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We consider two [t equations that evolve on different time scales. The
equations are fully coupled in the sense that all of the coefficients may de-
pend on both the “slow” and the “fast” variables and the diffusion terms may
be correlated. The diffusion term in the slow process is small. A large devi-
ation principle is obtained for the joint distribution of the slow process and
of the empirical process of the fast variable. By projecting on the slow and
fast variables, we arrive at new results on large deviations in the averaging
framework and on large deviations of the empirical measures of ergodic dif-
fusions, respectively. The proof relies on the property that an exponentially
tight sequence of probability measures on a metric space is large deviation
relatively compact. The identification of the large deviation rate function is
accomplished by analyzing the large deviation limit of an exponential mar-
tingale.

1. Introduction. Consider the coupled diffusions specified by the stochastic
differential equations

dXE = A(XE, x5)dt + e B(XE, x5)dWE,
(1.1) | |

dx; = ga(Xf, x;)dt + %b(Xf, x;)dwy,
where ¢ > ( is a small parameter. Here, A(u, x), where u € R” and x € R/, is an
n-vector, B(u, x) is an n X k-matrix, a(u, x) is an [-vector, b(u, x) is an [ x k-
matrix, and W = (W/,t € R}) is an R*-valued standard Wiener process. Ac-
cordingly, the stochastic process X® = (X7,t € R,) takes values in R” and the
stochastic process x® = (x;,t € R) takes values in R!. The processes X¢ and x*
are seen to evolve on different time scales in that time for x° is accelerated by a
factor of 1/¢. In a number of application areas, one is concerned with finding the
logarithmic asymptotics of large deviations for the “slow” process X? as ¢ — O,
which is usually expressed in the form of the large deviation principle (LDP). (As
a matter of fact, our interest in this setup has been aroused by an application to op-
timal portfolio selection.) When no diffusion term is present in the equation for the
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slow process, this sort of result is usually referred to as “the averaging principle;”
for contributions, see Freidlin [17], Veretennikov [51, 53, 58, 59], Feng and Kurtz
[16], Section 11, and references therein. The results in the literature that obtain an
LDP and identify the large deviation rate function for X?, with a nondegenerate
diffusion term being present in the first of equations (1.1), concern the time ho-
mogeneous case where the diffusion coefficient in the equation for the fast process
does not depend on the slow process, Veretennikov [55, 56, 59], Liptser [28], Feng
and Kurtz [16], Section 11. The latter restriction can be removed in the setting
of the averaging principle provided the state space of the fast process is compact,
Veretennikov [51, 57, 58].

A different perspective has been offered by Liptser [28] whose insight was to
consider the joint distribution of the slow process and of the empirical process as-
sociated with the fast variable. For the case where the processes X° and x? are
one-dimensional, the coefficients a(u, x) and b(u, x) do not depend on the first
variable and the Wiener processes driving the diffusions can be taken independent,
they derived an LDP for the pair (X¢, u?) and identified the associated large devi-
ation rate function, where u® represents the empirical process associated with x; .
The large deviation principle for the slow process then follows by projection.

In this paper, we extend the joint LDP in Liptser [28] to the multidimensional
case. It is assumed that the process dimensions are arbitrary and that all coeffi-
cients may depend on both variables in a continuous fashion, on the time variable
in a measurable fashion, and on ¢. The diffusions driving the slow and the fast
processes do not have to be uncorrelated. We obtain an LDP for the distribution of
(X%, u®) and produce the large deviation rate function. Projections on the first and
second coordinates yield LDPs for X* and u®, respectively.

For the time-homogeneous case, the continuity and nondegeneracy conditions
on the coefficients are similar to those in the literature, except that additional
smoothness properties are assumed of b(u, x) as a function of x, as it is done in
Liptser [28]. In return, we obtain that the probability measures for which the large
deviation rate function is finite must have weakly differentiable densities whose
square roots belong to the Sobolev space W'2(R/). In particular, additional in-
sight is gained into the LDP for the empirical measures of ergodic diffusion pro-
cesses. On the other hand, the ergodicity requirements on the fast process in the
nongradiental case are more restrictive than those in some of the literature.

Also, this contribution fills in the gaps in the study of the LDP for X? by tackling
a case of fully coupled diffusions in a noncompact state space. In addition, the
coefficients may depend on the time variable explicitly. The results cover both the
setup with a nondegenerate diffusion term and the setup with no diffusion term in
the equation for the slow process. The form of the large deviation rate function for
the slow process is new.

As in Liptser [28], an important part in our approach is played by the prop-
erty that exponential tightness implies large deviation relative compactness so that
once exponential tightness has been shown, establishing that a large deviation limit



LARGE DEVIATIONS OF COUPLED DIFFUSIONS 3113

point is unique concludes an LDP proof. Liptser [28] identifies the large deviation
rate function by evaluating limits of the probabilities that the process in question
resides in small balls. We use a different device. The general idea is to consider a
characterisation of stochastic processes that admits taking the large deviation limit.
Such a characterisation may be the property that a certain process be a martingale,
it may also arise out of the description of the process dynamic. The large devia-
tion rate function is identified by the limiting relation; cf. Puhalskii [39, 40, 42],
Puhalskii and Vladimirov [43]. In this paper, similar to Puhalskii [39, 40], the large
deviation limit is taken in an exponential martingale problem that has the distribu-
tion of (X?¢, u®) as a solution. We then undertake a study of the limit equation. On
the one hand, regularity properties of solutions are investigated. That analysis has
much in common with and uses the results and methods of the regularity theory of
elliptic partial differential equations. On the other hand, the domain of the validity
of the equation is expanded. Put together, those tools enable us to show that the
equation has a unique solution and to identify that solution.

The rest of the paper is organized as follows. In Section 2, the main results are
stated, their implications are discussed, and earlier contributions are given a more
detailed consideration. Section 3 outlines the proof strategy. It is implemented in
Sections 4-8. The proof is completed in Section 9. Thanks to constraints on the size
of the publication, some pieces of reasoning are either omitted or merely outlined.
More detail can be found in Puhalskii [41].

We conclude the Introduction by giving a list of notation and conventions
adopted in the paper. The blackboard bold font is reserved for topological spaces,
the boldface font is used for entities associated with probability. Vectors are treated
as column vectors. The Euclidean length of vector x = (x1,...,x4) from R4,
where d € N, is denoted by |x|, T stands for the transpose of a matrix or a vector.
For matrix A, ||A|| denotes the operator norm and A® denotes the Moore—Penrose
pseudoinverse, if A is square then tr(A) represents the trace of A. Given positive
definite symmetric matrix A and matrix z of a suitable dimension, which may be a
vector, we define ||z||4 = z7 Az. Derivatives are understood as weak, or Sobolev,
derivatives. For the definitions and basic properties, the reader is referred either
to Adams and Fournier [1] or to Gilbarg and Trudinger [21]. For an R-valued
function f on R?, Df denotes the gradient and D? f denotes the Hessian matrix
of f.If f assumes its values in R%!, then Df is the d x dj-matrix with entries
dfi/0x; and div f represents the divergence of f, where d; € N. The divergence
of a matrix is computed rowwise. Subscripts may be added to indicate that dif-
ferentiation is carried out with respect to a specific variable. For instance, for
an R-valued function f(¢,u,x), where u = (uy,...,ug) and x = (x1, ..., xq,),
D, f and D, f refer to gradients in the third and the second variables, respec-
tively, D,%M f is the matrix with entries 82 f/du; du s D%x f is the matrix with
entries 9% f/dx; dxj, and szf is the matrix with entries 82 f/du; oxj. If g > 1,
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we will denote by ¢’ the conjugate: ¢’ = g/(qg — 1). We use standard notation
for spaces of differentiable functions, for example, C""2(Y) denotes the space
of R-valued functions that are continuously differentiable once in the first vari-
able and twice in the second variable over a domain Y in R?, (C(l)’Z(T) is the
subspace of C!:2(T) of functions of compact support, C(l)(T) is the space of con-
tinuously differentiable functions of compact support, and C3°(Y') is the space
of infinitely differentiable functions of compact support. Given a measurable
function c(x) on Y with values in the set of positive definite symmetric d x d-
matrices and an Ry-valued measurable function m(x) on Y, we will denote
by L2(Y, R, c(x), m(x)dx) the Hilbert space of R9-valued measurable func-
tions on Y with the norm || fllc¢).m(y = (fy | f COIIZym ) dx)/2 1f c(x) is

the identity matrix, the notation will be shortened to L2(T, R4, m(x)dx) and
to L2(Y, RY) if, in addition, m(x) = 1. Spaces L2(Y, m(x)dx) and L2(Y) are
defined similarly and consist of R-valued functions. Space L2(7, R4, u(dx))
is defined via integration with respect to measure w. Also, standard notation
for Sobolev spaces is adhered to, for example, W!2(Y) is the Hilbert space of
R-valued functions f that possess the first Sobolev derivatives with the norm
I fllwizery = 1 F l2ery + DS lL2(r ray- The local version of a function space,

for example, Wll(;g(T), consists of functions whose products with arbitrary C°-
functions belong to that space, that is, WL2(Y) in this case, and is endowed with
the weakest topology under which the mappings that associate with functions such
products are continuous. We let WL2(T, m(x)dx) denote the set of functions fe
Wyl (T) such that f € L2(, m(x)dx) and Df € L2(Y,R?, m(x) dx) equipped
with the norm ”f”Wl'z(T,m(x)dx) = ”f”]L2(T,m(x)dx) + ”Df”LZ(T,Rd,m(x)dx) and
let H'-2(Y, m(x) dx) denote the completion of the set of functions from C*°(Y)
having finite W!2(Y, m(x) dx)-norms with respect to | - w12 (v, mx) dx)- Ob-
viously, H"“2(Y, m(x)dx) C W'2(Y, m(x) dx). Spaces W2(T, c(x), m(x) dx)
and H“2(Y, ¢(x), m(x)dx) are defined similarly. We let L(l)’z(T, RY ¢(x),
m(x)dx) represent the closure of the set of the gradients of functions from
Cgo(T) in L2(Y, R, c(x), m(x) dx). The space of continuous functions on R
with values in a metric space S is denoted by C(R., S). It is endowed with the
compact-open topology. If function X = (X, s € Ry) from C(R,, RY) is abso-
lutely continuous with respect to Lebesgue measure, Xs denotes its derivative at
5. We let M(R?) [resp., M (R9)] represent the set of finite (resp., probability)
measures on RY endowed with the weak topology (see, e.g., Topsge [50]); P(R?)
denotes the set of probability densities m(x) on R? such that m € Wllocl (R?) and
Jm € WH2(R?). Topological spaces are equipped with Borel o -algebras, except
for Ry which is equipped with the Lebesgue o -algebra, products of topological
spaces are equipped with product topologies, and products of measurable spaces
are equipped with product o -algebras. The “overbar” notation is reserved for the
closures of sets, 11 denotes the indicator function of set I', |« stands for the inte-
ger part of real number a, a A b =min(a, b), a V b =max(a, b),anda™ =a Vv 0.
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Notation U CC V, where U and V are open subsets of R¢, is to signify that the
closure of U is a compact subset of V. Throughout, the conventions that infg = oo
and 0/0 = 0 are adopted. The terms “absolutely continuous,” “a.e.,” “almost all”
refer to Lebesgue measure unless specified otherwise. All suprema in the time
variable are understood as essential suprema with respect to Lebesgue measure.

We say that a net of probability measures P?, where ¢ > 0, defined on metric
space S obeys the large deviation principle (LDP) with (tight) large deviation (rate)
function I for rate 1/¢ as ¢ — 0 if I is a function from S to [0, oo] such that
the sets {z € S : I(z) < &} are compact for all § € Ry, liminf,—¢eInP?(G) >
—inf ¢ I(z) for all open sets G C S, and limsup,_,5eInP*(F) < —inf,cr I(2)
for all closed sets F C S. We say that the net P* is exponentially tight for rate 1/¢
if infx limsup,_, (P*(S\ K))® = 0 where K ranges over the collection of compact
subsets of S.

2. Main results. We will consider a time nonhomogeneous version of (1.1)
in which the coefficients may depend on ¢ as well:

(2.1a) dX; = Af (X, x7)dt + /eBy (X7, x7) dWS,
1 1
(2.1b) dxf:gaf(Xf,xf)dt—l—ﬁbf(Xf,xf)de.

As above, AY(u,x) is an n-vector, B (u,x) is an n X k-matrix, a; (4, x) is an
l-vector, bf(u,x) is an [ x k-matrix, and W® = (Wf,t € R}) is an RK_-valued
standard Wiener process. The stochastic process X® = (X}, t € R,) takes values in
R™ and the stochastic process x® = (x7, t € R, ) takes values in R!. We assume that
the functions A (u, x), a; (u, x), B} (u, x), and b} (u, x) are measurable and locally
bounded in (¢, u#, x) and are such that the equations (2.1a) and (2.1b) admit weak
solution (X?, x?) with trajectories in C(R4, R" x RY) for every initial condition
(X{, x(). More specifically, we assume that there exists complete probability space
(2%, F¢,P?) with filtration F® = (F7,t € Ry) such that (W, t e R,) is a Wiener
process relative to F®, the processes X® = (X7,t € R}) and x® = (x/,t € R}) are
F¢-adapted, have continuous trajectories, and the relations (2.1a) and (2.1b) hold
for all # € R4 P?-a.s. (To ensure uniqueness which we do not assume apriori, one
may require, in addition to the above hypotheses, that the coefficients be Lipschitz
continuous.) For background information, see Ethier and Kurtz [15], Ikeda and
Watanabe [24], Stroock and Varadhan [49]. We note that since the dimensions #,
k, and [ are arbitrary, the assumption that both X¢ and x* are driven by the same
Wiener process does not constitute a loss of generality.

Let us denote C? (u, x) = BE (u, x) B (u, x)T and ¢ (u, x) = b¢ (u, x)bf (u, x)T .
We introduce the boundedness and growth conditions that forall N > O and ¢ > 0

(2.2a) limsup sup sup sup [cf(u,x)| < oo,
e—>0 s€[0,/] xeR ueR":[u|<N
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(2.2b) limsup sup sup  sup |AS(u,x)| < oo,
e—>0 s€[0,t] xeR! ueR":|lu|<N

, ul A (u, x)
(2.2¢) limsup sup sup sup ——————

e—>0 sef0,f] xerl ueRr 1+ [u]
and

Ci(u,

(2.2d) limsup sup sup sup M

e—0 se[0.4] yerl uckr 1+ |ul?

We also assume as given “limit coefficients”: A;(u, x) is an n-vector, B;(u, x)
is an n X k-matrix, a;(u, x) is an [-vector, and b;(u, x) is an [ x k-matrix. Let
Ci(u,x) = B;(u, x)B;(u, x)T and ¢; (u, x) = b; (u, x)b; (u, x)T . The following reg-
ularity properties will be needed.

CONDITION 2.1. The functions A;(u, x), B;(u, x), and b;(u, x) are measur-
able and are bounded locally in (¢, u) and globally in x and are continuous in
(u, x), the function a; (u, x) is measurable and locally bounded in (¢, u, x) and is
Lipschitz continuous in x locally uniformly in (¢, #), the functions a;(u, x) and
¢t (u, x) are continuous in u locally uniformly in ¢ and uniformly in x, ¢;(u, x) is
of class C! in x, with the first partial derivatives being bounded and Lipschitz con-
tinuous in x locally uniformly in (¢, #), and div, ¢;(u, x) is continuous in (u, x).

Another set of regularity requirements is furnished by the next condition. We
introduce

(2.3) Gi(u,x) = B;(u, )by (u, x)".

CONDITION 2.2. The matrix ¢;(u, x) is positive definite uniformly in x and
locally uniformly in (¢, u). Either C;(u,x) = 0 for all (¢, u,x) and A;(u, x) is
locally Lipschitz continuous in # locally uniformly in ¢# and uniformly in x, or the
matrix C;(u, x) — G;(u, x)c; (u, x) " 'Ge(u, )T is positive definite uniformly in x
and locally uniformly in (¢, u).

Finally, certain stability properties will be required: for all N > 0 and ¢ > O,

(2.4a) lim limsup sup sup sup af(u,x)Ti = —00
M—00 50 se[0.1] xeR!:|x|>M ueR:[u|<N |x]
and
. T x
(2.4b) lim sup sup  as(u,x)’ — = —o0.

[X[—00 5[0,7] ueRM:[u| <N x|

Let C4(R4, M(R')) represent the subset of C(R4, M(R!)) of functions p =
(ur, t € Ry) such that uy — g is an element of M(R!) for z > s and MZ(RI) =t.1t
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is endowed with the subspace topology and is a complete separable metric space,
being closed in C(R.., M[(R%)). The stochastic process ¢ = (i, t € Ry), where

t
wi(©) = [ 1o(xf)ds.

for ® € B(R!), is a random element of Cr(Ry, M(R')). We will regard (X¢, u°)
as a random element of C(R1, R") x C4 (R, M(R!)). It is worth noting that the
elements of C4 (R, M(R')) can be also regarded as o -finite measures on R x R’
We will then use notation p(dt, dx) for w.

Let I" represent the set of (X, w) such that the function X = (X, s € Ry) from
C(R4, R™) is absolutely continuous with respect to Lebesgue measure on R and
the function p = (g, s € Ry) from Cy (R, M(R!)), when considered as a mea-
sure on Ry x R/, is absolutely continuous with respect to Lebesgue measure on
Ry x R/, that is, u(ds,dx) =mg(x)dx ds, where mgz(x), as a function of x, be-
longs to P(R?) for almost all 5. Given (X, ) € I, we define

o0

I'X, ;L):f sup ()\T(Xs—/Rl AS(Xs,x)ms(x)dx>

0 reRn
2
- 5”)»”/]1{, Cy (X, x)ms (x) dx

1
(2.5) + sup (Dh(x)T<— div, (cs (X, x)mg(x))
heCy®!) /B! 2

— (4 (Xy %) + Gy (X, x)TA)msm)

1
-3 |Dh(x) ||§S(Xs’x)ms (x)) dx) ds.

We let I'(X, u) = oo if (X, u) ¢ . It follows, on letting A = 0, that if I'(X, n) <
00, then

t 1
/ sup I(Dh(x)T<§d1Vx(cs(Xs,x)ms(x))
0 heclwh /R

1
—a,(X,, x)ms(x)> — 5|| Dh(x)Hi(XM)ms(x)) dx ds < oo,
which is seen to imply [cf. (8.22) below], that for all » € R”,

foz sup RZ(Dh(x)T(%divx(cs(Xs,x)ms(x))

heCh(R))

— (as(Xs, x) + G5 (Xy, x)T)L)ms(x)> — %” Dh(x)Hi(Xs’x)ms(x)> dxds

< Q.
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We introduce the following convergence condition.

CONDITION 2.3. If I'(X, u) < oo, then there exists a nonincreasing [0, 1]-
valued (C(l)(R+)-functi0n n(y) suchthat n(y) =1fory €[0, 1], n(y) =0fory > 2,
and

2D 2
(2.6) /7| 1O 4y < o,
1 I=n(y)
and, for arbitrary r € R4 and A € R”,
t 1
lim su Dh(x T(—div cs( X, x)mg(x)) — (ag (X5, x
i f; e, [ (Pheo" (5 divslen e 0m ) = fa(Xe. )
+ Gy (X5, x)T 1)mg (x) —l||Dh(x)||2 my(x) )n? Ix dxds
s (X, s > es (X, 0Ms X P =

t

1
= [ sup [ (Dhe" (5 divelen Ot om )
0 pechm) 'R 2

—(as(Xs, x) + Gs(Xs, x)TA)ms(x)> — %|| Dh(x)||i(xs’x)ms(x)> dxds,
where my(x) = u(ds,dx)/(ds dx).

We note that (2.6) is satisfied if n(y) =1 — e~ /0~ in a right neighbor-
hood of 1. By Theorem 6.1 below, if I'(X, u) < oo then fotfRz |Dmg(x))?/
mg(x)dx ds < oo. Therefore, if

2.7) /Otle las (X, x)|*ms (x) dx ds < oo,

then, assuming Condition 2.1 holds, Condition 2.3 is fulfilled. The next lemma,
whose proof is relegated to the Appendix, shows that the square integrability
in (2.7) holds if one requires that either a stronger version of the stability con-
dition (2.4b) hold or that the drift of the fast process be gradiental.

LEMMA 2.1. Let Conditions 2.1 and 2.2 hold. Suppose that I'(X, u) < oo.
Let either

(2.8) limsup sup a;(Xy, x)7 —— <0

x| =00 s€[0,7] |x]?

or there exist real-valued function ag(x) which belongs to Wllog (RYY in x, where
q > 2 and q > 1, such that

(2.9) cs (X, x)_l(aS(XSa x) — %diVx cs (X, )C)) = Dy a,(x).
Then (2.7) holds, where ms(x) = u(ds,dx)/(dx ds).
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We state the main result.

THEOREM 2.1. Let (2.2a)—(2.2d), (2.4a), (2.4b) and Conditions 2.1, 2.2
and 2.3 hold. If the net X obeys the LDP in R" with large deviation function I
forrate 1/e as e — 0, the net x;j is exponentially tight in R! for rate 1/¢ as € — 0,
and, for all t > 0 and N > 0, the convergences

lim sup  sup sup  (|AS(u, x) — Ag(u, x)|
£~>05€[0,r] xeR!:|x|<N ueR™:ju|<N
(2.10) + |ag (u, x) — ag(u, x)| + || B{ (u, x) — By (u, x)|

+ |65 (u, x) — bs(u, x)||) =0
hold, then the net (X, u®) obeys the LDP in C(R,R") x C4(Ry4, M(R!)) for
rate 1/¢ as ¢ — 0 with large deviation function 1 defined as follows:
Ip(Xo) +T'(X, ), f(X,wer,
o0, otherwise.

