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INTERMITTENCY FOR THE WAVE AND HEAT EQUATIONS
WITH FRACTIONAL NOISE IN TIME

BY RALUCA M. BALAN 1 AND DANIEL CONUS

University of Ottawa and Lehigh University

In this article, we consider the stochastic wave and heat equations driven
by a Gaussian noise which is spatially homogeneous and behaves in time
like a fractional Brownian motion with Hurst index H > 1/2. The solutions
of these equations are interpreted in the Skorohod sense. Using Malliavin
calculus techniques, we obtain an upper bound for the moments of order p ≥
2 of the solution. In the case of the wave equation, we derive a Feynman–Kac-
type formula for the second moment of the solution, based on the points of a
planar Poisson process. This is an extension of the formula given by Dalang,
Mueller and Tribe [Trans. Amer. Math. Soc. 360 (2008) 4681–4703], in the
case H = 1/2, and allows us to obtain a lower bound for the second moment
of the solution. These results suggest that the moments of the solution grow
much faster in the case of the fractional noise in time than in the case of the
white noise in time.

1. Introduction. In this article, we consider the stochastic wave equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2u

∂t2 (t, x) = �u(t, x) + u(t, x)Ẇ (t, x),
(
t > 0, x ∈ R

d
)
,

u(0, x) = u0,
∂u

∂t
(0, x) = v0,

(SWE)

and the stochastic heat equation⎧⎨⎩
∂u

∂t
(t, x) = 1

2
�u(t, x) + u(t, x)Ẇ (t, x),

(
t > 0, x ∈ R

d
)
,

u(0, x) = u0,

(SHE)

where � stands for the Laplacian operator on R
d , and Ẇ denotes the formal

derivative of a Gaussian noise W (whose rigorous definition is given below). The
definition of the solution to equations (SWE) and (SHE) is given in Section 3 be-
low, using the Skorohod integral with respect to W . Intuitively, the noise Ẇ is
homogeneous in space (with spatial covariance kernel f ) and behaves in time like
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a fractional Brownian motion (fBm) with Hurst index H > 1/2. The initial condi-
tions u0 and v0 are nonnegative constants. In the case of the wave equation (SWE),
we assume that d ≤ 3, while for the heat equation (SHE), d ≥ 1 can be arbitrary.

There is a large amount of literature dedicated to the case H = 1/2, when the
noise behaves in time like the Brownian motion. In this case, we say that the noise
is white in time. We refer the reader to the lecture notes [23] for an introduction to
the subject, as well as [16, 21, 22, 27, 29, 41, 44, 45, 48] for a sample of relevant
references. The case H �= 1/2 has to be treated by different methods, since the
noise is not a semi-martingale in time. In recent years, there has been a growing
interest in studying equations with general Gaussian noise, and in particular equa-
tions driven by a noise which behaves in time like a fBm with Hurst parameter
H �= 1/2; see [4, 6, 7, 13, 14, 32–36].

In the present article, the noise is introduced by a zero-mean Gaussian process
W = {W(ϕ);ϕ ∈ H} with covariance

E
(
W(ϕ)W(ψ)

)= 〈ϕ,ψ〉H.(1)

Here H is a Hilbert space defined as the completion of the space C∞
0 (R+ ×R

d) of
infinitely differentiable functions with compact support on R+ ×R

d , with respect
to the inner product 〈·, ·〉H defined by

〈ϕ,ψ〉H = αH

∫
(R+×Rd )2

ϕ(t, x)ψ(s, y)|t − s|2H−2f (x − y)dt dx ds dy,(2)

where αH = H(2H − 1). We assume that H ∈ (1
2 ,1), and f is the Fourier trans-

form in S ′(Rd) of a tempered measure μ on R
d , where S ′(Rd) is the dual of the

space S(Rd) of rapidly decreasing infinitely differentiable functions on R
d .

