
The Annals of Probability
2016, Vol. 44, No. 4, 2817–2857
DOI: 10.1214/15-AOP1035
© Institute of Mathematical Statistics, 2016

DENSITY ANALYSIS OF BSDES

BY THIBAUT MASTROLIA∗,1,
DYLAN POSSAMAÏ∗ AND ANTHONY RÉVEILLAC†

Université Paris-Dauphine, CEREMADE UMR CNRS 7534∗ and INSA de
Toulouse, IMT UMR CNRS 5219, Université de Toulouse†

In this paper, we study the existence of densities (with respect to the
Lebesgue measure) for marginal laws of the solution (Y,Z) to a quadratic
growth BSDE. Using the (by now) well-established connection between these
equations and their associated semi-linear PDEs, together with the Nourdin–
Viens formula, we provide estimates on these densities.

1. Introduction. In recent years, the field of Backward Stochastic Differential
Equations (BSDEs) has been a subject of growing interest in stochastic calculus,
as these equations naturally arise in stochastic control problems in Finance, and
as they provide Feynman–Kac type formulae for semi-linear PDEs [25]. Before
going further, let us recall that a solution to a BSDE is a pair of regular enough (in
a sense to be made precise) predictable processes (Y,Z) such that

Yt = ξ +
∫ T

t
h(s, Ys,Zs) ds −

∫ T

t
Zs dWs, t ∈ [0, T ],(1.1)

where W is a one-dimensional Brownian motion, h is a predictable process and ξ

is a FT -measurable random variable [with (Ft )t∈[0,T ] the natural completed and
right-continuous filtration generated by W ]. Since it is generally not possible to
provide an explicit solution to (1.1), except for instance when h is a linear map-
ping of (y, z), one of the main issues, especially regarding the applications is to
provide a numerical analysis for the solution of a BSDE. This calls for a deep
understanding of the regularity of the solution processes Y and Z. The classical
regularity related to obtaining a numerical scheme for the solution (Y,Z) is the
so-called path regularity for the Z component originally studied in [20]. In this
paper, we aim at studying another type of regularity namely, we focus on the law
of the marginals of the random variables Yt , Zt at a given time t in (0, T ). More
precisely, we are interested in providing sufficient conditions which ensure the ex-
istence of a density (with respect to the Lebesgue measure) for these marginals
on the one hand, and in deriving some estimates on these densities on the other
hand. This type of information on the solution is of theoretical and of practical

Received February 2014; revised January 2015.
1Supported by Région Ile-De-France.
MSC2010 subject classifications. Primary 60H10; secondary 60H07.
Key words and phrases. BSDEs, Malliavin calculus, density analysis, Nourdin–Viens’ formula,

PDEs.

2817

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/15-AOP1035
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2818 T. MASTROLIA, D. POSSAMAÏ AND A. RÉVEILLAC

interest since the description of the tails of the (possible) density of Zt would pro-
vide more accurate estimates on the convergence rates of numerical schemes for
quadratic growth BSDEs (qgBSDEs in short), that is, when h in (1.1) has quadratic
growth in the z-variable, as noted in [8].

Before reviewing the results available in the literature and the one we derive
in this paper, we would like to illustrate with the two following simple examples
that the existence and the estimate of densities issues for BSDEs are very different
from the one concerning the classical (forward) SDEs. For instance, consider the
following very particular case of (1.1) given by:

Yt = W1 +
∫ T

t
(s − Ws)ds −

∫ T

t
Zs dWs, t ∈ [0,1], (T = 1).(1.2)

This equation should be extremely simple in the sense that the driver h does not
depend on (Y,Z), and indeed it can be solved explicitly to get that

Yt = Wt

(
−1

2
+ 2t − t2

2

)
, t ∈ [0,1].

Hence, Yt is a Gaussian random variable for every time t in (0,2 − √
3), then

Y2−√
3 = 0, and for t in (2 − √

3,1], Yt is Gaussian distributed once again. This
illustrates the difficulty of the problem and somehow shows how it is different
from the study of forward SDEs. This example, even though it is very simple
is pretty insightful and will be studied as Example 3.1 in Section 3. Concerning
the density estimates, the backward case brings here also, significant differences
with the forward case as the following example illustrates. Consider the following
equation:

Yt = W 3
1 +

∫ T

t
3Ws ds −

∫ T

t
Zs dWs, t ∈ [0,1], (T = 1),(1.3)

which can be solved explicitly:

Yt = W 3
t + 6Wt(1 − t), Zt = 3W 2

t + 6(1 − t), t ∈ [0,1],
from which we deduce that both Yt and Zt admits a density with respect to the
Lebesgue’s measure for t in (0,1]. However, it is clear that neither the law of
Yt nor the one of Zt admits Gaussian tails. This example will be considered in
Section 5 as Example 5.1.

Coming back to the general problem of existence of densities for the marginal
laws of Y and Z, it is worth mentioning that this issue has been pretty few studied
in the literature, since up to our knowledge only references [1, 3] address this
question. The first results about this problem have been derived in [3], where the
authors provide existence and smoothness properties of densities for the marginals
of the Y component only and when the driver h is Lipschitz continuous in (y, z).
Note that two kinds of sufficient conditions for the existence of a density for Y
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are derived in [3]: the so-called first-order (cf. [3], Theorem 3.1) and second-order
(see [3], Theorem 3.6) conditions. Concerning the Z component, much less is
known since existence of a density for Z has been established in [1] only under the
condition that the driver is linear in z. This constitutes, to our point of view, a major
restriction since up to a Girsanov transformation this case basically reduces to the
situation where the driver does not depend on z. Nonetheless, in [1], estimates on
the densities of the laws of Yt and Zt are given using the Nourdin–Viens formula.

In this paper, we revisit and extend the results of [1, 3] by providing sufficient
conditions for the existence of densities for the marginal laws of the solution Yt ,Zt

[with t an arbitrary time in (0, T )] of a qgBSDE with a terminal condition ξ

in (1.1) given as a deterministic mapping of the value at time T of the solution
to a one-dimensional SDE, together with some estimates on these densities. The
results concerning the Lipschitz case, that is, when the generator h is Lipschitz,
are presented in Section 3. As recalled above, the case where h is Lipschitz con-
tinuous in (y, z) has been investigated in [3] for the Y component only, where
the authors have derived two types of sufficient conditions. However, we provide
as Example 3.1 a counterexample to [3], Theorem 3.6, which is devoted to the
second-order conditions. This is due to an inefficiency in the proof that can be
easily fixed by making a small change in a key quantity in the statement of the
result. Hence, we propose a new version of this result as Theorem 3.2. Then we
gather in Section 3.3 the first existence results of a density for the Z component for
Lipschitz BSDEs. Concerning the quadratic case, studied in Section 4, we propose
sufficient conditions for the existence of a density first for the Y component of qg-
BSDEs (in Section 4.2), then for the Z component of qgBSDEs (in Section 4.3).
We would like to stress once more at this stage that concerning the existence of a
density for the Y component, only the Lipschitz case was known and concerning
the control variable Z, only the case of linear drivers in z was studied (see [1],
Theorem 4.3) up to now, which makes our result a major improvement on the ex-
isting literature. Finally, we derive in Section 5, density estimates for the marginal
laws of Y and Z using the Nourdin–Viens formula, and taking advantage of the
connection between the solution to a Markovian BSDE and the solution to its as-
sociated semi-linear PDE. Note that contrary to [1], we do not assume that the
Malliavin derivative of Y (or Z) to be bounded which is, from our point of view,
a too stringent assumption (as illustrated in Example 5.1) both from the theoretical
and practical point of view. Indeed, such an assumption leads to Gaussian tails for
the densities of Y or Z. However, even in seemingly benign situations, we will
see that it is not generally the case for BSDEs, and unlike most of the literature,
we have obtained tail estimates which are not Gaussian. This might be seen as a
significant difference between BSDEs and diffusive equations (i.e., with an initial
condition) like SDEs or SPDEs for instance [18, 19, 24].

Before going further, we would like to explain why our results are quite relevant
for financial applications and some stochastic control problems. Most of problems
in portfolio management, utility maximization or risk sensitive control (see, e.g.,
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[9], Section 4.2) can be essentially reduced to study a qgBSDE. Let us present two
examples.

1. Assume that a financial agent wants to maximize her utility under con-
straints, that is, her investment strategies are restricted to a specific closed set C, it
was proved in [27] and [12] that her optimal strategies are essentially given through
the Z component of a qgBSDE of the form

Yt = ξ +
∫ T

t
h(s,Zs) ds −

∫ T

t
Zs dWs ∀t ∈ [0, T ],P-a.s.

with

h(s, z) := −zθs − |θs |2
2α

+ α

2
dist2C

(
z + θs

α

)
,

where α denotes the risk aversion of the investor and θ is the market price of
risk, and where distC(x) denotes the Euclidean distance between x and C. Hence,
if one obtains a criterion providing density existence for the Z component solu-
tion to a qgBSDE with estimates on its tails, then one gets crucial information to
study the behaviors of optimal strategies for utility maximization problems. For
example, since Z essentially gives the optimal quantity of money which should be
invested in the risky asset, being able to estimate the probability that Z becomes
large is particularly meaningful in risk management. Besides, the control of the
tails of the density of Z could give important information concerning the rate of
convergence for numerical schemes to solve numerically BSDEs, so as to com-
pute optimal strategies (see [6, 13]). For instance, one can check directly that if θ

above is deterministic, C is smooth (that is its boundary is a C2 Jordan arc), and
ξ = g(WT ), where g is any bounded function such that its second-order derivative
is nonnegative almost everywhere and positive on a set of positive Lebesgue mea-
sure (e.g., a smoothed butterfly spread), then Theorem 4.2 below applies and Zt

admits a density for all t ∈ (0, T ].
2. Assume now that a controller, sensitive to risk, wants to maximize on the

control set U

J (u) := Eu

[
exp

(
θ

∫ T

0
H(s,X·, us) ds + g(XT )

)]
, u ∈ U,(1.4)

where θ denotes the sensitiveness of the controller with respect to risk and X de-
notes a solution to a classical SDE. This is the classical risk sensitive control prob-
lem introduced in [15]. Hence, this risk sensitive control problem can be rewritten
in term of the well-known risk entropic measure (see [4] for more details). Then,
according to [9], Theorem 4.3, one can find a maximizer u� of (1.4) which is es-
sentially given by a process Z� which is the second component of the solution to
the following qgBSDE:

Y �
t = g(XT ) +

∫ T

t
h
(
s, x·,Z�

s , u
�
s

) + 1

2

∣∣Z�
s

∣∣2 ds −
∫ T

t
Z�

s dWs

∀t ∈ [0, T ],P-a.s.,
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where h is the Hamiltonian process (which is given explicitly in terms of H ),
which is such that z �−→ h(s, x·, z, us) + 1

2 |z|2 has a quadratic growth for every
s ∈ [0, T ] and u ∈ U . Again, our results give information on the density of Z� and
thus on the law of the optimal control which is important for obtaining qualitative
properties of this optimal control as well as for numerical approximations.

2. Preliminaries.

2.1. General notation. In this paper, we fix T ∈ (0,∞). Let W := (Wt)t∈[0,T ]
be a standard one-dimensional Brownian motion on a probability space (�,F,P),
and we denote by F := (Ft )t∈[0,T ] the natural (completed and right-continuous)
filtration generated by W . We denote by λ the Lebesgue measure on R and we set
for any p ∈ [1,+∞], Lp(P) := Lp(�,FT ,P) and denote by ‖ · ‖p the associated
norm. We denote by Cb(R

n) (n ≥ 1) the set of functions from Rn to R which are
infinitely differentiable with bounded partial derivatives. Similarly, for any n ≥ 1
and any p ∈ N∗, we denote by Cp(Rn) the set of functions f : Rn → R which
are p-times continuously differentiable. For f in Cb(R

n), we set fxi1 ···xin
the nth

partial derivative with respect to the variables xi1, . . . , xik with i1 +· · ·+ik = n. For
a differentiable mapping f : R −→ R, we denote f ′ its derivative in place of fx .
Let us denote, for any (p, q) ∈N2, by Cp,q the space of functions f : [0, T ]×R→
R which are p-times differentiable in t and q-times differentiable in space with
partial derivatives continuous [in (t, x)].

Finally, we introduce the following norms and spaces for any p ≥ 1. Sp is the
space of R-valued, continuous and F-progressively measurable processes Y s.t.

‖Y‖p
Sp := E

[
sup

0≤t≤T

|Yt |p
]
< +∞.

S∞ is the space of R-valued, continuous and F-progressively measurable pro-
cesses Y s.t.

