depends on the functions as(u, x) and cs(u, x) only
such that, if α > α0, then for all L> 0 and all t > 0,

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn:|u|≤L

ws(u, x) < ∞(7.14a)

and

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn:|u|≤L

( |ws(u, x)| + |Dws(u, x)|
1 + |x|2

(7.14b)

+ |vs(u, x)| + ‖Dvs(u, x)‖
1 + |x|

)
< ∞,

and, for all |x| great enough locally uniformly in s,

xT (
as(u, x)− 1

2 div cs(u, x)− cs(u, x)Dws(u, x)
) = 0(7.15a)

and (
Gs(u, x)− Dvs(u, x)

T cs(u, x)
)
x = 0.(7.15b)
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PROOF. Since as(u, ·) ∈ L
2(Rl ,Rl,ms(x) dx) by the fact that as(u, x) grows

at most linearly in x and ms(x) decays exponentially, and div cs(u, ·) ∈ L
2(Rl ,Rl,

ms(x) dx) for a similar reason, �s,ms(·),u as defined by (2.15b), is an ele-
ment of L1,2

0 (Rl ,Rl, cs(u, x),ms(x) dx), being a projection in the Hilbert space
L

2(Rl ,Rl, cs(Xs, x),ms(x) dx). In addition,∫
Rl

∥∥�s,ms(·),u(x)
∥∥2
cs(u,x)

ms(x) dx

(7.16)

≤
∫
Rl

∥∥∥∥cs(u, x)−1
(
as(u, x)− 1

2
div cs(u, x)

)∥∥∥∥
2

cs(u,x)

ms(x) dx.

By Conditions 2.1 and 2.2 and by ms(·) decaying exponentially,

sup
s∈[0,t]

sup
u∈Rn:|u|≤L

∫
Rl

∣∣�s,ms(·),u(x)
∣∣2ms(x) dx < ∞.(7.17)

We prove that �s,ms(·),u(·) is a gradient. Let Dwi → �s,ms(·),u in L
2(Rl ,Rl,

cs(u, x),ms(x) dx) as i → ∞, where wi ∈ C
∞
0 (Rl). Then for every f ∈ C

∞
0 (Rl ,

R
l) such that divf (x) = 0, we have that

∫
Rl Dwi(x)

T f (x) dx = 0. Since ms(·)
is bounded away from zero locally and cs(u, x) is positive definite, convergence
in L

2(Rl ,Rl , cs(u, x),ms(x) dx) implies convergence in L
2
loc(R

l ,Rl), so Dwi →
�s,ms(·),u in L

2
loc(R

l ,Rl). Therefore,
∫
Rl �s,ms(·),u(x)T f (x) dx = 0. It follows

that �s,ms(·),u(x) = Dw̃s(u, x) in the sense of distributions, where w̃s(u, ·) ∈
L

2
loc(R

l); see, for example, Lemma 2.2.1 on page 73 in Sohr [48]. Consequently,∫
Rl χ(x)T �s,ms(·),u(x) dx = − ∫

Rl divχ(x)w̃s(u, x) dx, for all χ ∈ C
1
0(R

l ,Rl).
By (2.15b) and Condition 2.1, for p ∈ C

∞
0 (Rl),

−
∫
Rl

div
(
cs(u, x)ms(x)Dp(x)T

)
w̃s(u, x) dx

=
∫
Rl

Dp(x)T
(
as(u, x)− 1

2
div cs(u, x)

)
ms(x) dx.

By Theorem 6.1 in Agmon [2], w̃s(u, ·) ∈ W
1,2
loc (R

l) so that w̃s(u, ·) is a weak
solution to the equation

div
(
cs(u, x)Dw̃s(u, x)ms(x)

) = div
((
as(u, x) − 1

2 div cs(u, x)
)
ms(x)

)
(7.18)

in that ∫
Rl

Dp(x)T cs(u, x)Dw̃s(u, x)ms(x) dx

(7.19)

=
∫
Rl

Dp(x)T
(
as(u, x)− 1

2
div cs(u, x)

)
ms(x) dx.

We note that (7.19) uniquely specifies Dw̃s(u, ·) as an element of L
1,2
0 (Rl ,

cs(u, x),ms(x) dx).
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Let S and S̃ represent open balls in R
l such that S ⊂⊂ S̃, let ζ(x) represent a

C
∞
0 -function with support in S̃ such that ζ(x) = 1 for x ∈ S, and let ϕ(x) represent

a C
∞
0 (S̃) function. On letting p(x) = ϕ(x)ζ(x) in (7.19) and integrating by parts,

we obtain that ζ(x)w̃s(u, x) is a weak solution f to the Dirichlet problem:

div
(
cs(u, x)ms(x)Df (x)

)
= div

(
cs(u, x)Dζ(x)w̃s(u, x)ms(x)

)
+ Dζ(x)T cs(u, x)Dw̃s(u, x)ms(x)(7.20)

+ div
((
as(u, x)− 1

2 div cs(u, x)
)
ζ(x)ms(x)

)
− Dζ(x)T

(
as(u, x)− 1

2 div cs(u, x)
)
ms(x)

on S̃ with a zero boundary condition. By Theorem 8.3 on page 181 and Theo-
rem 8.8 on page 183 in Gilbarg and Trudinger [21], ζ(x)w̃s(u, x) is an element
of W

2,2(S) and is a strong solution of (7.20). Therefore, w̃s(u, ·) ∈ W
2,2
loc (R

l)

and (7.18) holds a.e. in x.
Differentiation in (7.18) and division by ms(x) yield

tr
(
cs(u, x)D

2w̃s(u, x)
) +

(
cs(u, x)

Dms(x)

ms(x)
+ div cs(u, x)

)T

Dw̃s(u, x)

(7.21)

= div
(
as(u, x)− 1

2
div cs(u, x)

)
+

(
as(u, x) − 1

2
div cs(u, x)

)
Dms(x)

ms(x)
.

On writing the left-hand side as Ls,u(x)w̃s(u, x) and letting fs(u, x) represent
the right-hand side, we have that Ls,u(x)w̃s(u, x) = fs(u, x). Let Yy

s,u(t) represent
the diffusion process in t with the infinitesimal generator Ls,u(·) and initial con-
dition y, defined on probability space (	,F,P) with expectation denoted by E.
It is a strong Markov process by Conditions 2.1 and 2.2 and the hypotheses of
the lemma. One can also choose Y

y
s,u(t) to be measurable in all variables. (A pos-

sible line of reasoning invokes continuous dependence of solutions of stochas-
tic differential equations on parameters; see, e.g., Gikhman and Skorokhod [20],
or Krylov [26], and the Scorza–Dragoni theorem.) If |x| is great enough so that
ms(x) = Mse

−α|x|, then
Dms(x)

ms(x)
= −α

x

|x| .(7.22)

Hence, on recalling Condition 2.1, in particular that |div cs(u, x)| is bounded in x

locally uniformly in (s, u), and (2.12a), we have that there exists α0 which depends
on at (u, x) and ct (u, x) only such that if α > α0, then lim sup|x|→∞(x/|x|)T (cs(u,
x)Dms(x)/ms(x) + div cs(u, x)) < 0, so Y

y
s,u(t) is an ergodic process; see, for

example, Has’minskiı̆ [22], Veretennikov [54] and Malyshkin [30]. Since, by the
divergence theorem,∫

Rl
Ls,u(x)p(x)ms(x) dx =

∫
Rl

div
(
cs(u, x)Dp(x)ms(x)

)
dx = 0
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for all p ∈C
∞
0 (Rl), ms(x) dx is the unique invariant measure. Similarly,∫

Rl
fs(u, x)ms(x) dx =

∫
Rl

div
((

as(u, x)− 1

2
div cs(u, x)

)
ms(x)

)
dx = 0,

the latter equality being a consequence of ms(x) decaying exponentially as
|x| → ∞. By (7.21), (7.22), Lipschitz continuity of as(u, ·) and of div cs(u, ·),
the boundedness property of div cs(u, ·), and by (2.4b), we may assume that α0 is
such that if α > α0, then fs(u, x) > 0 for all |x| great enough locally uniformly in
(s, u). Also,

sup
s∈[0,t]

sup
x∈Rl

sup
u∈Rn:|u|≤L

|fs(u, x)|
1 + |x| < ∞.

By Theorem 1 in Pardoux and Veretennikov [35], the function

w̆s(u, x) = −
∫ ∞

0
Efs

(
u,Y x

s,u(t)
)
dt(7.23)

is well defined, belongs to W
2,q
loc (R

l), for all q > 1, as a function of x, Dw̆s(u, x)

is of polynomial growth in x, in particular, Dw̆s(u, ·) ∈ L
2(Rl ,Rl,ms(x) dx), and

Ls,u(x)w̆s(u, x) = fs(u, x). Since Dw̆s(u, x) also satisfies (7.19), we have that
Dw̆s(u, x) = Dw̃s(u, x). In addition, w̆s(u, x) is measurable in (s, u, x).

As in Pardoux and Veretennikov [35], by (7.23) and the strong Markov property,
for R > 0,

w̆s(u, x) = Ew̆s

(
u,Y x

s,u

(
τR)) − E

∫ τR

0
fs

(
u,Y x

s,u(t)
)
dt,(7.24)

where τR = inf{t ∈ R+ : |Yx
s,u(t)| ≤ R} < ∞. Since |Yx

s,u(τ
R)| = R if |x| > R,

by fs(u, x) being positive for all |x| great enough, we have that if R is great
enough then w̆s(u, x) ≤ w̆s(u,R), provided |x| >R. One can see that the bounds
in the calculation of part (a) of the proof of Theorem 1 in Pardoux and Vereten-
nikov [35] hold uniformly over u ∈ [0,L] and s ∈ [0, t], which shows that
supx:|x|≤R sups∈[0,t],u∈Rn:|u|≤L

|w̆s(u, x)| < ∞. The bound (7.14a) follows. Since

the right-hand side of (7.21) grows at most linearly in |x| locally uniformly in
(s, u), the arguments of part (b) of the proof of Theorem 2 (with β = 2 and
α = 0) and of part (e) of the proof of Theorem 1 in Pardoux and Veretennikov
[35], along with (7.24), show that the functions |w̆s(u, x)| and |Dw̆s(u, x)| grow
at most quadratically in |x| locally uniformly in (s, u).