Using the fact that∫
Rd

∫
Rd

ϕ(x)ψ(y)f (x −y)dx dy =
∫
Rd

Fϕ(ξ)Fψ(ξ)μ(dξ) ∀ϕ,ψ ∈ S
(
R

d),
we arrive at the following alternative expression for the inner product 〈·, ·〉H:

〈ϕ,ψ〉H
(3)

= αH

∫ ∞
0

∫ ∞
0

∫
Rd

|t − s|2H−2Fϕ(t, ·)(ξ)Fψ(s, ·)(ξ)μ(dξ) dt ds,

where F denotes the Fourier transform in the x-variable.
In the present article, we consider the following four cases:

(i) f (0) < ∞ (i.e., μ is a finite measure);
(ii) f (x) = |x|−α for some 0 < α < d [i.e., μ(dξ) = cα,d |ξ |−(d−α) dξ ];

(iii) f (x) = ∏d
j=1 |xj |−αj for some αj ∈ (0,1) [i.e., μ(dξ) = c(αj )j ×∏d

j=1 |ξj |αj−1 dξ ];
(iv) d = 1 and f = δ0 (i.e., μ is the Lebesgue measure).
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Here we denote by |x| the Euclidean norm of x ∈ R
d .

Case (i) corresponds to a spatially smooth noise Ẇ . In case (ii), f is called the
Riesz kernel with exponent α. Case (iii) with the parametrization αj = 2−2Hj for
some Hj ∈ (1

2 ,1) leads to a noise Ẇ which is called a fractional Brownian sheet
with indices (H,H1, . . . ,Hd). Finally, case (iv) corresponds to a (rougher) noise
Ẇ which is “white in space.” This describes the spatial behavior of the noise in
the four cases. On the other hand, in time, the noise is smoother than the white
noise (the Brownian motion), since H > 1/2. We note in passing that the results
of the present article can be extended to H = 1/2, recovering results which are
already known for equations (SHE) and (SWE) with white noise in time. To ease
the exposition, we discuss only the case H > 1/2.

The stochastic heat equation (SHE) driven by space–time white noise Ẇ arises
in different contexts and has been studied by many authors. This equation is
the continuous form of the parabolic Anderson model studied by Carmona and
Molchanov in [11], and plays a major role in the study of the KPZ equation in
physics; see [38]. The connection between the stochastic heat equation and the
KPZ equation (via the Hopf–Cole transformation) was known informally by physi-
cists for quite some time; see, for example, [9]. Recently, this connection has been
made rigorous by Hairer in [31], using the theory of rough paths; see also [8].
Equation (SHE) with fractional noise in time has been studied in [6, 32, 35]. Ref-
erences [3, 10, 46] are dedicated to the wave equation with fractional noise.

In this article, we consider the Malliavin calculus approach for defining a so-
lution to equations (SWE) and (SHE), as in [3], respectively [6]. In particular, we
introduce the following assumption, known as Dalang’s condition:∫

Rd

μ(dξ)

1 + |ξ |2 < ∞.(DC)

This condition is necessary and sufficient for the existence of the solution to equa-
tions (SHE) and (SWE), when the noise is white in time; see [21]. It is also suf-
ficient for the existence of the solution to these equations, when the noise is frac-
tional in time and has spatial covariance given by the Riesz kernel; see [3, 6]. The
necessity of (DC) in the case of (SHE) has been proved in [5].

Note that (DC) is satisfied in cases (i) and (iv). In cases (ii) and (iii), it holds if
and only if a < 2, where a is defined by (9) below.

The purpose of this paper is to study intermittency properties for the solutions
to equations (SHE) and (SWE). Intuitively, a space–time random field is called
physically intermittent if it develops very high peaks concentrated on small spatial
islands, as time becomes large. To give a formal mathematical definition of inter-
mittency for a random-field u = {u(t, x); t ≥ 0, x ∈ R

d}, we consider the upper
Lyapunov exponent

γ (p) := lim sup
t→∞

1

t
logE

∣∣u(t, x)
∣∣p(4)
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for any p ≥ 1 [assuming that γ (p) does not depend on x]. Traditionally, in the
literature, the random-field u is called weakly intermittent if

γ (2) > 0 and γ (p) < ∞ for all p ≥ 2.(5)

If γ (1) = 0, and u(t, x) ≥ 0, then weak intermittency implies full intermittency.
Recall that a random field u is fully intermittent if p �→ γ (p)/p is strictly increas-
ing; see [11]. Intuitively, full intermittency shows that for p > q ,

lim sup
t→∞

‖u(t, x)‖p

‖u(t, x)‖q

= ∞,(6)

where ‖ · ‖p denotes the norm in Lp(
). In other words, asymptotically, the pth
moment of u(t, x) is significantly larger than its qth moment. This suggests that
the random variable u(t, x) may take very large values with small (but significant)
probabilities, and therefore it develops high peaks, when t is large. We refer to [9],
Section 2.4, for a detailed explanation of this phenomenon.