‖Y‖S∞ := sup
0≤t≤T

‖Yt‖∞ < +∞.

Hp is the space of R-valued and F-predictable processes Z such that

‖Z‖p
Hp := E

[(∫ T

0
|Zt |2 dt

)p/2]
< +∞.

BMO is the space of square integrable, continuous, R-valued martingales M

such that
‖M‖BMO := ess sup

τ∈T T
0

∥∥Eτ

[
(MT − Mτ)

2]∥∥∞ < +∞,

where for any t ∈ [0, T ], T T
t is the set of F-stopping times taking their values in

[t, T ]. Accordingly, H2
BMO is the space of R-valued and F-predictable processes

Z such that

‖Z‖2
H2

BMO
:=

∥∥∥∥
∫ .

0
Zs dBs

∥∥∥∥
BMO

< +∞.
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2.2. Elements of Malliavin calculus and density analysis. In this section, we
introduce the basic material on the Malliavin calculus that we will use in this pa-
per. Set H := L2([0, T ],B([0, T ]), λ), where B([0, T ]) is the Borel σ -algebra on
[0, T ], and let us consider the following inner product on H:

〈f,g〉 :=
∫ T

0
f (t)g(t) dt ∀(f, g) ∈H2,

with associated norm ‖ · ‖H. Let S be the set of cylindrical functionals, that is, the
set of random variables F in L2(P) of the form

F = f (Wt1, . . . ,Wtn), (t1, . . . , tn) ∈ [0, T ]n, f ∈ Cb

(
Rn)

, n ≥ 1.(2.1)

For any F in S of the form (2.1), the Malliavin derivative DF of F is defined as
the following H-valued random variable:

DF :=
n∑

i=1

fxi
(Wt1, . . . ,Wtn)1[0,ti ].(2.2)

It is then customary to identify DF with the stochastic process (DtF )t∈[0,T ]. De-
note then by D1,2 the closure of S with respect to the Sobolev norm ‖·‖1,2, defined
as

‖F‖1,2 := E
[|F |2] +E

[∫ T

0
|DtF |2 dt

]
.

In an iterative way, one may define DnF (for n ≥ 1) as the following H�n-valued
random variable:

DnF := D
(
Dn−1F

)
,

where H�n denotes the n-times symmetric tensor product of H. We refer to [23]
for more details.

We recall the following criterion for absolute continuity of the law of a random
variable F with respect to the Lebesgue measure.

THEOREM 2.1 (Bouleau–Hirsch, see, e.g., Theorem 2.1.2 in [23]). Let F be
in D1,2. Assume that ‖DF‖H > 0, P-a.s. Then F has a probability distribution
which is absolutely continuous with respect to the Lebesgue measure on R.

Let F such that ‖DF‖H > 0, P-a.s., then the previous criterion implies that F

admits a density ρF with respect to the Lebesgue measure. Assume there exists in
addition a measurable mapping �F with �F : RH →H, such that DF = �F (W),
then we set

gF (x) :=
∫ ∞

0
e−uE

[
E∗[〈

�F (W), �̃u
F (W)

〉
H

]|F −E(F ) = x
]
du,

(2.3)
x ∈ R,
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where �̃u
F (W) := �F (e−uW + √

1 − e−2uW ∗) with W ∗ an independent copy of
W defined on a probability space (�∗,F∗,P∗), and E∗ denotes the expectation
under P∗ (�F being extended on �×�∗). We recall the following result from [22].

THEOREM 2.2 (Nourdin–Viens’ formula). F has a density ρ with the respect
to the Lebesgue measure if and only if the random variable gF (F −E[F ]) is pos-
itive a.s. In this case, the support of ρ, denoted by supp(ρ), is a closed interval of
R and for all x ∈ supp(ρ):

ρ(x) = E(|F −E[F ]|)
2gF (x −E[F ]) exp

(
−

∫ x−E[F ]
0

udu

gF (u)

)
.

2.3. The FBSDE under consideration. In this paper, we consider a FBSDE of
the form ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xt = X0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs,

t ∈ [0, T ],P-a.s.,

Yt = g(XT ) +
∫ T

t
h(s,Xs,Ys,Zs) ds −

∫ T

t
Zs dWs,

t ∈ [0, T ],P-a.s.,

(2.4)

with X0 a given real constant. We denote by S(Xt) the support of the law of Xt

under P, that is to say the smallest closed subset A of R such that P(Xt ∈ A) = 1.
Throughout this paper, we will make the following standing assumption on the
process X in (2.4).

Standing assumptions on X.

(X) b, σ : [0, T ] ×R −→ R are continuous in time and continuously differen-
tiable in space for any fixed time t and such that there exist kb, kσ > 0 with∣∣bx(t, x)

∣∣ ≤ kb,
∣∣σx(t, x)

∣∣ ≤ kσ for all x ∈ R.

Besides b(t,0), σ (t,0) are bounded functions of t and there exists c > 0 such that
for all t ∈ [0, T ]

0 < c ≤ ∣∣σ(t, ·)∣∣, λ(dx)-a.e.

REMARK 2.1. According to Theorem 2.1 in [11], (X) implies that for all t ∈
(0, T ], the law of Xt , denoted by L(Xt), has a density with respect to the Lebesgue
measure.

Our results will obviously need conditions on the parameters g, h which appear
in the backward component of (2.4). More precisely, one can distinguish between
two regimes which call for two different analyses: the case where h exhibits Lip-
schitz growth in its variables (developed in Section 3), and the case where h has
quadratic growth in the z variable (studied in Section 4). We start with the Lips-
chitz situation.
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3. The Lipschitz case. In this section, we focus on the solution (Y,Z) of
FBSDE (2.4) under a Lipschitz-type assumption on the driver h. The problem of
existence of a density for the marginal laws of Y has been first studied in [3],
when the generator h is assumed to be uniformly Lipschitz continuous in y and z.
We first recall in Section 3.1 some general results on Lipschitz FBSDEs, then
we review in Section 3.2 the results from [3]. Next, we point out an inefficiency
in [3], Theorem 3.6, by providing a counterexample to this result, and we make
precise how this small flaw can be corrected, and propose a precise version of it
as Theorem 3.2. Finally, in Section 3.3, we study the existence of a density for the
marginal laws of Z when the generator h of the BSDE satisfies assumption (L).

3.1. Generalities on Lipschitz FBSDEs. We start by making precise as as-
sumption (L) the Lipschitz condition on h and the associated condition on the
terminal condition g. We set:

(L) (i) g : R−→R is such that E[g(XT )2] < +∞.
(ii) h : [0, T ]×R3 −→ R is such that there exist (kx, ky, kz) ∈ (R∗+)3 such

that for all (t, x1, x2, y1, y2, z1, z2) ∈ [0, T ] ×R6,∣∣h(t, x1, y1, z1) − h(t, x2, y2, z2)
∣∣ ≤ kx |x1 − x2| + ky |y1 − y2| + kz|z1 − z2|.

(iii)
∫ T

0 |h(s,0,0,0)|2 ds < +∞.

Before going to the density analysis of the Y and Z components we recall briefly
well-known facts about existence, uniqueness and Malliavin differentiability for
the system (2.4) which can be found in [10, 26].

PROPOSITION 3.1 ([10, 26], Existence and uniqueness). Under assumptions
(X) (that we recall is given in Section 2.3) and (L), there exists a unique solution
(X,Y,Z) in S2 × S2 ×H2 to the FBSDE (2.4).

Concerning the Malliavin differentiability of (X,Y,Z), it can obtained (see [26]
and [10], Remark of Proposition 5.3) under the following assumptions:

(D1) (i) g is differentiable, L(XT )-a.e., g and g′ have polynomial growth.
(ii) (x, y, z) �→ h(t, x, y, z) is continuously differentiable for every t in

[0, T ].
(D2) (i) g is twice differentiable, L(XT )-a.e., g, g′ and g′′ have polynomial

growth.
(ii) (x, y, z) �→ h(t, x, y, z) is twice continuously differentiable for every

t in [0, T ].
Note that (D1) ensures that Y is Malliavin differentiable, whereas (D2) ensures

it is twice Malliavin differentiable. As it will be made more clear below, since Z

can be represented as a Malliavin trace of Y , the fact that Y is twice Malliavin
differentiable entails that Z is Malliavin differentiable.
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PROPOSITION 3.2 (Malliavin differentiabiliy). Under (X), (L) and (D1), we
have for any t ∈ [0, T ] that (Xt , Yt ) ∈ (D1,2)2, Zt ∈ D1,2 for almost every t , and
for all 0 < r ≤ t ≤ T :⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

DrXt = σ(r,Xr) +
∫ t

r
bx(s,Xs)DrXs ds +

∫ t

r
σx(s,Xs)DrXs dWs,

DrYt = g′(XT )DrXT +
∫ T

t
H(s,DrXs,DrYs,DrZs) ds

−
∫ T

t
DrZs dWs,

(3.1)

where H(s, x, y, z) := hx(s,Xs,Ys,Zs)x + hy(s,Xs,Ys,Zs)y + hz(s,Xs,

Ys,Zs)z.

Notice that BSDE (3.1) is a linear BSDE, whose solution can be computed using
the linearization method (see [10]).

We will need extra properties on the Malliavin derivative of Y and Z for which
the following result will be crucial. These results rely heavily on the Markovian
framework with which we are working.

PROPOSITION 3.3 ([14, 21]). Let assumptions (X), (L) and (D1) hold, then
there exists a map u : [0, T ] ×R−→ R in C1,2 such that

Yt = u(t,Xt), t ∈ [0, T ],P-a.s.

In addition, Z admits a continuous version given by

Zt = ux(t,Xt)σ (t,Xt), t ∈ [0, T ],P-a.s.(3.2)

In view of Proposition 3.3, the chain rule formula implies that Yt belongs to
D2,2 and

D2Yt = ux(t,Xt)D
2Xt + uxx(t,Xt)(DXt)

⊗2, P-a.s.(3.3)

Note that by definition, Z is an element of H2. As a consequence, for any fixed
element t in [0, T ], the random variable Zt is not uniquely defined, which makes
the density analysis ill-posed. However, by the previous proposition, Z admits in
our framework a continuous version. From now on, we will always consider this
version.

The following lemma is due to Ma and Zhang in [21], Lemma 2.4 and to Par-
doux and Peng [25] for the representation of Z as a Malliavin trace of Y [see (3.4)
below].
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LEMMA 3.1. Let assumptions (X), (L), (D1) and (D2) hold. Then there exists
a version of (DrXt ,DrYt ,DrZt) for all 0 < r ≤ t ≤ T which satisfies

DrXt = ∇Xt(∇Xr)
−1σ(r,Xr),

DrYt = ∇Yt(∇Xr)
−1σ(r,Xr), DrZt = ∇Zt(∇Xr)

−1σ(r,Xr),

Zt = DtYt := lim
s↗t

DsYt , P-a.s., for a.e. t ∈ [0, T ],(3.4)

where (∇X,∇Y,∇Z) is the solution to the following FBSDE:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇Xt =
∫ t

0
bx(s,Xs)∇Xs ds +

∫ t

0
σx(s,Xs)∇Xs dWs,

∇Yt = g′(XT )∇XT +
∫ T

t
∇h(s,�s) · ∇�s ds −

∫ T

t
∇Zs dWs.

(3.5)

REMARK 3.1. Assumptions (D1) and (D2) are linked to the existence of
first- and second-order Malliavin derivatives for the Y component of the solu-
tion of (2.4). We would like to point out to the reader that we only require the
differentiability of g, L(XT )-a.e. Such a relaxation will be particularly useful in
the quadratic case (i.e., in Section 4). We emphasize that when we work under as-
sumption (X), the law of XT is absolutely continuous with respect to the Lebesgue
measure and XT has finite moments of any order. Thus, thanks to standard approx-
imation arguments, we can show that the usual chain rule formula of Malliavin
calculus (see Proposition 1.2.3. in [23]) still holds for the random variable g(XT ),
under assumptions (D1) or (D2).

Finally, set the following assumption:

(M) There exists a function f ∈ C2(R) such that for all t ∈ [0, T ]:
Xt = f (t,Wt).

We obtain the following proposition.

PROPOSITION 3.4. Under assumptions (M), (L) and (D2), for all 0 < r, s ≤
t ≤ T we have DrYt = DsYt = Zt and DrZt = DsZt , P-a.s.

PROOF. Once again we set �s := (Xs,Ys,Zs). We know that for all 0 < r ≤
t ≤ T :

DrYt = g′(XT )f ′(T ,WT ) +
∫ T

t

(
hx(s,�s)f

′(s,Ws) + hy(s,�s)DrYs

+ hz(s,�s)DrZs

)
ds −

∫ T

t
DrZs dWs.