We define ws(u, x) = w̆s(u, x) − V −1
1

∫
S1

w̆s(u, y) dy, where S1 represents the
unit open ball centered at the origin in R

l and V1 represents the volume of that
ball. Obviously, the bounds on w̆s(u, x) we have found are also valid for ws(u, x).
It also satisfies (7.13a). We prove that, for all q > 1,

sup
s∈[0,t]

sup
u∈Rn:|u|≤L

∥∥ws(u, ·)
∥∥
W2,q (S) < ∞.(7.25)
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Since Dws(u, x) = �s,ms(·),u and (7.17) holds,
∫
S1

ws(u, x) dx = 0, and ms(x) is
locally bounded away from zero, an application of Poincaré’s inequality yields
sups∈[0,t] supu∈Rn:|u|≤L ‖ws(u, ·)‖L2(S1)

< ∞. If S2 is a ball containing S1, then,
for some LS1,S2 > 0,∥∥ws(u, ·)

∥∥2
W1,2(S2)

≤ LS1,S2

(∥∥Dws(u, ·)
∥∥2
L2(S2)

+ ∥∥ws(u, ·)
∥∥2
L2(S1)

);
see page 299 in Kufner, John and Fučík [27], and also Theorem 7.4 on page 109
in Nečas [33]. Thus, on recalling that S ⊂⊂ S̃ and letting S̆ represent an open ball
in R

l such that S̃ ⊂⊂ S̆, we have that

sup
s∈[0,t]

sup
u∈Rn:|u|≤L

∥∥ws(u, ·)
∥∥
W1,2(S̆)

< ∞.(7.26)

By (7.13a), Theorem 5.5.5′(a) on page 156 in Morrey [32], the discussion on
page 12 of Bogachev, Krylov and Rëkner [7], Shaposhnikov [47] and the fact
that supx∈S̆ |as(u, x)| and ‖cs(u, ·)‖W1,∞(S̆,Rl×l )

are bounded locally uniformly in
(s, u), we have that ‖ws(u, ·)‖W1,q (S̃)

≤ M
S̃,S̆,q

(1 + ‖ws(u, ·)‖L1(S̆)
) locally uni-

formly in (s, u). By (7.26), sups∈[0,t] sup|u|≤L ‖ws(u, ·)‖W1,q (S̃)
< ∞. By (7.13a),

via a similar argument to the one used for ζ(·)w̃s(u, ·) above, ζ(·)ws(u, ·) is a
strong solution to (7.20). By Theorem 9.15 on page 241 in Gilbarg and Trudinger
[21], ζ(·)ws(u, ·) ∈ W

2,q(S̃). By Theorem 9.11 on page 235 in Gilbarg and
Trudinger [21], locally uniformly in (s, u), for some M̃

S,S̃,q
> 0,∥∥ws(u, ·)

∥∥
W2,q (S) ≤ M̃

S,S̃,q

(
1 + ∥∥ws(u, ·)

∥∥
Lq (S̃)

)
which implies (7.25).

We now address the continuity of ws(u, x). Let ui → u. By (7.25) and
Sobolev’s imbedding, the sequences ws(ui, ·) and Dws(ui, ·) are equicontinuous
in x ∈ S, so they are relatively compact in C(S,Rl). A similar property holds
for (as(ui, ·) − (1/2)div cs(ui, ·))ms(·). Taking a subsequential limit in (7.13a)
implies that Dws(ui, ·) → Dws(u, ·) in C(S,Rl). By Poincaré’s inequality for
S = S1 and the fact that

∫
S1

ws(u, x) dx = 0, ws(ui, ·) → ws(u, ·) in L
2(S1). The

bound∥∥ws(ui, ·)− ws(u, ·)
∥∥2
W1,2(S2)

≤ LS1,S2

(∥∥Dws(ui, ·)− Dws(u, ·)
∥∥2
L2(S2)

+ ∥∥ws(ui, ·)− ws(u, ·)
∥∥2
L2(S1)

)
shows that ws(ui, ·) → ws(u, ·) in L

2(S2). Since S2 is an arbitrary ball that con-
tains S1, ws(ui, ·) → ws(u, ·) in C(S,Rl). Hence, ws(u, x) and Dws(u, x) are
continuous in (u, x) for almost all s.

We outline a proof of (7.15a). Since as(u, ·) ∈ L
2(Rl ,Rl,ms(x) dx) and

Dws(u, ·) ∈ L
2(Rl ,Rl ,ms(x) dx), the equality in (7.13a) extends to C

1(Rl)-
functions p(x) such that

∫
Rl (p(x)2 +|Dp(x)|2)ms(x) dx < ∞. We choose p(x) =

|x|2 exp(−δ[(|x − x0|2/κ − 1)+]2) in (7.13a), where κ > 0, δ > 0, and x0 ∈ R
l , let
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δ → ∞, divide the limits by the volume of the ball of radius κ centered at x0, let
κ → 0 and accounting for Dws(u, x), ms(x), cs(u, x) and as(u, x) being continu-
ous in x, obtain (7.15a).

The part that concerns vs(u, x) is dealt with similarly, except that one uses The-
orem 2 of Pardoux and Veretennikov [35] with β = 1 in order to bound the growth
rate of the second term of the sum in (7.14b). �

We now take on the proof of Theorem 7.1. Let ŵs(u, x) and v̂s(u, x) represent
ws(u, x) and vs(u, x), respectively, in the statement of Lemma 7.3 for ms(x) =
m̂s(x). We define, guided by (6.16) and (6.17), on recalling (2.15a) and (2.3),

λ̂s(u) =
(∫

Rl
Qs,m̂s(·)(u, x)m̂s(x) dx

)−1( ˙̂
Xs −

∫
Rl

As(u, x)m̂s(x) dx

(7.27)

−
∫
Rl

Gs(u, x)

(
Dm̂s(x)

2m̂s(x)
− Dŵs(u, x)

)
m̂s(x) dx

)

if Ct(u, x) − Gt(u, x)ct (u, x)
−1Gt(u, x)

T is positive definite uniformly in x and
locally uniformly in (t, u) and λ̂s(u) = 0 if Ct(u, x) = 0 for all (t, u, x), and

ĥs(u, x) = 1
2 ln m̂s(x) − ŵs(u, x)− v̂s(u, x)

T λ̂s(u)(7.28)

so that

Dĥs(u, x) = Dm̂s(x)

2m̂s(x)
− Dŵs(u, x)− Dv̂s(u, x)

T λ̂s(u).(7.29)

We note that by (2.14),

Qs,m̂s(·)(u, x) = Cs(u, x) − ∥∥Dv̂s(u, x)
∥∥2
cs(u,x)

.(7.30)

The continuity properties of ws(u, x) and vs(u, x) established in Lemma 7.3 imply
that λ̂s(u) is continuous in u and that ĥs(u, x) and Dĥs(u, x) are continuous in
(u, x), for almost all s ∈ R+.

If Ct(u, x) − Gt(u, x)ct (u, x)
−1Gt(u, x)

T is positive definite uniformly in x

and locally uniformly in (t, u), then the analogue of (7.16) for Dŵs(u, x), (7.27)
and Condition 2.1 imply that, for some ϑ1 > 0,

∣∣λ̂s(u)
∣∣ ≤ ϑ1

(
| ˙̂
Xs | + sup

x∈Rl

∣∣As(u, x)
∣∣

(7.31)

+
(∫

Rl

∣∣as(u, x)∣∣2m̂s(x) dx

)1/2

+ sup
x∈Rl

|Dm̂s(x)|
m̂s(x)

)
.

Since m̂s(x) = Mse
−α|x| for |x| > 2r and |as(u, x)| grows at most linearly in x,

we conclude that |λ̂s(u)| is locally bounded in (s, u).
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Therefore, by Lemma 7.3, for all L> 0, all open balls S in R
l , and all q > 1,

sup
s∈[0,t]

sup
u∈Rn:|u|≤L

∣∣λ̂s(u)
∣∣ + sup

s∈[0,t]
sup

u∈Rn:|u|≤L

∫
S

∣∣Dĥs(u, x)
∣∣q dx < ∞.(7.32)

By Theorem 6.1, the supremum in (6.15) is attained at λ = λ̂s(u) and g =
Dĥs(u, x), however, the function ĥs(u, x) might not be of compact support in
x so in order to use it in Lemma 7.2, we need to restrict it to a compact set. Let
η(y) represent an R+-valued nonincreasing C

∞
0 (R+)-function such that η(y) = 1

for 0 ≤ y ≤ 1 and η(y) = 0 for y ≥ 2. Let ŵi
s(u, x) = ŵs(u, x)η(|x|/i) and

v̂is(u, x) = v̂s(u, x)η(|x|/i). We note that

Dŵi
s(u, x) = η

( |x|
i

)
Dŵs(u, x) + x

i|x|Dη

( |x|
i

)
ŵs(u, x)(7.33a)

and

Dv̂is(u, x) = Dv̂s(u, x)η

( |x|
i

)
+ x

i|x| v̂s(u, x)Dη

( |x|
i

)T

.(7.33b)

We define, in analogy with (7.27),

λ̂i
s(u) =

(∫
Rl

Qs,m̂s(·)(u, x)m̂s(x) dx

)−1( ˙̂
Xs −

∫
Rl

As(u, x)m̂s(x) dx

(7.34)

−
∫
Rl

Gs(u, x)

(
1

2
D

(
η

( |x|
i

)
ln m̂s(x)

)
− Dŵi

s(u, x)

)
m̂s(x) dx

)

if Ct(u, x) − Gt(u, x)ct (u, x)
−1Gt(u, x)

T is positive definite uniformly in x and
locally uniformly in (t, u), and λ̂i

s(u) = 0 if Ct(u, x) = 0. We let, similar to (7.28),

ĥi
s(u, x) = 1

2
η

( |x|
i

)
ln m̂s(x) − ŵi

s(u, x)− v̂is(u, x)
T λ̂i

s(u).(7.35)

In analogy with (7.31) and in view of (7.33a) and (7.14b) in Lemma 7.3, one can
see that the |λ̂i

s(u)| are bounded uniformly in i and locally uniformly in (s, u),
where the bound may depend on α. Also, λ̂i

s(u) is continuous in u, so it satisfies
the hypotheses of Lemma 7.2.