Intermittency for the spatially-discrete heat equation was studied in [11].
In [28], Foondun and Khoshnevisan proved weak intermittency for the solution
to equation (SHE) driven by space–time white noise, assuming that the initial con-
dition u0 is bounded away from 0. Similar investigations have been carried out in
[9, 12, 20]. In the recent article [15], Chen, Hu, Song and Xing have given the
exact asymptotics for the moments of the solution to equation (SHE) driven by
a fractional noise in time, with spatial covariance kernel given by cases (ii)–(iv)
above. Intermittency for the solution of the stochastic wave equation driven by a
Gaussian noise which is white in time was studied in [18, 25].

The fractional aspect of the noise in time leads to a different notion of weak
intermittency, which is obtained by a slight modification of the Lyapunov expo-
nent. More precisely, for ρ > 0 and p ≥ 1, we define the modified upper Lyapunov
exponent (of index ρ) by

γρ(p) := lim sup
t→∞

1

tρ
logE

∣∣u(t, x)
∣∣p.(7)

By analogy with (5), we say that the random-field u is weakly ρ-intermittent if

γρ(2) > 0 and γρ(p) < ∞ for all p ≥ 2.

Also, we say that u is fully ρ-intermittent if p �→ γρ(p)/p is strictly increasing.
These definitions guarantee that for a fully ρ-intermittent random-field u, rela-
tion (6) still holds, and so the intuitive (physical) notion of intermittency remains
valid. A similar argument as the one developed in [9] still applies to explain the
existence of the high peaks and the islands. Moreover, it remains true that weak
ρ-intermittency of u implies its full ρ-intermittency, provided that u(t, x) ≥ 0 and
γρ(1) = 0. (This can be proved by convexity arguments which do not depend on
the exponent of t used in the definition of ρ-intermittency.)



1492 R. M. BALAN AND D. CONUS

This article is organized as follows. In Section 2, we describe our main results
and introduce the exponents ρ for equations (SWE) and (SHE). Section 3 contains
a review of some Malliavin calculus techniques which are needed for the definition
of the solution. In Section 4, we prove the existence of the solution to equation
(SWE) in any spatial dimension d ≥ 1, and we give an upper bound for its second
moment. An upper bound for its pth moment is given in Section 5. In Section 6, we
obtain a Feynman–Kac-type representation for the second moment of the solution
of (SWE) with d ≤ 3, based on the points of a planar Poisson process. This result
is used in Section 7 to obtain a lower bound for the second moment of the solution
to (SWE). Section 8 is dedicated to the equation (SHE). An elementary estimate
is given in Appendix A. Appendix B contains the proof of an inequality which is
used in Section 4.

2. Main results. In this section, we discuss the two main results of this article.
The following exponents are used for the weak ρ-intermittency of the solutions

to equations (SWE), respectively (SHE):

ρw = 2H + 2 − a

3 − a
, ρh = 4H − a

2 − a
,(8)

where

a =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, in case (i),
α, in case (ii),
d∑

j=1

αj , in case (iii),

1, in case (iv).

(9)

We are now ready to state the first result about equation (SWE). We refer to (22)
below for the definition of the solution.

THEOREM 2.1. Let f be a kernel of cases (i)–(iv). Let ρw and a be the con-
stants given by (8), respectively (9). Assume that condition (DC) holds.

(a) For any d ≥ 1, equation (SWE) has a solution {u(t, x); t ≥ 0, x ∈ R
d},

given by relation (28) below. If d ≤ 2, the solution is unique.
(b) For any d ≥ 1, p ≥ 2, x ∈ R

d and for any t > 0,

E
∣∣u(t, x)

∣∣p ≤ c
p
1 (u0 + tv0)

p exp
(
c2p

(4−a)/(3−a)tρw
)
,(10)

where c1 > 0 is a constant depending on a, and c2 > 0 is a constant depending on
H and a.

(c) Suppose that d ≤ 3. Then for any x ∈ R
d and for any t > 0,

E
∣∣u(t, x)

∣∣2 ≥ c3u
2
0 exp

(
c4t

ρw
)
,(11)

where c3 > 0 and c4 > 0 are constants depending on H and a.
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A similar result holds for the parabolic equation (SHE).

THEOREM 2.2. Let f be a kernel of cases (i)–(iv). Let ρh and a be the con-
stants given by (8), respectively (9). Assume that condition (DC) holds. Let d ≥ 1
be arbitrary.