Then (DrY,DrZ) satisfies a linear BSDE which does not depend on r and by
the uniqueness of the solution we deduce that for all 0 < r, s ≤ t ≤ T we have
DrYt = DsYt and DrZt = DsZt , P-a.s. Finally, DrYt = Zt by (3.4). �
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3.2. Existence of a density for the Y component. We focus in this section on
the existence of a density for the marginal laws of the process Y in the Lipschitz
case, pursuing the study started in [3]. Toward this goal, we recall first the so-called
first-order conditions introduced in [3], which are only sufficient, as illustrated in
Example 3.1. We then turn our attention to the second-order conditions of Theo-
rem 3.6 in [3]. We point out a (small) inefficiency in the proof of [3], Theorem 3.6
and provide a corrected version of this result as Theorem 3.2.

As in [3], we set for any A ∈ B(R) (i.e., the Borel σ -algebra on R), and t in
[0, T ] such that P(XT ∈ A|Ft ) > 0:

g := inf
x∈Rg′(x), gA := inf

x∈A
g′(x),

(3.6)
g := sup

x∈R
g′(x), gA := sup

x∈A

g′(x),

h(t) := inf
s∈[t,T ],(x,y,z)∈R3

hx(s, x, y, z),

(3.7)
h(t) := sup

s∈[t,T ],(x,y,z)∈R3
hx(s, x, y, z).

THEOREM 3.1 (First-order conditions [3], Theorem 3.1). Assume that (X),
(L) and (D1) hold. Fix some t ∈ (0, T ] and set K := kb + ky + kσ kz. If there exists
A ∈ B(R) such that P(XT ∈ A|Ft ) > 0 and one of the two following assumptions
holds:

(H+)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ge− sgn(g)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds ≥ 0,

gAe− sgn(gA)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds > 0,

(H−)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ge− sgn(g)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds ≤ 0,

gAe− sgn(gA)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds < 0,

then Yt has a law absolutely continuous with respect to the Lebesgue measure.

REMARK 3.2. Notice that g (resp., g) could be equal to −∞ (resp., +∞).
Then assumption (H+) [resp., (H−)] cannot be satisfied. Therefore, there is no
problem if we allow the extrema of g to take the values ±∞.

REMARK 3.3. In view of the proof of [3], Theorem 3.1, one can show that
under (X), (L) and (D1) and if g′ ≥ 0 and h(t) ≥ 0 [resp., g′ ≤ 0 and h(t) ≤ 0]
for t ∈ [0, T ], then for all 0 < r ≤ t ≤ T , DrYt ≥ 0 (resp., DrYt ≤ 0) and the in-
equality is strict if there exists A ∈ B(R) such that P(XT ∈ A|Ft ) > 0 and g′|A > 0
(resp., g′|A < 0).
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Note that neither condition (H+) nor condition (H−) are necessary for getting
existence of a density as illustrated in the following example.

EXAMPLE 3.1. Let T = 1, g(x) = x, X = W , h(s, x, y, z) = (s − 2)x. In this
case, K = 0 and hx(s, x, y, z) = s − 2 for all (x, y, z) ∈ R3. For any t in (0,1], we
have

g = g = 1, h(t) = t − 2, h(t) = −1,

so that assumption (H−) is not satisfied. Indeed,

ge− sgn(g)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds = 1 − (1 − t) = t > 0.

Similarly, (H+) is not satisfied for any t ∈ (0, (3 − √
5)/2) since

ge− sgn(g)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds = 1 + (t − 2)(1 − t) = −t2 + 3t − 1,

which is negative for t ∈ (0, (3 − √
5)/2). We deduce that for t ∈ (0, (3 − √

5)/2)

neither assumption (H+) nor assumption (H−) is satisfied. However, we know
that

Yt = E

[
W1 +

∫ 1

t
(s − 2)Ws ds

∣∣∣Ft

]
(3.8)

= Wt

(
1 +

∫ 1

t
(s − 2) ds

)
= Wt

(
−1

2
+ 2t − t2

2

)
∀t ∈ [0,1],P-a.s.,

which admits a density with respect to the Lebesgue measure except when t = 0
and t = 2 − √

3.

Notice that in the previous example, the generator does not depend on z. In that
setting, another result is derived [3], involving so-called second-order conditions.
There, the authors of [3] benefit from the absence of z in the driver to make a higher
order expansion of the Malliavin norm

∫ T
0 |DrYt |2 dr . The price to pay is that the

condition involves a mapping h̃ [see (3.9) below], which is essentially a sum of
derivatives of the driver h, which goes beyond the simple derivative hx . However,
Example 3.1 provides a counterexample to [3], Theorem 3.6. Indeed, the second-
order conditions proposed in [3], Theorem 3.6, entails that Yt admits a density,
when t �= 1

2 , so in particular at t = 2 − √
3. However, from (3.8), Y2−√

3 = 0. This
example proves that [3], Theorem 3.6, has to be modified. The proof of [3], Theo-
rem 3.6, is essentially correct, except that in their proof the original Brownian mo-
tion W is not a Brownian motion any more under the new measure Q defined in [3],
page 275, and need to be replaced by the process W ′· := W· −∫ ·

0 σx(s,Xs) ds which
is a Q-Brownian motion. This leads to the two extra terms −(σσxhxx + zσxhxy)
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in the expression of the mapping (3.9) below, compared Ld to the original expres-
sion of h̃ in the statement of [3], Theorem 3.6. We refer the reader to Example 3.2
below and we propose a corrected version of [3], Theorem 3.6, as Theorem 3.2
(whose proof exactly follows the original one up to the introduction of W ′), in
which the modified second-order conditions are sufficient, and necessary in the
special situation of Example 3.1.

Consider the FBSDE (2.4) when h does not depend on z and define

h̃(s, x, y, z)

:= −(
hxt + bhxx − hhxy + 1

2

(
σ 2hxxx + 2zσhxxy + z2hxxy

))
(s, x, y)(3.9)

− (
(hy + bx)hx + σσxhxx + zσxhxy

)
(s, x, y),

g̃(x) := g′(x) + (T − t)hx

(
T ,x, g(x)

)
,

g̃ := min
x∈R g̃(x), g̃ := max

x∈R g̃(x),

g̃A := min
x∈A

g̃(x), g̃
A := max

x∈A
g̃(x),

h̃(t) := min
[t,T ]×R3

h̃(s, x, y, z), h̃(t) := max
[t,T ]×R3

h̃(s, x, y, z).

The following theorem corrects Theorem 3.6 in [3].

THEOREM 3.2 (Second-order conditions [3], Theorem 3.6). Fix some t ∈
(0, T ], assume that h does not depend on z, that assumptions (X), (L) and (D1)

hold and set K := ky + kb. If there exists A ∈ B(R) such that P(XT ∈ A|Ft ) > 0
and one of the two following assumptions holds:

(H̃+)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g̃e− sgn(g̃)KT + h̃(t)

∫ T

t
e− sgn(h̃(s))Ks(T − s) ds ≥ 0,

g̃Ae− sgn(g̃A)KT + h̃(t)

∫ T

t
e− sgn(h̃(s))Ks(T − s) ds > 0,

(H̃−)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g̃e− sgn(g̃)KT + h̃(t)

∫ T

t
e− sgn(h̃(s))Ks(T − s) ds ≤ 0,

g̃
A
e− sgn(g̃

A
)KT + h̃(t)

∫ T

t
e− sgn(h̃(s))Ks(T − s) ds < 0,

then the first component Yt of the solution of BSDE (2.4) has a law which is abso-
lutely continuous with respect to the Lebesgue measure.

EXAMPLE 3.2. We go back to Example 3.1 with g ≡ Id . and h(s, x, y, z) =
(s − 2)x which does not depend on z. On the one hand, we know from (3.8) that
for all t ∈ (0,1], the law of Yt has a density except when t = 0 or t = 2 − √

3. On
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the other hand, our conditions in Theorem 3.2 read

g̃ = g̃ = g̃(x) = t, h̃(t, x, y) = h̃(t) = h̃(t) = −1, K = 0,

from which (H̃+) becomes

t −
∫ 1

t
(1 − s) ds = t − (1 − t) + 1

2
− t2

2
= − t2

2
+ 2t − 1

2
> 0,

and (H̃−) becomes

t −
∫ 1

t
(1 − s) ds = t − (1 − t) + 1

2
− t2

2
= − t2

2
+ 2t − 1

2
< 0.

We hence conclude, in view of Theorem 3.2, that the law of Yt has a density
with respect to the Lebesgue measure for every t ∈ (0,1] \ {2 − √

3}.
In this particular example, notice that Theorem 3.2 is more accurate than Theo-

rem 3.1 since condition (H̃+) and condition (H̃−) are sufficient and necessary to
obtain the existence of a density for Y . Finally, we emphasize once more that the
counterpart of condition (H̃−) in [3], Theorem 3.6, gives that whenever 2t −1 < 0,
Yt admits a density, which is clearly satisfied for t = 2 − √

3. However, we know
that Y2−√

3 = 0.

3.3. Existence of a density for the control variable Z. We now turn to the
problem of existence of a density for the marginal laws of Z. This question was
studied in [1] when the generator is linear in z, that is to say h(t, x, y, z) =
h̃(t, x, y)+αz, which is from our point of view a too stringent assumption since by
a Girsanov transformation this equation basically reduces to a BSDE with a gener-
ator which does not depend on z. We focus here on a general function h satisfying
assumption (L). Consider the two following assumptions:

(C+) hx,hxx, hyy, hzz, hxy ≥ 0 and hxz = hyz = 0,
(C−) hx,hxx, hyy, hzz, hxy ≤ 0 and hxz = hyz = 0.

Let t ∈ (0, T ] and A ∈ B(R). We set:

g′′ := min
x∈S(XT )

g′′(x), g′′A := min
x∈S(XT )∩A

g′′(x),

g′ := min
x∈S(XT )

g′(x), g′A := min
x∈S(XT )∩A

g′(x),

hxx(t) := min
s∈[t,T ],(x,y,z)∈R3

hxx(s, x, y, z).

THEOREM 3.3. Let assumption (X), (L) and (D2) hold. Let 0 < t ≤ T and
assume moreover:

• There exist (a, a) ∈ (0,+∞), such that a ≤ DrXu ≤ a, for all 0 < r < u ≤ T .
• There exists b ≥ 0, such that 0 ≤ D2

r,tXu ≤ b, for all 0 < r, t < u ≤ T .
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• (C+) holds.
• hxy = 0 or (hxy ≥ 0 and g′ ≥ 0, L(XT )-a.e.).

If there exists a set A ∈ B(R) such that P(XT ∈ A|Ft ) > 0 and such that

1{g′′<0}g′′a2 + g′1{g′<0}b + (
1{g′′≥0}g′′ + hxx(t)(T − t)

)
a2 ≥ 0,

and (
1{g′′A<0}g

′′Aa2 + g′A1{g′<0}b
) + (

1{g′′A≥0}g
′′A + hxx(t)(T − t)

)
a2 > 0,

then, the law of Zt has a density with respect to the Lebesgue measure.

PROOF. Under the assumptions of Theorem 3.3, we obtain for 0 < r, s <

t ≤ T :

D2
r,sYt = g′′(XT )DrXT DsXT + g′(XT )D2

r,sXT −
∫ T

t
D2

r,sZu dWu

+
∫ T

t

[
hx(u,�u)D

2
r,sXu + hxx(u,�u)DrXuDsXu

+ hxy(u,�u)DsXuDrYu + hy(u,�u)D
2
r,sYu + hxy(u,�u)DrXuDsYu

+ hyy(u,�u)DrYuDsYu + hz(u,�u)D
2
r,sZu

+ hzz(u,�u)DrZuDsZu

]
du.

Let P̃ be the probability equivalent to P such that

dP̃

dP
= exp

(∫ T

0
hz(s,�s) dWs − 1

2

∫ T

0

∣∣hz(s,�s)
∣∣2 ds

)
,(3.10)

where hz is bounded thanks to assumption (L). Under P̃ defined by (3.10), we
obtain

D2
r,sYt = EP̃

[
g′′(XT )DrXT DsXT + g′(XT )D2

r,sXT

+
∫ T

t

[
hx(u,�u)D

2
r,sXu + hxx(u,�u)DrXuDsXu

+ hxy(u,�u)DsXuDrYu + hy(u,�u)D
2
r,sYu + hxy(u,�u)DrXuDsYu

+ hyy(u,�u)DrYuDsYu + hzz(u,�u)DrZuDsZu

]
du

∣∣∣Ft

]
.