If Ct(u, x) − Gt(u, x)ct (u, x)
−1Gt(u, x)

T is positive definite uniformly in x

and locally uniformly in (t, u), then by (7.33a), Lemma 7.3, (7.27) and (7.34),

lim
i→∞ sup

s∈[0,t]
sup

u∈Rn:|u|≤L

∣∣λ̂i
s(u) − λ̂s(u)

∣∣ = 0.(7.36)

The latter convergence also holds if Ct(u, x) = 0 in that λ̂i
s(u) = λ̂s(u) = 0.

Similarly, since by (7.33a), (7.33b) and (7.35),

Dĥi
s(u, x) = η

( |x|
i

)
Dĥs(u, x)

(7.37)

+ 1

i

x

|x|Dη

( |x|
i

)(
1

2
ln m̂s(x) − ŵs(u, x)− v̂s(u, x)

T λ̂i
s(u)

)
,
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we have that

lim
i→∞ sup

s∈[0,t]
sup

u∈Rn:|u|≤L

∫
S

∣∣Dĥi
s(u, x) − Dĥs(u, x)

∣∣q dx = 0,(7.38)

for all L > 0, all open balls S in R
l , and all q > 1. The functions ĥi

s(u, x) also
satisfy the hypotheses of Lemma 7.2.

Another auxiliary lemma is in order.

LEMMA 7.4. Suppose, for i ∈ N, Xi ∈ C(R+,Rn), X ∈ C(R+,Rn), and
mi

s(x) and ms(x) are measurable functions which are probability densities in x

on R
l for almost all s such that∫

Rl

(
1

2
tr

(
cs

(
Xi

s, x
)
D2p(x)

) + Dp(x)T
(
as

(
Xi

s, x
) + Gs

(
Xi

s, x
)T

λ̂i
s

(
Xi

s

)

− 1

2
div cs

(
Xi

s, x
) + cs

(
Xi

s, x
)
Dĥi

s

(
Xi

s, x
)))

mi
s(x) dx = 0

and ∫
Rl

(
1

2
tr

(
cs(Xs, x)D

2p(x)
) + Dp(x)T

(
as(Xs, x)+ Gs(Xs, x)

T λ̂s(Xs)

(7.39)

− 1

2
div cs(Xs, x)+ cs(Xs, x)Dĥs(Xs, x)

))
ms(x) dx = 0,

for all p ∈ C
∞
0 (Rl). If Xi → X as i → ∞, then, for all α great enough and for all

t > 0,

lim
i→∞

∫ t

0

∫
Rl

∣∣mi
s(x) − ms(x)

∣∣dx ds = 0,(7.40a)

lim
i→∞

∫ t

0

∫
Rl

∥∥Dĥi
s

(
Xi

s, x
)∥∥2

cs(Xi
s ,x)

mi
s(x) dx ds

(7.40b)

=
∫ t

0

∫
Rl

∥∥Dĥs(Xs, x)
∥∥2
cs(Xs,x)

ms(x) dx ds

and

lim
i→∞

∫ t

0

∥∥λ̂i
s

(
Xi

s

)∥∥2∫
Rl Cs(Xi

s ,x)m
i
s(x) dx

ds

(7.40c)

=
∫ t

0

∥∥λ̂s(Xs)
∥∥2∫

Rl Cs(Xs,x)ms(x) dx
ds.

PROOF. We must again resort to a proof outline. We first address existence
and uniqueness of mi

s(x) and ms(x). Since sup|u|≤L(x/|x|)T as(u, x) → −∞ as

|x| → ∞, the function Gs(u, x) is bounded, the function λ̂i
s(u) is bounded locally
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in (s, u) and the function ĥi
s(u, x) is of compact support in x locally uniformly in

(s, u), we have that

lim|x|→∞
xT

|x|
(
as

(
Xi

s, x
) + Gs

(
Xi

s, x
)T

λ̂i
s

(
Xi

s

) − 1

2
div cs

(
Xi

s, x
)

(7.41)

+ cs
(
Xi

s, x
)
Dĥi

s

(
Xi

s, x
)) = −∞,

which implies that mi
s(x) is well defined and is specified uniquely; see, for exam-

ple, Metafune, Pallara and Rhandi [31], Theorem 2.2, Proposition 2.4.
By (7.29), relations (7.15a) and (7.15b) of Lemma 7.3 imply that

xT

(
as(Xs, x)+ Gs(Xs, x)

T λ̂s(Xs) − 1

2
div cs(Xs, x)+ cs(Xs, x)Dĥs(Xs, x)

)

= xT

2
cs(Xs, x)

Dm̂s(x)

m̂s(x)
.

If |x| > 2r , then Dm̂s(x)/m̂s(x) = −αx/|x|, so, locally uniformly in s,

lim sup
|x|→∞

xT

|x|
(
as(Xs, x)+ Gs(Xs, x)

T λ̂s(Xs) − 1

2
div cs(Xs, x)

+ cs(Xs, x)Dĥs(Xs, x)

)
< 0,

which ensures the existence and uniqueness of ms(x).
As in the proof of Lemma 6.7, it is then shown that, for arbitrary δ > 0, there

exists α > 0 such that for all t > 0

sup
s∈[0,t]

sup
i∈N

∫
Rl

eδ|x|mi
s(x) dx < ∞.(7.42)

First, a uniform version of (7.41) is established:

lim
α→∞ lim sup

|x|→∞
sup

s∈[0,t]
sup
i∈N

xT

|x|
(
as

(
Xi

s, x
) + Gs

(
Xi

s, x
)T

λ̂i
s

(
Xi

s

) − 1

2
div cs

(
Xi

s, x
)

(7.43)

+ cs
(
Xi

s, x
)
Dĥi

s

(
Xi

s, x
)) = −∞.

The proof of the bound in (7.42) is similar to the argument in the proof of
Lemma 6.7, with (7.43) assuming the role of the condition that

sup
i∈N

as+t

(
Xi

s, x
)T x

|x| → −∞.

Since the λi
s(u) are bounded uniformly in i and locally uniformly in (s, u) and

(7.32) and (7.42) hold, by Proposition 2.16 in Bogachev, Krylov and Röckner [8],
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for almost all s the functions mi
s(·) converge in the variation norm along a sub-

sequence to probability density m̃s(·). By (7.29), (7.37), the bounds (7.14b), and
by (7.42), we have that

sup
s∈[0,t]

sup
i∈N

∫
Rl

∥∥Dĥi
s

(
Xi

s, x
)∥∥3

cs(Xi
s ,x)

mi
s(x) dx < ∞.(7.44)

Since supi∈N |λ̂i
s | < ∞, the convergences in (7.36) and (7.38) imply that m̃s(x)

must satisfy (7.39), so m̃s(x) = ms(x) and mi
s(·) → ms(·) in the variation

norm. The limit in (7.40a) follows by dominated convergence. The convergence
in (7.40c) follows from (7.36), (7.32) and (2.12d). For (7.40b), we also take into
account (7.44). �

We complete the proof of Theorem 7.1. Let, given N ∈ N, τ̂ N,i and θ̂N,i be
defined by the respective equations (7.1a) and (7.1b) with λ̂i

s(u) and ĥi
s(u, x)

as λ̂s(u) and ĥs(u, x), respectively. Since the functions λ̂i
s(u) and ĥi

s(u, x) sat-
isfy the hypotheses of Lemma 7.2, there exist γN,i = (XN,i,μN,i) ∈ � such
that θ̂N,i(γ N,i) = Ĩ(γ N,i) and γN,i ∈ K2N+2 for all i. In particular, X

N,i
0 = û,

μN,i(ds, dx) = mN,i
s (x) dx ds, where mN,i

s (·) ∈ P(Rl) (see Theorem 6.1), and the
set {γN,i, i = 1,2, . . .} is relatively compact. Since Ĩ(γ N,i) ≥ I∗∗(γ N,i), on the
one hand, and θ̂N,i(γ N,i) ≤ I∗∗(γ N,i) by (6.14) and (7.1b), on the other hand, we
have that

θ̂N,i(γN,i) = I∗∗(
γN,i) = Ĩ

(
γN,i).(7.45)

Let μN,i → μN in C(R+,M(Rl)) and XN,i → XN in C(R+,Rn) along a subse-
quence of i, which we still denote by i.