(a) Equation (SHE) has a unique solution {u(t, x); t ≥ 0, x ∈ R
d}.

(b) For any p ≥ 2, for any x ∈ R
d and for any t > 0,

E
∣∣u(t, x)

∣∣p ≤ c
p
1 u

p
0 exp

(
c2p

(4−a)/(2−a)tρh
)
,(12)

where c1 > 0 is a constant depending on a, and c2 > 0 is a constant depending on
H and a.

(c) For any x ∈R
d and for any t > 0,

E
∣∣u(t, x)

∣∣2 ≥ c3u
2
0 exp

(
c4t

ρh
)
,(13)

where c3 > 0 and c4 > 0 are constants depending on H and a.

Most moment estimates for solutions to s.p.d.e.’s with white noise in time rely
on martingale properties of stochastic integrals. Since the fBm is not a semi-
martingale, different techniques have to be used when the noise is fractional in
time. In the case of equations (SWE) and (SHE), one can give explicitly the Wiener
chaos representation of the solution. The upper bounds (10) and (12) are obtained
directly using the equivalence of L2(
)- and Lp(
)-norms on each Wiener chaos.
The lower bounds require more work. For this, we follow the approach of Dalang
and Mueller [25], which consists of using a Feynman–Kac (FK) type represen-
tation for the second moment of the solution, based on a Poisson process. Such a
representation was originally developed in [26] for equations driven by a noise that
is white in time. It was extended to the heat equation driven by fractional noise in
time by the first author of this article in [2]. The extension to the wave equation
with fractional noise in time is given in Section 6 below.

Article [26] contains also a FK representation for the nth moment of the solution
of the wave (or heat) equation, for any integer n ≥ 2 (Theorem 5.1 of [26]). The
proof of this result uses the fact that the stochastic integral with respect to the noise
W is a martingale in time, which allows the authors of [26] to apply Itô’s formula.
In the case of the fractional noise in time, the stochastic integral is not a semi-
martingale. There exists an Itô’s formula for the Skorohod integral with respect
to the classical fBm (Theorem 8 of [1]), which could probably be generalized to
the case of the noise W . However, this formula contains an extra correction term
involving the Malliavin derivative of the integrand process, which is difficult to
handle. For this reason, we could not apply the method of Dalang, Mueller and
Tribe [26] to obtain an FK representation (and an exponential lower bound) for the
moment of order n ≥ 2 of the solution to either wave of heat equation. We note
that a lower bound for the nth moment of the solution to the heat equation has
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been recently obtained in [33], using an FK representation for the moments which
is specific to the parabolic case (see Theorem 3.6 of [33]), and is different than the
one used in the present paper. The lower bound for the nth moment of the solution
to the wave equation remains an open problem.

As in [25], we focus mainly on the hyperbolic case (Theorem 2.1). The proof
of Theorem 2.2 is very similar, and we only point out the differences in compari-
son to the hyperbolic case in Section 8. We made this choice since the results for
the wave equation are completely new, in particular the second moment FK type
representation.

In [15], Chen, Hu, Song and Xing obtained stronger results than our Theo-
rem 2.2, by computing the exact Lyapunov exponent for the solution of equation
(SHE), defined as the limit when t → ∞, instead of the lim sup in (7); see The-
orem 6.1 of [15]. In [15], the solution is defined in the weak sense (i.e., using
multiplication against test functions), and the stochastic integral is interpreted in
the Stratonivich sense, according to Definition 4.2 of [36]. However, their method
requires the additional assumptions a < 4H − 2 in cases (ii)–(iii), and H > 3/4 in
case (iv), which are not needed in the present article. The proofs of [15] rely on a
Feynman–Kac representation for the weak solution and its moments (due to [36]),
which can only be proved under the above-mentioned additional assumptions. By
Theorem 7.2 of [36], a similar Feynman–Kac representation exists for the mild
solution (defined using the Skorohod integral, as in the present work), under the
same assumptions mentioned above. Using this representation and under the same
assumptions, it may be possible to compute the exact Lyapunov exponent for the
mild solution, although this is not proved in [15]. We believe that in the absence
of these assumptions, the methods of [36] and [15] cannot be applied for equa-
tion (SHE), even when it is interpreted in the Shorohod sense. These assumptions
appear also in the recent preprint [33] for the Feynman–Kac representation for
the solution of equation (SHE) interpreted in the Stratonovich sense (see Hypoth-
esis 4.1 of [33]), but are not needed for obtaining exponential upper and lower
bounds for the moments of the solution of (SHE), interpreted in the Stratonovich
or Skorohod sense, as shown by Theorem 6.4 of [33]. In the case of the heat equa-
tion with noise as in case (iii) above, some exponential upper and lower bounds for
the first moment of the solution (interpreted in the Stratonovich sense) have been
obtained in [49].