By standard linearization techniques, we obtain

D2
r,sYt = EP̃

[
e

∫ T
t hy(u,�u)du(

g′′(XT )DrXT DsXT + g′(XT )D2
r,sXT

)

+
∫ T

t
e

∫ u
t hy(v,�v)dv[

hx(u,�u)D
2
r,sXu + hxx(u,�u)DrXuDsXu
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+ hxy(u,�y)(DrXuDsYu + DsXuDrYu)

+ hyy(u,�u)DrYuDsYu + hzz(u,�u)DrZuDsZu

]
du

∣∣∣Ft

]
.

Then, using Remark 3.3, Lemma 3.1 and our assumptions we obtain

e
∫ T
t hy(u,�u)du(

g′′(XT )DrXT DsXT + g′(XT )D2
r,sXT

)
+

∫ T

t
e

∫ u
t hy(v,�v)dv[

hx(u,�u)D
2
r,sXu + hxx(u,�u)DrXuDsXu

+ hxy(u,�y)(DrXuDsYu + DsXuDrYu)

+ hyy(u,�u)DrYuDsYu + hzz(u,�u)DrZuDsZu

]
du

≥ e
∫ T
t hy(u,�u)du(

1{g′′<0}g′′a2 + g′1{g′<0}b + (
1{g′′≥0}g′′ + hxx(t)(T − t)

)
a2)

≥ 0.

We deduce that

D2
r,sYt ≥ EP̃

[
e

∫ T
t hy(u,�u)du1XT ∈A

(
g′′(XT )DrXT DsXT + g′(XT )D2

r,sXT

)

+ 1XT ∈A

∫ T

t
e−K(u−t)[hxx(u,�u)a

2]
du

∣∣∣Ft

]

≥ e−KT (
1{g′′A<0}g

′′Aa2 + g′A1{g′<0}b
)
P̃(XT ∈ A|Ft )

+ e−KT (
1{g′′A≥0}g

′′A + hxx(t)(T − t)
)
a2P̃(XT ∈ A|Ft ).

Using the fact that D2Yt is symmetric, the chain rule formula, (3.2) and (3.3)
and the fact that lims↗t D

2
r,sXt = σ ′(t,Xt)DrXt , we have that lims↗t D

2
r,sYt =

DrZt , from which we deduce that DrZt > 0, P-a.s. Then according to Bouleau
and Hirsch’s theorem, we conclude that the law of Zt has a density with respect to
the Lebesgue measure. �

REMARK 3.4. Notice that the sign assumption on D2X can be obtained under
the following sufficient conditions:

(X+) For any t ∈ [0, T ], the maps x �−→ b(t, x) and x �−→ σ(t, x) are respec-
tively in C2(R) and C3(R), and there exists c > 0 such that

σ ≥ c > 0, σ ′ ≥ 0, σ ′′, σ ′′′ ≤ 0 and
[
σ, [σ, b]] ≥ 0,

where [b,σ ] denotes the Lie bracket between b and σ defined by [b,σ ] := b′σ +
σ ′b.

(X−) For any t ∈ [0, T ], the maps x �−→ b(t, x) and x �−→ σ(t, x) are respec-
tively in C2(R) and C3(R), and there exists c < 0 such that

σ ≤ c < 0, σ ′ ≤ 0, σ ′′, σ ′′′ ≥ 0 and
[
σ, [σ, b]] ≤ 0.
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Indeed, according to the first step of the proof of Theorem 4.3 in [1], condition
(X+) [resp., (X−)] ensures that D2X is nonnegative (resp., nonpositive).

REMARK 3.5. One can provide an alternative version of the previous result,
whose proof follows the same lines as the one of Theorem 3.3. Fix t in (0, T ],
let assumptions (L), (X) and (D2) hold and assume that there exists A ∈ B(R)

such that P(XT ∈ A|Ft ) > 0, and such that one of the two following conditions is
satisfied:

(a) (X+) and (C+) hold true and g′′ ≥ 0, g′′|A > 0 and g′ ≥ 0,L(XT )-a.e.

(b) (X−) and (C−) hold true and g′′ ≤ 0, g′′|A < 0 and g′ ≤ 0,L(XT )-a.e.,

then, for all t ∈ (0, T ], the law of Zt has a density with the respect to Lebesgue
measure.

When assumption (M) holds, Theorem 3.3 takes a different form as shown be-
low in Theorem 3.4, mainly because of Proposition 3.4. Indeed, consider the fol-
lowing assumptions:

(C̃+) hzz ≥ 0 and hxz = hyz ≡ 0.

(C̃−) hzz ≤ 0 and hxz = hyz ≡ 0.

Under assumption (C̃+) or (C̃−), we recall that

DrZt = g′′(XT )
∣∣f ′(T ,WT )

∣∣2 + g′(Xt)f
′′(T ,WT )

+
∫ T

t

[
hx(u,�u)f

′′(u,Wu) + hy(u,�u)D
2
r,tYu

]
du

+
∫ T

t

[∣∣f ′(u,Wu)
∣∣2hxx(u,�u)

+ (
hxy(u,�u)DrYu + DtYuhxy(u,�u)

)
f ′(u,Wu)

]
du

+
∫ T

t

[
hyy(u,�u)DtYuDrYu︸ ︷︷ ︸

=|Zu|2
+DtZuDrZu︸ ︷︷ ︸

=|DrZu|2
hzz(u,�u)

]
du

−
∫ T

t
D2

r,tZu dW̃u,

with W̃ := W − ∫ ·
0 hz(s,�s) ds. We set θ = (x, y, z), and

h̃(t,w, x, y, z, z̃) := hxx(t, θ)
∣∣f ′(t,w)

∣∣2 + hx(t, θ)f ′′(t,w)

+ (
hyy(t, θ)z + 2hxy(t, θ)f ′(t,w)

)
z + hy(t, θ)z̃,
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h̃(t) = min
(s,w,x,y,z,z̃)∈[t,T ]×R5

h̃(s,w, x, y, z, z̃),

h̃(t) = max
(s,w,x,y,z,z̃)∈[t,T ]×R5

h̃(s,w, x, y, z, z̃).

THEOREM 3.4. Assume that (M), (L) and (D2) are satisfied and that there
exists A ∈ B(R) such that P(XT ∈ A|Ft ) > 0 and one of the two following as-
sumptions holds:

(a) Assumption (C̃+), ((g′ ◦ f )f ′)′+(T − t)h̃(t) ≥ 0 and ((g′ ◦ f )f ′)′A+(T −
t)h̃(t) > 0.

(b) Assumption (C̃−), ((g′ ◦ f )f ′)′+(T − t)h̃(t) ≤ 0 and ((g′ ◦ f )f ′)′A+(T −
t)h̃(t) < 0.

Then the law of Zt is absolutely continuous with respect to the Lebesgue measure
on R.

PROOF. Using Proposition 3.4, we recall that

DrZt = g′′(XT )
∣∣f ′(T ,WT )

∣∣2 + g′(Xt)f
′′(T ,WT )

+
∫ T

t
h̃(u,Wu,Xu,Yu,Zu,DrZu) + |DrZu|2hzz(u) du

−
∫ T

t
D2

r,tZu dW̃u,

where W̃ := W − ∫ ·
0 hz(u,�u)du. Then the proof follows exactly the same line as

the one of Theorem 3.3. �

4. The quadratic case. We now turn to the quadratic case and provide an ex-
tension of both Theorems 3.1 and 3.3. Note, however, that the assumptions of these
theorems do not find immediate counterparts in the quadratic setup since the latter
involves the Lipschitz constant of h with respect to the z variable (see Remark 4.2).
We also emphasize that existence of densities for the Y and Z components in the
quadratic case that we consider here was open until now. We first make precise the
quadratic growth setting together with existence, uniqueness and Malliavin dif-
ferentiability results for these equations in the next section. Then we investigate
respectively in Sections 4.2 and 4.3 the existence of density for respectively Y

and Z.

4.1. Generalities on quadratic FBSDEs. In contradistinction to the previous
section, we will now assume that h exhibits quadratic growth in the z variable. As
noted in the Introduction, this case is particularly useful for applications, especially
in finance where any pricing and hedging problem on an incomplete market which
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can be translated into a BSDE analysis will lead to a quadratic BSDE. The precise
assumption for dealing with quadratic BSDEs is given as:

(Q) (i) g :R −→ R is bounded.
(ii) h : [0, T ] ×R3 −→ R is such that:

� There exists (K,Kz,Ky) ∈ (R∗+)3 such that for all (t, x, y, z) ∈
[0, T ] ×R3

∣∣h(t, x, y, z)
∣∣ ≤ K

(
1 + |y| + |z|2)

, |hz|(t, x, y, z) ≤ Kz

(
1 + |z|),

|hy |(t, x, y, z) ≤ Ky.

� There exists C > 0 such that for all (t, x, y, z1, z2) ∈ [0, T ] ×R4

∣∣h(t, x, y, z1) − h(t, x, y, z2)
∣∣ ≤ C

(
1 + |z1| + |z2|)|z1 − z2|.(4.1)

(iii)
∫ T

0 |h(s,0,0,0)|2 ds < +∞.

Existence and uniqueness of a solution triplet (X,Y,Z) under assumption (Q)

has been obtained in [17]. More precisely, we have the following.

PROPOSITION 4.1 ([17], Existence and uniqueness of BSDEs). Under as-
sumptions (X) and (Q), there exists a unique solution (X,Y,Z) in S2 × S∞ ×
H2

BMO.

Note that condition (4.1) on the generator h in assumption (Q) in the one that
ensures uniqueness of the solution. Hence, it can be dropped and one can then
consider the maximal solution Y of the BSDE, for which our proofs still apply.

Concerning the Malliavin differentiability of the processes (X,Y,Z), it has been
obtained in the quadratic case in [2] under the assumptions (D1) and (D2) (that are
defined in Section 3.1). Note that Proposition 3.3 still holds true if assumption (L)

is replaced by assumption (Q). However, although the above proposition is com-
pletely proved in [21] in the Lipschitz case, we did not find a proper reference in
the quadratic case, except for [14] which proves the result under assumption (Q),
with the exception that u is only shown to be in C1,1. Nonetheless, one can still ob-
tain the required result by proving that Theorem 3.1 of [21] still holds for a BSDE
with a driver which is uniformly Lipschitz in y and stochastic Lipschitz in z with a
Lipschitz process in H2

BMO (which is exactly the case of the BSDE satisfied by the
Malliavin derivative of Y). This can be achieved by following exactly the steps of
the proof of Theorem 3.1 in [21], where the a priori estimates of their Lemma 2.2
have to be replaced by those given in Lemma A.1 of [14]. As in the Lipschitz case,
relation (3.3) still holds true under (Q). In addition, as for Proposition 3.3, the
proof of Lemma 3.1 can be extended to the quadratic setting. Finally, Propositions
3.2 and 3.4 are valid if one replaces assumption (L) by assumption (Q).
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PROPOSITION 4.2 (Malliavin differentiabiliy). Under (X), (Q) and (D1), we
have for any t ∈ [0, T ] that (Xt , Yt ) ∈ (D1,2)2, Zt ∈ D1,2 for almost every t , and
for all 0 < r ≤ t ≤ T :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

DrXt = σ(r,Xr) +
∫ t

r
bx(s,Xs)DrXs ds +

∫ t

r
σx(s,Xs)DrXs dWs,

DrYt = g′(XT )DrXT +
∫ T

t
H(s,DrXs,DrYs,DrZs) ds

−
∫ T

t
DrZs dWs,

(4.2)

where H(s, x, y, z) := hx(s,Xs,Ys,Zs)x + hy(s,Xs,Ys,Zs)y + hz(s,Xs,

Ys,Zs)z.

4.2. Existence of a density for the Y component.

THEOREM 4.1. Fix t ∈ (0, T ] and assume that (X), (Q) and (D1) hold. If
there is A ∈ B(R) such that P(XT ∈ A|Ft ) > 0 and one of the following assump-
tions holds [see definitions (3.6)–(3.7)]

(Q+) g′ ≥ 0 and g′|A > 0, L(XT )-a.e. and h(t) ≥ 0,

(Q−) g′ ≤ 0, g′|A < 0, L(XT )-a.e. and h(t) ≤ 0,

then Yt has a law absolutely continuous with respect to the Lebesgue measure.

PROOF. To simplify the notations for any s in [0, T ], we set �s := (Xs,Ys,

Zs). We set K := kb ∨ ky ∨ kσ . We assume that (Q+) is satisfied (the proof with
(Q−) follows the same lines, so we omit it). According to Bouleau–Hirsch’s crite-
rion, it is enough to show that γYt := ∫ T

0 |DrYt |2 dr > 0, P-a.s. As in the proof of
[3], Theorem 3.6, we have for 0 ≤ r ≤ t ≤ T , that DrYt writes down as

DrYt = g′(XT )DrXT +
∫ T

t
hx(s,�s)DrXs + hy(s,�s)DrYs ds

(4.3)

+
∫ T

t
DrZs dWs.