I(X,M)={

REMARK 2.1. Condition 2.3 may be superfluous as far as the validity of The-
orem 2.1 is concerned. It is used at the final stage of the proof only; see Theo-
rem 8.1.

REMARK 2.2. By Lemma 6.7 below, I(X, n) = 0 provided that a.e.

Xs :/IAS(Xs»x)ms(x)dx
R
and

/ 1 2 T
[ (55 (X0 D2p) + Dp(e)T a, (X, ) () dx =0,

where the latter equation holds for all p € C§° (R%) and X satisfies the equality
Ip(Xo) = 0. Consequently, m(-) is the invariant density of the diffusion process
with the infinitesimal drift a; (X, -) and diffusion matrix c; (X, -).

REMARK 2.3. Conditions 2.1 and (2.10) imply that

(2.11) limsup sup  sup sup |ag (u, x)| < oo.
e—>0 s5€[0,f] xeR!:|x|<N ueR":|u|<N

Conditions (2.2a)—(2.2d) and (2.10) imply that

(2.12a) sup sup  sup |es(u, x)|| < oo,
s€[0,t] xeR! ueR”:|u|<N

(2.12b) sup sup  sup  |As(u, x)| < oo,
s€[0,1] xeR! ueR™:|u|<N
ul Ag(u, x)
(2.12¢) sup sup sup —————

sel0.1] yerl uekn 1+ |ul?
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and

C ’
(2.124d) sup sup sup M
se[0,t] yeRl ueRr 1+ |u]
In particular, some of the boundedness requirements in Condition 2.1 are conse-
quences of the other hypotheses of Theorem 2.1.

REMARK 2.4. If the matrices ¢;(u, x) and C;(u, x) are positive definite uni-
formly in x and locally uniformly in (¢, u), then since b, (u, )T e;u, )by (u, x)
is the orthogonal projection operator onto the range of b;(u, x)”, the condition
that C;(u, x) — G, (u, x)c;(u, x) "' G;(u, x)T be positive definite uniformly in x
and locally uniformly in (¢, u) is implied by the following “angle condition”: for
any bounded region of (¢, u), there exists £ € (0, 1) such that |y1Ty2| <Liy1ly2|
for all y; and y, from the ranges of B;(u, )T and b, (u, x)T, respectively, where
x is arbitrary and (¢, u) belongs to the region. To put it another way, the condi-
tion requires that the angles between the elements of the range of B;(u, x)”, on
the one hand, and the elements of the range of b; (u, x)T, on the other hand, be
bounded away from zero uniformly in x and locally uniformly in (¢, u). It en-
sures that the processes X° and x® are “sufficiently random” in relation to each
other. Under that condition, the ranges of B;(u, x)T and b;(u, x)T do not have
common nontrivial subspaces and k > n 4 [. On the other hand, if ||C;(u, x)]||
is bounded uniformly in x and locally uniformly in (¢, u), as is the case under
the hypotheses of Theorem 2.1 according to (2.12d), the converse is also true:
if Co(u,x) — Gy(u,x)c;(u, x)" G (u, x)T is positive definite uniformly in x and
locally uniformly in (¢, u), then the angle condition holds.

The solution of the variational problem in (2.5) plays an important part in the
proof below, so we proceed with describing it. Let c¢(x) represent a measurable
function defined for x € R? and taking values in the space of positive definite
symmetric d x d-matrices, let m(x) represent a probability density on R¢, and
let S; represent an open ball of radius i centered at the origin in R?, where
d € N and i € N. For function ¥; € Ly*(S;,R%, c(x), m(x)dx) and j > i,
where j € N, we let m;;%; denote the orthogonal projection of the restric-
tion of ¥; to S; onto Ly>(S;, R, c(x), m(x)dx) in L2(S;, RY, ¢(x), m(x) dx).
Thus, the function 7;;v; is the element of L(l)’z(Si,]Rd,c(x),m(x) dx) such
that [ Dp(x)" c()mjiv;j(x)m(x)dx = [¢ Dp(x) c(x)yj(x)m(x)dx for all
p € C3°(S;). We note that if the density m(x) is locally bounded away from
zero, then mj;; is a certain gradient: 7j;%; = Dy;;, where xj; is the weak
solution of the Dirichlet problem div(c(x)m(x)D i (x)) = div(c(x)m(x)¥;(x))
for x € §; with a zero boundary condition (cf. the proof of Lemma 7.3). Since,
for i < j <k, mj; omj = my;, the family (L(l)’z(Sj,Rd,c(x),m(x)dx),rrj,-)
is a projective (or inverse) system in the category of sets. Given a function
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¢ € ]LIZOC(]Rd ,RY, c(x), m(x)dx), the orthogonal projections ¢; of the restric-
tions of ¢ to §; onto Ly*(Si, RY, c(x), m(x)dx) in L2(S;, RY, c(x), m(x)dx)
are such that 7j;¢p; = ¢;, provided i < j, so they specify an element of the
projective (or inverse) limit of (]L(l)’z(S s RY, ¢(x), m(x)dx), mji), which we de-
note by Il..) m)¢. On extending the ¢; by zero outside of S;, one has that,
for i < j, 1920y ey = 181130 me) = 167 = DillZ) (> Where the norms are
taken in R?. Hence, if lim;_ oo | oi ||g(.), m(y < 9 then the sequence ¢; converges
in LZ(R4, R?, ¢(x), m(x)dx) as i — oo and one can identify IT¢(.)m( )¢ with
the limit, so TT.() m()¢ € L2(RY, RY, ¢(x), m(x) dx). It is uniquely specified by
the requirements that IT¢(.) )@ € L(l)’z(Rd, R4, c(x),m(x)dx) and that, for all
p € CFRY),

(2.13) fRd Dp(x)" c()e(ym(y¢ ()m(x) dx = A;d Dp(x)" c(x)¢p (x)m(x)dx.

In particular, if ¢ is an element of L2(R?, RY, ¢(x), m(x)dx), then e),me)@ is
the orthogonal projection of ¢ onto }L(l)’z(Rd ,R? ¢(x), m(x)dx). For results on
the existence and uniqueness for equation (2.13) when Il.(.) u()¢ is a gradient;
see Pardoux and Veretennikov [35].

In the setting of Theorem 2.1, d = [. Since, under the hypotheses of Theo-
rem 2.1, the matrix functions ¢;(u, -) " 'G,(u, -)T are bounded, the matrix func-
tion ¢, ), m() (cr (u, 371G (u,)T), whose columns are the projections of the n
columns of ¢; (u, )~ 'G,(u, )T onto the space Lé’z(Rl,Rl,c,(x),m(x)dx), is a
well defined element of the space L2®R!, RIX ¢, (u, x), m(x) dx) and we denote
itby W; ,u(.),.. We also define

2
(2.14) Qi m(y(u, x) =Ci(u, x) — | \I/t,m(.),u(x)||ct(,,,x)-

The function Q; (. (u, x) assumes values in the space of positive semi-definite
n X n-matrices. If the matrix C;(u,x) — G,(u,x)c;(u,x)*lG,(u,x)T 1S pos-
itive definite uniformly in x and locally uniformly in (¢,u), then the ma-
trix [pi Qrm(.)(u, x)m(x)dx is positive definite locally uniformly in (¢, u). We
also introduce ®; (), = e, u,),m) (¢ (u, 3" Na(u, ) — divy ¢, (u, -)/2)). Since
a;(u, -) is not necessarily square integrable with respect to m(x) dx, the function
e, u,y,me)(cr (u, Y Nap(u, ) = divy e/ (u, -)/2)), as a function of x € R/, might
not be an element of L2(R!, R, ¢; (u, x), m(x) dx).
For future reference, we note that, according to (2.13), a.e.,

[, PP et )Wy oom ) dx
(2.15a)

=/RI Dp(x)T Gy(u, x) ' m(x)dx



3122 A. A. PUHALSKII

and, provided ®; ()., € L2(R), RY, ¢ (u, x), m(x) dx),

[ PP eyt 0@ o) d
@150)  °

:/ Dp(x)T<as(u,x) — ldivx cs(u,x)>m(x)dx,
R! 2

for all p e Cf° (RY). In addition, (2.15a) extends to Dp representing an arbitrary
element of IL,(l)’z(]Rl,]Rl ,cs(u,x),m(x)dx). A similar extension property holds
for (2.15b), provided a (u, -) € L2(R!, R!, ¢5 (u, x), m(x) dx).

PROPOSITION 2.1. If, under the hypotheses of Theorem 2.1, I'(X, u) < 0o,
then @ ,, () x, belongs to the space L2RL R (X, x), mg(x) dx) for almost
all s and

X, = [ AKexm () d

Dymg(x)
— [, GuXe (G = B0, () s
belongs to the range of [pi Qs m()(Xs, X)mg(x) dx for almost all s. Furthermore,
Dy i), x, (x) and Vg (), x, (x) are measurable in (s, x) so that in the statement
of Theorem 2.1,

I(X. 1) =To(Xo) + - / Oo( / Dam® g o]
’ 2Jo \Jrell 2m;(x) N Fe )
. Dymg(x)
216+ %= [ Aomdr = [ Gt ( S

— Dy, (x))ms () dx

2
) ds.
(f]Rl Qs,ms()(XS,x)m.Y(x) dx)®

REMARK 2.5. If m(x) is an element of Wllocl (R!), then Dm(x) = 0 for
almost all x on the set where m(x) = 0, so we will assume throughout that
Dm(x)/m(x) =0 a.e. on that set.

REMARK 2.6. The expression on the right-hand side of (2.16) serves both
the case where C;(u,x) = 0 for all (¢,u,x) and A;(u, x) is locally Lipschitz
continuous in # locally uniformly in ¢ and uniformly in x, and the case where
Cr(u, x)— Gy(u, x)e; u, x) 1 Gy(u, )T is positive definite uniformly in x and lo-
cally uniformly in (¢, u). In each of the two cases, however, it simplifies as follows.
If C;(u,x) =0 for all (¢,u,x) and A;(u, x) is locally Lipschitz continuous in u
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locally uniformly in ¢ and uniformly in x, then Qg () (u, x) = 0 for all (s, u, x),
so, in order for I(X, w) to be finite, it is necessary that, a.e.,

Xs :/IAS(Xs»x)ms(x)dx
R

so that
I(X, n) =Ip(Xo)

“3h L

If Co(u,x) — Gy(u, x)er(u, x) Y Gy(u, )T is positive definite uniformly in x and
locally uniformly in (7, u), then the matrix [ Qg m, () (X5, X)mg(x) dx is invert-
ible, so its pseudo-inverse is the same as the inverse and the range condition in the
statement of Proposition 2.1 is superfluous.

2.17)
Dymy (x) 2

2m ™ mg(x)dxds.

cs(Xy,x)

= Dy my ()%, (X)

REMARK 2.7. By Theorem 6.1, in order for I(X, w) to be finite it is necessary
that [§ fgi (| Dxmy ()12 /mg(x) + | Dgm, (). x, (X)[*) dx ds < oo forall t € Ry.

REMARK 2.8. The large deviation function in (2.16) can also be written as
1 [ - )
1000 =ToX0) +5 [ [ B0 i+ b (X0 8 () dix s,

where the pair ():S, 25 (x)) attains the supremum in (2.5), with g; assuming the role
of Dh:

A @ g
fo= ([, @omer Xeoomsrdx) (%= [ 4K 0m, () dx

—/ G, (X x)(M—CD X (x))m (x)dx>
R K} S 2ms(x) s,mg (), X N

and
() = 2 g () — ()
8s = 2m, (x) s,my (1), X (X s,my (1), X (X )As.

In the symmetric case where ¢; (u, x)_1(2a, (u, x) — divy ¢ (u, x)) = Dy (u,
x)/m;(u, x), for some positive probability density 7, (u, -) from Wll(;cl (R"), one
can identify ®; ,.y» With Dyrits(u, -)/(2m,(u, -)). [We note that the diffusion
process with the infinitesimal drift coefficient a; (u, -) and diffusion matrix ¢, (u, -)
has 1, (u, -) as an invariant density.] One can then write the large deviation function
in (2.17) by using a Dirichlet form:

D, /Ams(X) 2
! mS(XS7x)

cs (Xy,x)
provided Dy, (u, ) /i (u, -) € L2RERE, ¢ (x), my (x) dx).

1 .
I(X, n) =Io(Xo) + = mg(Xy, x)dxds,
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Let us look at a one-dimensional example:
dX; =A(X{,x;)dt + /e B(X], x;) dWy ,,
1
ﬁbt(vaxf)dwf,p
where all coefficients are scalars and W[, and W7, are one-dimensional stan-
dard Wiener processes. Assuming that E°*(Wy WS ) = pt, where |p| < 1, this

setup can be cast as (2.1a) and (2.1b) with W/ = (W1 . W;t)T, Bf(u,x) =

(Bi(u,x),0), and bf (u, x) = (pb;(u, x),,/1 —p 2p,(u, x)), where W38,; represents
a standard one-dimensional Wiener process that is independent of Wf’t. If B;(u, x)
is bounded away from zero, the large deviation function in (2.16) takes the form

I(X, )
5 2
:IO(XO)+'/(; < /‘D M (X) Dme(XS7x)

ms(x) 1ig (X, X)

1
dx; = —a, (X7, x7)dt +
€

bs (X, x)*my (x) dx

1 .
20— By (X, x)ZmS(x) ax X~ /]RAS(XS’ x)ms () dx

1Y Dxms(x) Dxms(XS7x)
=5 om0 () (X, 1)

If B;(u, x) =0, then according to (2.17),
I(X, w) =Io(Xo)

I [ Dymg(x) Dyiig (X, X) 2
+§/ /‘ ms(x)  ig(X, x)

2
)ds.

>ms(x)dx

by (X, x)°mg(x) dx ds,

provided Xs = Jpi As(Xs, x)mg(x) dx a.e. For the special case that A (u, x) and
Bg(u, x) do not depend on s, as(u, x) and bs(u, x) do not depend on either s or u,
and p = 0, this large deviation function appears in Liptser [28].

We now project to obtain an LDP for X®. The device of Lemma 6.5 and the
minimax theorem (see, e.g., Theorem 7 on page 319 in Aubin and Ekeland [3])
yield the following expression for inf, I(X, ).

COROLLARY 2.1. Under the hypotheses of Theorem 2.1, the net X obeys the
LDP in C(R4,R") for rate 1/¢ as ¢ — 0 with large deviation function 1* defined
as follows. If function X = (X, s € Ry) from C(R4, R") is absolutely continuous
with respect to Lebesgue measure on R, then

oo .
X (X) :10(X0)+/ sup (ATXS — sup (AT/ Ay (Xy, x)m(x)dx
UNIPES meP(R!) R/

2
+ 5 ||)~||le Cs(Xg,x)m(x)dx
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1
— sup (DhUQT<—dwx@AX@xhn@»
heCy®!) 'R’ 2

— (s (X, ) + Gy (X, x)Tx)moc))

1
-5 | Dh(x) ||§S(th)m(x)) dx)) ds.
Otherwise, IX (X) = 0.

If X? is decoupled from x?, that is, A,;(u,x) and B;(u,x) do not depend
on x, then Corollary 2.1 yields the LDP for It6 processes with small diffusions
(cf. Freidlin and Wentzell [18]): with Ag(u,x) = As(u), Bs(u,x) = Bs(u), and
Cs(u) = Bs(”)Bs(u)T,

o0 1 .
100 =1oX0) + [ 5 1% = A0, 0 .

provided XS — Ay(X) belongs to the range of Cy(X;) a.e. and IX(X) = o0, oth-
erwise.

If one projects the LDP of Theorem 2.1 on the second variable, then an LDP
for u? is obtained. In particular, if x¢ is decoupled from X¢ so that a,(u, x) and
b (u, x) do not depend on u, we have the following results on the large deviations
of the empirical processes and empirical measures of diffusion processes.

COROLLARY 2.2. Suppose that

- 1.,.,. 1~ . ~
dif = gaf(xf) dt + ﬁbf(xf) dw;,
where 56 e R, af (x) e R!, b%(x) € Rk, and W € R¥, with the coefficients being
locally bounded. Assume that, for all t € Ry,
limsup sup sup |5 (x)b¢(x)T|| < oo,
e—>0 s€[0,f] xeR!
X

lim limsup sup sup &f(x)T =
M=00 40" sel0.1]xeRl:[x|=M |x

If, forallt e Ry and all N e Ry,
lim sup  sup  (|a¢(x) —as(x)| + |65 (x) — by(x)]) =0,

EQOSE[OJ]xERI:\XISN

the matrix ¢;(x) = by (x)I;t(x)T is positive definite uniformly in x and locally
uniformly in t, is of class C' in x, with the first partial derivatives being
Lipschitz continuous and bounded in x locally uniformly in t, a;(x) is Lip-
schitz continuous in x locally uniformly in t, supgcio ;) SUPyeR! s ()] < oo,



3126 A. A. PUHALSKII

lim Sup| | o0 SUPse(0,1] as(x)"x/|x|> <0 for all t € Ry, and the net X is expo-
nentially tight in R for rate 1/¢ as ¢ — 0, then the net i, where i (dx) =
f(g 14 (x{) ds, obeys the LDP in C4 (R, M(RY) for rate 1/¢ as € — 0 with large
deviation function J defined as follows.

If function pu = (ug, s € Ry) from C4 (R, M(R!Y), when considered as a mea-
sure on Ry x RL, is absolutely continuous with respect to Lebesgue measure on
Ry x R!, that is, ulds,dx) =mg(x)dxds, mg(x), as a function of x, belongs to
P(RY) for almost all s, and &Ds,mx(.), which represents HES(~),mS(~)(ES(')71(&s(') —
divy ¢s(+)/2)), is an element of]L,2 (R, R, E(x), mg(x) dx) for almost all s, then

s = [ s [ (Dheo™ (Faiv(Ewm, 0) ~ @m0

heCy(R))

1 2
-3 | Dh(x) ||Es(x)m5 (x)) dxds

-3 L.

Otherwise, J(u) =

2

mg(x)dxds.
s (x)

i)s,ms(-)(x)

' Dymg(x)
2mg(x)

COROLLARY 2.3. Suppose that
dY, =a(Yy) dt + b(Y;)dWs, Yo =0,

where Y; € R, a(x) e R!, b(x) € RI** and W, € R¥, with the coefficients being
locally bounded.

If the matrix ¢(x) = l;(x)l;(x)T is uniformly positive definite, ||¢(x) || is bounded,
¢() € CHRY, R, with Lipschitz continuous bounded first partial derivatives,
a(-) is Lipschitz continuous, and lim sup|x|_)ooZz(x)Tx/|x|2 < 0, then the empir-
ical measures (1/t) fé 14x (Ys) ds obey the LDP in M (R for rate t as t — 00
with the large deviation function

Jw = sup (Dh(x) ( dlv(c(x)m(x))—a(x)m(x))

heCl(R:) R’

1
= || Dh(x);|§(x)m(x)) dx

1
=3 |

2
m(x)dx
c(x)

- c‘Ia)m(-) (x)

2m(x)
provided probability measure | on R! has density m, which is an element
of PR, and ®u(y = Meym€)7NaEC) — divé(-)/2)) is an element of
L2(R!, R, é(x), m(x) dx). Otherwise, J(1) =
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In order to derive Corollary 2.3 from Corollary 2.2, one takes ¢ = 1/¢ and de-
fines x{ = Yy;.
One can thus write the large deviation function of Theorem 2.1 as

(X, 1) = Ip(Xo) + fo Ookss@(ﬂ()ks — fR , AS(Xs,x)vs(dx))
(2.18)

1 5 X5, A
B Ell)"Hf]Rl Cs(Xs,x)vs(dx) +I (US)> as.

where vs(dx) = mg(x) dx, and the large deviation function of Corollary 2.1 as

m .
I (X) = Ip(Xo) + / sup <,\sz —  sup <,\T f As(Xs, x)v(dx)
0 AeRn veM; (R!) R’
(2.19)

1 ) $, X5, A
I e xovian =177 M)) &

where J*** represents the large deviation function for the empirical measures
v dx) = (1/1) J§ 1ax (y9**) dr for rate t as t — oo and

S
dyf’”’)” = (ay(u, yf’u’)‘) + Gy (u, y;"”’)”)T)») dt + by (u, yf’u’)‘)dwt, yS’”’)” =0,

(wy) being a k-dimensional standard Wiener process. In particular, if G;(u, x) =0
so that the diffusions driving the slow and the fast processes are virtually uncor-
related, then J*** does not depend on A and by Corollaries 2.2, 2.3 and (2.18)
the large deviation function I(X, w) is the sum of the large deviation function of
the slow process, with the coefficients being averaged over the “current” empirical
measure of the fast variable, and of the large deviation function of the empirical
process of the fast variable, with the coefficients “frozen” at the current value of
the slow variable.

The first results on large deviation asymptotics for the system (1.1) in the setup
of the averaging principle available in the literature appear in Freidlin [17]; see also
the exposition in Freidlin and Wentzell [18], Section 9 of Chapter 7. Freidlin [17]
considers the equations

X[ =b(x;,y;),
5 = L[B(L. ) + £05)] + —=e ()i
t e t t t ﬁ t

It is assumed that the state space is a compact manifold. A noncompact setting is
considered by Veretennikov [53]. Veretennikov [51, 57, 58] allows the diffusion
coefficient in the fast process to depend on both variables:

dxX; = f(X;,Y))dt,
dYf = B(X[,Y) i+ C(X{. Y}) dW,.