The appropriate exponents ρ are different in the hyperbolic and parabolic cases.
Nevertheless, since H > 1/2, ρh > ρw > 1. Therefore, the lower bounds in Theo-
rems 2.1 and 2.2 imply that γ (2) = ∞, which shows that the solutions to (SWE)
and (SHE) are not weakly intermittent in the classical sense. However, these solu-
tions are weakly ρ-intermittent (in the sense defined in Section 1) with ρ = ρw
for the wave equation and ρ = ρh for the heat equation. The results of Theo-
rems 2.1 and 2.2 do not provide full ρ-intermittency. When the noise is white in
time, one typically obtains full ρ-intermittency by proving that γ (1) = 0. Accord-
ing to Song [49] (using the Stratonovitch integral), it appears that this may not be
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true in the case of the fractional noise in time. In this case, an alternative method
is to obtain a sharp lower bound on the moments of order p > 2 of the solution, as
in [25]. This is subject of ongoing research.

In the case when H = 1/2, ρw = ρh = 1, and we recover some of the known
results of intermittency for the heat and wave equations with white noise in time.
For instance, intermittency for the heat equation was studied in [28]. For the wave
equation, full intermittency was obtained in [25] with the spatial covariance of
case (i). Some upper bounds were obtained in [18].

As mentioned before, when H > 1/2, ρh > ρw > 1. A consequence of this is
that the moments of the solution at some fixed time t are typically larger in the case
of the fractional noise in time compared to the white-noise case. This would imply
that the size of the peaks would be larger in the fractional case. Since H > 1/2,
the noise is positively correlated in time, which explains why peaks build up larger
values. Indeed, the fractional noise, when large, tends to remain large for a longer
period of time, which then results in a higher build-up for the random-field u.

The upper and lower bounds given by Theorems 2.1 and 2.2 show that the ex-
ponents ρw and ρh are sharp. A lower bound result on the moments of order p > 2
would be needed in order to get the sharp behavior of the exponent γρ(p) as a
function of p. This remains an open problem in the case of the wave equation. (In
the case of the heat equation, this has been recently proved in the preprint [33].) We
note that in our results, the behavior of γρ(p) as a function of p does not depend
on H . For the wave equation, we obtain that γρw(p) ≤ Cp4/3 in case (i) (spatially
smooth noise), and γρw(p) ≤ Cp3/2 in case (iv) (spatial white-noise), where C > 0
denotes a constant which does not depend on p. These confirm the behavior in the
order p obtained in [25] for case (i) and in [18] for case (iv). For the heat equation,
we obtain that γρh(p) ≤ Cp2 in case (i) and γρh(p) ≤ Cp3 in case (iv), for a con-
stant C > 0 which does not depend on p, which correspond to the sharp order for
white noise in time.

Finally, we would like to point out that Theorems 2.1 and 2.2 constitute a first
step toward a more careful study of the intermittent behavior of the solution to
the stochastic heat and wave equations. Indeed, following the program developed
in [17, 19], sharp Lyapunov exponents for the moments of solutions to SPDEs
(in particular their behavior as a function of p) are key ingredients for obtaining
quantitative results regarding some physical properties of the solution, such as the
height of the peaks, the size of the peak-islands and some space–time scaling re-
sults for the behavior of the peaks. These could lead to a careful understanding
of the impact of the temporal (and spatial) correlation of the noise on the physi-
cal behavior of the solution. In particular, observing how the modified Lyapunov
exponents impact the physical properties would be an important step in the under-
standing of mathematical intermittency. In the case of the white-noise in time, the
existence of the sharp Lyapunov exponents has allowed the authors of [17, 19] to
obtain KPZ-type scaling exponents for the solution to the stochastic heat equation.
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3. Framework. In this section, we introduce the framework, and we give a
brief summary of the results of Balan [3], which are needed in the present article.