From (4.3), and following the expression of γYt given in [3], page 271, we deduce
that

γYt =
(
E

[
g′(XT )ζT ψT +

∫ T

t
ψshx(s,�s)ζs ds

∣∣∣Ft

])2

× (
ψ−1

t

)2
∫ t

0

(
ζ−1
r σ (r,Xr)

)2
dr,
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with

ψtζt = e
∫ t

0 (bx(s,Xs)+hy(s,�s)+σx(s,Xs)hz(s,�s)) ds︸ ︷︷ ︸
=:Et

× e
∫ t

0 (σx(s,Xs)+hz(s,�s)) dWs−1/2
∫ t

0 (σx(s,Xs)+hz(s,�s))
2 ds︸ ︷︷ ︸

=:Mt

.

Let Q the probability measure equivalent to P with density dQ
dP

:= MT . Indeed, M

is a martingale as
∫ ·

0(σx(s,Xs) + hz(s,�s)) dWs is a BMO martingale due to the
boundedness of σx [by (X)] and the fact that |hz(s,�s)| ≤ C(1 + |Zs |) [by (Q)]
and from the BMO property of

∫ ·
0 Zs dWs (by Proposition 3.1). We therefore have

E

[
g′(XT )ψT ζT +

∫ T

t
ψshx(s,�s)ζs ds

∣∣∣Ft

]

= MtE
Q

[
g′(XT )ET +

∫ T

t
hx(s,�s)Es ds

∣∣∣Ft

]
.

Using (Q+), we know that

g′(XT )ET +
∫ T

t
hx(s,�s)Es ds ≥ gET + h(t)

∫ T

t
Es ds ≥ 0.

Thus,

E

[
g′(XT )ψT ζT +

∫ T

t
ψshx(s,�s)ζs ds

∣∣∣Ft

]

≥ MtE
Q

[
1XT ∈A

(
g′(XT )ET +

∫ T

t
hx(s,�s)Es ds

)∣∣∣Ft

]

≥ Mt

(
gAe−2KT EQ

[
1XT ∈Ae−K

∫ T
0 |hz(s,�s)|ds |Ft

]
+ h(t)e−2KT (T − t)EQ[

1XT ∈Ae−K
∫ T

0 |hz(s,�s)|ds |Ft

])
≥ Mt

(
gAe−2KT EQ[

1XT ∈Ae−K
√

T

√∫ T
0 |hz(s,�s)|2 ds |Ft

]
+ h(t)e−2KT (T − t)EQ[

1XT ∈Ae−K
√

T

√∫ T
0 |hz(s,�s)|2 ds |Ft

])
,

where the last inequality is due to Cauchy–Schwarz inequality. Besides, ac-
cording to assumption (Q), |hz(s,�s)| ≤ C(1 + |Zs |). Then we deduce that∫ T

0 |hz(s,�s)|2 ds < +∞,P-a.s., since Z ∈ H2. Hence, Mt > 0, P-a.s. Given that
the law of XT is absolutely continuous with respect to the Lebesgue measure, we
deduce that E[g′(XT )ψT ζT + ∫ T

t ψshx(s,�s)ζs ds|Ft ] > 0,P-a.s. We conclude
using Theorem 2.1. �
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REMARK 4.1. Similarly to Remark 3.3, the proof of Theorem 4.1 shows that
under (X), (Q), (D1) and if g′ ≥ 0 and h(t) ≥ 0 [resp., g′ ≤ 0 and h(t) ≤ 0] for t ∈
[0, T ], then for all 0 < r ≤ t ≤ T , DrYt ≥ 0 (resp., DrYt ≤ 0) and the inequality
is strict if there exists A ∈ B(R) such that P(XT ∈ A|Ft ) > 0 and g′|A > 0 (resp.,
g′|A < 0).

REMARK 4.2. Conditions (Q+) and (Q−) are stronger than (H+) and (H−),
due to the unboundedness of hz, which prevents us from reproducing the same
proof than in [3]. Indeed, in this framework the quantity appearing for instance in
(H+) becomes

ge−2K sgn(g)T e−K sgn(g)
∫ T

0 |hz(s)|ds + h(t)e−2K sgn(h(t))T
∫ T

t
e−K sgn(h(t))

∫ s
0 |hz(s)|ds,

whose sign for every K ≥ 0 depends strongly on those of g′ and hx . This is why
we must use the stronger conditions (Q+) and (Q−).

REMARK 4.3. In [7], Corollary 3.5, comonotonicity conditions on the data
of a BSDE under assumption (Q) are given so that Zt ≥ 0, P-a.s., ∀t ∈ [0, T ]. In
addition, the authors claim that strict comonotonicity entails that Zt > 0, which
implies by Bouleau–Hirsch criterion that the law of Yt has a density with respect
to the Lebesgue measure. However, we do not understand their proof and it is not
true that an increasing mapping which is differentiable has a positive derivative
everywhere (even if one relaxes it by asking for a positive derivative Lebesgue-
almost everywhere) and one needs an extra assumption to prove that the derivative
does not vanish. Indeed, take any closed set of positive Lebesgue measure with
empty interior (e.g., the Smith–Volterra–Cantor set on R). By Whitney’s extension
theorem, there exists a differentiable increasing map whose derivative vanishes on
this set.

4.3. Existence of a density for the control variable Z. In this section, we ob-
tain existence results for the density of Z under assumption (Q). We actually have
exactly the same type of results as in the Lipschitz case with similar proofs, which
highlights the robustness and flexibility of our approach. Let us detail first the
changes that we have to make.

Under (Q), using the fact that for all s ∈ [0, T ] |hz(s,�s)| ≤ C(1 + |Zs |)
and according to Proposition 3.1 we deduce that

∫ ·
0 hz(s,�s) dWs is a BMO-

martingale. Then, according to Theorem 2.3 in [16], the stochastic exponential
of

∫ ·
0 hz(s,�s) dWs is a uniformly integrable martingale and we can apply Gir-

sanov’s theorem. We also emphasize that in (Q), g is not assumed to be twice con-
tinuously differentiable. Indeed, to recover the BMO properties linked to quadratic
BSDEs (and thus in order to be able to apply the above reasoning), g needs to be
bounded, which is incompatible with g convex (or concave). Nevertheless, there
exist terminal conditions g which are twice differentiable almost everywhere on
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the support of the law of XT (which is some closed subset of R), such that their
second-order derivative have a given sign there. As an example, take X = W and
g(x) := f (x)1x∈[a,b] +f (a)1x≤a +f (b)1x≤b with f a twice differentiable convex
function and a, b ∈R.

THEOREM 4.2. Let assumptions (X), (Q) and (D2) hold. Let 0 < t ≤ T and
assume moreover:

• There exist (a, a) s.t., 0 < a ≤ DrXu ≤ a, for all 0 < r < u ≤ T .
• There exists b s.t., 0 ≤ D2

r,sXu ≤ b, for all 0 < r, s < u ≤ T .
• (C+) holds and hy ≥ 0.
• hxy = 0 or (hxy ≥ 0 and g′ ≥ 0, L(XT )-a.e.).

If there exists A ∈ B(R) such that P(XT ∈ A|Ft ) > 0, and such that

1{g′′<0}g′′a2 + g′1{g′<0}b + (
1{g′′≥0}g′′ + hxx(t)(T − t)

)
a2 ≥ 0,

and (
1{g′′A<0}g

′′Aa2 + g′A1{g′<0}b
) + (

1{g′′A≥0}g
′′A + hxx(t)(T − t)

)
a2 > 0,

then the law of Zt has a density with respect to the Lebesgue measure.

PROOF. As in the proof of Theorem 3.3, we notice that for all 0 < r, t ≤ s ≤ T :

D2
r,sYt = EP̃

[
g′′(XT )DrXT DsXT + g′(XT )D2

r,sXT

+
∫ T

t

[
hx(u,�u)D

2
r,sXu + hxx(u,�u)DrXuDsXu

+ hy(u,�u)DrYuDsYu + hyy(u,�u)D
2
r,sYu

+ hzz(u,�u)DrZuDsZu

]
du

∣∣∣Ft

]
,

where P̃ is the equivalent probability measure to P with density

dP̃

dP
:= exp

(∫ T

0
hz(u,�u)dWu − 1

2

∫ T

0

∣∣hz(u,�u)
∣∣2 du

)
,

given that
∫ ·

0 hz(u,�u)dWu is a BMO-martingale and using Theorem 2.3 in [16].
Then the proof is similar to that of Theorem 3.3. �

REMARK 4.4. In order to satisfy the condition in Theorem 4.2, there are ba-
sically two types of sufficient conditions:

• First of all, if the support of the law of XT is bounded from above, then one can
take g to continuously differentiable everywhere, nondecreasing, convex and
bounded on this support. Then it suffices to take h to be convex in x as well.
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• However, when the support of the law of XT is no longer bounded from above,
then it is no longer possible to find g which is nondecreasing, bounded and
convex on this support. We must therefore allow g′′ to become nonpositive, and
the role of hxx becomes then crucial, as it has to be sufficiently positive in order
to balance g′′. As an example, take X := W . Then a = a = 1 and b = 0. One
can choose g(x) := 1

1+x2 . Then there exists a positive constant M such that
−2 ≤ g′′(x) ≤ M and by choosing h such that h satisfies the assumptions in
Theorem 4.2 and t ∈ (0, T ) such that hxx(t)(T − t) ≥ 2, we deduce that Zt

admits a density.

We give also a theorem under assumption (M).

THEOREM 4.3. Assume that (M), (Q) and (D2) are satisfied and that there
exists A ∈ B(R) such that P(XT ∈ A|Ft ) > 0 and one of the two following as-
sumptions holds:

(a) Assumption (C̃+), ((g′ ◦ f )f ′)′+(T − t)h̃(t) ≥ 0 and ((g′ ◦ f )f ′)′A+(T −
t)h̃(t) > 0.

(b) Assumption (C̃−), ((g′ ◦ f )f ′)′+(T − t)h̃(t) ≤ 0 and ((g′ ◦ f )f ′)′A+(T −
t)h̃(t) < 0.

Then the law of Zt is absolutely continuous with respect to the Lebesgue mea-
sure.

The proof is the same as the proof of Theorem 3.4 using the BMO property
of

∫ ·
0 Zs dWs , we therefore omit it. We now turn to the simplest case of quadratic

growth BSDE and verify that it is covered by our result.

EXAMPLE 4.1. Let us consider the following BSDE:

Yt = g(WT ) +
∫ T

t

1

2
|Zs |2 ds −

∫ T

t
Zs dWs,

where g is bounded. According to Theorem 4.2 with a = a = 1, b = 0 and hxx = 0,
we deduce that for all t ∈ (0, T ], the law of Zt has a density with respect to the
Lebesgue measure if g′′ ≥ 0, λ(dx)-a.e. and if there exists A ∈ B(R) with positive
Lebesgue measure such that g′′|A > 0.

We emphasize that, as a sanity check, this can be verified by direct calculations.
Indeed, using the fact that if F ∈ D1,2, then Dr(E[F |Ft ]) = E[DrF |Ft ]1[0,t)(r)

(see [23], Proposition 1.2.4), We deduce that if 0 ≤ r < t ≤ T . Then

DrYt = E[g′(WT )eg(WT )|Ft ]
E[eg(WT )|Ft ] ,
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which does not depend on r . Then according to Proposition 3.4,

Zt = E[g′(WT )eg(WT )|Ft ]
E[eg(WT )|Ft ] .

Take 0 < r < t ≤ T , then

DrZt = (
E

[
g′′(WT )eg(WT ) + ∣∣g′(WT )

∣∣2eg(WT )|Ft

]
E

[
eg(WT )|Ft

]
− ∣∣E[

g′(WT )eg(WT )|Ft

]∣∣2)
/
(
E

[
eg(WT )|Ft

])
.

Using Cauchy–Schwarz inequality, if g′′ ≥ 0, λ(dx)-a.e. and if there exists A ∈
B(R) with positive Lebesgue measure such that g′′|A > 0, we deduce that for all
t ∈ (0, T ], Zt has a density with respect to the Lebesgue measure by Theorem 2.1.

5. Density estimates for the marginal laws of Y and Z. Up to now, the den-
sity estimates obtained in the literature relied mainly on the fact that the framework
considered implied that the Malliavin derivative of Y was bounded. Hence, using
the Nourdin–Viens formula (or more precisely their Corollary 3.5 in [22]), it could
be shown that the law of Y has Gaussian tails. Although such an approach is per-
fectly legitimate from the theoretical point of view, let us start by explaining why,
as pointed out in the Introduction, we think that this is not the natural framework
to work with when dealing with BSDEs. Consider indeed the following example.