By (7.1b) and (7.45), the suprema in (6.14) for (X,μ) = (XN,i,μN,i) are at-
tained at (λ̂i

s(X
N,i
s ), ĥi

s(X
N,i
s , x)) when s ≤ τ̂ N,i(γ N,i). In particular, since the

supremum over h for λ = λ̂i
s(X

N,i
s ) is attained at h(x) = ĥi

s(X
N,i
s , x), we have that

Dĥi
s

(
XN,i

s , x
)

= �
cs(X

N,i
s ,·),mN,i

s (·)
(
DmN,i

s (x)

2mN,i
s (x)

+ cs
(
XN,i

s , ·)−1(7.46)

×
(

1

2
div cs

(
XN,i

s , ·) − as
(
XN,i

s , ·) − Gs

(
XN,i

s , ·)T λ̂i
s

(
XN,i

s

)))
(x).

Recalling the definition of � and integrating by parts obtains, for p ∈C
∞
0 (Rl),∫

Rl

(
1

2
tr

(
cs

(
XN,i

s , x
)
D2p(x)

) + Dp(x)T
(
as

(
XN,i

s , x
) − 1

2
div cs

(
XN,i

s , x
)

(7.47) + Gs

(
XN,i

s , x
)T

λ̂i
s

(
XN,i

s

) + cs
(
XN,i

s , x
)
Dĥi

s

(
XN,i

s , x
)))

mN,i
s (x) dx = 0.
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Thus, mN,i
s (x) dx is an invariant probability for a diffusion. By (7.13a), (7.13b)

[for ŵs(u, x) and v̂s(u, x)], and (7.29), via a similar manipulation,∫
Rl

(
1

2
tr

(
cs

(
XN

s , x
)
D2p(x)

) + Dp(x)T
(
as

(
XN

s , x
) − 1

2
div cs

(
XN

s , x
)

+ Gs

(
XN

s , x
)T

λ̂s

(
XN

s

) + cs
(
XN

s , x
)
Dĥs

(
XN

s , x
)))

m̂s(x) dx = 0.

Let m̃N,i
s (x) represent a probability density that solves (7.47) for all s ∈ R+ rather

than for s ≤ τ̂ N,i(γ N,i). The existence of m̃N,i
s (x) is established as in the proof

of Lemma 7.4; more specifically, see (7.41). Lemma 7.4 implies that m̃N,i
s (x) →

m̂s(x) in L
1([0, t] ×R

l) as i → ∞, that

lim
i→∞

∫ t

0

∫
Rl

∥∥Dĥi
s

(
XN,i

s , x
)∥∥2

cs(X
N,i
s ,x)

m̃N,i
s (x) dx ds

(7.48a)

=
∫ t

0

∫
Rl

∥∥Dĥs

(
XN

s , x
)∥∥2

cs(XN
s ,x)m̂s(x) dx ds

and that

lim
i→∞

∫ t

0

∥∥λ̂i
s

(
XN,i

s

)∥∥2∫
Rl Cs(X

N,i
s ,x)m̃

N,i
s (x) dx

ds

(7.48b)

=
∫ t

0

∥∥λ̂s

(
XN

s

)∥∥2∫
Rl Cs(XN

s ,x)m̂s(x) dx
ds.

By Lemma 7.1, τ̂ N,i(γ̃ N,i) → τ̂ N (γ N) as i → ∞, where γ̃ N,i = (XN,i, μ̃N,i)

and μ̃N,i(dx, ds) = m̃N,i
s (x) dx ds. Since τ̂ N,i(γ̃ N,i) = τ̂ N,i(γ N,i), we obtain that

τ̂ N,i(γ N,i) → τN(γ N) and that mN,i
s (x) → m̂s(x) in L

1([0, τN(γ N)] × R
l), so

μN
s (dx) = m̂s(x) dx for almost all s ≤ τN(γ N).
We now use the fact that the supremum in (6.14) over λ for h(x) = ĥi

s(X
N,i
s , x)

is attained at λ = λ̂i
s(X

N,i
s ). If Ct(u, x) = 0 and At(u, x) is locally Lipschitz con-

tinuous in u locally uniformly in t and uniformly in x, then λ̂i
s(X

N,i
s ) = 0, so

ẊN,i
s = ∫

Rl As(X
N,i
s , x)mN,i

s (x) dx, which, as in the proof of Lemma 6.7, implies
since XN,i → XN in C(R+,Rn) and (mN,i

s (x)) → (m̂s(x)) in L
1([0, τN(γ N)] ×

R
l) as i → ∞ that ẊN

s = ∫
Rl As(X

N
s , x)m̂s(x) dx a.e. for s ≤ τN(γ N). By unique-

ness, XN
s = X̂s for s ≤ τN(γ N). As a byproduct, ẊN,i

s → ˙̂
Xs as i → ∞ a.e. on

[0, τN(γ N)].
Suppose that Ct(u, x)−Gt(u, x)ct (u, x)

−1Gt(u, x)
T is positive definite locally

uniformly in (t, u) and uniformly in x. Then the maximization condition is

ẊN,i
s =

∫
Rl

As

(
XN,i

s , x
)
mN,i

s (x) dx +
∫
Rl

Gs

(
XN,i

s , x
)
Dĥi

s

(
XN,i

s , x
)
mN,i

s (x) dx

+
∫
Rl

Cs

(
XN,i

s , x
)
λ̂i
s

(
XN,i

s

)
mN,i

s (x) dx.
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On integrating both sides from 0 to t and letting i → ∞, we have by the facts
that γN,i → γN , that XN,i → XN , that mN,i

s (x) → m̂s(x) in L
1([0, τN(γ N)] ×

R
l), and that λ̂i

s(u) → λ̂s(u) locally uniformly in (s, u) as i → ∞ [see (7.36)],
by (7.38), by (7.44) and by (7.29) that, for almost all s ≤ τN(γ N),

ẊN
s =

∫
Rl

As

(
XN

s , x
)
m̂s(x) dx

+
∫
Rl

Gs

(
XN

s , x
)(Dm̂s(x)

2m̂s(x)
− Dŵs

(
XN

s , x
))

m̂s(x) dx(7.49)

+
∫
Rl

(
Cs

(
XN

s , x
) − Gs

(
XN

s , x
)
Dv̂s

(
XN

s , x
))
m̂s(x) dxλ̂s

(
XN

s

)
.

Since Dv̂s(u, ·) ∈ L
1,2
0 (Rl ,Rn×l, cs(x), m̂s(x) dx) and the function Gs(u, ·) is

bounded, (7.13b) extends to Dp representing an arbitrary element of L1,2
0 (Rl ,Rl,

ct (x), m̂s(x) dx), so by (7.30),∫
Rl

Qs,m̂s(·)(u, x)m̂s(x) dx =
∫
Rl

(
Cs(u, x) − Gs(u, x)Dv̂s(u, x)

)
m̂s(x) dx.

Substitution of the latter expression in (7.27) and of (7.27) into (7.49) obtains that

ẊN
s = ˙̂

Xs a.e. on [0, τN(γ N)], so on recalling that XN
0 = X̂0 = û we conclude that

XN
s = X̂s for s ≤ τN(γ N). In addition, ẊN,i

s → ˙̂
Xs as i → ∞ a.e. on [0, τN(γ N)].

Hence, in either case, τN(γ N) = τN(γ̂ ) and γN
s = γ̂s for s ≤ τN(γ̂ ) so that

θN(γ N) = θN(γ̂ ), where γ̂ = (X̂, μ̂). We show that

θN (
γN ) = lim

i→∞ θ̂N,i(γN,i).(7.50)

By (7.1b) and (7.46),

θ̂N,i(γN,i) =
∫ τ̂N,i (γ N,i )

0

(
λ̂i
s

(
XN,i

s

)T (
ẊN,i

s −
∫
Rl

As

(
XN,i

s , x
)
mN,i

s (x) dx

)

− 1

2

∥∥λ̂i
s

(
XN,i

s

)∥∥2∫
Rl Cs(X

N,i
s ,x)m

N,i
s (x) dx

+ 1

2

∫
Rl

∥∥Dĥi
s

(
XN,i

s , x
)∥∥2

cs(X
N,i
s ,x)

mN,i
s (x) dx

)
ds.

Similarly,

θN (
γN ) =

∫ τN (γN )

0

(
λ̂s

(
XN

s

)T (
ẊN

s −
∫
Rl

As

(
XN

s , x
)
m̂s(x) dx

)

− 1

2

∥∥λ̂s

(
XN

s

)∥∥2∫
Rl Cs(XN

s ,x)m̂s(x) dx

+ 1

2

∫
Rl

∥∥Dĥs

(
XN

s , x
)∥∥2

cs(XN
s ,x)m̂s(x) dx

)
ds.
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On recalling convergences (7.48a) and (7.48b) which are locally uniform in t ,
the fact that m̃N,i

s (x) = mN,i
s (x) for s ≤ τN,i(γ N,i), and the convergences

τ̂ N,i(γ N,i) → τN(γ N), γN,i → γN , for (7.50), it remains to check that

lim
i→∞

∫ τ̂N (γ N,i )

0
λ̂i
s

(
XN,i

s

)T (
ẊN,i

s −
∫
Rl

As

(
XN,i

s , x
)
mN,i

s (x) dx

)
ds

(7.51)

=
∫ τN (γN )

0
λ̂s

(
XN

s

)T (
ẊN

s −
∫
Rl

As

(
XN

s , x
)
m̂s(x) dx

)
ds.