We denote by Gw, respectively Gh, the fundamental solution of the wave equa-
tion, respectively the heat equation. In the case of the wave equation, recall that
when d ≤ 2, Gw(t, ·) is a function given by

Gw(t, x) = 1

2
1{|x|≤t} if d = 1 and

(14)

Gw(t, x) = 1

2π

1√
t2 − |x|2

1{|x|<t} if d = 2.

In both cases,
∫
Rd Gw(t, x) dx = t . When d = 3, Gw(t, ·) is a finite measure on R

3

given by

Gw(t, ·) = 1

4πt
σt ,

where σt is the surface measure on ∂B(0, t), and Gw(t,R3) = t . When d ≥ 4,
Gw(t, ·) is a distribution. For any d ≥ 1, the Fourier transform of Gw(t, ·) is given
by

FGw(t, ·)(ξ) = sin(t |ξ |)
|ξ | , ξ ∈ R

d .(15)

In the case of the heat equation, for any dimension d ≥ 1, Gh(t, ·) is a function,
known as the heat kernel. More precisely,

Gh(t, x) = 1

(2πt)d/2 exp
(
−|x|2

2t

)
and FGh(t, ·)(ξ) = exp

(
− t |ξ |2

2

)
.

Below, we write G when the results apply for both Gw or Gh.
We denote by ww (resp., wh) the solution of the homogeneous wave (resp., heat)

equation with the same initial condition as (SWE) [resp., (SHE)], that is,

ww(t, x) = u0 + tv0 and wh(t, x) = u0.(16)

We write w when the results apply for both ww and wh. Note that w(t, x) does not
depend on x in either case, and w(t, x) ≥ u0 ≥ 0 for all t > 0 and x ∈ R

d .
We now discuss the concept of solution. Informally, a (mild) solution of (SWE)

or (SHE) should be a process {u(t, x); t ≥ 0, x ∈ R
d} which satisfies

u(t, x) = w(t, x) +
∫ t

0

∫
Rd

G(t − s, x − y)u(s, y)W(ds, dy),(17)

provided the stochastic integral on the right-hand side is well defined (in a cer-
tain sense). Still informally, replacing u(s, y) on the right-hand side of (17) by its
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definition and iterating this procedure, we conclude that the solution of (SWE) or
(SHE) should be given by the following series of iterated integrals:

u(t, x) = w(t, x) +
∫ t

0

∫
Rd

G(t − s, x − y)W(ds, dy)

+
∫ t

0

∫
Rd

∫ s

0

∫
Rd

G(t − s, x − y)(18)

× G(s − r, y − z)W(dr, dz)W(ds, dy) + · · · .
To give a rigorous meaning to this procedure, we use an approach based

on Malliavin calculus with respect to the isonormal Gaussian process W =
{W(ϕ);ϕ ∈ H} with covariance specified by (1), where H is the Hilbert space de-
fined as the completion of C∞

0 (R+ ×R
d) with respect to the inner product 〈·, ·〉H

given by (2).
We recall the basic elements of Malliavin calculus; see [43] for more details.

It is known that every square-integrable random variable F which is measurable
with respect to W , has the Wiener chaos expansion

F = E(F) + ∑
n≥1

Fn with Fn ∈ Hn,

where Hn is the nth Wiener chaos space associated to W . Moreover, each Fn can
be represented as Fn = In(fn) for some fn ∈ H⊗n, where H⊗n is the nth tensor
product of H, and In :H⊗n → Hn is the multiple Wiener integral with respect
to W . By the orthogonality of the Wiener chaos spaces and an isometry-type prop-
erty of In, we obtain that

E|F |2 = (EF)2 + ∑
n≥1

E
∣∣In(fn)

∣∣2 = (EF)2 + ∑
n≥1

n!‖f̃n‖2
H⊗n,

where f̃n is the symmetrization of fn in all n variables

f̃n(t1, x1, . . . , tn, xn) = 1

n!
∑
ρ∈Sn

fn(tρ(1), xρ(1), . . . , tρ(n), xρ(n)),

where Sn is the set of all permutations of {1, . . . , n}.
Let S be the class of smooth random variables of the form

F = f
(
W(ϕ1), . . . ,W(ϕn)

)
,(19)

where f ∈ C∞
b (Rn), ϕi ∈ H, n ≥ 1 and C∞

b (Rn) is the class of bounded C∞-
functions on R

n, whose partial derivatives are bounded. The Malliavin derivative
of F of the form (19) is an H-valued random variable given by