EXAMPLE 5.1. Let us consider the FBSDE (2.4), with T = 1, g(x) := x3,
h(t, x, y, z) := 3x, b(t, x) = 0, σ(t, x) = 1 and X0 = 0. Then simple computations
show that the unique solution is given by

Xt = Wt, Yt = W 3
t + 6Wt(1 − t), Zt = 3W 2

t + 6(1 − t).

Then, both Yt and Zt have a law which is absolutely continuous with respect to the
Lebesgue measure, for every t ∈ (0,1], but neither Yt nor Zt has Gaussian tails.

Moreover, when it comes to applications dealing with generators with quadratic
growth, assuming that the Malliavin derivative of Y is bounded implies that the
process Z itself is bounded as Zt = DtYt , which is seldom satisfied in applications,
since in general, one only knows that Z ∈ H2

BMO.
One of the main applications of the results we obtain in this section is the precise

analysis of the error in the truncation method in numerical schemes for quadratic
BSDEs, introduced in [13] and studied in [6]. We recall that according to Proposi-
tion 3.3 there exists a function v : [0, T ]×R �−→ R in C1,2 such that Yt = v(t,Xt)

and Zt = vx(t,Xt)σ (t,Xt). Since we want to study the tails of the laws of Y

and Z, we will assume from now on that the support of these laws is R, which
implies that neither v nor v′ is bounded from below or above. Moreover, we em-
phasize that throughout this section, we will assume that Yt and Zt do have a law
which is absolutely continuous, so as to highlight the conditions needed to obtain
the estimates. Throughout this section, we assume that Xt = Wt in (2.4) (that is
X0 = 0, σ ≡ 1, b ≡ 0).
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5.1. Preliminary results. We will have to study the asymptotic growth of v

and vx in the neighborhood of ±∞. To this end, we introduce for any measurable
function f : R−→R the following two kinds of growth rates:

αf := inf
{
α > 0, lim sup

|x|→+∞

∣∣∣∣f (x)

xα

∣∣∣∣ < +∞
}
,

αf := inf
{
α > 0, lim inf|x|→+∞

∣∣∣∣f (x)

xα

∣∣∣∣ < +∞
}
.

LEMMA 5.1. Let f ∈ C1(R). Assume that for all x ∈ R, f ′(x) > 0. If 0 <

αf < +∞ then for all positive constant 0 < η < αf :

αf (−1) ≤ 1

αf − η
,

where f (−1) is the inverse function of f .

PROOF. Using the definition of αf , we deduce that for all η > 0,

lim inf|x|→+∞

∣∣∣∣ f (x)

x
αf −η

∣∣∣∣ = lim|x|→+∞

∣∣∣∣ f (x)

x
αf −η

∣∣∣∣ = +∞.

Since f and f (−1) are increasing and unbounded from above and below, we
deduce that there exists x > 0 such that for all x ≥ x, f (x) and f (−1) are positive.
Then, for all M > 0, there exists x0 ≥ x such that for all x ≥ x0 > 0 and for all

y ≥ Mx
αf −η

0 ∨ x

f (x) ≥ Mx
αf −η ⇐⇒ f

((
yM−1)1/(αv−η)) ≥ y

⇐⇒ (
yM−1)1/(αf −η) ≥ f (−1)(y).

This implies directly that lim supy→+∞ | f (−1)(y)

y
1/(αf −η) | < +∞. The proof is similar

when y goes to −∞. �

It is rather natural to expect that for well-behaved functions f ∈ C1(R), αf = αf

and αf = αf ′ + 1. However, the situation is unfortunately not that clear. First of
all, this may not be true if f is not monotone. Indeed, let f (x) := x2 sin(x), then
αf = αf = 2. Furthermore, the strict monotonicity of f is not sufficient either.
Without being completely rigorous, let us describe a counterexample. Consider a
function f defined on R+, equal to the identity on [0,1], which then increases as
x4 until it crosses x �−→ x2 for the first time, which then increases as x1/2 until it
crosses x �−→ x for the first time and so on. Finally, extend it by symmetry to R−.
Then it can be checked that αf = 2, αf = 1, αf ′ = 3, αf ′ = 0.

A nice sufficient condition for the aforementioned result to hold is that f ′ is a
regularly varying function (see [5] and [28]).
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LEMMA 5.2. Assume that f ′ is equivalent in +∞ (resp., in −∞) to a regu-
larly varying function with Karamata’s decomposition xβL1(x) where L1 is slowly
varying [resp., xβL2(x) where L2 is slowly varying] and where β > 0. Then:

(i) f is equivalent in +∞ (resp., in −∞) to a regularly varying function
with Karamata’s decomposition xβ+1L̃1(x) where L̃1 is slowly varying (resp.,
xβ+1L̃2(x) where L̃2 is slowly varying).

(ii) αf = αf = αf ′ + 1 = αf ′ + 1.

PROOF. By Karamata’s theorem (see Theorem 1.5.11 in [5] with σ = 1), for
any x0 ∈ R:

xf ′(x)

f (x) − f (x0)
−→ β + 1 when x −→ +∞.(5.1)

In addition, f ′ is equivalent to a regularly varying function with Karamata’s de-
composition xβL1(x) when x −→ +∞, hence in view of (5.1), there exists a func-
tion L̃1 (equivalent to a constant times L1 at +∞) slowly varying such that f is
equivalent when x −→ +∞ to a regularly varying function with Karamata’s de-
composition xβ+1L̃1(x). The same result holds when x −→ −∞.

We now show (ii). According to Proposition 1.3.6(v) in [5] and (i), we deduce
that

αf = β + 1 = αf and αf ′ = β = αf ′ . �

5.2. A general estimate. From now on, for a map (t, x) �−→ v(t, x), v′(t, x)

will denote for simplicity the derivative of v with respect to the space variable.
Before enunciating a general theorem which gives us density estimates for the
tails of the law of random variables of the form v(t,Wt) and will be used to obtain
estimates for the laws of Yt and Zt , we set some constants in order to simplify the
notation in Theorem 5.1 below.

List of constants. Let α ∈ (0,+∞), α′ ∈ R+ and α̃ > 0. For ε > 0, we set

Cε,v,α := sup
x∈R,t∈[0,T ]

|v(t, x)|
1 + |x|α+ε

, δα′ := max
(
1,2α′)

,

�α′ := α′�((1 + α′)/2)

2
√

π
, μ(α̃) :=

∫
R

φ(z)

1 + |z|α̃ dz,

Dα′ := max
(

1 + δα′�α′ + δ2
α′
2

(
�α′ + (

1 + α′)−1)2
,

1

2
+ δα′

1 + α′
)
,

where � is the usual Euler function and φ the distribution function of the normal
law, defined by

�(x) :=
∫ +∞

0
e−t tx−1 dt, x > 0 and φ(x) := 1√

2π
e−x2/2, x ∈ R.
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We emphasize that the following theorem can be applied in much more general
cases, and it is clearly not limited to the context of BSDEs. It could for instance be
used to provide non-Gaussian tail estimates for the law of solutions to some SDEs.
Therefore, it has an interest of its own.

THEOREM 5.1. Fix t ∈ (0, T ]. Let v : [0, T ] ×R −→ R in C1,1 and let Pt :=
v(t,Wt). Assume furthermore that Pt ∈ L1(P), that v is unbounded in x both from
above and from below, that v′ > 0, αv ∈ (0,+∞), αv′ < +∞ and that there exist
α̃ > 0 and K > 0 such that

1

v′(t, x)
≤ K

(
1 + |x|α̃)

for all x ∈R.(5.2)

Then the law of Pt has a density with respect to the Lebesgue measure, denoted
by ρt , and for all ε, ε′ > 0 and for every y ∈ R

ρt(y) ≤ E[|Pt −E[Pt ]|]
2M(ε′)t

(
1 + |y|2α̃(α

v(−1)+ε′))
(5.3)

× exp
(
−

∫ y−E[Pt ]
0

(M ′(ε, ε′)t)−1x dx

1 + |x +E[Pt ]|2(αv′+ε)(α
v(−1)+ε′)

)
,

and

ρt (y) ≥ (2M ′(ε, ε′)t)−1E[|Pt −E[Pt ]|]
1 + |y|2(αv′+ε)(α

v(−1)+ε′)
(5.4)

× exp
(
−

∫ y−E[Pt ]
0

x(1 + |x +E[Pt ]|2α̃(α
v(−1)+ε′)) dx

M(ε′)t

)
,

with

M ′(ε, ε′) := C2
ε,v′,αv′ Dαv′+ε

(
1 + C

2(αv′+ε)

ε′,v(−1),α
v(−1)

)
δ2(αv′+ε),

and

M
(
ε′) := μ(α̃)

K2(1 + C2α̃
ε′,v(−1),α

v(−1)
δ2α̃)

,

using the aforementioned definitions of the constants.

PROOF. Notice immediately that since the map x �−→ v(t, x) is in C1(R) and
increasing, the law of Pt clearly has a density. We prove inequalities (5.3) and
(5.4) using Nourdin and Viens’ formula (see Theorem 2.2). The rest of the proof
is divided into three steps.
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Step 1. Given that for all 0 < r ≤ t ≤ T , DrPt = v′(t,Wt), the function gPt

defined by (2.3) becomes

gPt (y) :=
∫ ∞

0
e−aE

[
E∗[〈

�Pt (W), �̃a
Pt

(W)
〉
H

]|Pt −E[Pt ] = y
]
da, y ∈ R,

with2 �Pt (W) := v′(t,Wt) and where �̃a
Pt

(W) := �Pt (e
−aW + √

1 − e−2aW ∗)
with W ∗ an independent copy of W defined on a probability space (�∗,F∗,P∗)
where E∗ is the expectation under P∗ (�Pt being extended on � × �∗). Letting

φ(z) := 1√
2πt

e−z2/(2t), we get that

gPt (y) =
∫ ∞

0
e−aE

[
E∗[〈

�Pt (W), �̃a
Pt

(W)
〉
H

]|Wt = v(−1)(t, y +E[Pt ])]da

= tv′(t, v(−1)(t, y +E[Pt ]))
(5.5)

×
∫ ∞

0
e−a

∫
R

v′(t, e−av(−1)(t, y +E[Pt ]) +
√

1 − e−2az
)
φ(z) dz da,

y ∈ R.

Step 2. Upper bound for gPt .
Recall that for all ε > 0:

0 < v′(t, x) ≤ Cε,v′,αv′
(
1 + |x|αv′+ε) ∀x ∈R.

Then, using (5.5) we get

gPt (y) ≤ C2
ε,v′,αv′ t

(
1 + ∣∣v(−1)(y +E[Pt ])∣∣αv′+ε)

×
∫ +∞

0
e−a

∫
R

(
1 + ∣∣e−av(−1)(t, y +E[Pt ])

+
√

1 − e−2az
∣∣αv′+ε)

φ(z) dz da

≤ C2
ε,v′,αv′ t

(
1 + ∣∣v(−1)(y +E[Pt ])∣∣(αv′+ε))

×
∫ +∞

0
e−a

∫
R

(
1 + δαv′+ε

(
e−a(αv′+ε)

∣∣v(−1)(t, y +E[Pt ])∣∣αv′+ε

+ |z|αv′+ε))φ(z) dz da

≤ C2
ε,v′,αv′ t

(
1 + ∣∣v(−1)(y +E[Pt ])∣∣αv′+ε)

×
(

1 + δαv′+ε

1 + αv′ + ε

∣∣v(−1)(y +E[Pt ])∣∣αv′+ε + δαv′+ε�αv′+ε

)

≤ C2
ε,v′,αv′ tDαv′+ε

(
1 + ∣∣v(−1)(y +E[Pt ])∣∣2(αv′+ε))

.

2Knowing that DrPt does not depend on r , �Pt
(W) : [0, T ] −→ L2(�,F ,P) is a random process

which is actually constant on [0, t].
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By Lemma 5.1, αv(−1) belongs to (0,+∞), hence by the definition of αv(−1) it
holds for all ε′ > 0 that

gPt (y) ≤ M ′(ε, ε′)t(1 + ∣∣y +E[Pt ]
∣∣2(αv′+ε)(α

(v)−1+ε′))
.(5.6)

Step 3. Lower bound for gPt .
Using assumption (5.2) and (5.5), we have that

gPt (y) ≥ t

K2(1 + |v(−1)(t, y +E[Pt ])|α̃)

×
∫ +∞

0
e−a

∫
R

1

1 + |e−a(v)−1(t, y +E[Pt ])|α̃ + |√1 − e−2az|α̃
× φ(z) dz da.