The state space of the fast process is a compact manifold.
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Veretennikov [55, 56, 59] tackles the case where the slow process has a small
diffusion term and the state space of the fast process may be noncompact but the
diffusion coefficient in the equation for the fast process does not depend on the
slow process so that

dX; = f(X7,Y/)dt +e(o1 (X7, Y[) szl +o3(X7, Y/) th3)’
(2.20)
dYf =e2B(XE,YE)dt +e Y (C1(YE)dW]! 4 Co(Yf) dW?),

where the Wiener processes are independent. The stability condition on the slow
process is similar to (2.4a) and (2.4b).

In those papers, results on the LDP for the slow processes are obtained in the
space of continuous functions on the [0, L] interval endowed with uniform norm,
where L > 0. The large deviation rate functions are of the form

I(X) = /OL SI;p(ATX, — H(X;,1))dt,

provided X;, t € [0, L], is an absolutely continuous function with a suitable initial
condition. Otherwise, I(X) = oo. Here, with the notation of (2.20),

.1 ! 1
. H(u, %) = lim ;lnEeXp(/O ()»Tf(u, YoM EKT(olalT(u, yit)

+ 0307 (u, y;")‘))k> ds),
where
i = (Bl ) + CL0E o, 3 2) di -+ (C (1) W]
+ Gy (Y dWH), yot =0.

Let us note that if one assumes the LDP at rate ¢ as t — oo of the empirical mea-
sures v,"’x(dx) =(1/1) fé 14y (y‘é")‘) ds with large deviation rate function J*-*, then
in view of Varadhan’s lemma and (2.21), under suitable assumptions,

H@u,\)= sup (/ (/\Tf(u,x)
) VR

veM; (R!

+ %AT(alalT(u, x) + o307 (u, x))x)v(dx) — J“(v)),
which is consistent with (2.19).

Section 11.6 of Feng and Kurtz [16] is concerned with the process X¢ satis-
fying equations (1.1). Conditions for the LDP to hold are obtained. They require
the existence of functions with certain properties and are not easily translated into
conditions on the coefficients. When the authors give explicit conditions on the co-
efficients, they need, in particular, b(u, x) not to depend on u (see Lemma 11.60 on
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page 278). The large deviation rate function is identified as having the form (2.19)
corresponding to the time-homogeneous setting, provided B(u, x)b(u,x)” =0
and certain additional hypotheses hold (see Theorem 11.6.5 on page 282). The
authors choose not to pursue the setup of the averaging principle.

The LDP for the empirical measures of continuous-time Markov processes,
such as in Corollary 2.3, is a well-explored subject; see Donsker and Varadhan
[11, 12], Deuschel and Stroock [10]. The canonical form of the large deviation rate
function is sup Jrt —L f/fdu, where L represents the infinitesimal generator of
the Markov process; see, for example, Theorem 4.2.43 in Deuschel and Stroock
[10]. The form in Corollary 2.3 follows by taking f(x) = e~ ") Girtner [19] and
Veretennikov [52] characterize the large deviation functions via limits similar to
that in (2.21), the latter author allowing discontinuous coefficients. Theorem 12.7
on page 291 of Feng and Kurtz [16] tackles associated empirical processes; cf.
Corollary 2.2.

3. Some generalities. This section contains general results on the LDP that
underlie the proof of Theorem 2.1; cf. Puhalskii [40]. Let X represent a directed
set, let P,, where o € X, represent a net of probability measures on a metric
space S indexed with the elements of ¥ and let r, represent an R -valued func-
tion which tends to infinity as o € . A [0, co]-valued function I on S is referred
to as a large deviation function if the sets K5 = {z € S: I(z) < 8} are compact for
all § € R4. We say that the net P, obeys the LDP with a large deviation function
I for rate r, as 0 € X if liminf,cx rU_1 InP,(G) > —inf,c I(z) for all open sets
G C S and limsup, 5, rg_1 InP, (F) < —inf,cr I(z) for all closed sets F C S. We
say that I is a large deviation (LD) limit point of P, for rate r, if there exists a
subsequence o;, where i € N, such that P, satisfies the LDP with I for rate r,
as i — oo. We say that the net P, is sequentially large deviation (LD) relatively
compact for rate r, as o € X if any subsequence P,, of P, contains a further
subsequence Pgij which satisfies the LDP for rate Toi, with some large deviation

function as j — oco. We say that the net P, is exponentially (or large deviation)
tight for rate r, as o € X if for arbitrary k¥ > O there exists compact K C S such
that limsup, .y P5 (S \ K )!/70 < k. We say that the net P, is sequentially expo-
nentially tight for rate r, as o € X if any subsequence Py, is exponentially tight
for rate r,, as i — oo. We say that a net Y, of random elements of S obeys the
LDP, respectively, is sequentially LD relatively compact, respectively, is exponen-
tially tight, respectively, is sequentially exponentially tight if the net of their laws
has the indicated property.

The cornerstone of our approach is the next result (Puhalskii [36, 37, 40, 44],
see also Feng and Kurtz [16] and references therein).

THEOREM 3.1. Ifthe net P, is sequentially exponentially tight for rate r, as
0 € X, then the net P, is sequentially LD relatively compact for rate ry as o € 2.

The proof of the following theorem is standard.
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THEOREM 3.2. Ifthe net P, is sequentially LD relatively compact for rate ry
as o € X and 1 is a unique LD limit point of the P, then the net P, satisfies the
LDP with I for rate ro as o € X.

The next theorem is essentially Varadhan’s lemma; see, for example, Deuschel
and Stroock [10]. It will be used to obtain equations for LD limit points.

THEOREM 3.3. Suppose the net P, is sequentially exponentially tight for rate
re as o € X and let 1 represent an LD limit point of Py. Let Uy, be a net of uni-
formly bounded real valued functions on S such that [gexp(rs Uy (2))Ps(dz) = 1.
If Uy — U uniformly on compact sets as o € X, where the function U is continu-
ous, then sup,s(U (z) —I(z)) = 0.

Identification of LD limit points will be carried out with the aid of the next
result.

THEOREM 3.4. Suppose 1 is a large deviation function on S and U is a col-
lection of functions on S such that sup,.s(U(z) —X1(z)) =0 for all U € U. Let
I (z) =supy ey U(z) and K5 ={z € S: 1(z) <8}, where § e R.

1. Let U represent a set of functions U such that sup g, (U(z) —I(z)) =0
for suitable § € Ry. Suppose z € S is such that I**(Z) = U(Z) for some func-
tion U € U. Suppose there exists sequence U; € U with the following properties:
sup,cg, (Ui(z) —I(z)) = 0 for some common §, the functions U; are continuous
when restricted to Ks and if z; is a convergent sequence of elements of Ks such that
Ui(zi) = U(z;), then Ui (z;) — U (%) and zi — % as i — 0o. Then 1(3) = I**(3).

2. If for every z € S such that I"*(z) < oo there exists a sequence of points z;
such that 1(z;) = I**(z;), zi — z, and I**(z;) — I (2) as i — o0, then 1(z) =
I**(2) forall z € S.

PROOF. Let us first note that I(z) > I**(z) for all z, so, one needs to prove that
I(z) < T**(z) if I"*(z) < co. We prove part 1. Since sup g, (Ui(z) — I(z)) =0,
K is compact, and U;(z) — I(z) is upper semicontinuous when restricted to Ks,
there exist z; € Ks such that U;(z;) = I(z;). One may assume that the sequence
converges. Since U;(z;) — U (2), zi = z and I is lower semicontinuous, U () >
1(2), so I**(2) = 1(2). The proof of part 2 is similar. []

In the rest of the paper, the above framework is used to prove Theorem 2.1. In
Section 4, LD relative compactness is established; see Theorem 4.1. In Section 5,
equations along the lines of Theorem 3.3 are derived; see Theorem 5.1. Section 6
is concerned with regularity properties of (X, u) for which the function I** as
defined in Theorem 3.4 assumes finite values. It is also shown to be of the form
given in Proposition 2.1; see Theorem 6.1. In Theorem 7.1 of Section 7, the large
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deviation function is identified for a large class of (X, i), which implements the
recipe of part 1 of Theorem 3.4. In Theorem 8.1 of Section 8, it is proved that that
class is dense in the sense of part 2 of Theorem 3.4. In Section 9, the proof of
Theorem 2.1 is completed.

4. LD relative compactness. The main result of this section is the following
theorem.

THEOREM 4.1. Suppose that conditions (2.2a)—(2.2d) and (2.4a) hold and
that the net (X, x;) is exponentially tight for rate 1/¢ as € — 0. Then the net
(X?, u®) is sequentially LD relatively compact in C(Ry, R") x C4 (R, M(R'))
forrate 1/¢ as € — 0.

We precede the proof with a criterion of sequential LD relative compactness in
C(R4, M(RY). Let d(-,-) represent the Lipschitz metric on M(RY): d(i1, i) =
sup{| Jp f(x)(dx) — [p f(x)(dx)|}, with the supremum being taken over
functions f : R! — R such that sup, g/ | f(x)| < 1 and SUPy yeRl x£y | f(X) —
FI/Ix — y| < 1; see, for example, page 395 in Dudley [13]. The proof of the
next lemma is done in a standard fashion (cf., Billingsley [5], Chapter 2) and is
omitted.

LEMMA 4.1. 1. A net {ve, € > 0}, where v = (ve s, t € Ry), of random ele-
ments of C(Ry, M(R'Y) defined on respective probability spaces (2, Fe, Pe) is
sequentially exponentially tight for rate 1/e as ¢ — 0 if and only if for all t € R
and all n > 0,

lim limsupP,(ve,(x € R : x| > N) > 5)° =0

N—oo o0
and

&
lim limsup sup P8< sup d(vg,sl,vs,sz)>n) =0.
820 50 s1€[0,6]  “sa€lsy,s1+8]

2. A net {Ye, e > 0}, where Yo = (Y1, t € Ry), of random elements of C(R4, R")
defined on respective probability spaces (¢, F¢, Pc) is sequentially exponentially
tight for rate 1/¢ as ¢ — 0 if and only if

lim limsupP.(|Ye 0l > N)* =0

N—oo o0

and, forall t e Ry and all n > 0,

&
lim limsup sup Pg( sup |Ye s — Ye 5| > 77) =0.
=0 ¢50 5€[0,] sr€[s1,514+68]

REMARK 4.1. The form of the conditions is due to Feng and Kurtz [16].
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PROOF OF THEOREM 4.1. Since C(Ry, R") x Cy (R4, M(R!)) is a closed
subset of C(Rp, R") x C(Ry, M(RY)) and P?((X?, uf) € C(Ry, R") x Cr(Ry,
M(R!))) = 1, it is sufficient to prove that the net ((X¢, %), & > 0) is sequentially
LD relatively compact in C(R4, R") x C(R4., M(RY). By Theorem 3.1, the latter
property holds if (X?, u?) is sequentially exponentially tight, which is the case if
the nets X° and u® are each sequentially exponentially tight.

We show that the net X? is sequentially exponentially tight first. By (2.1a) and
1t6’s lemma, on denoting g1 (x) = D?In(1 + |x|?),

In(1+ | X{[)
t 2(X£)TA€(XE xs)

= In(1+ |x5)+ [ TS

1+ |X¢)?

t 2(X8)T
T+ X2)2

+ = /trCe xf)g1(X9)) ds—i—\/_f BE(XE, x8)dWE.
Given N > 0, let Ty, = inf{s € Ry : |X{| > N}. Since 7, is an F*-stopping time

and

1t 2xHT 1 [t
UsC _BE(XE, de——f
€X p(\/_ 0 1+|X€|2 s( s S) N 28

2X¢
1+ |X¢)?

2

a’s),
CE(XEoxt)

t e R+,

is an F?-local martingale,

1 1 ’ 1 rinty 2(X'9)TA8(X8,x8)
B exp( (1 -+ X ) = cin1 + (x5 — - [ FE e
)

1 rinty clve e e
4.1) _Efo tr(Cy (X5, x5)g1(X5)) ds

1 tATY 2X¢ 2

_ _/ e ds) <1.

2¢ Jo L+ [ X517 e (xe xe)

Since
tr(C§ (X5, x)g1(X5)) \/trgl X5) \/tfce

4.2)

I1C5 (XE, XDl

<2n/n
1+ |X¢)?

’

on recalling (2.2c¢) and (2.2d), we have that there exists L > 0, which does not
depend either on ¢ or on N, such that for all £ > 0 small enough,

1 1 Lt
B exp( ; In(1 + (X, o)~ S n(1+ x5 - 1) <1.
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For]\7>0,
P8< sup |X§| > N)
5€[0,1]
=P*(|X . [ = N) <P°(|X§| > N)

1 1
B exp( 4 In(1 + X0 ) = Inl1 4 8%) g )

Lt 1
B —In(1 +N2)),
& &

~ 1
<P°(|X§| > N) —i—exp(—ln(l +N%) +
€
S0

limsuplimsupPg( sup | X§| > N)g <limsup P*(|X§| > N)°.
e—0

N—oo =0 s€[0,1]

Since X is exponentially tight and N is arbitrary, we conclude that

(4.3) lim hmsupPs( sup | X§| > N) =0.

N—oo .50 s€[0,7]

By (2.1a), for s € [0, ], § > 0, and n > 0,

Pg( sup | XE— X§| > n) <P°(ty )+P5< sup sup|AS(u,x)|8
s€ls,s+4] [u|<N xeR!

T pe(xe ) qwe
¢ r( r’xr) r

€
ATy

+4/e sup

S€ls,s+6]

- ).

Let ¢;, for i = 1,2,...,n, denote the ith unit vector of R". Thanks to (2.2b)
and (2.2d), for small enough § and arbitrary o > 0, provided ¢ > 0 is small enough,
on using Doob’s inequality,

P°( sup |X{—X{|> n)
S€ls,s+38]

<P(ty <1)+P° (f sup

SATy
/ BE(XE, x5) dW?| >
€ls,s+8]1Vs

roXr
/\‘L'N

;)

n SATE
<P <)+ 3P (\/E sup (ein v Bf(Xf,xf)de) . %)
S

=1 Sels,s+8) ATy

&

n o SAT

<P =0+ 3P (s el el [ B ) awy
i=1 sels,s+48] SATy

2

SATS
_a_/‘ ! el C? (X2, r)e,dr)
2e SATY
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2
a“d
> e/ (2ne) exp(—— sup sup sup |C;(u, x)||>>
€ ref0.1][ul<N xeR!

8
<P‘9( sup |X¢| >N)+ne “”/(Z”S)exp<a— sup sup sup |C; (u, x)||>
§el0.1] € ref0,r]|ul<N xeR!

By (2.2d), (4.3) and the fact that o can be chosen arbitrarily great,
limsup limsup sup P8< sup | X§ — X§| > n)g =0.
50 &0 s€[0,] Sels,s+8]

The sequential exponential tightness of X¢ follows from part 2 of Lemma 4.1.

We prove now that u? is sequentially exponentially tight. Let f represent an
R-valued twice continuously differentiable function on R!. By (2.1b) and It&’s
lemma,

Fxf) = £x6) + f DF()a (X4, ) ds

+o /tr D*f(x )ds-l——/ Df(xf)TbE (X2, xF) dWE.

Therefore, on identifying ©® with measure u®(dt, dx), we have that, in analogy
with (4.1),

& 3 3 L [irmy T e(ye &
E exp(f(xtmil) — fx5) — —/ [1;1 Df (x)" al (X5, x)u’(ds, dx)
/ i /R (e (X5, x) D2 £ (0) 1 ds. dx)

1 r
28/() ||Df(-x)||cs(xs X)M (dS dx)) < 1.

Let g»(u), where u € R, be an R -valued nondecreasing C>-function with a
bounded second derivative such that Dg;(0) = D2g2(0) =0 and g>(u) = u for
u > 1. For given N > 0, we let f(x)=gx((|x| — N)+) where x € R. By (2.4a),
if N is great enough, then for all & small enough, (x/|x)7a®, . (X5, .,x) <0

SA'L' é/\T

provided |x| > N. Since g2 1s a nondecreasing function,
Df(x)T N (Xf/\r ): Dgz((|x| - ) )(x/|x|) s/\'[ (XiAr ) =0.

In addition, as in (4.2), tr(cﬁ(Xf,x)D2|x|) < IV —=1]lc{(XE, x)|I/1x|. We obtain
that

B [/\'L'N R
E° exp| — f(x5) — —f /|x|>N+1 |x| X¢, x)uf(ds, dx)

INTE
_ N & 2
@4 / /N<|x|<N+1 ¢ (X3, x)D7f ()
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2
+ ” Df(x) ||C§(X§7x))ﬂs(ds, dx)

1 [inty V=1

o [ (e el +
2¢e Jo Ix|>N+1\ |x]
<1

X 2

>,uf(ds, dx)>

x| e (xe x)

Since ||cf(u, x)|| is asymptotically bounded locally in (s, «) and globally in x,

see (2.2a), there exists L > 0 such that |tr(c§M§I(X'9 x)D? f(x)) +

B y sAr]‘f]’
||Df(x)||ggA X _pl <L foralls <y all N,and all x such that |x| €
N ‘[N 5 IN

[N,N + 1], provided & > 0 is small enough. We can also assume that L is an
upper bound for ||¢? i/(X € x x)||. We thus obtain from (4.4), on recalling that

SAT SAT

wE ([0, t], R ) =t, that provided ¢ is small enough and N is great enough,

1 . 3Lt
E° exp(—f(xg) + —M€M8<[O, tATy] fx x| > N+ 1} — 2—>) <l,
€ &

where

T
x
M?® = — sup sup sup —a(u,x) > 0.
s€[0,r]ueR™:|u| <N xR |x|>N+1 x|

It follows that for arbitrary § > 0, all ¢ small enough, and all N great enough:
PE(uf ([0t ATg], fx e R : x| > N 41}) > 8)
<P*(|x§| > N)

&

+Efexp %m([o tatg] xclxl > N+1) )1 o) €X —%&5
e ATV X {Ixgl<Ny SXP\ —

. 3Lt M®$
S P€(|XS| > N) +€Xp(§ —

+&@)

so by the facts that liminf, .o M® — oo and limsup,_, o P*(|x{| > N)¢ — 0 as
N — 00, and that (4.3) holds, we obtain that

lim limsupP® (u®([0, 7], {x e R': |x| > N +1}) > 8§)° =0.

N—oo e—0
Since |uf (®) — us(®)| < |t —s|, for ® € B(R!), the sequential exponential tight-

ness of u® follows from part 1 of Lemma 4.1. [J

REMARK 4.2. Since (X?, u?) is continuous in ¢ in distribution, one can prove
that (X?, u®) is exponentially tight.



3136 A. A. PUHALSKII

5. The equation for the large deviation function. In this section, we derive
the equation for large deviation limit points of (X?, u?) that is to be used for iden-
tifying the large deviation function. For0 =1y <t <--- <, let

(5.1) AEX) =D A (X Dy (0,
j=1

where X = (X;,s € Ry) € C(Ry,R") and the functions A ;(u), for u € R", are
R"-valued and continuous. We define

; i
(5.2) [RICE X2 D MG AN VS )
j=1

Let f(¢,u,x) represent a Cl’z’z(RJr x R" x R)-function with compact sup-
port in x locally uniformly in (¢,u) and let, with (X, un) € C(R4+,R") x
Cp (R4, M(R)),

t t
U o = [ s X = [ 60T A D, d)
[ Der s X0 as (X, omids, )
0 JR!

1t
_5/ /R] tr(cy (Xy, X) D2, (s, Xy, 2))pu(ds. dx)
(5.3) 0

1 rt
B 5./0 /Rz ”)L(S’X)”%,‘S(Xs,x)ﬂ(ds,dx)
1 ! )
-5, /RlHDxf(s, X5, 02, (x,.0(ds, dx)

—/t/ (s, X)T Gy (Xs, ¥) Dy £ (5. Xy x)pu(ds, dox).
0 JR!

Under Condition 2.1, Ul)"(')’f(X, 1) is a continuous function of (X, ).

Let 7(X, p) represent a continuous function of (X, u) € C(Ry,R") x C4 (R4,
M(R!)) that is also a stopping time relative to the flow G = (G;,r € R;) on
CR4, R") x C4(Ry, M(R!)), where the o-algebra G, is generated by the map-
pings X — X; and u — pug for s <t. (We note that the flow G is not right con-
tinuous, so 7 is a strict stopping time; see Jacod and Shiryaev [25].) Let us also
assume that X;;(x, ) is a bounded function of (X, ).

THEOREM 5.1.  Suppose that Conditions 2.1, (2.2a), (2.2b), (2.2d) and (2.10)
hold. If Lis a large deviation limit point of (X¢, u?) for rate 1/¢ as ¢ — 0, then

AC), z
(5.4) sup (U 0 (X w) = (X, ) =0.
(X.1)CR 4. R") xCp (R4 . M(R!))
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PROOF. The process (A(t, X?),t € R;) is F?-adapted so that by (2.1a)
and (5.2),

t t
fo A5, XP)d X =/O M5, X5)TAS(XE, x5) ds
(5.5 .
#VE [ A X B X0 AW
By (2.1a), (2.1b) and Itd’s lemma,

ry , Xe’ £
Flo. X5 0) = 0. X5 )+ [ S g
0 as
t
+ [ Durle x5 x) ALK 1) ds
t
Ve [ Dup (o X )T B 0 dW;

1 t
+gf Dy £ (s, X5, x5) af (X2, x5) ds
0

S’S

(5.6) | ,
o ) Do o X5 )R ) aws

2/ tr(CE(XE, xE) Dy, f (s, X2, xE)) ds
+ 5 / tr(cS (X2, x5) D2, £ (s, XE, x5)) ds

+ [ (G (X X D2 . X x8)) d,

where G¢(u, x) = BE (u, x)b¢ (u, x)T. We denote

! t
Uts(X7 :U/) =/ )\'(SgX)dXs _f /l)\’(s’ X)TAi(X_S,x)'u/(ds’dx)
0 0 JR
t
_/ /szf(s’ Xg. 0) al (X, x)p(ds, dx)
0 JR
1 rt . 5
_5/0 /Rz tr(c® (X, x) D2, £ (5. Xy X)) u(ds, dx)
1 rt? 5
- 5/() [1;1 G, 20 “Cf(xs,x)//v(ds, dx)
1 ! )
— 5‘/(\) /H\Ql HDxf(S, XSa-x)“c?(Xs’x),UJ(dS,dx)

- /1/ A(s, X)T G (X, x) Dy f (s, X, x)u(ds, dx)
0 JR!