The convergences τ̂ N,i(γ N,i) → τN(γ N), γN,i → γN , and ẊN,i
s → ẊN

s for al-
most all s < τN(γ N), imply that the 1{s≤τ̂N,i (γ N,i )}(s)λ̂i

s(X
N,i
s )T (ẊN,i

s −∫
Rl As(X

N,i
s , x)mN,i

s (x) dx) converge to 1{s≤τN (γN )}(s)λ̂s(X
N
s )T (ẊN

s −∫
Rl As(X

N
s , x)m̂s(x) dx) as i → ∞ for almost all s. Since the λ̂i

s(u) are bounded
uniformly in i and locally uniformly in (s, u), the uniform integrability needed to
derive (7.51) follows by the bound supγ∈Kδ

∫ N
0 |Ẋs − ∫

Rl As(Xs, x) ×
ms(x) dx|2 ds < ∞, which is a consequence of (6.18).

By (7.45), (7.50) and part 1 of Theorem 3.4, I∗∗(γ N) = θN(γ N) = Ĩ(γ N).
[Alternatively, one can follow the proof of part 1 of Theorem 3.4 by letting
i → ∞ in (7.45) to obtain that I∗∗(γ N) ≥ θN(γ N) ≥ Ĩ(γ N).] Therefore, I∗∗(γ̂ ) ≥
θN(γ̂ ) = θN(γ N) = Ĩ(γ N). Let πt(γ ), where γ = (X,μ), denote the projection
((Xs∧t ,μs∧t (·)), s ∈R+). We have that

Ĩ
(
γN ) ≥ inf

γ :π
τN (γN )

(γ )=π
τN (γN )

(γ N )
Ĩ(γ ) = inf

γ :π
τN (γ̂ )

(γ )=π
τN (γ̂ )

(γ̂ )
Ĩ(γ ).

The sets π−1
τN (γ̂ )

(πτN (γ̂ )(γ̂ )) are closed and decrease to γ̂ as N → ∞, so the

rightmost side converges to Ĩ(γ̂ ), by Ĩ being lower compact. We conclude that
I∗∗(γ̂ ) ≥ Ĩ(γ̂ ), so I∗∗(γ̂ ) = Ĩ(γ̂ ).

8. Approximating the large deviation function. By Theorem 3.4, in order
to complete the proof of Theorem 2.1, it remains to establish an approximation
theorem for I∗∗ along the lines of part 2 of Theorem 3.4. We state it next.

THEOREM 8.1. Suppose that Conditions 2.1–2.3, (2.4b) and (2.12d) hold. If
I∗∗(X,μ) < ∞, then there exists sequence (X(j),μ(j)) whose members satisfy the
requirements on (X̂, μ̂) in the statement of Theorem 7.1 such that (X(j),μ(j)) →
(X,μ) and I∗∗(X(j),μ(j)) → I∗∗(X,μ) as j → ∞.

PROOF. Let μ(ds, dx) = ms(x) dx ds and

ks(x) = 1

2ms(x)
div

(
cs(Xs, x)ms(x)

) − as(Xs, x).
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Since, by Theorem 6.1,
∫ t

0
∫
Rl |Dms(x)|2/ms(x) dx ds < ∞, for all t ∈ R+, we

have that ks(·) ∈ L
2
loc(R

l ,Rl,ms(x) dx) a.e.
Let function η be as in Condition 2.3. We introduce ηr(x) = η(|x|/r) and

krs (x) = 1

2η2
r (x)ms(x)

div
(
cs(Xs, x)η

2
r (x)ms(x)

) − as(Xs, x),(8.1)

where x ∈ R
l and r > 0. We also let Sr represent the open ball in R

l of radius r

centered at the origin.
We first prove that one can choose (X(j),μ(j)) of the required form that con-

verge to (X,μ) as j → ∞ and are such that I∗∗
t (X(j),μ(j)) → I∗∗

t (X,μ) for all t ,
where I∗∗

t is defined by (6.21).
Let us begin with the case where Ct(u, x) = 0 for all (t, u, x) and At(u, x)

is Lipschitz continuous in u locally uniformly in t and uniformly in x. By The-
orem 6.1, Ẋs = ∫

Rl As(Xs, x)ms(x) dx a.e., the latter equation having a unique
solution. Let ρκ(x) = (1/κl)ρ(x/κ) for κ > 0, where ρ(x) is a mollifier on R

l .
We define, for i, j, j ′ ∈ N and α > 0,

mi,j,j ′
s (x) = Mi,j,j ′

s

(
m̂i,j ′

s (x)η2
j (x) + e−α|x|(1 − η2

j (x)
))

(8.2a)

and

Mi,j,j ′
s =

(∫
Rl

(
m̂i,j ′

s (x)η2
j (x) + e−α|x|(1 − η2

j (x)
))
dx

)−1

,(8.2b)

where

m̂i,j ′
s (x) =

∫
Rl

ρ1/i(x̃)m̂
j ′
s (x − x̃) dx̃, m̂j ′

s (x) = ms(x) ∧ j ′ ∨ 1

j ′ .(8.3)

We note that, thanks to Theorem 6.1, m̂j ′
s ∈ W

1,2
loc (R

l).
We use Lemma 6.7 to define Xi,j,j ′

as the solution of the equation

Ẋi,j,j ′
s =

∫
Rl

As

(
Xi,j,j ′

s , x
)
mi,j,j ′

s (x) dx,

with X
i,j,j ′
0 = X0. The densities m

i,j,j ′
s (x) are of class C

1 in x, with bounded
derivatives, and are locally bounded away from zero, and the Xi,j,j ′

are locally
Lipschitz continuous by Lemma 6.7.

We introduce further

Mj,j ′
s =

(∫
Rl

(
m̂j ′

s (x)η2
j (x) + e−α|x|(1 − η2

j (x)
))
dx

)−1

,(8.4a)

mj,j ′
s (x) = Mj,j ′

s

(
m̂j ′

s (x)η2
j (x) + e−α|x|(1 − η2

j (x)
))

(8.4b)

and

Ẋj,j ′
s =

∫
Rl

As

(
Xj,j ′

s , x
)
mj,j ′

s (x) dx, X
j,j ′
0 = X0.(8.4c)
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Let also

Mj
s =

(∫
Rl

(
ms(x)η

2
j (x) + e−α|x|(1 − η2

j (x)
))
dx

)−1

,(8.5a)

mj
s (x) = Mj

s

(
ms(x)η

2
j (x) + e−α|x|(1 − η2

j (x)
))

(8.5b)

and

Ẋj
s =

∫
Rl

As

(
Xj

s , x
)
mj

s (x) dx, X
j
0 = X0.

We have that

lim
i→∞Mi,j,j ′

s = Mj,j ′
s , lim

i→∞

∫
Rl

∣∣mi,j,j ′
s (x) − mj,j ′

s (x)
∣∣dx = 0,

(8.6a)
lim
i→∞Xi,j,j ′

s = Xj,j ′
s ,

lim
j ′→∞Mj,j ′

s = Mj
s , lim

j ′→∞

∫
Rl

∣∣mj,j ′
s (x) − mj

s (x)
∣∣dx = 0,

(8.6b)
lim

j ′→∞Xj,j ′
s = Xj

s ,

and

lim
j→∞Mj

s = 1, lim
j→∞

∫
Rl

∣∣mj
s (x) − ms(x)

∣∣dx = 0,

(8.6c)
lim

j→∞Xj
s = Xs.

The third convergence on each line is proved by a similar compactness argument
to the one used in the proof of Lemma 6.7.

By (6.22),

I∗∗
t (X,μ) =

∫ t

0
sup

h∈C1
0(R

l )

(∫
Rl

(
Dh(x)T

(
1

2
div

(
cs(Xs, x)ms(x)

)
(8.7)

− as(Xs, x)ms(x)

)
− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

ms(x)

)
dx

)
ds

and

I∗∗
t

(
Xi,j,j ′

,μi,j,j ′)
=

∫ t

0
sup

h∈C1
0(R

l )

(∫
Rl

(
Dh(x)T

(
1

2
div

(
cs

(
Xi,j,j ′

s , x
)
mi,j,j ′

s (x)
)

− as
(
Xi,j,j ′

s , x
)
mi,j,j ′

s (x)

)
− 1

2

∥∥Dh(x)
∥∥2
cs(X

i,j,j ′
s ,x)

mi,j,j ′
s (x)

)
dx

)
ds.



3174 A. A. PUHALSKII

By (8.2a),

I∗∗
t

(
Xi,j,j ′

,μi,j,j ′)
(8.8)

≤ Mi,j,j ′
s

(∫ t

0
I
j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

)
ds +

∫ t

0
I
j
2

(
Xi,j,j ′

s , s
)
ds

)
,

where, for generic X̃s and m̃s ,

I
j
1 (X̃s, m̃s, s) = sup

h∈C1
0(R

l )

∫
Rl

(
Dh(x)T

(
1

2
div

(
cs(X̃s, x)η

2
j (x)m̃s(x)

)
(8.9a)

− as(X̃s, x)η
2
j (x)m̃s(x)

)
− 1

2

∥∥Dh(x)
∥∥2
cs(X̃s ,x)

η2
j (x)m̃s(x)

)
dx

and

I
j
2 (X̃s, s) = sup

h∈C1
0(R

l )

∫
Rl
(Dh(x)T

(
1

2
div

(
cs(X̃s, x)e

−α|x|(1 − η2
j (x)

)

− as(X̃s, x)e
−α|x|(1 − η2

j (x)
))

(8.9b)

− 1

2

∥∥Dh(x)
∥∥2
cs(X̃s ,x)

e−α|x|(1 − η2
j (x)

))
dx.