DF :=
n∑

i=1

∂f

∂xi

(
W(ϕ1), . . . ,W(ϕn)

)
ϕi.
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We endow S with the norm ‖F‖2
D1,2 := E|F |2 +E‖DF‖2

H. The operator D can
be extended to the space D

1,2, the completion of S with respect to ‖ · ‖D1,2 .
The divergence operator δ is defined as the adjoint of the operator D. The do-

main of δ, denoted by Dom δ, is the set of u ∈ L2(
;H) such that∣∣E〈DF,u〉H
∣∣≤ c

(
E|F |2)1/2 ∀F ∈D

1,2,

where c is a constant depending on u. If u ∈ Dom δ, then δ(u) is the element of
L2(
) characterized by the following duality relation:

E
(
Fδ(u)

)= E〈DF,u〉H ∀F ∈ D
1,2.(20)

In particular, E[δ(u)] = 0. If u ∈ Dom δ, we use the notation

δ(u) =
∫ ∞

0

∫
Rd

u(t, x)W(δt, δx),

and we say that δ(u) is the Skorohod integral of u with respect to W .
We recall the following criterion for Skorohod integrability; see also Proposi-

tion 1.3.7 of [43].

PROPOSITION 3.1 (Proposition 2.5 of [3]). Assume that u ∈ L2(
;H) has
the Wiener chaos expansion

u(t, x) = ∑
n≥0

In

(
fn(·, t, x)

)
,(21)

where f0(t, x) = E(u(t, x)), I0(x) = x and fn(·, t, x) ∈ H⊗n for any n ≥ 1. Then
u ∈ Dom δ if and only if the series

∑
n≥0 In+1(fn) converges in L2(
), and in this

case δ(u) =∑
n≥0 In+1(fn).

We are now ready to give the rigorous definition of the solution to equa-
tions (SHE) and (SWE). Let Ft be the σ -field generated by W(1[0,s]×A) for
s ∈ [0, t],A ∈ Bb(R

d), where Bb(R
d) is the class of all bounded Borel sets in R

d .

DEFINITION 3.2. An (Ft )t -adapted square-integrable process u = {u(t, x);
t ≥ 0, x ∈ R

d} is called a (mild) solution of (SWE) or (SHE) if it satisfies the
following integral equation:

u(t, x) = w(t, x) +
∫ t

0

∫
Rd

G(t − s, x − y)u(s, y)W(δs, δy),(22)

that is, v(t,x) ∈ Dom δ and u(t, x) = w(t, x) + δ(v(t,x)) for all (t, x) ∈ R+ × R
d ,

where

v(t,x)(s, ·) = 1[0,t](s)G(t − s, x − ·)u(s, ·), s ≥ 0(23)

and · denotes the missing y-variable.
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In the case of equation (SWE) in dimension d ≤ 2 or equation (SHE) in any
dimension d , G(t, ·) is a function, and the existence and uniqueness of the solution
can be proved similar to page 303 of [35]. We recall this argument here. Assume
that a solution u(t, x) exists and has the Wiener chaos expansion (21) for some
functions fn(·, t, x) ∈ H⊗n. Since G is a deterministic function, it follows that
the process v(t,x) given by (23) has the Wiener chaos expansion v(t,x)(s, y) =∑

n≥0 In(g
(t,x)
n (·, s, y)), with kernels

g(t,x)
n (·, s, y) = 1[0,t](s)G(t − s, x − y)fn(·, s, y).(24)

By Proposition 3.1, v(t,x) ∈ Dom δ if and only if
∑

n≥0 In+1(g
(t,x)
n ) converges in

L2(
). In this case, δ(v(t,x)) =∑
n≥0 In+1(g

(t,x)
n ), and relation u(t, x) = w(t, x)+

δ(v(t,x)) becomes∑
n≥0

In

(
fn(·, t, x)

)= w(t, x) + ∑
n≥0

In+1
(
g(t,x)

n

)
.

By the uniqueness of the Wiener chaos expansion, we infer that f0(t, x) = w(t, x)

and fn+1(·, t, x) = g
(t,x)
n for any n ≥ 0. This allows us to find fn recursively:

fn(t1, x1, . . . , tn, xn, t, x)

= G(t − tn, x − xn)G(tn − tn−1, xn − xn−1) · · ·(25)

× G(t2 − t1, x2 − x1)w(t1, x1)1{0<t1<···<tn<t}.