3138 A. A. PUHALSKII

and

VA0 = £ Xt = 0 o) = [ [ S s, any
- /O%y Dy f (s, X5, )T AL (X,, x)(ds, dx)
-t fo t fR t(CE(Xs, 1) D2, f s, Xy, X)) a(ds, d)
_ /ot.é%l tr(GE(Xy, x) D2, £ (5, Xy, ) (ds, dx)
2 [ [P0 6 X0 Ry, ypets,
- /OIA;IA(S, X)TCE(Xy, x) Dy f (5, Xy, ¥)a(ds, dx)

— /t/ Dy f (s, X5, )T GE(Xy, x) Dy f (s, X5, x)(ds, dx).
0 JR!

Since the function A(s, u) is locally bounded, the function f (s, u, x) and its deriva-
tives are locally bounded and are of compact support in x, conditions (2.2a), (2.2b),
(2.2d) and (2.11) hold, and X;:(x, ) is bounded; we have that there exists number
R(#) > 0 such that for all ¢ small enough uniformly over (X, ),

(5.7) |Ut€Ar(X,/¢)(X’ M)| + | ;SAT(X,M)(X, M)| < R(1).

Since X; and u§ are JF;-measurable, T(X?, u°) is a stopping time relative
to F¢. By (5.5), (5.6) and (5.7), the process (exp((l/e)UfM(Xg’ME)(Xg,;1,5) +
VfM(Xg’Mg)(XE, u?)),t € Ry) is a bounded F¢-martingale, so

1
E° exp(gUtg/\r(Xs,/ﬁ)(Xg’ MS) + Vté;\r(Xs,;Ls)(Xg’ /‘LS)) =1

Since the function f(s,u,x) is of compact support in x, the convergence
hypotheses in (2.10) and the bound in (5.7) imply that UfM(X’M)(X, n) —

U)‘(')vf

Ao (X u)(X’ @) as & — 0 uniformly over compact sets. By Theorem 3.3,

AC)f T
SUP(X 1) eC(R4 R xCy R M®R)) (Upnz(x, 1 (X ) —I(X, 1)) =0. [

REMARK 5.1. One can see that there exists compact K C C(Ry, R") x
Cp (R, MI(R') such that sup e x (Uynoik o (X 1) = KX, 1)) =0.

6. Regularity properties. Let I represent a large deviation limit point of
(X%, u®) for rate 1/¢ as ¢ — 0 under the hypotheses of Theorem 2.1 such that
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i(X , ) = oo unless X = i1, where & is a preselected element of R”. Let, as in
Theorem 3.4, for (X, 1) € C(Ry, R") x Cy (R4, M(R')),

(6.1) (X, = sup UL (X ),

)L('),f,t,f

with the supremum being taken over A(¢, X), f (¢, u, x), and 7 (X, u) satisfying the
requirements of Theorem 5.1 and over ¢ > 0. We note that, under Condition 2.1,
I (X, u) is a lower semicontinuous function of (X, 1) and that by Theorem 5.1,

(6.2) (X, p) <I(X, w).

The rest of the paper is concerned mostly with proving that equality prevails
in (6.2), provided X = #. Since the case where I'* (X, 1) < oo needs to be con-
sidered only, in this section we undertake a study of the properties of (X, )
such that I**(X, u) < oco. We prove that if I**(X, u) < oo and X¢ = u, then
(X, u) = I(X, u), where I(X, i) is given in the statements of Theorem 2.1
and Proposition 2.1 with Iy(it) = 0; see Theorem 6.1. We assume throughout Con-
ditions 2.1, 2.2, (2.4b), (2.12¢) and (2.124d) to hold.

LEMMA 6.1. If u € CT(R.‘,—,M(RZ)), then w is of the form u(ds,dx) =
vs(dx)ds, where vs(dx) is a transition probability kernel from R, to R, If
(X,un) e CRL,R") x (C¢(R+,M(Rl)) is such that T**(X, u) < oo, then X is
absolutely continuous with respect to Lebesgue measure.

PROOF. We have that u(ds, dx) = vy(dx)u(ds, R!), where v,(dx) is a tran-
sition kernel from R, to R!; see, for example, Theorem 8.1 on page 502 of
Ethier and Kurtz [15]. Since p(ds, R is Lebesgue measure on R, pu(ds,dx) =
vg(dx)ds.

On taking f = 01in (5.3) and assuming A(s, X) not to depend on X, so the piece
of notation A(s) can be used instead, we have by (5.3), (6.1) and the part of the
lemma just proved that if I**(X, i) < oo, then

/()tk(s)dXS < /OZ/RI AT Ay (X, x)vg(dx)ds

1 rt N 5 o ey
+§ 0 ]RIH (S)HCS(XSaX)vS( 'x) S+ ( 7“)

Replacing A(s) with §A(s), where § > 0, dividing through by 4, and minimising
the right-hand side over § obtains that

t t
T
/(; Ms)dXSS/O/RzMS) As (X, x)vs(dx)ds

t
V3T, u)\/ [ LIA6 1, @0 ds.

It follows that X is absolutely continuous with respect to ds. [
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By Lemma 6.1, if I"* (X, u) < 0o, then (5.3) takes the form

! . t
U (X ) = /0 M. X)T Xy ds — /0 /ﬂ; s 0T AKX, )ue(dx) ds
t
[ et X0 s (X, 5y (dx) ds
0 JR

_ %/t/ltr(C‘V(Xs, x)D)%xf(s’me))vs(dx)ds
(6.3) 0 JR

1 rt
2 /Rl [aGs. X)”éy(xs,x)vs(dx)ds
1 ! ,
_ 5,/() </Rl||DXf(S’ Xs’x)”cs(XS,x)vS(dx)dS

—/t/ (s, X)T Gy (Xs, x) Dy £ (5, Xy, )05 (dx) ds.
0 JR!

The next step is to show that vs(dx) has to be absolutely continuous with re-
spect to dx and establish its integrability properties. We need, however, to lay
the groundwork. The proofs of the following two key lemmas are omitted. The
first one is essentially due to Rockner and Zhang [45], pages 204-205, [46]; see
also Bogachev, Krylov and Rockner [6]. The second one is a local version of the
result by Bogachev, Krylov and Rockner [6] that if b € L2(R4, m(x)dx) then
Jm € WH2(R?), and is proved along similar lines; see also Metafune, Pallara
and Rhandi [31].

LEMMA 6.2. Letd € N and let O represent either R? or an open ball in R?.
If m(x) is an Ry-valued measurable function on R? such that m € Wll(;cl (R?) and
Jm e WH2(0), then HY2(0, m(x) dx) = WH2(0, m(x) dx).

LEMMA 6.3. Ford € Nandx € R?, let c(x) represent a locally Lipschitz con-
tinuous function with values in the set of symmetric positive definite d x d-matrices
and let b(x) represent an RY-valued measurable function. Suppose m(x) is a prob-
ability density on R? such that m(Inm)? € ]Llloc(]Rd), be H"lzoc (R, R?, m(x) dx),
and

/ tr(c(x)sz(x))m(x) dx +f Dp(x) b(x)m(x)dx =0
R4 R4

forall p e Cg° (R?), where we assume that 0(In0)% = 0.
Thenm € W' (RY) and /m € Wllocz (RY). Furthermore, given open ball S from

loc
RY, there exists constant M which depends on S, on the Lipschitz constant of ¢(x)

on S, and on inf cg )cTc()c)x/Ix|2 only, such that

2
(6.4) /;%dx 5M(l+/S(1nm(x))2m(x)dx+/S|b(x)|2m(x)dx>.
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For the next lemma, we recall that, according to our conventions, ¢’ = g/
(g — 1), provided g > 1.

LEMMA 6.4. Suppose that I'*(X, u) < oo, where u(ds,dx) = vg(dx)ds.
Then, for almost all s, the transition kernel vs(dx) is absolutely continuous
with respect to Lebesgue measure, the density ms;(x) = vs(dx)/dx is an ele-

ment of ]LlOC(Rl) forall Bell,l/(— 1)) and is an element of Wllog (R for all
a€[1,2l/Q21 — 1)), and /mg(-) € Wloc (]Rl) Furthermore, for arbitrary t > 0
and open ball S C R,

| Dm (x)]?
6.5) // T dxds < oo,

If, in addition, /ms () € WE2(RY), then Dmy(-)/my(-) € Ly * (R, R, my (x) dx).
Ifk >0,q9 >2,and g > 1, then

(6.6) / /m (x)q dxds < oo.
(X, u): I**(X W)=k

PROOF. By taking A(s, X) =0 and f(s,u,x) = ¢(s,x) in (6.1) and (6.3),
where ¢ € C'2(R x RY) and the support of ¢ in x is bounded locally uniformly
in s, we have that

1 rt
2 [0 /Rz tr(cs (X5, ) D3 (5, 1)) vs (dx) ds
_ /(;IA’%[ Dy (s, x)  ay(Xs, x)vs(dx) ds

1t >
<I™(X, )+ Efo Ay | Dx¢ (s, 0| (x, x Vs (dX) ds.

Replacing ¢ (s, x) with 8¢ (s, x), where § > 0, dividing through by &, and mini-
mizing the right-hand side over § yields

1 rf )
_EA \/]Rl tr(CS(XSaX)Dxx¢(s,x))vs(dx)ds
t
— T
©6.7) /()/Rl D (s, )T (X e )0y (do) ds

t 12
< \/EI**(X’ M)l/Z(/(; ,/Rl ”DX¢(S’x)”i(XS,x)VS(dx)ds> .

Let Ly ([0, 1] x R, R, ¢5(Xy, x), vs(dx) ds) denote the closure in L2([0, 1] x
R R, ¢y (X5, x), vs(dx) ds) of the space of functions D, ¢. By (6.7), the left-hand
side extends to a continuous functional 7;(g) on L(l)’z([o, 11 x RERE, e5(Xy, x),
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vs(dx)ds). By the Riesz representation theorem, there exists a unique ¢ €
Ly ([0, 1] x R, R!, ¢5(X;, x), vs(dx) ds) such that

! T
T = [ [ 8607 c (e 0v s, v ds.

for all g € Ly>([0, 1] x R, R, ¢ (Xy, x), vy(dx) ds), and

t 1/2
(6.8) (/0 /RlHlp(s,x)”i“s,x)vs(dx)ds) < VA (X, )2,

By uniqueness, i can be extended to a function on Ry x R’ so that for all > 0,

1 rt )
_E /(‘) /]Rl tI’(CS (Xs, X)Dquﬁ(s, x))Vs (dx) ds
(6.9) /0 ./Rl Dy (s, x)" as (X, x)vg(dx)ds

:/tf D¢ (s, ) cs(Xs, X)W (s, x)vs(dx) ds.
0 JR!

It follows that for almost all s and for all & € (C(z) (R,

‘% f tr(es (X, ) D*h(x)) v (dx)
(6.10)
:/ Dh(x)Tas(Xs,x)vs(dx)-Ff Dh(x)T cs(Xs, )P (s, X) vy (dx).
R/ R!

Since ¢ € L(])’Q([O, 11 x R R, (X, x), vs(dx) ds), we have that, for almost all
s, ¥(s,-) belongs to the closure of the set of the Dyh in ]LZ(RZ, R/, cs (X, x),
Vs (dx)). In particular, [p [ (s, x)|?vs (dx) < oo. Since ag(Xy, ) and ¥ (s, -) are
locally integrable with respect to vs(dx) and c; (X5, -) is uniformly positive definite
and is of class C', (6.10) and Theorem 2.1 in Bogachev, Krylov and Rockner [8]

imply that the measure v, (dx) has density mg(x) with respect to Lebesgue measure
which belongs to L? (Rl ) for all B < I. It follows since ag (X, -) and ¢ (X, -) are

loc

locally bounded and [ [ (s, x) |2vs (dx) < o0, that for arbitrary open ball S in R/,
there exists M > 0 such that for all 1 € (C(Z)(S):

’/Str(cs(Xs,X)Dzh(X))ms(X)dx < M| Dhllp2p (s gr)-

Since c¢;(u, -) is uniformly positive definite and is of class C!, by Theorem 6.1
in Agmon [2], the density m (-) belongs to Wllc;g(S) for all @ < 21/(21 — 1).
The inclusion /m;(-) € W):2(R?) follows from Lemma 6.3 and (6.10). For in-
equality (6.5), we also recall (6.4) and (6.8). The property that Dm(-)/m(-) €
Ly (R, R, mg(x) dx) when /my(-) € WH2(R!) follows from Lemma 6.2 and
the fact that ]Lé’Z(]Rl ,R! mg(x)dx) is the closure of the space of the gra-
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dients of C*-functions whose gradients belong to L2(R!,R!, m,(x)dx) in
L2(R!, R, my(x)dx); cf., Theorem 1.27 on page 23 of Heinonen, Kilpeldinen
and Martio [23].

We now adapt the proof of Theorem 2.1 in Bogachev, Krylov and Rockner [8]
in order to obtain the bound in (6.6). Let S represent an open ball which con-
tains S. By (6.8), (6.9) and local boundedness of ag(u, x) and ¢, (u, x), assuming
that ¢ (s, x) in (6.9) is supported by S; in x for all s € [0, ¢], we have that there
exists L > 0 such that for all (X, u) that satisfy the inequality I**(X, u) <8,

t
2
‘/0 /sl tr(cs(Xy, x) D p (s, x))mg(x) dx ds

; , \2
§L1</ sup | Dy (s, x)| ds) .

0 x651

6.11)

An approximation argument shows that one may assume that ¢ (s, x) is measurable
in (s,x) and is of class C2 in x. Let ¢(x) represent a Cg°-function on R! with
support in S that equals 1 on S and let ¢ (s, x) be a measurable function that is of
class C* in x. On letting ¢ (s, x) = £ (x)¢@(s, x) in (6.11), we have that there exists
L> > 0 such that for all ¢(s, x),

’ft/ tr(cs(Xy, X)D2 (s, x)) ¢ (x)mg(x) dx ds
0 JS;

! 2 2 12
§L2(/0 (sup]w(s,x)] + sup | Dyo(s, x)| >ds) )

xX€S| x€eS|

By Sobolev’s imbedding, W24 (S)) is continuously imbedded in W"°°(S}) pro-
vided g > [ (see, e.g., Theorem 4.12 on page 85 in Adams and Fournier [1]), hence,

/t/ tr(cs(Xs, x) D2 (s, X)) (x)my(x) dx ds
0JS;

. ) 12
<Lj (/0 lotss Mwzacsy ds) ’

where L3 > 0. The latter inequality extends to ¢(s, -) € C2(S)). Given a bounded
continuous function f(s,x) such that f(s,-) € C5°(S1), let ¢(s, ) € C2(S)) be
such that tr(cg (X, x)D)%x(p(s, x)) = f(s,x) and ¢(s, x) = 0 on the boundary of
S1; see Theorem 6.14 on page 107 of Gilbarg and Trudinger [21]. By Theorem 9.13
on page 239 in Gilbarg and Trudinger [21], where we take Q' = Q = §j, and on
recalling that the norms ||cs(, -) [lyy2.4(s,) are bounded locally in (s, u), we have
that

(6.12)

lg (s, ’)”qu(sl) < La([ oG, ')”M(Sl) + [ G, ')”]Lq(sl))

locally uniformly in s. By Theorem 9.1 on page 220 in Gilbarg and Trudinger [21],
SUpycs, lo(s, x)| < Ls|| f (s, -)llLacs,) locally uniformly in s. We obtain that there
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exists Lg > 0 such that ||¢(s, Miwzacs)) < Lell (s, )llLacsy)- By (6.12), if g > 2,

then, for some L7 > 0,
t 1/q
§L7(//|f(s,x)|quds) )
0 JS;

Since the functions f (s, x) are dense in L([0, t] x S1),

t , 1/q’
(f/ |z (xX)mg(x0)|? dde) <Ly,
0 JS;

which yields the required bound (6.6) if one recalls that {(x) =1on §. U

t
‘ f / (s, 3007 (xymy (x) dx ds
0 JS;

REMARK 6.1. As a byproduct of the proof, the function ¥ (s, -) is an element
of Ly *(R!, R!, ¢5(X;, x), my(x) dx) for almost all s.

We now work toward proving that I** is the same as I in Theorem 2.1 and
Proposition 2.1. The following lemma will be useful for calculating I**; cf.
Lemma A.2 on page 460 in Puhalskii [40].

LEMMA 6.5. Let V represent a complete separable metric space, let U rep-
resent a dense subspace, and let R-valued function f (s, y) be defined on Ry x V,
be measurable in s and continuous in y. Suppose also that f (s, A(s)) is locally in-
tegrable with respect to Lebesgue measure for all measurable functions A(s) that
assume values in U. Then, for all t e Ry,

t

sup f(s,x(s))ds = ]t sup f(s, y)ds,

A()eA VO yeU

where A represents the set of measurable functions assuming values in U .

In the rest of the paper, we denote D, by D, divergencies are understood with
respect to x. The next lemma is a key to proving that /m(-) € WL2(R!) in the
statement of Theorem 2.1.

LEMMA 6.6. Let mg(x), where x € Rl and s € Ry, represent an R-
valued measurable function which is a probability density on R! and an ele-
ment of Wll(;l(Rl) for almost all s. If, for some t > 0 and L| > 0, we have that

C

f(;fs | Dm (x)|?/mg(x)dx ds < oo, for all open balls S, and

/ " sup (Dh(x)T (1 div(e; (Xy x)my (x)) — as (Xy, x)my (x))
0 phechmh /R 2
(6.13)

1
-3 I Dh(x)||i(xmx)ms(x)> dxds <L,
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then there exists L, > 0, which depends on L and t only, such that

D 2
//l| ms O e ds < Lo,
R

mg(x)

PROOF. Due to space constraints, we resort to a proof outline. Let n(x)
represent a [0, 1]-valued twice continuously differentiable nonincreasing func-
tion defined for x > 0 such that n(x) = 1 for x € [0,1] and n(x) = 0 for
x > 2. Let n,(x) = n(Jx|/r) where x € R' and r > 0. We note that the bound
in (6.13) extends to functions A4(x) from the closure H(l)’z(Ser,ms(x) dx) of
Co°(S2741) in W1’2(52,+1, ms(x)dx), where Sy,41 represents the open ball of
radius 2r 4 1 centered at the origin in R!. Let 8§ > 1. Since (the restriction of)
In(ms(-) ASV 8_1) to So,41 is an element of WM(SQ,H ,mg(x)dx) a.e. and since
by Lemma 6.2, W'2(S,, 41, ms(x)dx) = H"“2(S2 41, ms(x)dx), we have that
In(mg(:) A8V 8~ e HY2(So 11, ms(x) dx). So, In(ms(-) A8V 8 n,()? is an
element of Hy*(S,+1,m;(x) dx). Hence, one can take A(x) = (1/4) In(m(x) A
8V 8y, (x)? in (6.13). The bound in (6.13) implies that there exist L; > 0 and
M > 0 such that, given arbitrary § > 1 and « € (0, 1/2), for all r great enough
(depending on §),

t ¢ IDms ()% .
/()./Rl — ”f(x)zl{S*‘Sms(x)sé}(x)dxds

ms(x)

< L1+ Mt),
= 7o L+ Mip)

which implies the assertion of the lemma by letting r — oo and § — oco. [

The next theorem establishes the equality I**(X, u) = I(X, u) provided
I**(X, n) < o0, Xo=u, and Iy(1) = 0.