We prove that

lim
i→∞ I

j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

) = I
j
1

(
Xj,j ′

s , m̂j ′
s , s

)
.(8.10)

Let, in analogy with (8.1),

ki,j,j
′

s (x) = 1

2η2
j (x)m̂

i,j ′
s (x)

div
(
cs

(
Xi,j,j ′

s , x
)
η2
j (x)m̂

i,j ′
s (x)

)
(8.11)

− as
(
Xi,j,j ′

s , x
)
.

This function is an element of L2(Rl ,Rl, η2
j (x)m̂

i,j ′
s (x) dx).

The supremum in I
j
1 (X

i,j,j ′
s , m̂

i,j ′
s , s) is attained at a unique element gi,j,j ′

s of

L
1,2
0 (Rl ,Rl , η2

j (x)m̂
i,j ′
s (x) dx) such that∫

Rl
Dp(x)T ki,j,j

′
s (x)η2

j (x)m̂
i,j ′
s (x) dx

(8.12)
=

∫
Rl

Dp(x)T cs
(
Xi,j,j ′

s , x
)
gi,j,j ′
s (x)η2

j (x)m̂
i,j ′
s (x) dx

for all p ∈C
1
0(R

l) and

I
j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

) =
∫
Rl

1

2

∥∥gi,j,j ′
s (x)

∥∥2

cs(X
i,j,j ′
s ,x)

m̂i,j ′
s (x)η2

j (x) dx.(8.13)
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Similarly, the supremum in I
j
1 (X

j,j ′
s , m̂

j ′
s , s) is attained at a unique element gj,j ′

s

of L1,2
0 (Rl ,Rl, η2

j (x)m̂
j ′
s (x) dx) such that∫

Rl
Dp(x)T kj,j

′
s (x)mj ′

s (x)η2
j (x) dx

(8.14)
=

∫
Rl

Dp(x)T cs
(
Xj

s , x
)
gj,j ′
s (x)mj ′

s (x)η2
j (x) dx

and

I
j
1

(
Xj,j ′

s , m̂j ′
s , s

) =
∫
Rl

1

2

∥∥gj,j ′
s (x)

∥∥2

cs(X
j,j ′
s ,x)

m̂j ′
s (x)η2

j (x) dx,(8.15)

where

kj,j
′

s (x) = 1

2η2
j (x)m̂

j ′
s (x)

div
(
cs

(
Xj,j ′

s , x
)
η2
j (x)m̂

j ′
s (x)

) − as
(
Xj,j ′

s , x
)
.(8.16)

Let

Q1 =
∫
Rl

∥∥Dp(x)
∥∥2

cs(X
i,j,j ′
s ,x)

m̂i,j ′
s (x)η2

j (x) dx,

Q2 =
∫
Rl

∥∥ki,j,j ′
s (x)m̂i,j ′

s (x) − kj,j
′

s (x)m̂j ′
s (x)

∥∥2

cs(X
i,j,j ′
s ,x)−1

η2
j (x)

m̂
i,j ′
s (x)

dx

and

Q3 =
∫
Rl

∥∥cs(Xj,j ′
s , x

)
gj,j ′
s (x)

∥∥2

cs(X
i,j,j ′
s ,x)−1

m̂
j ′
s (x)2η2

j (x)

m̂
i,j ′
s (x)

dx.

By (8.12) and (8.14), we have that∫
Rl

Dp(x)T cs
(
Xi,j,j ′

s , x
)
gi,j,j ′
s (x)m̂i,j ′

s (x)η2
j (x) dx

=
∫
Rl

Dp(x)T
(
ki,j,j

′
s (x)m̂i,j ′

s (x) − kj,j
′

s (x)m̂j ′
s (x)

)
η2
j (x) dx

+
∫
Rl

Dp(x)T cs
(
Xj,j ′

s , x
)
gj,j ′
s (x)m̂j ′

s (x)η2
j (x) dx

≤ √
Q1

√
Q2 + √

Q1
√
Q3.

Hence,√∫
Rl

∥∥gi,j,j ′
s (x)

∥∥2

cs(X
i,j,j ′
s ,x)

m̂
i,j ′
s (x)η2

j (x) dx

= sup
p∈C1

0(R
l ):Q1≤1

∫
Rl

Dp(x)cs
(
Xi,j,j ′

s , x
)
gi,j,j ′
s (x)m̂i,j ′

s (x)η2
j (x) dx

≤ √
Q2 + √

Q3.
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By (8.13), for arbitrary κ > 0,

I
j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

) ≤ 1

2

(
1 + 1

κ

)
Q2 + 1

2
(1 + κ)Q3.

By (8.3), ‖m̂i,j ′
s − m̂

j ′
s ‖W1,2(S2j )

→ 0 as i → ∞ (see, e.g., Lemma 3.16 on
page 66 in Adams and Fournier [1]), so, on recalling (8.11), (8.16) and Con-
dition 2.2, we have that Q2 → 0 as i → ∞. The integrand in Q3 tends to

‖gj,j ′
s (x)‖2

cs(X
j,j ′
s ,x)

m̂
j ′
s (x)η2

j (x) in Lebesgue measure; see (8.6a). Since the func-

tion m̂
j ′
s (x)/m̂

i,j ′
s (x) is bounded in x and i, by dominated convergence, Q3 con-

verges to
∫
Rl ‖gj,j ′

s (x)‖2

cs(X
j,j ′
s ,x)

m̂
j ′
s (x)η2

j (x) dx as i → ∞ so that, on recall-

ing (8.15),

lim sup
i→∞

I
j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

) ≤ I
j
1

(
Xj,j ′

s , m̂j ′
s , s

)
.

On the other hand, by (8.9a) and integration by parts,

I
j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

)
= sup

h∈C2
0(R

l )

∫
Rl

(
−1

2
tr

(
cs

(
Xi,j,j ′

s , x
)
D2h(x)

)

− Dh(x)T as
(
Xi,j,j ′

s , x
) − 1

2

∥∥Dh(x)
∥∥2

cs(X
i,j,j ′
s ,x)

)
m̂i,j ′

s (x)η2
j (x) dx

and a similar representation holds for I j
1 (X

j,j ′
s , m̂

j ′
s , s), which facts imply, in view

of (8.6a) and the continuity properties in Condition 2.1, that

lim inf
i→∞ I

j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

) ≥ I
j
1

(
Xj,j ′

s , m̂j ′
s , s

)
.(8.17)

We have proved (8.10). We now show that integrals with respect to s converge too.
Let us note that, by (8.12) and (8.13),

I
j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

)
≤

∫
Rl

1

2

∥∥ki,j,j ′
s (x)

∥∥2
cs(X

i,j,j ′
s ,x)−1m̂

i,j ′
s (x)η2

j (x) dx,

so, by (8.11), and Conditions 2.1 and 2.2 there exists M > 0 such that

I
i,j,j ′
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

)

≤ M

(
1 +

∫
Rl

|Dm̂
i,j ′
s (x)|2

m̂
i,j ′
s (x)

η2
j (x) dx

)
.
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Accounting for (8.3), we have that

1

2

|Dm̂
i,j ′
s (x)|2

m̂
i,j ′
s (x)

= sup
y∈Rl

(
yT Dm̂i,j ′

s (x) − 1

2
|y|2m̂i,j ′

s (x)

)

≤
∫
Rl

ρ1/i(x̃) sup
y∈Rl

(
yT Dm̂j ′

s (x − x̃) − 1

2
|y|2m̂j ′

s (x − x̃)

)
dx̃

= 1

2

∫
Rl

ρ1/i(x̃)
|Dm̂

j ′
s (x − x̃)|2

m̂
j ′
s (x − x̃)

dx̃.

Therefore, recalling that
∫
Rl ρ1/i(x) dx = 1 and the definition of m̂j ′

s (x) in (8.3),

∫
Rl

|Dm̂
i,j ′
s (x)|2

m̂
i,j ′
s (x)

η2
j (x) dx ≤

∫
Rl

|Dm̂
j ′
s (x)|2

m̂
j ′
s (x)

dx ≤
∫
Rl

|Dms(x)|2
ms(x)

dx.(8.18)

Since
∫ t

0
∫
Rl |Dms(x)|2/ms(x) dx ds < ∞ by Theorem 6.1, (8.10) and the domi-

nated convergence theorem yield the convergence

lim
i→∞

∫ t

0
I
j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

)
ds =

∫ t

0
I
j
1

(
Xj,j ′

s , m̂j ′
s , s

)
ds.(8.19)

Let us show that

lim
j ′→∞

∫ t

0
I
j
1

(
Xj,j ′

s , m̂j ′
s , s

)
ds =

∫ t

0
I
j
1

(
Xj

s ,ms, s
)
ds.(8.20)

We have that∣∣I j
1

(
Xj,j ′

s , m̂j ′
s , s

) − I
j
1

(
Xj,j ′

s ,ms, s
)∣∣

≤ 1

2

∫
Rl

(∥∥∥∥ 1

2η2
j (x)ms(x)

div
(
cs

(
Xj,j ′

s , x
)
η2
j (x)ms(x)

)

− as
(
Xj,j ′

s , x
)∥∥∥∥

2

cs(X
j,j ′
s ,x)−1

+
∥∥∥∥ 1

2η2
j (x)

div
(
cs

(
Xj,j ′

s , x
)
η2
j (x)

) − as
(
Xj,j ′

s , x
)∥∥∥∥

2

cs(X
j,j ′
s ,x)−1

)

× η2
j (x)ms(x)

(
1 − 1[1/j ′,j ′]

(
ms(x)

))
dx,

so, by dominated convergence,

lim
j ′→∞

∫ t

0

∣∣I j
1

(
Xj,j ′

s , m̂j ′
s , s

) − I
j
1

(
Xj,j ′

s ,ms, s
)∣∣ds = 0.(8.21)
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Let ϑ > 0 be such that ‖y‖2
cs(u,x)