Noticing that |√1 − e−2az|α̃ ≤ |z|α̃ , and that∫
R

(1 + |x|α̃)φ(z)

1 + |x|α̃ + |z|α̃ dz ≥ μ(α̃) ∀x ∈R

we deduce that

gPt (y) ≥ μ(α̃)t

K2(1 + |v(−1)(t, y +E[Pt ])|α̃)

×
∫ +∞

0
e−a 1

1 + e−aα̃|v(−1)(t, y +E[Pt ])|α̃ da.

Hence,

gPt (y) ≥ μ(α̃)t

K2(1 + |v(−1)(t, y +E[Pt ])|2α̃)
.

We finally get relation (5.4) for

M
(
ε′) := μ(α̃)

K2(1 + C2α̃
ε′,v(−1),α

v(−1)
δ2α̃)

.

We conclude using Nourdin and Viens’ formula. �

COROLLARY 5.1. Let the assumptions in Theorem 5.1 hold, with the same
notations. Assume moreover that 0 ≤ αv′ < αv < +∞. Then there exist ε0, ε

′
0 > 0,

y0 > 0 and γ ∈ (0,1) such that for any |y| > y0:

ρt (y) ≤ E[|Pt −E[Pt ]|]
2M(ε′

0)t

(
1 + |y|2α̃(α

v(−1)+ε′
0)

)
(5.7)

× exp
(
−|y −E[Pt ]|2(1−γ ) − |y0 −E[Pt ]|2(1−γ )

4(1 − γ )tM ′(ε0, ε
′
0)

)
,
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and

ρt (y) ≥ E[|Pt −E[Pt ]|]
2M ′(ε0, ε

′
0)t (1 + |y|γ )

× exp
(
−|y −E[Pt ]|2(α̃(α

v(−1)+ε′
0)+1) − |y0 −E[Pt ]|2(α̃(α

v(−1)+ε′
0)+1)

M(ε′
0)t (α̃(αv(−1) + ε′

0) + 1)

)
(5.8)

× exp
(
−|y0 −E[Pt ]|2

M(ε′
0)t

(
1 + y

2α̃(α
v(−1)+ε′

0)

0

))
.

PROOF. Let us define for any ε, ε′ > 0

γ
(
ε, ε′) := (αv′ + ε)

(
αv(−1) + ε′).

Since we assumed that 0 ≤ αv′ < αv < +∞, we can deduce using Lemma 5.1 that
there exist some ε0, ε

′
0 > 0 such that

γ := γ
(
ε0, ε

′
0
)
< 1.

We start with (5.7). We have from Theorem 5.1

ρt (y) ≤ E[|Pt −E[Pt ]|]
2M(ε′

0)t

(
1 + |y|2α̃(α

v(−1)+ε′
0)

)

× exp
(
−

∫ y−E[Pt ]
0

x dx

M ′(ε0, ε
′
0)t (1 + |x +E[Pt ]|2γ )

)
.

We notice that

lim|x|→+∞
x

M ′(ε0, ε
′
0)t (1 + |x +E[Pt ]|2γ )

× 1

x/(M ′(ε0, ε
′
0)t |x|2γ )

= 1,

so that there exists x0 large enough such that

x

M ′(ε0, ε
′
0)t (1 + |x +E[Pt ]|2γ )

≥ x

2M ′(ε0, ε
′
0)t |x|2γ

when |x| ≥ x0. Hence, since γ ∈ (0,1), we know that we can find some y0 > 0
large enough such that if |y| > y0∫ y−E[Pt ]

y0−E[Pt ]
x dx

M ′(ε0, ε
′
0)t (1 + |x +E[Pt ]|2γ )

≥
∫ y−E[Pt ]
y0−E[Pt ]

x dx

2M ′(ε0, ε
′
0)t |x|2γ

= 1

4(1 − γ )tM ′(ε0, ε
′
0)

(∣∣y −E[Pt ]
∣∣2(1−γ ) − ∣∣y0 −E[Pt ]

∣∣2(1−γ ))
,
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from which (5.7) follows directly. Similarly, increasing y0 if necessary, we have
that for |y| > y0∫ y−E[Pt ]

0
x
(
1 + ∣∣x +E[Pt ]

∣∣2α̃(α
v(−1)+ε′

0)
)
dx

=
∫ y0−E[Pt ]

0
x
(
1 + ∣∣x +E[Pt ]

∣∣2α̃(α
v(−1)+ε′

0)
)
dx︸ ︷︷ ︸

:=I1

+
∫ y−E[Pt ]
y0−E[Pt ]

x
(
1 + ∣∣x +E[Pt ]

∣∣2α̃(α
v(−1)+ε′

0)
)
dx︸ ︷︷ ︸

:=I2

.

Using the fact that the function x �−→ 1+|x +E[Pt ]|2α̃(α
v(−1)+ε′

0) is convex, we
deduce that for y0 large enough

I1 ≤ ∣∣y0 −E[Pt ]
∣∣2(

1 + y
2α̃(α

v(−1)+ε′
0)

0

)
.

Moreover, since limx→+∞ x(1+|x+E[Pt ]|2α̃(α
v(−1)+ε′

0)+ε′
0))× 1

x
2α̃(α

v(−1)+ε′0)+1
= 1,

we obtain for x large enough

x
(
1 + ∣∣x +E[Pt ]

∣∣2α̃(α
v(−1)+ε′

0)+ε′
0)

) ≤ 2x2α̃(α
v(−1)+ε′

0)+1.

Then we have that for |y| ≥ y0

I2 ≤ |y −E[Pt ]|2(α̃(α
v(−1)+ε′

0)+1) − |y0 −E[Pt ]|2(α̃(α
v(−1)+ε′

0)+1)

α̃(αv(−1) + ε′
0) + 1

.

Hence,∫ y−E[Pt ]
0

x
(
1 + ∣∣x +E[Pt ]

∣∣2α̃(α
v(−1)+ε′

0)
)
dx

≤ ∣∣y0 −E[Pt ]
∣∣2(

1 + y
2α̃(α

v(−1)+ε′
0)

0

)
+ |y −E[Pt ]|2(α̃(α

v(−1)+ε′
0)+1) − |y0 −E[Pt ]|2(α̃(α

v(−1)+ε′
0)+1)

α̃(αv(−1) + ε′
0) + 1

,

from which the second inequality (5.8) follows directly using (5.4).
Finally, we have the following theorem, which is a simple application of the

results obtained above in the special cases where we take the random variables
(Yt ,Zt ) solutions to the BSDE (2.4) when they can be written Yt = v(t,Wt) and
Zt = v′(t,Wt). �

THEOREM 5.2. Let (Y,Z) be the solution to the BSDE (2.4) (which is as-
sumed to exist and to be unique). Assume that there exists a map v ∈ C1,2 such that
Yt = v(t,Wt).
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(i) If in addition, v′ > 0, 0 ≤ αv′ < αv < +∞ and there exist K > 0, α̃ > 0
such that v′(t, x) ≥ 1/(K(1+|x|α̃)) then, denoting ρYt the density of the law of Yt ,
there exist y0 > 0, C1,C2 > 0, p1 ∈ (0,2) and p2 > 0 (which are given explicitly
in Theorem 5.1) such that for any |y| > y0

ρYt (y) ≥ E[|Yt −E[Yt ]|
C2t (1 + |y|1−p1/2)

exp
(
−|y −E[Yt ]|2(p2+1) − |y0 −E[Yt ]|2(p2+1)

(p2 + 1)C2t

)
,

ρYt (y) ≤ E[|Yt −E[Yt ]|
C1t

(
1 + |y|2p2

)
exp

(
−2|y0 −E[Yt ]|2

C2t

(
1 + y

2p2
0

))

× exp
(
−|y −E[Yt ]|p1 − |y0 −E[Yt ]|p1

p1C2t

)
.

(ii) If in addition, v′′ > 0, 0 ≤ αv′′ < αv′ < +∞ and there exist K > 0, α̃ > 0
such that v′′(t, x) ≥ 1/(K(1 + |x|α̃)) then, denoting ρZt the density of the law
of Zt , there exists Z0 > 0, C1,C2 > 0, p1 ∈ (0,2) and p2 > 0 (which are given
explicitly in Theorem 5.1) such that for any |z| > z0

ρZt (z) ≥ E[|Zt −E[Zt ]|
C2t (1 + |z|1−p1/2)

exp
(
−|z −E[Zt ]|2(p2+1) − |z0 −E[Zt ]|2(p2+1)

(p2 + 1)C2t

)
,

ρZt (y) ≤ E[|Zt −E[Zt ]|
C1t

(
1 + |z|2p2

)
exp

(
−2|z0 −E[Zt ]|2

C2t

(
1 + z

2p2
0

))

× exp
(
−|z −E[Zt ]|p1 − |z0 −E[Zt ]|p1

p1C2t

)
.

5.3. Verifying the assumptions of Theorem 5.2. In this subsection, we give
some conditions which ensure that the assumptions in Corollary 5.1 hold. We
recall that under assumptions (X), (L) or (Q), (D1) and according to Proposi-
tion 3.3, there exists a map u : [0, T ]×R−→ R in C1,2 such that Yt = u(t,Wt), t ∈
[0, T ],P-a.s., and Z admits a continuous version given by Zt = u′(t,Wt), t ∈
[0, T ],P-a.s., assuming that σ ≡ 1 and b ≡ 0 in the studied FBSDE (2.4). More-
over, we suppose for simplicity that the generator h of BSDE (2.4) depends only
on z, and that u′ and u′′ are3 in C1,2. By a simple application of the nonlinear
Feynman–Kac formula (see, e.g., [25]), and by differentiating it repeatedly, it can
be shown that u, u′ and u′′ are respectively classical solutions of the following
PDEs: {−ut(t, x) − 1

2uxx(t, x) − h
(
t, ux(t, x)

) = 0, (t, x) ∈ [0, T ) ×R,

u(T , x) = g(x), x ∈ R,
(5.9)

3This assumption is satisfied if g and h are smooth enough.
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⎪⎩

−u′
t (t, x) − 1

2u′
xx(t, x)

− hz

(
t, u′(t, x)

)
u′

x(t, x) = 0, (t, x) ∈ [0, T ) ×R,

u′(T , x) = g′(x), x ∈R,

(5.10)

⎧⎪⎪⎨
⎪⎪⎩

−u′′
t (t, x) − 1

2u′′
xx(t, x) − hz

(
t, u′(t, x)

)
u′′

x(t, x)

− hzz

(
t, u′(t, x)

)∣∣u′′(t, x)
∣∣2 = 0, (t, x) ∈ [0, T ) ×R,

u′′(T , x) = g′′(x), x ∈ R.

(5.11)

We show in the following proposition and its corollary that under some con-
ditions on g,g′, g′′ and h,hz, the assumptions in Theorem 5.2 are satisfied. We
emphasize that this is only one possible set of assumptions, and that the required
properties of u and its derivatives can be checked on a case by case analysis.

PROPOSITION 5.1. Let u, u′ and u′′ be respectively the solution to (5.9),
(5.10) and (5.11) and assume that a comparison theorem holds for classical super
and subsolutions of these PDEs, in the class of functions with polynomial growth.
Assume that there exist (ε,C,C) ∈ (0,1) × (0,+∞)3, such that for all x ∈ R

C
(
1 + |x|1−ε) ≤ g(x) ≤ C

(
1 + |x|1+ε).

Assume, moreover, that h is nonpositive and that there exist (ε′,D,D) ∈ (0, ε) ×
(0,+∞)2 s.t.

D
(
1 + |x|ε′) ≤ g′(x) ≤ D

(
1 + |x|ε).

Assume that there exist (B,B) ∈ (0,+∞)2 such that for all x ∈ R

B ≤ g′′(x) ≤ B and 0 ≤ hzz(t, x) <
1

4BT
.

Assume finally that there exist λ ∈ (0, ε−1 − 1] and C > 0 such that |hz(t, z)| ≤
C(1 + |z|λ), then for all (t, x) ∈ [0, T ] ×R,

αu ∈ [1 − ε,1 + ε], αu′, αu′ ∈ [
ε′, ε

]
, αu′′ = 0,

u′(t, x) ≥ D and u′′(t, x) ≥ B.