THEOREM 6.1. Suppose that Conditions 2.1, 2.2, (2.4b), (2.12¢c) and (2.12d)
hold and that T**(X, u) < oo. Then u(ds,dx) = mg(x)dxds, where mg(-) €
P@R!) ae. We have that [J [ |xTas(Xs,x)|/|x|ms(x)dxds < oo and
féfRz |Dm(x)|?>/mgs(x)dx ds < oo for all t € R... The projection Dy, ().x, (X)
belongs to L2RL, R (X, x), mg(x) dx) as a function of x for almost every s,
D (), x,(x)  and Y, (), x,(x) are measurable in (s,x), and
fotfRz | Ps ). x, (X) I2m (x) dx ds < oo for all t € Ry.. We also have that

(X, w)
:/oo sup <AT(XS —/ AS(XS,x)ms(x)dx>
0 ieRr R

2
(6.14) I, et xm oy
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1
+ sup (Dh(x)T<— div(cy (X, x)mg(x))
heCy(®!) R’ 2

— (s (X, )+ Gy (X, x)TA)ms(x>>

1
— —|DR@)|Z . ms(x) ) dx ) ds
2 s( S )

o0

= sup (AT<XS — /]Rl As (X, x)myg(x) dx)

0 reR®

2
2 ”)\-”f]RZ Cs(Xs,x)ms(x)dx

Dm,
+ sup [ (s e (3

g€ (RLRE ¢ (X, x),mg (x) dox) 2ms (x)

(6.15)

1
- q)s,m5(~),xs (X) - qjssms(‘)sxs (X))\,> - 5||g(x)||35(Xs,x)>m5('x)dx) dS.
The vector Xy — Jrt As (X5, x)mg(x)dx — [pi Gs(Xs, x)(Dmg(x)/(2mg(x)) —

Dy m (), x, (x))mg(x)dx is in the range of fRz Qs.my()(Xs, x)mg(x)dx a.e. and
the supremum in (6.15) is attained at

A &,
As = (./]Rl Qs,ms(~)(Xs,X)ms(X)dx> <Xs - /IRI Ag(Xy, x)mg(x)dx

(6.16)
_f GS(XS,x)<DmS(x) — Dy i (),X (x))ms(x)dx)
R! 2mg(x) R
and
(6.17) 800 = B g ok, () = W1, (0
2mg(x) R TR

so that

0 2

e, M):/O (% /Rl 2:11:((;)) = Poms0., () cs(xs,x)mS(X)dx

(6.18) +1HX‘_/ AY(XY,x)mg(x)dx—/ G;(Xv,x)<DmS(x)

20 R ' R 2mg(x)

— Dy my (), X, (X))ms(X) dx

2
> ds.
(gt Os.ms () (Xs,x)ms(x) dx)®

PROOF. We recall the expression (6.1) for I**(X, u), where the supremum is
taken over ¢ € R, functions A(s, X) given by (5.1), and (Cl’z’z(]RJr x R" x R)-
functions f (s, u, x) that are compactly supported in x locally uniformly in (¢, u).
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According to Lemma 6.4, if I (X, u) < oo, then vs(dx) = my(x)dx, where
mg(-) € Wllocl (R"), so one can integrate by parts in (6.3) to obtain

0O

zft(,\(s, X)T<Xs—f As(Xs,x)ms(x)dx)
0 R!

1 2
3 LI 0, i ms
(6.19)

" /Rl Df (s X )" (% div(es (Xs, ¥)ms (x)) — as (X, x)mg (x)> dx
1
- /R 1D X . oyms ()

—AZA(S,X)TGS(XS,x)Df(s,Xs,x)ms(x)dx) ds.

An approximation argument using mollifiers implies that the supremum will
not change if A(s, X) is assumed bounded and measurable in s and if f(s, u, x)
is assumed measurable, continuously differentiable in x with bounded first partial
derivatives and compactly supported in x locally uniformly in (s, ). Therefore,
on noting that X is kept fixed,

I'*(X, n) = sup/ot (A(S)T<XS — /Rl Ay (X, x)mg(x) dx)

1 2
-5 |2(s) “f]Rl Cy (X5,x)my (x) dx

’ /Rl pots X)T(% divy (e5 (X5, 0)ms (x)) — a5 (X, x)ms(x)> dx
1
_ E/RI HD¢(S»X)Hi(xs,x)ms(x)dx

—/RIk(s)TGS(XS,x)DqS(s,x)ms(x)dx) ds,

where the supremum is taken over ¢ € R, bounded measurable functions A(s),
and measurable functions ¢ (s, x) that are continuously differentiable in x with
bounded first partial derivatives and are compactly supported in x locally uni-
formly in 5. By Lemma 6.5, one can optimize with respect to A(s) and D¢ (s, x) in-
side the ds-integral which yields (6.14). In some more detail, we apply Lemma 6.5
with U being the Cartesian product of the closed ball of radius i in R” and of the
set U; = {Dh : h € C}(R"), sup, g |Dh(x)| < i and h(x) = 0 if |x| > i} and with
V being the Cartesian product of the closed ball of radius i and of the closure of
U; in the space of continuous functions with support in the open ball of radius i
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centered at the origin in R’ that are bounded above by i in absolute value; the latter
space being endowed with the sup-norm topology, where i € N, and let i — oo.
Integration by parts in (6.10), with vs(dx) = m(x) dx, yields

[ Dreo (Sivles (X xm () (X, 0y () d

= [, DH ey (X 00w (s o () dix.

On recalling that ¥ (s,-) € Ly*(R!, R, ¢s(X, x), my(x)dx) for almost all s
by Remark 6.1, we have that the function — (s, x) represents the orthog-
onal projection of ¢;(Xy,x) ™ (ag(Xs,x) — (1/2)div(cs(Xy, X)my(x))/my(x))
onto ]L(l)’z(]Rl,]Rl,cs(Xs,x),ms(x) dx). Since by (6.14), Lemmas 6.4 and 6.6,
Dmy(x)/my(x) is a member of Ly*(RL, R, ey(Xy,x), ms(x)dx) for almost
all s, we have that the function —v (s, x) + (1/2)Dmg(x)/ms(x) belongs to
]L(l)’z(]Rl,]Rl,cs(Xs,x),ms(x)dx) for almost all s, so, by (2.15b), it equals
ch,ms(-),Xs (x)

We show that @ ,, () x,(x) and W ,, () x,(x) are properly measurable. Let
Uy represent the closure of the set {c; (X, -)!/2/ms(ODp(-) : p € (CSO(RI, R™)} in
L2(R!, RP™). Introducing @5 (x) = ¢5(Xs, x) " V2G (X, x)T /my (x) and @ (x) =
es(Xg, )12 . x, (x)/ms (x), we have that ¢ is the orthogonal projection of
@s onto U [see (2.15a) and (2.3)]. By Corollary 8.2.13 on page 317 in Aubin
and Frankowska [4], ¢ is a measurable function from Ry to L2(R!, RIXmy. (We
note that s — U, is a measurable set-valued map by part (vi) of Theorem 8.1.4
on page 310 in Aubin and Frankowska [4].) This implies that the mapping
(8, x) = Wy (), x, (x) is measurable. The reasoning for ®; ,, (), x, is similar.

The representation in (6.15) follows from (2.15a), (2.15b), (2.3) and (6.14).
Since the function

Dmy(x)
2mg(x)

gx(x) = - q)s,ms(‘),Xs (x) — \Ijs,ms(-),Xs (x)A

is a member of ]L(l)’z(Rl,Rl,cs(Xs,x),ms(x)dx), it attains the supremum
in (6.15), which yields

(X, w)
o (5 Lo
_ /0 Aseuﬂgn()\ (Xs -/, As(Xs,x)ms(x)dx> = SIA €, ooy ds
(6.20)
Dm;(x)

+ 5 /]Rl chs,msﬂ),Xs (X) - 2ms(x)
2

— Wy (), x, (XA mg(x) dx) ds.
cs(Xs,%)
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Since the matrix Qg (), x) = Cs(u, x) — ”\Ijssms('),u(x)”i(u,x) [see (2.14)]
is positive semidefinite, the supremum over A in (6.20) is attained at

A= (/Rz Qs,mx(.)(xs,x)ms(x)dx>®(xs — /Rz Ay (X, x)mg(x) dx

Dm,
[ om0, 0T e X) (Pum00, ) = S Yo )

2m (x)
and equals
1 Dm 2
2 /Rl Zm:((;)) = Pomy (). X; CS(XX’x)ms(x)dx
t3 ”i”%/kl Qs.my () (X5, 0)my (x) dx)®>
provided

X [ A xm () d
R

Dmg(x)
2mg(x)

- [I;l W, mg (). Xs (-x)TCS(XS’ x)( — Dy (). X, (x)>ms(x) dx

is in the range of [ Oy m, () (X5, X)my(x) dx a.e. Otherwise, the supremum equals
infinity. The fact that A= )A\s and the expression in (6.18) follow from (2.15a)
and (6.20). The properties that fé[Rz | Dmg (x)lz/ms(x) dxds and
Jo St 1 @5, (., ()| dx ds are finite follow from Lemma 6.6, (6.14), and (6.18).
The integral féfRz IxTag(Xy, x)|/|x|ms(x) dx ds being finite follows from (6.14)
if one lets A = 0, takes as &(x) a smoothing of the function —(|x| A §)n(|x|/r),
where n(y) satisfies the hypotheses of Condition 2.3, and lets r — oo, first, and
8 — 0o, next. [

Motivated by (6.18) in Theorem 6.1, let us introduce, provided I*j"(X,
W) < oo so that u(ds,dx) = my(x)dxds, where m;(-) € P(RY), and X, —
le As (X, x)mg(x) dx _le G (X5, x)(Dmg(x)/(2ms(x)) — Cbs,ms(),Xs)ms (x)dx
is in the range of [ Qg m, () (X5, X)mg(x) dx ae.,

o _ (1 [ [Dmsx) ?
L. M)_/o (Z/RI 2my(x) om0 %, (%) cs(xs,x>mS(X)dx
6.21) +1”X —/ Ay (X, x)m (x)dx—/ G, (X x)<DmS(x)
. 2 S Rl S S S Rl S S 2ms(x)

—@wm%uﬂmqu

2
) ds.
(Jgt Os.ms () (Xs,x)ms (x) dx)®
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As in the proof of Theorem 6.1, we also have that

(X, ) :/l sup (AT<XS —fRI As(Xs,x)ms(x)dx)

0 reRn
1 2
- 5 ||)‘”le Cs (X5, x)mg(x)dx

1
(6.22) +  sup (Dh(x)T<— div(cs (X, x)mg(x))
heCh®) /R’ 2

- (aS(XSa x) + Gy(Xs, X)T)\)ms(x))

1
-3 | Dh(x) ||§;(X;,X)ms (x)) dx) ds.

For the proof of Theorem 8.1, it will be needed to extend (X, u) defined on [0, ]
past ¢ in such a way that I'*(X, u) = I"*(X, ). That is done in the following
lemma which also concerns the zeros of I**(X, ).

LEMMA 6.7. Fort € Ry and z € R", the system of equations

(623) %= [ A Xoom@dr, Xo=z.

1
(6.24) fR 1 <5 tr(cs s (X, X)D?p(x)) + ag s (X, x)7 Dp(x))ms(x) dx =0,

where p € C5° (R!) is otherwise arbitrary, has a solution (X T (mj (x))) such that
X" is locally Lipschitz continuous, mz (x) is measurable, and m;r(-) e P(R). If,
given (X, w) such that I**(X, u) < 0o, one defines (X, (1) by the relations X, =
X, and j1g = g fors <t,and X, = Xj_t and [ig(dx) = ,ut(dx)—i-f(‘f*’ m'(dx)dr
for s > t, where 7 = X;, then I** (X, ) = I*(X, ). In particular, if t = 0, then
(X", u"=0.

PROOF. Since a;(u, x) is locally bounded, since c;(u«, x) is bounded, is posi-
tive definite and is of class C' in x, and since a,(u, x)T x/|x| = —o0 as |x| = oo
by (2.4b), applications of Theorem 1.4.1 in Bogachev, Krylov and Rékner [7] [with

V(x) =,/1+ |x|?] and of Theorem 2.2 and Proposition 2.4 in Metafune, Pallara
and Rhandi [31], show that for every s,¢ € Ry and u € R" there exists a unique
probability density m(x) satisfying the equation

1
(6.25) /1;@ <§ tr(cs4e (u, x)sz(x)) + Dp(x)Tas_H(u, x))ms(x)dx =0.
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We apply the method of successive approximations: let X ? =zand, fori e N,
1 : . .
(6.26) A&l (5 tr(cs4+ (X, x)sz(x)) + Dp(x) agy (XL, x))m'Y (x)dx =0,
(6.27) Xt = /};{ A (X )midx, Xt =2z

We note that mi(x) is a measurable function of (s, x) (one can use, e.g., Theo-
rem 8.2.9 on page 315 in Aubin and Frankowska [4]). By (2.12c), we have that
given L > 0, there exists M > 0 such that a.e. in s € [0, L], d|X§+1|2/ds <
M(1 + |X*1?). Gronwall’s inequality implies that sup; .y SUPge[0. L] 1Xi| < .
By (6.27) and (2.12b), the derivatives X §+1 are bounded uniformly in i € N and
s € [0, L], so the sequence (X i,, s €10, L)) is relatively compact for the uniform
norm on [0, L]. Let X 1 represent a limit point. It is a locally Lipschitz continuous
function.

As in Metafune, Pallara and Rhandi [31], Proposition 2.4, we have that, for
arbitrary 6 > 0 and L > 0,

e&lxl

(6.28) sup sup mg (x)dx < o0.

sel0,L]ieN /R
In some more detail, let for a function p which is twice differentiable at x,
Lip(x) = %tr(chr,(Xé, x)D?*p(x)) + Dp(x)T ag4,(XE, x).

Since, for |x| > 0,

. 1 : 1) xxT xxT
Se 2 r Cs+t( N x) |x| |x|2 + |x|2
+al (40 ),
X

where [ represents the / x [ identity matrix, and sup; .y @5+ (X ;’, x)x/|x| > —o0
as |x| — oo, there exists R > 1 such that E_’;e‘sm <0and &Ml < |£§e8|x‘| for all
s €[0,7] and all i € N provided |x| > R. Let F be a C*®(R!)-function such that
F(x) = e’ if |x| > 1. Arguing as in the proof of Proposition 2.3 in Metafune,
Pallara and Rhandi [31], one can see that

/ |£§e’3|x‘|mi(x) dx < / CiF(x)mi(x) dx

xeR!:|x|>R xeR!:|x|<R

so that

(6.29) f i (x) dx < / LEF(x)m' (x)dx,
xeRi|x|>R xeRi|x|<R

which implies (6.28).
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Hence, given s € [0, L], the sequence of probability measures m’s (x) dx is tight.
Proposition 2.16 in Bogachev, Krylov and Réckner [8] implies that the m’ (x) con-
verge in the variation norm along a subsequence to a density msI (x). Since the
local L?-norms of the mé(x) are uniformly bounded for all ¢ > 1 (see (2.26) in
Bogachev, Krylov and Rockner [8]), sup; ¢y |as+: (X f,, x)| grows no faster than lin-
early with x by Lipschitz continuity and sup, g/ sup; ¢y |Ic’ (X L x)|| < oo (see
Condition 2.1), and sup;cy [ €2¥!mi (x) dx < oo, on taking a limit in (6.26), we
have by dominated convergence that (6.24) holds. Since density mJr (x) is specified
uniquely by (6. 24) m(x) — mT(x) as [ — oo along a subsequence such that the
X' converge to X 7. Slnce SUP; N SUPer! | As++ (X}, x)| < oo by (2.12b), a similar
reasoning shows that taking the above subsequential limit in (6.27) obtains (6.23).
Since (6.28) implies that g |as (X, )c)l2 T(x)dx < 00, by Theorem 1.1 in Bo-

gachev, Krylov and Rockner [6], /m ( ) € WL2(RY).
On noting that (6.25) can be written as

f | DP(X)T<as+z(M,X) - %diVCsﬂ(M, x))msmdx
R

1
=3 f Dp()7 ¢y ity x) Dimy () dx,
]Rl

we have that @ et X0 = Dm{ (x)/(2m](x)) which implies, by (6.18)
and (6.21), that I**(X, ) =T (X, ). O

REMARK 6.2. By Proposition 2.4 and Theorem 6.1 (with 8 = 1) in Metafune,
Pallari and Randi [31], mz (+) decays exponentially at infinity. It is also positive and
Holder continuous; see Bogachev, Krylov and Rockner [8], Theorem 2.8, Corol-
laries 2.10, 2.11 and Bogachev, Krylov and Rékner [7].

7. Identifying the large deviation function. The purpose of this section is to
show that I = I** for sufficiently regular functions (X, u). More specifically, we
will prove the following theorem.

THEOREM 7.1.  Suppose that Conditions 2.1, 2.2, (2.4b) and (2.12d) hold.
Suppose that 1 is a large deviation function that satisfies the assertion of The-
orem 5.1 and is such that I(X, ) = 0o unless Xo = ii. Suppose that (X, [) is
such that Xo = i, I'*(X, ) < 0o, X is locally Lipschitz continuous and that
my(x) = i(ds, dx)/(ds dx) is of the form

O R C)

where mg(x) is a probability density in x which is locally bounded away from zero
and belongs to CYR) as a function of x, with |Dmg(x)| being locally bounded
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in (s, x), n(y) is a nonincreasing [0, 1]-valued C(l)(R+)-function, where y € R,
that equals 1 for y € [0, 1] and equals O for y > 2, r > 0, « > 0, and M; is the
normalizing constant. Then, for given mg(x), n(y), and r, there exists ag > 0 such
that I(X, ) =T**(X, @) for all a > ayp.

We assume throughout the section the hypotheses of Theorem 7.1 to hold.
We start by extending the assertion of Theorem 5.1 to a larger set of functions
(A(), f). For economy of notation, we denote y = (X, n) and recall that I" rep-
resents the set of y such that X is absolutely continuous and p admits density
my(x) that is an element of P(R') in x, for almost all s. Let A(s, X), where s € Ry
and X € C(R4, R"), represent an R”-valued measurable function and let A4 (u, x),
where s € Ry, u € R” and x € R/, represent an R-valued measurable function,

which is an element of Wllocl (R") in x and is of bounded support in x locally uni-
formly over (s, u). If, for all t € Ry and all y € C(R,R") x C4 (R, M(RY)),
JoJri (IAGs, X)1? + | Dhy (X, x)|?)ie(dx, ds) < oo, we define, given N € N,

t
rN(y):inf{teRJr:/(;/RZ(H)L(S, X)||2CS(XM)
(7.1a)

1D X ), it ds) + X 1 N |

and, provided y €T,

N

e)f\’(y)zfor (y)(k(s,X)T(Xs —fRZ As(Xs,x)ms(x)dx>

1 2
- 5 ”)‘(s’ X) ”f]R[ Cs(Xg,x)mg(x)dx

(7.1b) + /]Rl (Dhs(XS,x)T(% div(cs (Xy, x)mgs(x)) — as(Xs,x)ms(x))
1
— 5 [Dhy(Xe. ) 12 (Xs’x)ms(x)) dx

—lex(s, X)TGS(XS,x)Dhs(Xs,x)ms(x)dx) ds.

For the latter definition, we assume that, in addition,
T Dmg(x)|?
(7.2) / (lelz +/ de) ds < 00,
0 R mg(x)
for all # € Ry, and use the piece of notation X| = sup¢(g . |X;s!|. [The definition

of ON()/) is modeled on the expression for U,M')’f(X, w) in (6.19).] We note that
™ (y) < N. Furthermore, we have the following lemma, for which we reuse the
piece of notation of Theorem 3.4 that, for § € R,

Ks={y :I(y) <5}
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and recall that K is a compact in C(R4, R") x C4 (R4, M(R!)) and that K5 C T.
Theorem 6.1 implies that (7.2) holds on Kj;. For the definition of the essential
supremum of a family of measurable functions used in the next lemma, see, for
example, Proposition I1.4.1 on page 44 of Neveu [34].

LEMMA 7.1. Let A (s, X) and hi (u, x) be sequences of functions satisfying
the same hypotheses as A(s, X) and hg(u, x), respectively, and let N ’i(y) and
oN-i (v) be defined by the respective equations (7.1a) and (7.1b), with M(s, X) and
hf;(u, x) being ;ubstituted for A(s, X) and hg(u, x), respectively. If, in addition,
the functions h(u, x) are of bounded support in x uniformly over i and locally
uniformly over (s, u),

N 2
/ esssup|A(s, X)| ds
0

(1.3) veks
—i—/ esssup |Dh (X;,x)| s(xX)dxds < o0,
0 yekK;s
(7.4a) lim sup |k(s,X)—Ai(s, X)|?ds =0
’_’OoyeKa 0
and

N .
(7.4b)  lim sup/ /lehs(xs,x)—Dh;(xs,x)\zms(x)dxds=o,

l—>00y€K8 0

then

(7.52) lim sup [tV (y) —tVi(y)| =0
=00y cKg

and

(7.5b) lim sup [0V (y) — 6" (y)| =0.
[—00 ) Ky

PROOF. Let us note that under the hypotheses,

lim sup/ / A7 s, X)”cs(xs x)

i—00 EK5
(7.6a)
— |G, X)HCS(XS,X)|ms(x) dxds =0,
N
i 2
. tim sup [ [ 1DA 06 01 i,

— |Dhe(Xy, 0|2 (x4 lms(x)dx ds =0,
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N
(A'(s, X) — a(s, X))"

lim sup
1—>00 )/EK@ 0

(7.6¢)
X (XS _/ZAS(XSa-x)mS(x)) dx|ds =0
R
and
N j T
lim sup ‘/ (Dh,(Xs,x) — Dhg(Xs, x))
i—>°°yel<8 0 R! 2
(7.6d)

X (% div(cs(Xs, x)ms(x)) — as(Xs, x)ms(x)) dx|ds =0.

The first two convergences are implied by (7.4a), (2.12d) and (7.4b), (2.12a), re-
spectively, and (7.3). The convergence in (7.6c) follows via Cauchy’s inequality
from (7.4a) and the fact that, according to (6.18) in Theorem 6.1,

N| . 2
(7.7) sup / ‘XS — /1 As(Xg, x)mg(x)dx| ds < o0.
0 R

(X, ) (X, ) <6

Similarly, (7.6a) is a consequence of (7.4b), if one recalls that the functions in-
volved are of uniformly bounded support in x and takes into account part (6.5) of
Lemma 6.4.

The convergence in (7.5a) follows from (7.6a), (7.6b) and the observation that
by (7.1a)

[N — V)
N 2 i 2
< ] 026 08 oy = 6 0B,

+ HDhs(Xs»x)Hi(xs,x) - ||Dhi~(XSvX)”i(xs,x))ms(x) dx|ds.