≥ ϑ |y|2, for all s ∈ [0, t], for all u from a large

enough ball, all x and all y. By the convergence of Xj,j ′
to Xj as j ′ → ∞, the con-

tinuity of cs(u, x) in u locally uniformly in s and uniformly in x, and by cs(u, x)

being positive definite uniformly in x and locally uniformly in (s, u), given arbi-
trary δ ∈ (0,1) and κ ∈ (0,1), for all j ′ great enough, locally uniformly in s,

I
j
1

(
Xj,j ′

s ,ms, s
)

≤ sup
h∈C1

0(R
l )

∫
Rl

(
Dh(x)T kjs (x)

− 1

2
(1 − δ)(1 − κ)

∥∥Dh(x)
∥∥2
cs(X

j
s ,x)

)
ms(x)η

2
j (x) dx

+ sup
h∈C1

0(R
l )

(∫
Rl

(
Dh(x)T

(
1

2
div

((
cs

(
Xj,j ′

s , x
) − cs

(
Xj

s , x
))
ms(x)η

2
j (x)

)

− (
as

(
Xj,j ′

s , x
) − as

(
Xj

s , x
))
ms(x)η

2
j (x)

)
(8.22)

− 1

2
δ(1 − κ)

∥∥Dh(x)
∥∥2
cs(X

j
s ,x)

ms(x)η
2
j (x)

)
dx

)

≤ (1 − δ)−1(1 − κ)−1

× sup
h∈C1

0(R
l )

∫
Rl

(
Dh(x)T kjs (x) − 1

2

∥∥Dh(x)
∥∥2
cs(X

j
s ,x)

)
ms(x)η

2
j (x) dx

+ δ−1(1 − κ)−1ϑ
−1

2

∫
Rl

∣∣∣∣1

2

div((cs(X
j,j ′
s , x)− cs(X

j
s , x))ms(x)η

2
j (x))

ms(x)η
2
j (x)

− (
as

(
Xj,j ′

s , x
) − as

(
Xj

s , x
))∣∣∣∣

2

ms(x)η
2
j (x) dx.

By the convergence of Xj,j ′
s to X

j
s as j ′ → ∞, Condition 2.1 and the convergence

of
∫ t

0
∫
Rl |Dms(x)|2/ms(x) dx ds, the integral from 0 to t of the second integral on

the rightmost side of (8.22) tends to zero as j ′ → ∞. Therefore, by (8.21), (8.1),
(8.7) and (8.9a),

lim sup
j ′→∞

∫ t

0
I
j
1

(
Xj,j ′

s , m̂j ′
s , s

)
ds ≤

∫ t

0
I
j
1

(
Xj

s ,ms, s
)
ds

and by an analogue of (8.17), we obtain (8.20).
We now take a limit as j → ∞. By a similar reasoning to the one used in (8.22),

given arbitrary δ ∈ (0,1) and κ ∈ (0,1), for all j great enough, locally uniformly
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in s,

I
j
1

(
Xj

s ,ms, s
)

≤ δ−1(1 − δ)−1(1 − κ)−1 1

2

∫
Rl

∥∥Dηj(x)
∥∥2
cs(Xs,x)

ms(x)dx

+ (1 − δ)−2(1 − κ)−1

× sup
h∈C1

0(R
l )

∫
Rl

(
Dh(x)T ks(x) − 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

)
ms(x)η

2
j (x) dx

+ δ−1(1 − κ)−1ϑ
−1

2

∫
Rl

∣∣∣∣1

2

div((cs(X
j
s , x)− cs(Xs, x))ms(x)η

2
j (x))

ms(x)η
2
j (x)

− (
as

(
Xj

s , x
) − as(Xs, x)

)∣∣∣∣
2

ms(x)η
2
j (x) dx

so that, by Condition 2.3 (with λ = 0) and Condition 2.1, we have, on recall-
ing (8.7), that

lim
j→∞

∫ t

0
I
j
1

(
Xj

s ,ms, s
)
ds = I∗∗

t (X,μ).(8.23)

Putting together (8.19), (8.20) and (8.23) yields the convergence

lim
j→∞ lim

j ′→∞ lim
i→∞

∫ t

0
I
j
1

(
Xi,j,j ′

s , m̂i,j ′
s , s

)
ds = I∗∗

t (X,μ).(8.24)

We now show that the term I
j
2 is inconsequential. On recalling that |as(u, x)|

grows at most linearly in |x| and |div cs(u, x)| and ‖cs(u, x)‖ are bounded in x

locally uniformly in (s, u), we have that, for some L > 0, all (i, j), and all s ≤ t ,
according to (8.9b),

I
j
2

(
Xi,j,j ′

s , s
) ≤

∫
x∈Rl :|x|≥j

sup
y∈Rl

(
yT

(
1

2

div(cs(X
i,j,j ′
s , x)(1 − η2

j (x)))

1 − η2
j (x)

− αcs
(
Xi,j,j ′

s , x
) x

2|x| − as
(
Xi,j,j ′

s , x
)) − 1

2
‖y‖2

cs(X
i,j,j ′
s ,x)

)

× (
1 − η2

j (x)
)
e−α|x| dx

≤
∫
x∈Rl :|x|≥j

L

(
1 + α2 + |x|2 + 1

j2

|Dη(|x|/j)|2
1 − η2(|x|/j)

)
e−α|x| dx.

Since η(y) = 0 for y ≥ 2 and (2.6) holds, the latter integral tends to 0 as j → ∞,
so,

lim
j→∞ lim sup

j ′→∞
lim sup
i→∞

∫ t

0
I
j
2

(
Xi,j,j ′

s , s
)
ds = 0.(8.25)
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By (8.6a), (8.6b), (8.6c), (8.8), (8.24) and (8.25),

lim sup
j→∞

lim sup
j ′→∞

lim sup
i→∞

I∗∗
t

(
Xi,j,j ′

,μi,j,j ′) ≤ I∗∗
t (X,μ).

Thus, there exist sequences j ′(j) → ∞ and i(j) → ∞ as j → ∞ such that
(Xi(j),j,j ′(j),μi(j),j,j ′(j)) → (X,μ) and

lim sup
j→∞

I∗∗
t

(
Xi(j),j,j ′(j),μi(j),j,j ′(j)) ≤ I∗∗

t (X,μ).

The reverse inequality follows from the lower semicontinuity of I∗∗
t (X,μ)

[see (6.22), where we let I∗∗
t (X,μ) = ∞ if I∗∗(X,μ) = ∞], so

lim
j→∞ I∗∗

t

(
Xi(j),j,j ′(j),μi(j),j,j ′(j)) = I∗∗

t (X,μ),(8.26)

and one can take (X(j),μ(j)) = (Xi(j),j,j ′(j),μi(j),j,j ′(j)).
Suppose now that Ct(u, x) − Gt(u, x)ct (u, x)

−1Gt(u, x)
T is positive definite

uniformly in x and locally uniformly in (t, u). We proceed similar to the case

where Ct(u, x) = 0 and define m
i,j,j ′
s (x), Mi,j,j ′

s , Mj,j ′
s , Mj

s , and m
j
s (x) by the

respective relations (8.2a), (8.2b), (8.3), (8.4a)–(8.4c), (8.5a) and (8.5b). We let

Ẋi,j,j ′
s = Ẋj,j ′

s = Ẋj
s = Ẋs1{|Ẋs |≤j}(s), X

i,j,j ′
0 = X

j,j ′
0 = X

j
0 = X0.

The convergences in (8.6a), (8.6b) and (8.6c) still hold.
The following reasoning is sketchy out of necessity. Replacing as(Xs, x) with

as(Xs, x) + Gs(Xs, x)
T λ in the proof above, one can see in analogy with (8.26),

that there exist sequences i(j) → ∞ and j ′(j) → ∞ as j → ∞ such that, for all
λ ∈R

n with rational components and for almost all s ∈ [0, t],

lim
j→∞

∫ t

0

∫
Rl

∥∥∥∥Dm
(j)
s (x)

2m(j)
s (x)

− �
s,m

(j)
s (·),X(j)

s
(x)

− �
s,m

(j)
s (·),X(j)

s
(x)λ

∥∥∥∥
2

cs(X
(j)
s ,x)

m(j)
s (x) dx ds

(8.27a)

=
∫ t

0

∫
Rl

∥∥∥∥Dms(x)

2ms(x)
− �s,ms(·),Xs (x)

− �s,ms(·),Xs (x)λ

∥∥∥∥
2

cs(Xs,x)

ms(x) dx ds

and

lim
j→∞

∫
Rl

∥∥∥∥Dm
(j)
s (x)

2m(j)
s (x)

− �
s,m

(j)
s (·),X(j)

s
(x) − �

s,m
(j)
s (·),X(j)

s
(x)λ

∥∥∥∥
2

cs(X
(j)
s ,x)

m(j)
s (x) dx

=
∫
Rl

∥∥∥∥Dms(x)

2ms(x)
− �s,ms(·),Xs (x) − �s,ms(·),Xs (x)λ

∥∥∥∥
2

cs(Xs,x)

ms(x) dx,

respectively, where mi(j),j,j ′(j) is relabeled as m(j) and X
j
s , as X

(j)
s .
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It follows that

lim
j→∞

∫
Rl

Gs

(
X(j)

s , x
)(Dm

(j)
s (x)

2m(j)
s (x)

− �
s,m

(j)
s (·),X(j)

s
(x)

)
m(j)

s (x) dx

=
∫
Rl

Gs(Xs, x)

(
Dms(x)

2ms(x)
− �s,ms(·),Xs (x)

)
ms(x) dx

and

lim
j→∞

∫
Rl

∥∥�
s,m(j)(·),X(j)

s
(x)

∥∥2
cs(X

(j)
s ,x)

m(j)
s (x) dx

=
∫
Rl

∥∥�s,m(·),Xs (x)
∥∥2
cs(Xs,x)

ms(x) dx,

so, by (2.14),

lim
j→∞

∫
Rl

Q
s,m

(j)
s (·)

(
X(j)

s , x
)
m(j)

s (x) dx =
∫
Rl

Qs,ms(·)(Xs, x)ms(x) dx.