PROOF. Let ϕ(t, x) := C̃(T − t) + Ckε(x), where kε(x) is in C∞(R), coin-
cides with the function (1 + |x|1+ε) outside some closed interval centered at 0 and
is always greater than (1 + |x|1+ε). We show that ϕ is a (classical) super-solution
to (5.9) for some positive constant C̃ large enough. Indeed we can choose C̃ > 0
such that for any (t, x) ∈ [0, T ) ×R

−ϕt(t, x) − 1
2ϕxx(t, x) − h

(
t, ϕx(t, x)

) = C̃ − 1
2Ck′′

ε (x) − h
(
t, ϕx(t, x)

) ≥ 0,

since h ≤ 0 and lim|x|→∞ 1
2k′′

ε (x) = 0.



DENSITY ANALYSIS OF BSDES 2851

Moreover, by the assumption made on g, we clearly have for all x ∈ R, g(x) ≤
Ckε(x), so that we deduce by comparison that for all (t, x) ∈ [0, T ] ×R:

u(t, x) ≤ Ckε(x) + C̃(T − t).

Now, we let φ(t, x) := −C̃1(T − t) + Cκε(x) for (t, x) ∈ [0, T ) ×R, where κε(x)

is in C∞(R), coincides with the function (1 + |x|1−ε) outside some closed interval
centered at 0 and is always smaller than (1 +|x|1−ε). We show that φ is a classical
subsolution to (5.9) for some positive constant C̃1 large enough. We have

−φt(t, x) − 1
2φxx(t, x) − h

(
t, φx(t, x)

)
(5.12)

= −C̃1 + 1
2Cκ ′′

ε (x) − h
(
t, φx(t, x)

)
.

Given that the quantity h(t, φx(t, x)) = h(t,Cκ ′
ε(x)) is bounded because

lim|x|→∞ κ ′
ε(x) = 0 and h is continuous, we can always choose C̃1 so that (5.12) is

nonpositive. Then, since we clearly have for all x ∈ R, g(x) ≥ Cκε(x), we deduce
by comparison that for all (t, x) ∈ [0, T ] ×R:

u(t, x) ≥ Cκε(x) + C̃1(T − t).

To sum up, we have showed that for all (t, x) ∈ [0, T ] ×R:

Cκε(x) − C̃1(T − t) ≤ u(t, x) ≤ Ckε(x) + C̃(T − t).

In other words, [αu,αu] ⊂ [1 − ε,1 + ε].
We now study (5.10). Define for some constant C̃2 > 0 to be fixed later

ψ(t, x) := C̃2(T − t) + Dϒε(x),

where ϒε(x) is in C∞(R), coincides with the function (1 + |x|ε) outside some
closed interval centered at 0 and is always greater than (1 + |x|ε). We then have

−ψt(t, x) − 1
2ψxx(t, x) − hz

(
t,ψ(t, x)

)
ψx(t, x)

= C̃2 − 1
2Dϒ ′′

ε (x) − hz

(
t,ψ(t, x)

)
Dϒ ′

ε(x).

Next, for some constant C > 0 which may vary from line to line∣∣hz

(
t,ψ(t, x)

)∣∣ ≤ C
(
1 + ∣∣ψ(t, x)

∣∣λ) ≤ C
(
1 + |x|λε),

and since λ ≤ 1
ε

− 1 we deduce that∣∣hz

(
t,ψ(t, x)

)
Dϒ ′

ε(x)
∣∣ ≤ C

(
1 + |x|λε+ε−1)

which is bounded.

Since in addition we have ϒ ′′
ε (x) −→ 0 as |x| goes to +∞, we can always choose

C̃2 large enough so that

−ψt(t, x) − 1
2ψxx(t, x) − hz

(
t,ψ(t, x)

)
ψx(t, x) ≥ 0.
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By the assumption we made on g, we can use once more the comparison theorem
to obtain

u′(t, x) ≤ ψ(t, x).

Similarly, we show that Dϒε′(x) − C̃3(T − t) is a subsolution of (5.10) for some
positive constant C̃3, since λ ≤ ε−1 − 1 ≤ ε′−1 − 1. Then, by comparison, we
deduce that αu′, αu′ ∈ [ε′, ε]. Moreover, we notice that D ≤ g′(x) for all x ∈ R,
so D is a subsolution of (5.10). Thus, using once more the comparison theorem
u′(t, x) ≥ D for all (t, x) ∈ [0, T ] ×R.

We now study (5.11). Given that hzz is nonnegative and B ≤ g′′(x) for all
(t, x) ∈ [0, T ] × R, we deduce directly that B is a subsolution of (5.11). Next,
let �(t, x) = B + B

T 1−η (T − t)1−η where η ∈ (0,1) is chosen small enough so that

hzz(t, x) ≤ 1−η

4T B
. Thus,

−�t(t, x) − 1

2
�xx(t, x) − hz

(
t, u′(t, x)

)
�x(t, x) − hzz

(
t, u′(t, x)

)∣∣�(t, x)
∣∣2

= (1 − η)
B

T 1−η
(T − t)−η − hzz

(
t, u′(t, x)

)
B

2
(

1 + (T − t)1−η

T 1−η

)2

≥ (1 − η)
B

T 1−η
(T − t)−η − 1 − η

4T
B

(
1 + (T − t)1−η

T 1−η

)2

≥ 0.

We deduce that � is a super solution of (5.11), which by comparison, implies
that u′′ is bounded, so αu′′ = 0. �

COROLLARY 5.2. Consider the FBSDE (2.4) and assume that for all t ∈
[0, T ] Xt = Wt and h depends only on z. Let u(t,Xt) := Yt and assume that
u ∈ C1,2, u′ ∈ C1,2 and u′′ ∈ C1,2. Let the assumptions of Proposition 5.1 hold,
and assume moreover that ε ∈ (0, 1

2). Then the assumptions of Theorem 5.2 hold.

PROOF. According to Proposition 5.1, αu ≥ 1 − ε, αu′ ≤ ε and u′(t, x) ≥
D,(t, x) ∈ [0, T ] × R. From the fact that ε is smaller than 1/2, we deduce that
0 ≤ αu′ < αu < +∞. Moreover, 0 = αu′′ < ε′ ≤ αu′ . �

APPENDIX: TABLE OF ASSUMPTIONS-RESULTS

In this Appendix, we recall the different assumptions made within this paper
and we give a summary table of some most significant results on BSDEs including
ours.
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Assumption for X.

(X) b,σ : [0, T ] ×R −→ R are continuous in time and continuously differen-
tiable in space for any fixed time t and such that there exist kb, kσ > 0 with∣∣bx(t, x)

∣∣ ≤ kb,
∣∣σx(t, x)

∣∣ ≤ kσ for all x ∈ R.

Besides b(t,0), σ (t,0) are bounded functions of t and there exists c > 0 such that
for all t ∈ [0, T ]

0 < c ≤ ∣∣σ(t, ·)∣∣, λ(dx)-a.e.

List of assumptions for BSDEs.

(L) (i) g :R−→ R is such that E[g(XT )2] < +∞.
(ii) h : [0, T ]×R3 −→ R is such that there exist (kx, ky, kz) ∈ (R∗+)3 such

that for all (t, x1, x2, y1, y2, z1, z2) ∈ [0, T ] ×R6,∣∣h(t, x1, y1, z1) − h(t, x2, y2, z2)
∣∣ ≤ kx |x1 − x2| + ky |y1 − y2| + kz|z1 − z2|.

(iii)
∫ T

0 |h(s,0,0,0)|2 ds < +∞.

(Q) (i) g : R−→ R is bounded.
(ii) h : [0, T ] ×R3 −→ R is such that:

� There exists (K,Kz,Ky) ∈ (R∗+)3 such that for all (t, x, y, z) ∈
[0, T ] ×R3

∣∣h(t, x, y, z)
∣∣ ≤ K

(
1 + |y| + |z|2)

, |hz|(t, x, y, z) ≤ Kz

(
1 + |z|),

|hy |(t, x, y, z) ≤ Ky.

� There exists C > 0 such that for all (t, x, y, z1, z2) ∈ [0, T ] ×R4

∣∣h(t, x, y, z1) − h(t, x, y, z2)
∣∣ ≤ C

(
1 + |z1| + |z2|)|z1 − z2|.

(iii)
∫ T

0 |h(s,0,0,0)|2 ds < +∞.

List of assumptions for Malliavin differentiability of (X,Y,Z).

(D1) (i) g is differentiable, L(XT )-a.e., g and g′ have polynomial growth.
(ii) (x, y, z) �→ h(t, x, y, z) is continuously differentiable for every t in

[0, T ].
(D2) (i) g is twice differentiable, L(XT )-a.e., g, g′ and g′′ have polynomial

growth.
(ii) (x, y, z) �→ h(t, x, y, z) is twice continuously differentiable for every

t in [0, T ].
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List of assumptions for the existence of densities for Y and Z:

g := inf
x∈Rg′(x), gA := inf

x∈A
g′(x), g := sup

x∈R
g′(x), gA := sup

x∈A

g′(x),

h(t) := inf
s∈[t,T ],(x,y,z)∈R3

hx(s, x, y, z), h(t) := sup
s∈[t,T ],(x,y,z)∈R3

hx(s, x, y, z),

and K := kb + ky + kσ kz. There exists A ∈ B(R) such that P(XT ∈ A|Ft ) > 0 and
such that

(H+)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ge− sgn(g)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds ≥ 0,

gAe− sgn(gA)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds > 0,

(H−)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ge− sgn(g)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds ≤ 0,

gAe− sgn(gA)KT + h(t)

∫ T

t
e− sgn(h(s))Ks ds < 0.

Set

h̃(s, x, y, z) := −(
hxt + bhxx − hhxy + 1

2

(
σ 2hxxx + 2zσhxxy + z2hxxy

))
(s, x, y)

− (
(hy + bx)hx + σσxhxx + zσxhxy

)
(s, x, y),

g̃(x) := g′(x) + (T − t)hx

(
T , x, g(x)

)
,

and

g̃ := min
x∈R g̃(x), g̃ := max

x∈R g̃(x), g̃A := min
x∈A

g̃(x), g̃
A := max

x∈A
g̃(x),

h̃(t) := min
[t,T ]×R3

h̃(s, x, y, z), h̃(t) := max
[t,T ]×R3

h̃(s, x, y, z),

and set K := ky + kb. There exists A ∈ B(R) such that P(XT ∈ A|Ft ) > 0

(H̃+)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g̃e− sgn(g̃)KT + h̃(t)

∫ T

t
e− sgn(h̃(s))Ks(T − s) ds ≥ 0,

g̃Ae− sgn(g̃A)KT + h̃(t)

∫ T

t
e− sgn(h̃(s))Ks(T − s) ds > 0,

(H̃−)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g̃e− sgn(g̃)KT + h̃(t)

∫ T

t
e− sgn(h̃(s))Ks(T − s) ds ≤ 0,

g̃
A
e− sgn(g̃

A
)KT + h̃(t)

∫ T

t
e− sgn(h̃(s))Ks(T − s) ds < 0.

(Q+) g′ ≥ 0 and g′|A > 0, L(XT )-a.e. and h(t) ≥ 0,

(Q−) g′ ≤ 0, g′|A < 0, L(XT )-a.e. and h(t) ≤ 0,
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TABLE A.1
Summary table of results

Cases

Results Lipschitz case (L) Quadratic case (Q)

Existence and uniqueness Proposition 3.1 (X) Proposition 4.1 (X)

of solutions of BSDEs

Malliavin differentiability Proposition 3.2 (X) and (D1) Proposition 4.2 (X) and (D1)
of (X,Y,Z)

Density existence for Y Theorem 3.1 (X), (D1) and (H+) or (H−) Theorem 4.1 (X), (D2)
and (Q+) or (Q−)

Theorem 3.2 (X), (D1) and (H̃+) or (H̃−)

Density existence for Z Theorem 3.3 (X), (D2) and (Z+) Theorem 4.2 (X), (D2)
and (Z+)

(Z+) • There exist (a, a) s.t., 0 < a ≤ DrXu ≤ a, for all 0 < r < u ≤ T .
• There exists b s.t., 0 ≤ D2

r,sXu ≤ b, for all 0 < r, s < u ≤ T .
• hx,hxx, hyy, hzz, hxy ≥ 0 and hxz = hyz = 0 [and hy ≥ 0 under (Q)]
• hxy = 0 or (hxy ≥ 0 and g′ ≥ 0, L(XT )-a.e.).
• We have

1{g′′<0}g′′a2 + g′1{g′<0}b + (
1{g′′≥0}g′′ + hxx(t)(T − t)

)
a2 ≥ 0,

and(
1{g′′A<0}g

′′Aa2 + g′A1{g′<0}b
) + (

1{g′′A≥0}g
′′A + hxx(t)(T − t)

)
a2 > 0,

We give the following summary table (Table A.1) which sums up significant re-
sults for BSDEs in both the Lipschitz case and the quadratic case with assumptions
made and references.
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