The convergence in (7.5b) follows by (7.1b), (7.5a), (7.6a)—(7.6d) and (7.7), if one
notes that, thanks to (7.3),

t t
sup | |rGs, X)|*ds, sup// |Dhy(X, x)|’ms(x) dx ds
yeKsJ0 yeKsJO JR!

and

ysglg /Ot /]Rl DhS(Xs,x)T<% div(cs(Xs, x)ms(x)) —as(XS,x)ms(x)) dxds

are continuous functions of t € [0, N]. [

LEMMA 7.2. Let ls(u) represent an R"-valued function of (s,u) € Ry x
R”", which is measurable in s, is continuous in u for almost all s and is
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such that fON Supy,|<r 1As (u)|*>ds < oo for all L > 0. Suppose that the function
hg(u, x), in addition to being measurable and being of class Wllocl in x, van-
ishes when x is outside of some open ball in R! locally uniformly in (s, u), that
the function Dhg(u, x) is continuous in (u,x) for almost all s € Ry, and that
iy SUP, crn:ju|<L Jr! | Dhs(u, x)|?dx ds < oo for all ¢ > 1 and L > 0. Then, un-
der the hypotheses of Theorem 7.1, the function OV (y), where A(s, X) = Ay (Xy),
is continuous in y when restricted to Kg,

sup(6”" () —1(y)) =0
yel

and the latter supremum is attained. Furthermore,

sup (0N (y) —1(y)) =0.

YEKIN+2

PROOF. The functions |Ag(u)|1,w)>r1(s,u) are upper semicontinuous
in u and monotonically decreasing in r, so by Dini’s theorem |Ay(u)|> X
15,0 =r)(s,u) = 0 as r — oo uniformly on {u € R" : |u| < L}. Let r;
be such that fON SupueR";|u|§L|)\s(“)|21{l)\s(u)|zr,'}(saM)ds < 1/i, where L =
SUP,, ¢ k5 SUP;¢(o,¢] | Xs| and i € N. Since Ay(u) is a Carathéodory function, as a
consequence of the Scorza—Dragoni theorem (see, e.g., page 235 in Ekeland and
Temam [14]), there exists a measurable function X’S (u) that is continuous in (s, u),
is bounded above in absolute value by r;, and is such that fON I{AS(_) i (_)}(s) ds <
2/(irl.2). Letting A' (s, X) = )‘le(i)sJ/j(i)(XLf(i)SJ/i(i))’ where j (i) is great enough
and j (i) — oo asi — 0o, we have that (7.4a) holds.

Similarly, let

B (u, %) =f p1iG. hy_s (. x — y)d3dy,
RxR!

where pc (3, y) = (515 /k) /) (p2(y/K) /"), p1(5) is a mollifier on R such that
p1(3) =0if 5] > 1, po(y) is a mollifier on R’ such that pr(y) =0 if |y| > 1, and
hg(u,x) =0 if s < 0. The function hé(u,x) is an element of C®° (R, x RY) in
(s, x) for all u and th;(u,x) = Jrxr! P1/i (S, y)Dhs_5(u, x — y)d5s dy; cf. The-
orem 2.29 on page 36 in Adams and Fournier [1]. In addition, th; (u,x) is a
continuous function for every i. We also have that, for all open balls S, all L > 0
and all g > 1,
N .
(7.8) lim sup f |Dhy(u, x) — Dh'(u, x)|"dx ds =0,
1= J0  yeR":|u|<L S

which can be shown as follows. If, in addition, Dhg(u, x) is continuous in all
variables, then th; (u, x) converges to Dhg(u, x) locally uniformly in (s, u, x)
(cf. Theorem 2.29 on page 36 in Adams and Fournier [1]). So, (7.8) holds.
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In the general case, in analogy with the above reasoning, there exist r; such
N+1 .

that [ SUp,ern:ju|<L J5 | Dhs W, )91 Dhy(u.x)2r;) (55, X) dx ds < 1/j where

S represents the open ball in R/ centered at the origin of radius one greater than

that of S, and there exists a continuous function fd (u, x), which is bounded above
. . N+1 , . q _
1f1 absolute value by r;, such that I{th(w)#%(.’.)}(s) ds <2/(jr;). Calcula
tions show that

N .. 2q—1 2q+1
/ sup /|Dhs(u,x)—h§(u,x)\quds5—_+—,
0 wueR™:|u|l<LV/S J J
and

N ; o q
/ sup /‘Dh;(u,x)—/ ,01/,-(§,y)h£_§(u,x—y)d§dy dxds
0 S RxR!

ueR":|u|<L

2¢=1 24tly(s)
<—+ ; ;
J J
where V (S) represents the volume of the ball S. Hence, (7.8) holds.

By an application of Holder’s inequality, it follows from (7.8), (6.6) in
Lemma 6.4 and &, (u, x) having compact support in x locally uniformly over (s, u)
that (7.4b) holds. Also, (7.3) holds.

Let V" and V- be defined as in Lemma 7.1. The functions hi.(u, x), A (s, X),
and tV-/(X, ) satisfy the requirements imposed on the respective functions
f(s,u,x), A(s, X) and (X, u) when deriving (5.4). Furthermore, integration by
parts on the right-hand side of (5.3) with u(ds,dx) = mgy(x)dx ds, implies that

; L) A . "
ONi(y) = U;]/(\g}v,i(y)(y) provided y € I'. In addition, by (7.1a), [ X~ < N

and -/ (y) is a continuous function of y € C(R, R") x C(R, M(R!)); cf. The-
orem 2 on page 510 and Theorem 3 on page 511 in Liptser and Shiryayev [29]. We
obtain by equation (5.4) of Theorem 5.1 and the fact that I(y) = oo unless y € I"
(see Theorem 6.1) that

(7.9) sup(0™ () —1(y)) =0.
yell
Let us show that, forall § > 2N + 1,
(7.10) sup (6N (y) —I(y)) =0.
v€Ks
Let, for y €T,
s LA . )
Vi = [T (20607 (% - [ A om0 d)
0 R

L iJ 2
_ E_A{l ||2)\,7 (S’X)”CS(XS,x)mS(-x)dx
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. !

+ [ (200" (5 divles (X m, () = a (X 0, ()
R
L )

—5||2Dhs(Xs,x)||CX(XM)ms(x) dx

_ /14,\'?/(& X)TGS(XS,x)Dhg(Xs,x)ms(x)dx) ds.
R

By (5.3), 0V () = U i’}v’fﬁ;)(y), provided y € T, so in analogy with (7.9),

sup (6N () —1(y)) =0.
yell

On noting that Qw’"(y) > 29N’i(y) — 2N, we have that, for M > 0,

sup (M) —1)) = sup (20N 1) - M
yONi()>M yONi(y)=M

< sup OV -I(y)+2N-M
yoNi(y)=M

<2N — M.
Since, by (7.9),
0=sup(®™'(y) —1(»))

yell
< sup OV () —I) v sup  (OV(y) —1(y)) v (M —$),
y€Ks yONi(y)=M

we conclude, on choosing M = 2N + 1, that (7.10) holds for § > 2N + 1.
Since by Lemma 7.1, for arbitrary 6 € R,

(7.11) lim sup [0V (y) — 6N (y)| =0,
l_)oo)/EKg
we obtain by (7.10) that
(7.12) sup (0" (y) —1(y)) =0.
vE€Ks

Since 6™ (y) = UL
compact, (7.11) implies that oN (y) is continuous on Kj. Since i(y) is a lower
semicontinuous function of y, the supremum in (7.12) is attained. On the other
hand, if I(y) < oo, then by (7.9) and (7.11), supyer(GN(y) —I(y))<0. O

(y), the latter function is continuous in y, and Ks is

In order to prove that I= I**, we will use A and g defined in (6.16) and (6.17),
respectively, as Ag(u) and Dhg(u, x) in the preceding lemma. We therefore need
Dy my(),u and Wy 1, () 4 to be sufficiently regular. The next lemma addresses both
regularity and growth-rate properties.
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LEMMA 7.3. Suppose that Conditions 2.1, 2.2, (2.4b) and (2.12d) hold. Let
ms(x) represent an R, -valued measurable function that is a probability density
in x for almost every s. Suppose mg(x) is bounded away from zero on bounded
sets of (s, x), mg(:) € CHRY, with | Dmy(x)| being locally bounded in (s, x), and
my(x) = Mse=*¥! for all |x| great enough locally uniformly in s, where o > 0.
Then there exist R-valued measurable function wg(u, x) and R"-valued measur-
able function vg(u, x) such that wg(u, -) € le(;g (RY and vg(u, -) € le(;g (R, R"),
where q > 1 is otherwise arbitrary, @ . (),u(-) = Dwg(u, ) and Vg p () .u(-) =
Duvg(u, -) for almost all s € Ry and all u € R", that is,

/ Dp(x)T(as(u,x) — ldivcs(u,x))ms(x)dx
R! 2

(7.13a)
:./Rl Dp(x)Tcs(u,x)Dws(u,x)ms(x)dx
and
[, PP Gt ) ms (x) dx
(7.13b) "

= /];{1 Dp(x)Tcs(u, x)Dvg(u, x)mg(x)dx

forall p (CSO(RI). Furthermore, wg(u, x), Dwg(u, x), vg(u, x), and Dvs(u, x)

are continuous in (u, x) for almost all s € R, and, for all open balls S C R, all
L>0andallt >0,

sup  sup (||ws(”")||w2~q(5)+||Us(“")||w2qq(s,ﬂ£n)
se[0,t]u:|lu|<L

+ [ Dwy s ) | 2@t R,y oy any T 1PV @ D 2wt mExn g ) d)) < 00

Also, there exists ag which depends on the functions as(u, x) and cs(u, x) only
such that, if o > g, then for all L > 0 and all t > 0,

(7.14a) sup sup sup  wg(u,x) <00
s€[0,t] xeR! ueR”:|u|<L
and
(st(u,x)l + |[Dws (u, x)|
sup sup  sup 5
s€l0,1] xeR! ueRM:|u|<L 1+ |x|
(7.14b)
lvs (u, x)| + IIDvs(u,X)II) -
1+ |x]| ’
and, for all |x| great enough locally uniformly in s,
(7.15a) xT (ag(u, x) — Jdiveg(u, x) — ¢y (u, x) Dwg (u, x)) =0
and

(7.15b) (Gy(u, x) — Dug(u, x)" s (u, x))x = 0.
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PROOF. Since az(u, -) € L2(R!, R!, my(x) dx) by the fact that a;(u, x) grows
at most linearly in x and m,(x) decays exponentially, and div ¢, (u, -) € L>(R!, R/,
mg(x)dx) for a similar reason, @, (), as defined by (2.15b), is an ele-

ment of JL(])’Z(RI, R!, es(u, x), mg(x) dx), being a projection in the Hilbert space
L2R!, R, ¢y (Xy, x), mg(x) dx). In addition,

%I;{l ” D, (,u(X) Hi(u’x)ms(x) dx

(7.16) 5
1
5[ cs(u, x)_1<as(u, xX)— = divcs(u,x)> mg(x)dx.

R! 2 cs (u,x)

By Conditions 2.1 and 2.2 and by m(-) decaying exponentially,
2

(7.17) sup  sup / | Dy (). ()] ms(x) dx < o0.

sel0,r]ueR™:[u|<L JR!

We prove that &y, () ,(-) is a gradient. Let Dw; — Py (), In L3R, R,
cs(u,x),mg(x)dx) as i — oo, where w; € (Cgo(]Rl). Then for every f € (CSO(RZ,
R') such that div f(x) = 0, we have that [ Dw; (x)T f(x)dx = 0. Since m(-)
is bounded away from zero locally and ¢4 (u, x) is positive definite, convergence
in L2RL R ¢ (u, x), mg(x) dx) implies convergence in LIZOC(]RI, R), so Dw; —

O,y in LE (R RY). Therefore, [ @ my).u)T f(x)dx = 0. It follows

loc
that @y, (),u(x) = Dws(u, x) in the sense of distributions, where w;(u, ) €

IleOC (RY); see, for example, Lemma 2.2.1 on page 73 in Sohr [48]. Consequently,
Jri )((x)TCIDS,mS(,)yu(x) dx = — [pidiv x (x)Ws(u, x)dx, forall x € (C(l)(IRl, R}.
By (2.15b) and Condition 2.1, for p € Cg° (R},

— /Rl div(cs (u, x)mgs (x) Dp(x) ") (u, x) dx

1
= /z Dp(x)T(as(u,x) ~5 div ¢ (u, x))ms(x) dx.
R
By Theorem 6.1 in Agmon [2], ws(u,-) € Wll(;g(]Rl) so that wy(u, -) is a weak
solution to the equation
(7.18)  div(cs(u, x) DWs (u, x)mg(x)) = div((as (u, x) — %div cs(u, x))my(x))
in that
/1 Dp(x)" ey (u, x) Dy (u, x)my (x) dx
(7.19) ® |
= /1 Dp(x)T<as(u,x) —3 div ¢ (u, x))ms(x) dx.
R

We note that (7.19) uniquely specifies Dw;(u,-) as an element of ]L(l)’z(Rl ,
cs(u, x), mg(x)dx).
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Let S and S represent open balls in R! such that S CC S, let £ (x) represent a
Cg°-function with support in § such that £ (x) = 1 for x € S, and let ¢ (x) represent

a Cg° (S) function. On letting p(x) = ¢(x)¢(x) in (7.19) and integrating by parts,
we obtain that ¢ (x)w;(u, x) is a weak solution f to the Dirichlet problem:

div(cs(u, x)mg(x)Df (x))
= div(cs(u, x) D¢ (x) Wy (u, x)my(x))
(7.20) + D¢ (x) T es(u, x) Dibg (u, x)m(x)
+ div((as (u, x) — % div ey (u, X)) (x)mg(x))
— D¢ (as(u, x) — %divcs(u, x))m (x)

on S with a zero boundary condition. By Theorem 8.3 on page 181 and Theo-
rem 8.8 on page 183 in Gilbarg and Trudinger [21], {(x)ws(u, x) is an element
of W22(S) and is a strong solution of (7.20). Therefore, wy(u,-) € le(;cz(Rl)
and (7.18) holds a.e. in x.

Differentiation in (7.18) and division by m(x) yield

T
tr(cs (u, x) D*s (u, x)) + (cs(u, x)DmS(x) + div cs(u,x)> Dws (u, x)
(7.21) . $ | i
= div(as(”»x) - —diVCs(u,x)> + (as(u,x) - —divcs(u,x)> ms(x).
2 2 mg(x)

On writing the left-hand side as Ly, (x)w, (4, x) and letting f(u, x) represent
the right-hand side, we have that L ;, (x)ws (1, x) = fs(u, x). Let Y, Sy, « (1) represent
the diffusion process in ¢ with the infinitesimal generator L ,(-) and initial con-
dition y, defined on probability space (€2, F, P) with expectation denoted by E.
It is a strong Markov process by Conditions 2.1 and 2.2 and the hypotheses of
the lemma. One can also choose Y, sy7 4 () to be measurable in all variables. (A pos-
sible line of reasoning invokes continuous dependence of solutions of stochas-
tic differential equations on parameters; see, e.g., Gikhman and Skorokhod [20],
or Krylov [26], and the Scorza—Dragoni theorem.) If |x| is great enough so that
mg(x) = Mge ™! then
Dmg(x) X

(7.22)

mg(x) x|

Hence, on recalling Condition 2.1, in particular that | div ¢s(u, x)| is bounded in x
locally uniformly in (s, u#), and (2.12a), we have that there exists cg which depends
on a;(u, x) and ¢;(u, x) only such that if @ > «g, then lim sup|x|ﬁoo(x/|x|)T(cs(u,
xX)Dmg(x)/mg(x) + diveg(u, x)) < 0, so Ysy;u(t) is an ergodic process; see, for
example, Has’minskii [22], Veretennikov [54] and Malyshkin [30]. Since, by the
divergence theorem,

/ Es’u(x)p(x)ms(x)dx:/ div(cs(u, x) Dp(x)mg(x)) dx =0
R! R!
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for all p e Cf° (R, my(x) dx is the unique invariant measure. Similarly,

/]Rl Sfs(u, x)mg(x)dx = /};l div((as(u, x) — %divcs(u,x)>ms(x)) dx =0,

the latter equality being a consequence of mg(x) decaying exponentially as
|x] = oco. By (7.21), (7.22), Lipschitz continuity of ay(u, -) and of dives(u, -),
the boundedness property of div ¢s(u, -), and by (2.4b), we may assume that « is
such that if ¢ > «g, then f;(u, x) > 0 for all |x| great enough locally uniformly in
(s, u). Also,

| f5(u, x)|
sup sup sup ———— <
s€[0,1] xeR! ueRm:juj<L 1+ [x]

By Theorem 1 in Pardoux and Veretennikov [35], the function
o0
(7.23) ws(u, x) = —/ Efo(u, Yy, () dt
0 ,

is well defined, belongs to leo’g (]Rl ), for all ¢ > 1, as a function of x, Dwy(u, x)
is of polynomial growth in x, in particular, Dw;(u, -) € L2(R!, R!, my(x)dx), and
Lsu(x)Ws(u,x) = f(u, x). Since Dws(u, x) also satisfies (7.19), we have that
Dw;(u, x) = D (u, x). In addition, w; (u, x) is measurable in (s, u, x).

As in Pardoux and Veretennikov [35], by (7.23) and the strong Markov property,
for R > 0,

(7.24) Wy (u, x) = Eabg (u, Y5, (7)) — Efr fo(u, YE (1) dt,
, A ,

where T8 =inf{r € Ry : [Y,(1)| < R} < oo. Since [V}, (z®)| = R if x| > R,
by fs(u,x) being positive for all |x| great enough, we have that if R is great
enough then wg (u, x) < w,(u, R), provided |x| > R. One can see that the bounds
in the calculation of part (a) of the proof of Theorem 1 in Pardoux and Vereten-
nikov [35] hold uniformly over u € [0, L] and s € [0, t], which shows that
SUP.:[x| <R SUPse[0,¢1, ycRrn:ju|<L |wg(u, x)] < oco. The bound (7.14a) follows. Since

the right-hand side of (7.21) grows at most linearly in |x| locally uniformly in
(s,u), the arguments of part (b) of the proof of Theorem 2 (with 8 =2 and
o = 0) and of part (e) of the proof of Theorem 1 in Pardoux and Veretennikov
[35], along with (7.24), show that the functions |w;(u, x)| and | Dw; (u, x)| grow
at most quadratically in |x| locally uniformly in (s, u).

We define wy (u, x) = 5 (u, x) — V! Js, s (u, y)dy, where S represents the
unit open ball centered at the origin in R/ and V; represents the volume of that
ball. Obviously, the bounds on w; («, x) we have found are also valid for w; (u, x).
It also satisfies (7.13a). We prove that, for all ¢ > 1,

(7.25) sup  sup |

ws (14, ) |y ) < 00
s€[0,t]ueR:|lu|<L
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Since Dw; (u, x) = Py (), and (7.17) holds, fsl wg(u, x)dx =0, and my(x) is
locally bounded away from zero, an application of Poincaré’s inequality yields
SUPge(0,¢] SUPuern:|u|<L 1 Ws (U, ) l12(s,) < 00. If S is a ball containing S, then,
for some Lg, s, > 0,

2 2 2
Jws (@, ) gy1.205y) = Lsy,so (1Dws . ) 1205y) + ws @, ) 125,

see page 299 in Kufner, John and Fucik [27], and also Theorem 7.4 on page 109
in Necas [33]. Thus, on recalling that § CC § and letting S represent an open ball
in R! such that S CC S, we have that

(7.26) sup  sup  [|ws(u, ')”W'ﬂ(é) < 00.
s€[0,t]ueR™:|u|<L

By (7.13a), Theorem 5.5.5'(a) on page 156 in Morrey [32], the discussion on
page 12 of Bogachev, Krylov and Rékner [7], Shaposhnikov [47] and the fact
that sup ¢ las(u, x)| and ||cg(u, ’)“WLOO(E,RW) are bounded locally uniformly in
(s, u), we have that ||ws(u, -)||W1,q(§) < Mg’g’q(l + ||ws (1, -)||L|(§)) locally uni-
formly in (s, u). By (7.26), sups(o 1 SUP|,|<L. ||lws (u, -)||W1,q(§) < 00. By (7.13a),
via a similar argument to the one used for ¢(-)ws(u, -) above, ¢()w;s(u,-) is a
strong solution to (7.20). By Theorem 9.15 on page 241 in Gilbarg and Trudinger
[21], ¢(Hws(u,-) € W24 (S). By Theorem 9.11 on page 235 in Gilbarg and
Trudinger [21], locally uniformly in (s, #), for some M 554 0,

lws @, )l sy < My 5., (1+ Jws @) o)

which implies (7.25).

We now address the continuity of wg(u,x). Let u; — u. By (7.25) and
Sobolev’s imbedding, the sequences w;s(u;, -) and Dw;(u;, -) are equicontinuous
in x € S, so they are relatively compact in C(S,R!). A similar property holds
for (ag(u;,-) — (1/2)dives(u;, -))mg(-). Taking a subsequential limit in (7.13a)
implies that Dw;(u;, ) — Dws(u, ) in C(S, RH. By Poincaré’s inequality for
S =S and the fact that [s, ws(u, x)dx =0, wy(u;, ) = ws(u, ) in L*(S1). The
bound

” wy (i, -) — wy(u, ‘)”%)Vll(sz)
=< LS],SQ(”DwS(uiv ) - Dws(u, )||i2(sz) + “ ws(uiv ) - ws(u, )”]?42(31))

shows that w;(u;, -) — wq(u, -) in L2(S,). Since S, is an arbitrary ball that con-
tains Sy, ws(u;, ) — ws(u, ) in C(S,RY). Hence, wy(u, x) and Dw;(u, x) are
continuous in (u#, x) for almost all s.