By dominated convergence,

lim
j→∞

∫ t

0

∥∥∥∥Ẋ(j)
s −

∫
Rl

As

(
X(j)

s , x
)
m(j)

s (x) dx −
∫
Rl

Gs

(
X(j)

s , x
)(Dm

(j)
s (x)

2m(j)
s (x)

− �
s,m

(j)
s (·),X(j)

s
(x)

)
m(j)

s (x) dx

∥∥∥∥
2

(
∫
Rl Q

s,m
(j)
s (·)(X

(j)
s ,x)m

(j)
s (x) dx)−1

ds

=
∫ t

0

∥∥∥∥Ẋs −
∫
Rl

As(Xs, x)ms(x) dx −
∫
Rl

Gs(Xs, x)

(
Dms(x)

2ms(x)

− �s,ms(·),Xs (x)

)
ms(x) dx

∥∥∥∥
2

(
∫
Rl Qs,ms (·)(Xs,x)ms(x) dx)−1

ds,

which completes the proof by (6.21) and (8.27a).
We have thus proved that in both cases there exist (X(j),μ(j)) with needed

regularity properties that converge to (X,μ) and are such that I∗∗
t (X(j),μ(j)) →

I∗∗
t (X,μ) for all t ∈ R+. Picking a suitable subsequence, we can assume that

I∗∗
j (X(j),μ(j)) ≤ I∗∗

j (X,μ) + 1/j . We redefine the subsequence (X
(j)
t ,μ

(j)
t )

for t ≥ j such that I∗∗
j (X(j),μ(j)) = I∗∗(X(j),μ(j)), thanks to Lemma 6.7.

The resulting sequence will still converge to (X,μ). In addition, lim supj→∞
I∗∗(X(j),μ(j)) ≤ I∗∗(X,μ), which yields the assertion of Theorem 8.1 by the
lower semicontinuity of I∗∗. �

9. Proof of Theorem 2.1. Suppose that limε→0 Pε(|Xε
0 − û| > κ)ε = 0, for

arbitrary κ > 0. Then any large deviation limit point Ĩ of Pε is such that Ĩ(X,

μ) = ∞ unless X0 = û. If (X,μ) is such that X0 = û and I∗∗(X,μ) < ∞, by
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Theorems 5.1, 7.1 and 8.1, there exist (Xi,μi), which satisfy the hypotheses on
(X̂, μ̂) in Theorem 7.1, such that I∗∗(Xi,μi) = Ĩ(Xi,μi), (Xi,μi) → (X,μ) as
i → ∞, and I∗∗(Xi,μi) → I∗∗(X,μ) as i → ∞. By Theorem 3.4 (with the role
of U being played by the set of functions U

λ(·),f
t∧τ in Theorem 5.1 and with the role

of Ũ being played by the set of functions θN in Lemma 7.2) and Theorem 6.1,
Ĩ(X,μ) = I∗∗(X,μ) = I(X,μ) for all (X,μ).

In the general setting of Theorem 2.1, let Lε
u denote the regular conditional dis-

tribution of (Xε,με) given that Xε
0 = u, where u ∈ R

n and is otherwise arbitrary.
By what has been proved, if uε → û as ε → 0, then the Lε

uε obey the LDP in
C(R+,Rn) × C↑(R+,M(Rl)) with the large deviation function Ĭû as defined in
the statement of Theorem 2.1, where I0(û) = 0 and I0(u) = ∞ if u �= û. Since
by the hypotheses of Theorem 2.1 the distributions of Xε

0 obey the LDP with a
large deviation function I0, it follows that the distributions of (Xε,με) obey the
LDP with I(X,μ) = I0(X0) + ĬX0(X,μ); see, for example, Chaganty [9], Puhal-
skii [38]. Theorem 2.1 has been proved.

APPENDIX

PROOF OF LEMMA 2.1. By Theorem 6.1, if I′(X,μ) < ∞, then∫ t

0
sup

h∈C1
0(R

l )

∫
Rl

(
Dh(x)T

(
1

2
divx cs(Xs, x)− as(Xs, x)

)
(A.1)

− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

)
ms(x) dx ds < ∞.

Suppose (2.8) holds and let L denote an upper bound on the left-hand side of (A.1).
By (6.6) in the statement of Lemma 6.4 and Condition 2.1, L is also an upper
bound on the integrals on the left of (A.1) for h ∈ W

1,q
0 (S), where S is an open

ball in R
l , q ≥ 2, and q > l. On taking h(x) = κ(|x|2 ∨ r2

1 ∧ r2
2 − r2

2 ), where κ > 0
and 0 < r1 < r2, we have that∫ t

0

∫
x∈Rl :r1≤|x|≤r2

(
κxT

(
1

2
divx cs(Xs, x)− as(Xs, x)

)

− κ2∥∥cs(Xs, x)
∥∥|x|2

)
ms(x) dx ds ≤ L.

If r1 is great enough, there exists δ > 0 such that xT as(Xs, x) ≤ −δ|x|2 if |x| ≥ r1.
Therefore, for small enough κ > 0, great enough r1, and all r2 > r1,

κδ

2

∫ t

0

∫
x∈Rl :r1≤|x|≤r2

|x|2ms(x) dx ds ≤ L.

The square integrability of as(Xs, x) now follows by it growing no faster than
linearly in x; see Condition 2.1.
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Suppose now (2.9) holds. We take, for given s, δ > 0, and r > 0,

h(x) = −(
âs(Xs, x)∨ (−δ) ∧ δ

)
ηr(x),

where ηr(x) = η(|x|/r) and η(y) satisfies the requirements of Condition 2.3. Then
h ∈ W

1,q
0 (S), for large enough ball S, and, for κ ∈ (0,1),∫

Rl

(
Dh(x)T

(
1

2
divx cs(Xs, x)− as(Xs, x)

)
− 1

2

∥∥Dh(x)
∥∥2
cs(Xs,x)

)
ms(x) dx

≥ 1 − κ

2

∫
Rl

∥∥Dxâs(Xs, x)
∥∥2
cs(Xs,x)

1{|âs (Xs,x)|≤δ}(s, x)ηr(x)2ms(x) dx

−
∫
Rl

(
âs(Xs, x)∨ (−δ) ∧ δ

)1

r
Dη

( |x|
r

)
xT

|x|
× cs(Xs, x)Dxâs(Xs, x)ms(x) dx

− 1

2r2

(
1 + 1

κ

)∫
Rl

(
âs(Xs, x)∨ (−δ)∧ δ

)2
∥∥∥∥Dη

( |x|
r

)∥∥∥∥
2

cs(Xs,x)

ms(x) dx.

As r → ∞, the integrals from 0 to t of the latter two integrals converge to
zero [we recall that by Theorem 6.1,

∫ t
0
∫
Rl |xT as(Xs, x)|/|x|ms(x) dx ds < ∞,

so
∫ t

0
∫
Rl |xT cs(Xs, x)Dxâs(Xs, x)|/|x|ms(x) dx ds < ∞]. Therefore,

1

2

∫ t

0

∫
Rl

∥∥∥∥as(Xs, x)− 1

2
divx cs(Xs, x)

∥∥∥∥
2

cs(Xs,x)−1
ms(x) dx ds ≤ L,

which implies the square integrability of as(Xs, x) thanks to Conditions 2.1
and 2.2. �
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[33] NEČAS, J. (2012). Direct Methods in the Theory of Elliptic Equations. Springer, Heidelberg.
MR3014461

[34] NEVEU, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San
Francisco. MR0198505

[35] PARDOUX, E. and VERETENNIKOV, A. YU. (2001). On the Poisson equation and diffusion
approximation. I. Ann. Probab. 29 1061–1085. MR1872736

[36] PUHALSKII, A. (1991). On functional principle of large deviations. In New Trends in Prob-
ability and Statistics, Vol. 1 (Bakuriani, 1990) (V. Sazonov and T. Shervashidze, eds.).
198–218. VSP, Utrecht. MR1200917

[37] PUHALSKII, A. (1992). Weak convergence theory approach to large deviations. In Large De-
viations and Applications. Oberwolfach.

[38] PUHALSKII, A. (1995). Large deviation analysis of the single server queue. Queueing Systems
Theory Appl. 21 5–66. MR1372048

[39] PUHALSKII, A. (1997). Large deviations of semimartingales: A maxingale problem approach.
I. Limits as solutions to a maxingale problem. Stochastics Stochastics Rep. 61 141–243.
MR1488137

[40] PUHALSKII, A. (2001). Large Deviations and Idempotent Probability. Chapman & Hall/CRC
Monographs and Surveys in Pure and Applied Mathematics 119. Chapman & Hall/CRC,
Boca Raton, FL. MR1851048

[41] PUHALSKII, A. A. (2015). On large deviations of coupled diffusions with time scale separa-
tion. Available at arXiv:1306.5446.

[42] PUHALSKII, A. A. (2005). Stochastic processes in random graphs. Ann. Probab. 33 337–412.
MR2118868

[43] PUHALSKII, A. A. and VLADIMIROV, A. A. (2007). A large deviation principle for join the
shortest queue. Math. Oper. Res. 32 700–710. MR2348243
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