We outline a proof of (7.15a). Since a,(u,-) € L>(R!, R, my(x)dx) and
Dwg(u, ) € L>(R!, R, my(x)dx), the equality in (7.13a) extends to C!(R!)-
functions p(x) such that [ (p(x)2+ |Dp(x)|2)ms (x)dx < oo. We choose p(x) =
x| exp(=8[(Jx — x0|?/k — 1)T1?) in (7.13a), where k > 0, § > 0, and xo € R/, let
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8 — 00, divide the limits by the volume of the ball of radius « centered at xg, let
k — 0 and accounting for Dw; (u, x), ms(x), cs(u, x) and a5 (u, x) being continu-
ous in x, obtain (7.15a).

The part that concerns v (1, x) is dealt with similarly, except that one uses The-
orem 2 of Pardoux and Veretennikov [35] with 8 = 1 in order to bound the growth
rate of the second term of the sum in (7.14b). [

We now take on the proof of Theorem 7.1. Let w; (1, x) and ¥, (u, x) represent

ws(u, x) and vg(u, x), respectively, in the statement of Lemma 7.3 for my(x) =
my(x). We define, guided by (6.16) and (6.17), on recalling (2.15a) and (2.3),

~ -1/
1w = ([ Qoo i) (%= [ At i dx

(7.27) A
Dm (x) ~ N
— | Gs(u,x)| == — Dwg(u, x) |mg(x)dx
Rl 2mg(x)

if Cy(u, x) — Gy(u, x)c;(u, x)" G, (u, x)T is positive definite uniformly in x and
locally uniformly in (¢, ) and Ag(u) =0 if C¢(u, x) =0 for all (¢, u, x), and

(7.28) hy(u, x) = L Insig (x) — Wy (u, x) — 05, )T As (1)
so that
. Dih, A R .
(7.29) Dhy(u.x) = 29 ) — Dby 1) T (1),
2mg(x)
We note that by (2.14),
(7.30) O, i) ) = Cy (. X) = | DO, 1) o -

The continuity properties of wg (u, x) and v, (u, x) established in Lemma 7.3 imply
that ):s (1) is continuous in # and that fzs (u, x) and szs (u, x) are continuous in
(u, x), for almost all s € R ..

If Ci(u,x) — Gy(u,x)c;(u, x)" "G, (u, x)T is positive definite uniformly in x
and locally uniformly in (¢, u), then the analogue of (7.16) for Dw;(u, x), (7.27)
and Condition 2.1 imply that, for some | > 0,

s ()] < ﬂl(um + sup |4 (u, )|

xeR!

1/2 D
+ (/R,|as(u,x)|2n%(x)dx) + sup M)

xeR! ’/;15 (x)

(7.31)

Since mi;(x) = MSAe_“m for |x| > 2r and |as(u, x)| grows at most linearly in x,
we conclude that |Ag(u)]| is locally bounded in (s, u).
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Therefore, by Lemma 7.3, for all L > 0, all open balls S in R/, and all qg>1,

(7.32)  sup  sup |is(u)| 4+ sup  sup f|Dﬁs(u,x)|q dx < oo.
s€[0,t]ucR”:|u|<L se[0,t]uecRr:|u|<L /S

By Theorem 6.1, the supremum in (6.15) is attained at A = ):s (u) and g =

szs (u, x), however, the function fzs(u,x) might not be of compact support in

x so in order to use it in Lemma 7.2, we need to restrict it to a compact set. Let

n(y) represent an R, -valued nonincreasing Cg° (R+) function such that n(y) =1

for 0 <y <1 and n(y) =0 for y > 2. Let L(u,x) = Wy(u, x)n(|x|/i) and
vs(u x) = Ug(u, x)n(]x|/i). We note that

(7.33a) W (u, x)_n(| |)Dws(u x)+ﬁDn(|x|)uvs(u,x)

and

(7.33b) Do (u, x) = Doy (u, x)n('i.l) + Ix & x)Dn(| ')
1 l X
We define, in analogy with (7.27),

~ -1/,
1w = ([ Qoo oin@dx) (%= [ At xis o da

(7.34)
/ Gs(u, x)( ( <| |>lnm (x)) —D@é(u,x))rﬁ;(x)dx)

if Co(u,x) — Gi(u, x)c(u, x)_Al_G,(u, 07 is positive definite uniformly in x and
locally uniformly in (¢, u), and A{ (u) = 0 if C;(u, x) = 0. We let, similar to (7.28),

(7.35)  hi(u, x)_%n<| ')mn%s(x)—w;'(u,x)—ﬁ;'(u,x)Tig(u).

In analogy w1th (7.31) and in view of (7.33a) and (7.14b) in Lemma 7.3, one can
see that the |)J (u)| are bounded unlformly in i and locally uniformly in (s, u),
where the bound may depend on «. Also, )JS (1) is continuous in u, so it satisfies
the hypotheses of Lemma 7.2.

If Ci(u,x) — Gi(u,x)c;(u, x) " G;(u, x)T is positive definite uniformly in x
and locally uniformly in (¢, u), then by (7.33a), Lemma 7.3, (7.27) and (7.34),
(7.36) lim sup  sup |AL(u) — A (u)|=0.

I—=00 5e[0,1] ueR":|u|<L
The latter convergence also holds if C;(u, x) = 0 in that ):i (u) = is (u) =0.
Similarly, since by (7.33a), (7.33b) and (7.35),

Dh’(u x)—n(| |>Dh (u, x)
(1.37)

+__Dn(|i|>(2lnms(x)_ws(u x) — Os(u, x) kl(”))

[ |x|
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we have that

(7.38) lim sup  sup / | DA (u, x) — Dhy(u, x)|* dx =0,
S

I—=00 5e[0,1] ueR”:|u|<L

for all L > 0, all open balls S in R/, and all q > 1. The functions fz’s (u, x) also
satisfy the hypotheses of Lemma 7.2.
Another auxiliary lemma is in order.

.LEMMA 7.4. Suppose, for i € N, X e CR4+,R"), X € CR,RY), and
mi(x) and mg(x) are measurable functions which are probability densities in x
on R for almost all s such that

[ (3 (e (X0 D2p00) + Dp (a3 x) + G (X2 ) TR ()
R

1 : . n .
~3 div e (X}, x) +cS(Xg,x)Dh’S(Xg,x)))m’s(x) dx=0
and

/ —1 tr(cs (X x)sz(x)) + Dp(x Tlag(Xs, x) + Gg(Xy, x Ths(X )
! 2 N S ) A S ) S( S ) S( N
(7.39)

1 A
~5 diveg (X, x) + ¢ (X, x)Dhs(Xs,x))>ms(x) dx =0,

forall p e Cf° RY. If X! — X asi — oo, then, for all « great enough and for all
t>0,

t .
(7.40a) ,lim// |m! (x) —mg(x)|dxds =0,
11— 00 0 R[
t .. ) .
lim / _/l’|Dh§(x§’X)Hi(xi,x)m;(X)dxds
(7.40Db) 10070 Hf :
A 2
=f0 /Rl | Dhs(Xs, %) | (x, 0 () dx ds
and
i L5 (w12
(7.40c)

t
2 2
:f() H)“S(XS)HfR; Cs(Xg,x)mg(x)dx ds.

PROOF. We must again resort to a proof outline. We first address existence
and uniqueness of m/(x) and m(x). Since sup|u|§L(x/|x|)TaS(u,x) — —00 as
|x| = oo, the function G (i, x) is bounded, the function ):g(u) is bounded locally
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in (s, u) and the function fl@ (u, x) is of compact support in x locally uniformly in
(s, u), we have that
. xT . . Ta: . 1 . .
lim —(aS(X;,x) + G(X5, x)" AL(X5) — = dives (X5, x)
Ix|—>o00 |x| 2

(7.41)
+ ¢y (XL, x) DR (X, x)> = —00,
which implies that m’Y (x) is well defined and is specified uniquely; see, for exam-
ple, Metafune, Pallara and Rhandi [31], Theorem 2.2, Proposition 2.4.
By (7.29), relations (7.15a) and (7.15b) of Lemma 7.3 imply that

R 1 . R
xT<as<Xs, X) 4 Gy(Xg, ) hs(Xs) — 5 dives (X5, 1) + e (X, ) Dhs (X, x))

T A
D
= x_cs(Xs»x) InS(X)-
2 mg(x)
If |x| > 2r, then Dims(x)/ms(x) = —ax/|x|, so, locally uniformly in s,
. xT T? |
limsup — | a5 (X, x) + G5(X;5, x)" Ag(X) — = diveg (X, x)
[x]—o00 |x| 2

+ ¢5(Xy, x) Dhy(Xs, x)) <0,

which ensures the existence and uniqueness of mg(x).
As in the proof of Lemma 6.7, it is then shown that, for arbitrary § > 0, there
exists & > O such that for all r > 0

Al

(7.42) sup sup mi(x)dx < 0.

se[0,¢] ieN JR!
First, a uniform version of (7.41) is established:
T
lim limsup sup sup al (as (Xi,x) + Gy(xt, x)" Al (xt) — ldivcs(X";, x)
X001 00 sef0,r]ieN 1X] 2

(7.43)
oy (X1,x) DRL(XE, x)) — .

The proof of the bound in (7.42) is similar to the argument in the proof of
Lemma 6.7, with (7.43) assuming the role of the condition that

, X
supast (X, x)T— — —00.
ieN x|

Since the )Lg (u) are bounded uniformly in i and locally uniformly in (s, #) and
(7.32) and (7.42) hold, by Proposition 2.16 in Bogachev, Krylov and Rockner [8],
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for almost all s the functions mi,(-) converge in the variation norm along a sub-
sequence to probability density mi,(-). By (7.29), (7.37), the bounds (7.14b), and
by (7.42), we have that

(7.44) sup sup | | Dhi(XE, x)“i (xi x)mg(x) dx < o0.

s€[0,1]ieN JR! o
Since sup; <y |X§| < 00, the convergences in (7.36) and (7.38) imply that m(x)
must satisfy (7.39), so nig(x) = mg(x) and mi,(-) — my(-) in the variation
norm. The limit in (7.40a) follows by dominated convergence. The convergence
in (7.40c) follows from (7.36), (7.32) and (2.12d). For (7.40b), we also take into
account (7.44). U

We complete the proof of Theorem 7.1. Let, given N € N, .fN 4 and Aé‘N ' be
defined by the respective equations (7.1a) and (7.1b) with Al(u) and hl(u,x)
as )A»s(u) and ﬁs(u, x), respectively. Since the functions ié (1) and fz’s (u, x) sat-
isfy the hypotheses of Lemma 7.2, there exist y™V'/ = (XV/, uN/) € T such
that éN*i(yN’i) = i(yN’i) and yN*i € Kon4o for all i. In particular, X(I)V’i =1u,
wNi(ds, dx) = mfv’ (x)dx ds, where mﬁvvi (-) € P(RY) (see Theorem 6.1), and the
set {yV7,i =1,2,...} is relatively compact. Since i(yN’i) > I**(yN-7), on the
one hand, and éN’i(yN’i) < T (yN-1) by (6.14) and (7.1b), on the other hand, we
have that

(7.45) é‘N,i(yN,i) =I**(yN’i)=i()/N’i).

Let uV' — u in C(Ry, M(RY)) and X/ — XV in C(R., R") along a subse-
quence of i, which we still denote by i. . .

By (7.1b) and (7.45), the suprema in (6.14) for (X, u) = (X™', u™-1) are at-
tained at ()L’S(X‘ﬁv”), hg(Xﬁv”,x)) when s < tVi(yN+/). In particular, since the
supremum over A for A = ):i (Xﬁv’i) is attained at h(x) = ﬁi(Xf,V’i , X), we have that

DAl (XN x)
Dmﬁv’i (x)

(7.46) = Hcs(Xﬁv’i,-),mﬁv’i(-) (72m€v’i(x)

1 : ' )AL (x N
x (5 diVCs (Xﬁvﬂ’ ) — as(Xﬁv’l, ) - Gy (ng’lv )T)‘lv (ng’l)>)(x)

Recalling the definition of IT and integrating by parts obtains, for p € C3° (RY,

1 , ‘ 1 |
/Rl<—tr(c‘s(Xf’,z,x)D2p(x)) T DP(X)T(aS(Xj\’”,x) B Edivcs(xﬁ\“,x)

2
(7.47) . N . A . . .
+ Gy (XN )T RE(XN) 4 e (XN, x) DAL (XN x))>m§”l (x)dx =0.
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Thus, mfv “(x)dx is an invariant probability for a diffusion. By (7.13a), (7.13b)
[for W (u, x) and 05 (u, x)], and (7.29), via a similar manipulation,

1 .
/Rz (5 tr(cS(Xiv’ X)sz(x)) + Dp(x)T<as (Xév,x) _ EleCs (Xﬁv,x)

+ Gy (XN, x) A (XN) + ¢ (XN, x) Dy (xV, x))>ms(x)dx o0,

Let r?zév I (x) represent a probability density that solves (7.47) for all s € R rather
than for s < V! (yN ). The existence of rﬁi\’ I (x) is established as in the proof
of Lemma 7.4; more specifically, see (7.41). Lemma 7.4 implies that > (x) —
g (x) in L1([0, 7] x RY) as i — oo, that

o (Xﬁv,i’x)l’hfy’i(X) dxds

! A P2
tim [ [ DAL (X, )2

(7.48a) i=00J0 t
- /0 fR DS (XY )12, e oyts () dx s
and that
t
i i (yN,iy|2 _ _
tim (IR o a4
(7.48b)

Fia 2
:_/(; ||)‘s(X§V)||fR1 Co (XN )i () dx 45

By Lemma 7.1, TN/ (pN'") — ¢V (yN) as i — oo, where y™ = (XN, a1y
and ANV (dx, ds) = nﬁf,v’i(x) dxds. Since tVi (pN-1) = tN:i(yN:1) we obtain that
tNi(y Nty 5 N (yN) and that mN- (x) — rirg(x) in L'([0, TV (yV)] x RY), so
,uﬁv(a’x) =g (x) dx for almost all s < 7V (yV).

We now use the fact that the supremum in (6.14) over A for h(x) = Al (XN, x)
is attained at A = AL (XN-'). If C;(u, x) =0 and A, (u, x) is locally Lipschitz con-
tinuous in u locally uniformly in ¢ and uniformly in x, then )AJY XNy =0, so
Xﬁ\" = Jrt Ay (Xﬁv’i, x)mév’i(x) dx, which, as in the proof of Lemma 6.7, implies
since XM\ — XV in C(Ry, R") and (mN"!(x)) — (5(x)) in L1([0, TV ()] x
Ry as i — oo that Xﬁv = Jp As(XY, x)img(x) dx ae. fors <tV (yV). By unique-
ness, X;N = }25 for s < ‘rN(yN). As a byproduct, X?]’ — )A(s as i — 00 a.e. on
[0, 2V (y™)1.

Suppose that C; (u, x) — G (u, x)c; (u, )G, )T s positive definite locally
uniformly in (¢, #) and uniformly in x. Then the maximization condition is

XN = /R A (XN x)mM (x) dx + fR Gy (X, x) DRS(X M x)ml (x) dx

+ /Rl Cs(Xﬁv’i,x)ii(Xﬁv’i)miv’i(x)dx.
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On integrating both sides from O to ¢ and letting i — oo, we have by the facts
that y Vi — N that XV — XN, that mN/ (x) — rirg(x) in L1([0, TV (V)] x
R’), and that A% (u) — A;(u) locally uniformly in (s, u) as i — oo [see (7.36)],
by (7.38), by (7.44) and by (7.29) that, for almost all s < ™V (yV),

xN :/Rl As(XN, x)ig(x) dx

Drig(x)
21 (x)

(7.49) + /R (Gy(X] ,x)( — Dy (X ,x))nas(x)dx

+ /R (Co(XYx) = Go(XY . x) DO (XY )i (x) dcig (K1),

Since Dig(u,-) € Ly* (R, R, ¢y (x), g (x) dx) and the function Gy(u,-) is
bounded, (7.13b) extends to Dp representing an arbitrary element of IL(I)’Z(]RZ R,
¢ (x), ms(x)dx), so by (7.30),

/]Rl Oy sy () (U, Xt (x) dx = ./]Rl (Cs(u,x) — Gy(u, x)DVs(u, x))mg(x)dx.

Substitution of the latter expression in (7.27) and of (7.27) into (7.49) obtains that
ng = )A(S a.e.on [0, tN(yN)], so on recalling that xN = )20 = 1 we conclude that

XN = X, fors < ¥ (yM). In addition, X¥-! — X, asi — oo a.e.on [0, TV (yV)].
Hence, in either case, TV (y") =tV (p) and yN = 5 for s < V() so that
0N (yN) =6N (), where 7 = (X, ). We show that

(7.50) oN (yN) =i1irgoéN’i(yN’f).
By (7.1b) and (7.46),
i RGN Vi
0™ (y™) :/0 (A;(XS ) <XS ! _/Rl Ag(X", x)my ”(x)dx)
1 i N,i
- EH)\‘S(X

2 . .
s )HJRI CS(Xév’I,x)méV” (x)dx

1 oG 12 oy
+ E/I:M | DR (X l’x)“cs(xﬁv*",x)ms ’(x)dx) ds.

Similarly,
N( N MO TN N o \s
M) = [ ()T (X = [ A i ax)
TP
-3 |25 (X )||fR, Co(XN )i (x) dx

1 A 2 N
+ 3 /Rl ||Dhs(X§V,x)||cx(X£V,x)ms(x) dx) ds.
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On recalling convergences (7.48a) and (7.48b) Which. are locally uniform in ¢,
the.fact ﬁhat nﬁév*’(x) = m.ﬁv”(x) for s < tN”(yN*’), and the convergences
Vi NDy 5 N (y Ny, y N N for (7.50), it remains to check that
NN N, N Ny N
lim Al (X ’) (XS ok _szS(XS L x)mg ”(x)dx) ds
R

i—00J(

LAXCZOIN .
:,/0 )»S(va)T(ng—/R[ A‘V(Xﬁv,x)n%(x)dx>ds.

The convergences £V (y V1) — N (yN), yNi — yN and XN7 — XV for al-
most all s < tV(y"), imply that the l{ssfw.i(yzv,i)}(s)ii(XﬁV’i)T(Xﬁv’i —
Jrr As(XNE xymNi(x)dx)  converge  t0 jgorn (o (9)A(XIN)T (XY
Jri As (Xév, x)mg(x)dx) as i — oo for almost all s. Since the ):é(u) are bounded
uniformly in i and locally uniformly in (s, #), the uniform integrability needed to
derive (7.51) follows by the bound sup,cg, fON Xy — [fpAs(Xs,x) X
mg(x) dxl2 ds < 0o, which is a consequence of (6.18). ~

By (7.45), (7.50) and part 1 of Theorem 3.4, I'**(yV) = 0N (yN) = I(y V).
[Alternatively, one can follow the proof of part 1 of Theorem 3.4 by letting
i — 00 in (7.45) to obtain that I** (V) > 6V (y V) > I(y").] Therefore, I**(p) >
ON @) =oN Ny =1(yN). Let m;(y), where y = (X, ), denote the projection
((Xsars sat(+)), s € Ry). We have that

(7.51)

I(y"N) > inf I(y)= inf ().
ViﬂZN(yN)(V)ZJTrN(yN)()’N) V”TN(};)(V):”,_.N(};)(V)
The sets jT.[_NI();)(jTrN()?)();)) are closed and decrease to y as N — 00, so the

rightmost side converges to i()?), by I being lower compact. We conclude that
I**(p) = I(y), so I"*(y) = I(p).

8. Approximating the large deviation function. By Theorem 3.4, in order
to complete the proof of Theorem 2.1, it remains to establish an approximation
theorem for I** along the lines of part 2 of Theorem 3.4. We state it next.

THEOREM 8.1. Suppose that Conditions 2.1-2.3, (2.4b) and (2.12d) hold. If
I**(X, u) < oo, then there exists sequence (X, U )) whose members satisfy the
requirements on (X Q1) in the statement of Theorem 7.1 such that (X ) e )y —
(X, ) and T (XD Dy — I'™*(X, u) as j — oo.

PROOF. Let u(ds,dx) =mgs(x)dxds and

kg(x) = div(cs (X5, x)ms(x)) — ag(Xs, x).

2m(x)
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Since, by Theorem 6.1, f(;fRz |Dm(x)|*/mgs(x)dx ds < oo, for all r € Ry, we
have that k,(-) € ]LIOC(]RI, R!, mg(x) dx) ae.
Let function 7 be as in Condition 2.3. We introduce 7, (x) = n(|x|/r) and

@1  kg(x)= div(ey (X, )0} ()my (x)) — ag(Xs, x),

1
207 (xyms (x)

where x € R! and r > 0. We also let S, represent the open ball in R/ of radius r
centered at the origin.

We first prove that one can choose (X (0, /L(j )y of the required form that con-
verge to (X, n) as j — oo and are such that I'* (XD, i)y - *(X, p) forall ¢,
where I'* is defined by (6.21).

Let us begin with the case where C;(u,x) = 0 for all (¢, u, x) and A;(u, x)
is Lipschitz continuous in u locally uniformly in ¢ and uniformly in x. By The-
orem 6.1, )'(s = [pi As(X§, x)mg(x) dx a.e., the latter equation having a unique
solution. Let p,(x) = (l/lcl),o(x/lc) for k > 0, where p(x) is a mollifier on R’
We define, for i, j, j’ € Nand o > 0,

(8.2a) mb 9 (x) = M (R0 (Om? () + e (1 = 3 (1))
and
P P -
(82b) MM = (/l(mgd ()5 (x) + e (1 - n?(x)))dx) :
R
where

N _~ A ~ ~ ~ 7! . 1
8.3) my! (x)= /R’ p1/i(X)m (x — X)dx, m! (x)=mg(x) A j v 7

We note that, thanks to Theorem 6.1, f € WIIC;CZ(RI ).
We use Lemma 6.7 to define X*-/-/" as the solution of the equation

X’” —/ X’” ,x)my ) (x) dx,

with Xz)’j J Xo. The densities mf;] J’ (x) are of class C! in x, with bounded
derivatives, and are locally bounded away from zero, and the X%/-/ " are locally
Lipschitz continuous by Lemma 6.7.

We introduce further

..y . -1
(8.4) M = (le(na; )5 (x) + e (1 —fﬁ(x)))dX) :
84b)  mld () = M (i OnF ) + e (1 = i)
and

(8.4¢) X = /Rz A(x3 x)miT (xydx, X3 =X
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Let also

-1
(8.52) M= ([ mome + e = ) an)
(8.5b) mg(x) = MSJ (ms(X)Tﬁ(X) + e—a\xl(l _ 773()6)))
and
X = [ A micdn x)=Xo.
We have that

. sy .o . sy .
lim M = M)/, lim /Rl|m’s’“ (x) —mi? (x)|dx =0,

(8.68.) i—00 o - i—00
lim Xi7J" = xJJ
i—»oo S s
lim M} =M/, lim f ImJ7' (x) — mi (x)|dx =0,
o) | e
0 dim x3 =X,
jl—oo ’
and
lim M{ =1, lim / lm! (x) —mg(x)|dx =0,
@8 6(;) j—>o0 j—oo JR!
' lim X/ = X,.
j—o0o

The third convergence on each line is proved by a similar compactness argument
to the one used in the proof of Lemma 6.7.

By (6.22),
' 1
(X, ) = Dh T(—d' ¢ (Xy, x)mg
(X, ) /()he;lzl()ﬂ%l)(‘/lgl( (x) 5 iv(cs (X5, x)mg(x))
(8.7) |
—a,(X,, x)ms(x)> = 3 1DROIE, x, yms (x)) dx) ds
and

(X0 T
t

~Jo b (/Rz(DhmT(ldiv(cs<X§ff’f’,x)mi’f*f’oc))

0 hechml) 2

Sy
L],
Cs(Xs'j / ,X)

PP P 1 Y
—ag(Xo) x)ymy ) (x)) — §||Dh(x)||2 my’ (x)) dx) ds.
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By (8.2a),
I (0
(8.8) . .
§M£’j’j/< [ i s + [ H (X s)as ).

where, for generic X and mg,

I (X, g, 5) = sup I(Dh(x) (1dlv(cs(Xs,x)n](x)ms(x))

heCh®RH /R
(8.9a) |
~ T () ) = S| DRI 5, 3, (6 ) i
and
X, 5)= sup | (Dh(x)” (1 div(cs (X5, 1)e (1 — 3 (x)
heCy®!) /B! 2
(8.9b) — as(Xs, x)e (1 — 3 (x)))

— —H Dh(X)HL ((Xe0)€ —alxl(l - T}?(X))) dx
We prove that
(8.10) lim 1] (X i s) = 1] (X ] ).

Let, in analogy with (8.1),

R 1 S -
kT () = e div(es (X )0 g ()
' 2P oy (x) ' e

—ag (X7 x).

(8.11)

This function is an element of L2(R!, R/, n; (x)mf; g’ (x)dx).

o .
The supremum in / lj (Xs?7  mg? | s) is attained at a unique element gé’j ’

Ly (R R, (o)’ (x) dox) such that

[, PP o ot (o)
(8.12)
_/ Dp(x)T¢ (X’ g’ x)g’ JoJ (x)n?(x)n%iﬁj,(x)dx

forall p e C (Rl ) and

®.13) I (X090 b s) = / ~|lgi @) o Af;’j,(x)n?(x)dx.

./
I of
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. .. ./ Y
Similarly, the supremum in / lj (X7 ,mi ,s) is attained at a unique element gJ*’/
of Ly (R, R, n?(x)i (x)dx) such that

[ DK om] (m o) di
(8.14)
:/R’ Dp(x)TcS(ij,x)g!’j,(x)mgl(x)nﬁ(x)dx

and
i P Y, 1 i’
©15) 0 il ) = [ S1el T I g ad cndw s,

where

(8.16) kA{’j/(x)—;dlv(cs(X” x)nj(x)mj (x)) —ag (X7, x).
205 ()3 (x)
Let
01= [ 1DpI} i 7 e o) d.
02 = [ 1K oy (o) =k o] )] UL
2= (XIJJ 71}1’:1?]4/()6)
and

il (x)2n2 O

03 = [ et ) O i T

By (8.12) and (8.14), we have that
[, PP el (Xi )i T oyt o (o) dx
R
= [ PP (6 (ol ) = o] (o) o)

+ /R  Dp()T e (X x)gd Copmd (o (x) dix

<VOIV 02 +V01V0s.

Hence,

\// s @2 i 57 oM (x) dx

= s [ Dpc (X x)gi i (en ) d
peCi®RH:01=1

<V02+0s.
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By (8.13), for arbitrary « > 0,
I](X’” ”f s)<l(1+l>Q2+l(l+/<)Q3.
-2 K 2

By (8.3), ||m ” Jh_ I/;léJ:/llwl,Z(Sz],) — 0 as i — oo (see, e.g., Lemma 3.16 on
page 66 in Adams and Fournier [1]), so, on recalling (8.11), (8.16) and Con-
dition 2.2, we have that Q> — 0 as i — oo. The integrand in Q3 tends to

||g§’j )% i x)n%sA (x)n? (x) in Lebesgue measure; see (8.6a). Since the func-

tion n%g (x) /n%i’j (x) is bounded in x and i, by dominated convergence, Q3 con-
verges to [pi gl ()1 ;

cs (X
ing (8.15),

!
i )nﬂ (x)n?(x) dx as i — oo so that, on recall-
VX

lim sup I{(Xé’j’j/, n%i’j/, s) < I{(X{’j/, n%g/, 5).
i—00
On the other hand, by (8.9a) and integration by parts,
H (X i )

1 R
= sup (——tr(cs(Xé’]’] ,x)Dzh(x))
heC3 R R’

— Dh(x)Tay (X177, x)——||Dh( )1| gy ))n%é’j/(x)n?(x)dx

and a similar representation holds for / 1’ (X { 7’ n%{ , ), which facts imply, in view

of (8.6a) and the continuity properties in Condition 2.1, that
(8.17) liminf 1] (X500 mbT s) = H (X3 md' | s).
11— 00

We have proved (8.10). We now show that integrals with respect to s converge too.
Let us note that, by (8.12) and (8.13),

1 (X’ o J ™ J ,5)
o, 5
< [ SIS @ i T @,
s0, by (8.11), and Conditions 2.1 and 2.2 there exists M > 0 such that
Il]](Xl]j Az] S)

1Dk (02
[t

Al
msj (x)

(x >dx)
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Accounting for (8.3), we have that
11Dy ()
2y )

Y 1 N
= sup (yTDmf;f (0 = 5 Pl (x))
yeR!

~ i/ ~ 1 N ~
< [ o) sup( T (-8~ SlvPd o —x)) iz

yeR!
(X —%)?
/ p1/i(x ) dx.
T2 md (x — %)
Therefore, recalling that [ p1/;(x) dx = 1 and the definition of rhs’ /(x) in (8.3),
l J N2 A N2 2
D D
8. 18)/ |Dmg” (x)|* )| (x)d </ | m;/ (0] dxg/ [Dm(x)| dx
b R ad (x) R mg(x)

Since fofRI | Dm(x)|?/mg(x) dx ds < oo by Theorem 6.1, (8.10) and the domi-
nated convergence theorem yield the convergence

¢ i Y Y t i Py ./
(8.19) Lim | 1{(X7 mbd ,s)ds:/ (X ml,s)ds.
i—0o0J0 0
Let us show that
4 i s s ./
(8.20) lim | 1 (X7, m! ,s)ds—/ 1/ (X], my, s)ds.
j'—00J0 '

We have that
[ (3T 5) = 1 (X7 . s)|

1 ( 1
< —
=2 Ju

e & JiJ' 2
2173()6) = div(es (X777, x)n; (x)ms (x))
—ay(X7', x)

2

o
Js —
es(X$? 01

[ sttt o -ai2

2
205 (x cs(xj’j/,x)l)

x 05 (0)mg () (1 = 1py 7,y (ms (x))) dx

so, by dominated convergence,

ro. - y i o
(8.21) lim |IIJ(X§’J , ! ,s)—IIJ(XSJ’J ,mg,s)|ds =0

Jj =00
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Let ¥ > 0 be such that ||y|? > ¥|y|?, for all s € [0, 1], for all u from a large

cs(u,x) —
enough ball, all x and all y. By the convergence of X/+/ "to X/ as j' — o0, the con-
tinuity of c¢s(u, x) in u locally uniformly in s and uniformly in x, and by ¢, (u, x)
being positive definite uniformly in x and locally uniformly in (s, u), given arbi-
trary § € (0, 1) and « € (0, 1), for all j great enough, locally uniformly in s,

1 (X} ms. s)

< sup (Dh(x)Tkgf (x)
heCl(®: R’

_ 5(1 —8)(1 — K)HDh(x)|]CS(X§7X)>mS(x)nj(x) dx

+ sup (/ (Dh(x)T(ldiv((cs(Xg’j,,x)—cs(Xg,x))ms(x)n?(x))

heCh(RH R 2

— (as (X3, x) — ay (X, x))ms(x);ﬁ(x))
(8.22)

— 581~ K)||Dh(x)||i(X§-’x)ms(x)n%(x)) dx)

<1=-9"'1-0"
. 1
Dh(x)Tki (x) — =| Dh 2]-)5 2(x)d

Xheﬂscl%lfn@) RI( 7k () 2” Oy, Jms I () dx

1div((e; (X3, x) — e (XL 0 ()n2 ()

2 my (X)n3 (x)
2
ms ()} (x) dx.

19—1
s — k)7 /
+ ( ) 2 Jr!

- (as(Xaj:’j/’ x) — ds (Xg’ x))

By the convergence of X/ to X{ as j' — oo, Condition 2.1 and the convergence
of fotle | Dmg (x)lz/ms(x) dx ds, the integral from O to ¢ of the second integral on
the rightmost side of (8.22) tends to zero as j* — oo. Therefore, by (8.21), (8.1),
(8.7) and (8.9a),

r . .o . L. :
limsupf (X)) ml,s)ds 5/ (X!, my, s)ds
j'—o00 0 0

and by an analogue of (8.17), we obtain (8.20).
We now take a limit as j — oo. By a similar reasoning to the one used in (8.22),
given arbitrary é§ € (0, 1) and « € (0, 1), for all j great enough, locally uniformly
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in s,
(X1, my, s)

<5—1(1—5)—1(1—,<)—1l | D)2 m (x)dx

- 2 R! nj cs(Xs,x)"""S
+(1=8"21—x)!

T 1 2 2
X sup 1 Dh(x) ks(x)—E”Dh(x)HCS(XS’x) ms ()N (x) dx
heCl(®))

—1

+ 6—1(1 _ K)_lﬁ— 1 diV((CS(XSjv -x) - Cs(Xs, x))ms(x)ni(x))

2 ms ()} (x)
2
— (as(XSJ,',x) — as(XS,x))‘ ms(x)nf(x)dx

RrR!

so that, by Condition 2.3 (with A = 0) and Condition 2.1, we have, on recall-
ing (8.7), that

t

(8.23) lim [ I(X), my, s)ds =T"(X, ).

j—00Jo
Putting together (8.19), (8.20) and (8.23) yields the convergence
ro. Loy P
(8.24) lim lim lim ]1/ (XLl I mbT s)ds =T (X, w).
j— 0 j'—o0i—>00J '
We now show that the term Izj is inconsequential. On recalling that |as(u, x)|
grows at most linearly in |x| and |divcg(u, x)| and ||cs(u, x)|| are bounded in x

locally uniformly in (s, u), we have that, for some L > 0, all (i, j), and all s <¢,
according to (8.9b),

(yT ( 1divie (X", 0 = @)
ER:Ix|2j yeRi " \2 1 - n?(X)

B <

X

x
—otCs(XlJJ X)m_aS(le] x)) ||)’|| Y(Xé”, ))
x (1— n%(x))e_“lxl dx

1 |D
L (et LRI,
xeRi|x|>j L —n=(lx1/7)

Since n(y) = 0 for y > 2 and (2.6) holds, the latter integral tends to 0 as j — oo,
S0,

r . ..y
(8.25) lim limsuplimsup | IJ(X}/7,s)ds = 0.
0

J70 i s00  i—00
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By (8.6a), (8.6b), (8.6¢), (8.8), (8.24) and (8.25),
lim sup lim sup lim sup I;"*(Xi’j’j,, /Li’j’j/) <I'*(X, p).
j—oo jl—soo i—>00
Thus, there exist sequences j'(j) — oo and i(j) — oo as j — oo such that
(XIDJI' D 1G0T Dy 5 (X, 1) and
limsupI;“*(Xi(j)’j’j/(j), Mi(j),j,j/(j)) <I*(X,p).
j—o00
The reverse inequality follows from the lower semicontinuity of I*(X, u)
[see (6.22), where we let I'* (X, ) = oo if I (X, ) = oc], so

(8.26) Jim, (XD 3T D i D3 DY Z (X, ),

and one can take (X, )y = (XID-JJ"G) | iGD-JJ" Gy,

Suppose now that C;(u, x) — G¢(u, x)c: (u, )G (u, x)T is positive definite
uniformly in x and locally uniformly in (¢, #). We proceed similar to the case
where C;(u, x) = 0 and define my””/ (x), My”7, M, M, and m](x) by the
respective relations (8.2a), (8.2b), (8.3), (8.4a)—(8.4c), (8.5a) and (8.5b). We let

Xp = X1 =X =X 15 0. Xg™ =Xx]7 =Xx{ =X
The convergences in (8.6a), (8.6b) and (8.6¢) still hold.

The following reasoning is sketchy out of necessity. Replacing a; (X, x) with

as(Xs, x) + Gy (Xs, x)T A in the proof above, one can see in analogy with (8.26),

that there exist sequences i(j) — oo and j'(j) — oo as j — oo such that, for all
A € R" with rational components and for almost all s € [0, ¢],

lim // P o
Jj—>00 R! 2m(/)(x) s,mE”(~),X§”
2
—‘I’S,my)(_)’xb(j)(x)k XU mgf)(x)dxds
(8.27a) cs (Xs,x)
Dmg(x)
_//]Rl 2mg(x) = Poms ()., (%)
2
- ‘ljsamx('),xx (x))\' my ()C) dx ds
cs (Xs,x)
and
) 5
Dmg (x) 0
jli>ln00 RI zm(J)(x) _CDS,mgf)()’Xs/)(x)_lys’mgj)(),ng)(x))‘“cv(x§l)7x)ms (X)dx
-/ HDMY(X) () - o] (xd
- - ()X (X)) — (), X (X mg(x)dx,
R st(x) S s (1), X s,myg (), X e (Xe) s

respectively, where mi()-J+J'() is relabeled as m©) and X { ,as X §f ),
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It follows that
Dm{ (x)

lim G,(XU),x)( — —
o 2m (x)

j—oo JR!

DDy x (x))m§j) (x)dx

:/ G, (X x)(Dm“(x) — X (x))m (x) dx
R s\ Ay, zms(x) s,mg(-), X s

and

. 2 i
Jim Jel¥smorc.x0 )y g s () dx

= /R’ IWs.mey. x, (x) “i(Xx,x)ms (x)dx,

so, by (2.14),

Jim /Rl 0, v, (X, )m{P (x) dx =/R[ Qymy () (X5, X)m (x) dx.
By dominated convergence,
Dy’ (x)

1
; ¢ (/) _ 0)) o)) _ 0))
lim A HXS /]Rl As(X, x)m (x) dx ./Rl Gs(X; ,x)( ()

Jj—00
2

ds

- (j)(x)>mfj)(x)dx : '
soms (), X; y Ut Q0 X 0m () do~!

Z/O’

— Dy my (), X, (X))ms(X) dx

Dmi (x)
2mg(x)

%o [ At ommdx - [ 6. (

2

ds,
(Jgt Qsumg() (X5, x)ms(x) dx)~1
which completes the proof by (6.21) and (8.27a).

We have thus proved that in both cases there exist (X D, 1)y with needed
regularity properties that converge to (X, ) and are such that I'* (X D i)y -
II*(X, ) for all # € Ry. Picking a suitable subsequence, we can assume that
Ij*(X(j),u(j)) < I}f*(X, w) + 1/j. We redefine the subsequence (X,(]),ng))
for + > j such that Ij*(X(j),,u(j)) =I*(XW, u)), thanks to Lemma 6.7.
The resulting sequence will still converge to (X, n). In addition, limsup;_,
(X9, u)y < I**(X, n), which yields the assertion of Theorem 8.1 by the
lower semicontinuity of I**. [

9. Proof of Theorem 2.1. Suppose that lim, .o P*(| X — it| > «)® =0, for

arbitrary x > 0. Then any large deviation limit point I of P is such that I(X,
w) = oo unless Xo = u. If (X, u) is such that Xo = u and I**(X, u) < oo, by



3182 A. A. PUHALSKII

Theorems 5.1, 7.1 and 8.1, there exist (X', ui), which satisfy the hypotheses on
(X, ft) in Theorem 7.1, such that P** (X', u') = I(X', uh), (X', u') — (X, 1) as
i — oo, and I (X', u') — I"**(X, ) as i — oo. By Theorem 3.4 (with the role
of U being played by the set of functions U,A A(T)f in Theorem 5.1 and with the role
of U being played by the set of functions #V in Lemma 7.2) and Theorem 6.1,
I(X, u) =T"*(X, n) =1I(X, ) for all (X, u).

In the general setting of Theorem 2.1, let £, denote the regular conditional dis-
tribution of (X®, u®) given that Xj = u, where u € R" and is otherwise arbitrary.
By what has been proved, if u® — & as ¢ — 0, then the L. obey the LDP in
CR4, R") x Ch (R4, M(R!)) with the large deviation function iu as defined in
the statement of Theorem 2.1, where Iy(z2) = 0 and Ip(u) = oo if u # . Since
by the hypotheses of Theorem 2.1 the distributions of X{ obey the LDP with a
large deviation function Iy, it fgllows that the distributions of (X¢, u?) obey the
LDP with I(X, ) = Ip(Xo) + Ix, (X, n); see, for example, Chaganty [9], Puhal-
skii [38]. Theorem 2.1 has been proved.

APPENDIX

PROOF OF LEMMA 2.1. By Theorem 6.1, if I'(X, ) < oo, then

t 1

/ sup (Dh(x)T(—divch(Xs,x)—as(Xs,x)>
0 pecim) /R 2

(A.1)

1
_ E”Dh(x)Hi(xs’x))ms(x)d)c ds < 00.

Suppose (2.8) holds and let L denote an upper bound on the left-hand side of (A.1).
By (6.6) in the statement of Lemma 6.4 and Condition 2.1, L is also an upper

bound on the integrals on the left of (A.1) for & € W(l)’q (S), where S is an open
ballin R’, g > 2, and ¢ > [. On taking (x) =« (|x|* vV r# A3 —r3), where k > 0
and 0 < r| < rp, we have that

t 1
/ / (KXT(—diVx cs(Xs,x)—as(Xs,x)>
0 JxeRlr <|x|<r 2

— K2||CS(XS,x)|||x|2>ms(x)dx ds <L.

If r1 is great enough, there exists 8 > 0 such that x” ay (X, x) < —8|x|? if |x| > ry.
Therefore, for small enough « > 0, great enough rq, and all r, > ry,

k8 [! 5
_/_/ |x|"mg(x)dxds < L.
2 Jo xeRlr <|x|<r

The square integrability of a;(X,, x) now follows by it growing no faster than
linearly in x; see Condition 2.1.
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Suppose now (2.9) holds. We take, for given s, § > 0, and r > 0,
h(x) = —(as(Xg, x) V (=8) A 8)n,(x),

where n,(x) = n(|x|/r) and n(y) satisfies the requirements of Condition 2.3. Then
he Wé’q(S), for large enough ball S, and, for « € (0, 1),

1. 1 2
./R’ (Dh(x)T(E div, ¢ (X5, X) —as(Xs,x)> — 5” Dh(x)”cs(xs’x))ms(x) dx

1—« ~ 2
> [ 1D X 01 1, i 20152 00 (0 ()

n 1 x|\ xT
—/ (as(Xs,x)v(—cS)/\S)—Dn<—)—
R AANTVATY
x cs (X5, x)DX&S(XSa x)mg(x)dx
! 1 . > x[\[?
~ 53 <1+;) /Rl(as(Xs,x)V(—S)/\S) Dn(T) CS(XS’x)ms(x)dx.

As r — oo, the integrals from 0 to 7 of the latter two integrals converge to
zero [we recall that by Theorem 6.1, [§ [ |xTas(Xy, x)|/|x|ms(x)dx ds < oo,
s0 f§ fur 1xT es (X, x) Dy (X, x)|/|x|ms(x) dx ds < oo]. Therefore,

1t 2

2 Je
which implies the square integrability of as(Xj,x) thanks to Conditions 2.1
and 2.2. O

as(Xs, x) — ~divy ¢5 (X, x) mg(x)dxds <L,

1
2

s (Xg,x)7!
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