Therefore, if the series
∑

n≥0 In+1(g
(t,x)
n ) = ∑

n≥0 In+1(fn+1(·, t, x)) converges
in L2(
), then the solution u exists and is unique, with the Wiener chaos expan-
sion (21) with kernels fn(·, t, x) given by (25). This coincides with the informal
interpretation (18).

In the case of equation (SWE) with d ≥ 3, the procedure for constructing a
solution is more complicated, since Gw(t, ·) is a distribution in R

d . We describe
below the steps of this procedure, following [3].

Step 1. Define the kernel fn(·, t, x) as a distribution in S ′(Rnd), identifying its
action on a test function, as in Section 2.1 of [3]. By Proposition 2.1 of [3], for any
0 < t1 < · · · < tn < t , fn(t1, ·, . . . , tn, ·, t, x) is a distribution in R

nd whose Fourier
transform [in S ′(Rnd)] is the function

Ffn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

= (u0 + t1v0)e
−i(ξ1+···+ξn)·xFGw(t2 − t1, ·)(ξ1)(26)

×FGw(t3 − t2, ·)(ξ1 + ξ2) · · ·FGw(t − tn, ·)(ξ1 + · · · + ξn).

fn(t1, ·, . . . , tn, ·, t, x) is defined to be 0 for (t1, . . . , tn) ∈ [0, t]n \ Tn(t) where
Tn(t) = {0 < t1 < · · · < tn < t}. Note that in Proposition 2.1 of [3], it is assumed
that u0 = 1 and v0 = 0, so that ww = 1. This result continues to hold when the
function ww is given by (16), since ww does not depend on x.
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Step 2. Let f̃n(·, t, x) be the symmetrization of fn(·, t, x). By Remark 2.3 of [3],
if ‖f̃n(·, t, x)‖2

H⊗n < ∞, then f̃n(·, t, x) ∈ H⊗n and the multiple Wiener integral
In(fn(·, t, x)) = In(f̃n(·, t, x)) is a well-defined element of Hn.

Step 3. Suppose that the series
∑

n≥1 In(fn(·, t, x)) converges in L2(
), that is,∑
n≥1

n!∥∥f̃n(·, t, x)
∥∥2
H⊗n < ∞.(27)

Let

u(t, x) := w(t, x) + ∑
n≥1

In

(
fn(·, t, x)

)
.(28)

Step 4. Define v(t,x)(s, ·) by relation (23). This is a product between the distri-
bution Gw(t − s, x − ·) and the function u(s, ·). The process v(t,x) has the Wiener
chaos expansion v(t,x)(•) = ∑

n≥0 In(fn+1(·,•, t, x)), where • denotes the miss-
ing (s, y) variable; see the proof of Theorem 2.8 in [3]. By Proposition 3.1, v(t,x) ∈
Dom δ and δ(v(t,x)) = ∑

n≥0 In+1(fn+1(·, t, x)) = u(t, x) − w(t, x). Hence the
process u = {u(t, x); t ≥ 0, x ∈ R

d} with the Wiener chaos expansion (28) is a
solution of (SWE). Moreover,

E
∣∣u(t, x)

∣∣2 = w(t, x)2 + ∑
n≥1

1

n!αn(t),(29)

where αn(t) = n!E|In(fn(·, t, x))|2 = (n!)2‖f̃n(·, t, x)‖2
H⊗n .

Step 5. It remains to prove (27). When the spatial covariance function f is given
by case (ii) above, this follows by Proposition 3.4 of [3]. A similar argument can
be used for cases (i), (iii) and (iv); see Proposition 4.2 below.

Summarizing, to prove that a solution of (SWE) exists in the case d ≥ 3, we
only need to show that the series

∑
n≥1 In(fn(·, t, x)) converges in L2(
); that is,

(27) holds. In this case, one such solution is given by (28).

REMARK 3.3. The uniqueness of the solution of (SHE) for d ≥ 3 was not
treated in [3]. It may be possible to show that the solution is unique in this case
too. This would require significant modifications to the method described above
for the case d ≤ 2, since both terms G(t − s, x − y) and fn(·, s, y) encountered
in definition (24) of g

(t,x)
n (·, s, y) are distributions in y. We do not investigate this

problem here. We note in passing that the classical method for proving unique-
ness does not seem to work for equations (SWE) or (SHE) when the solution is
interpreted in the sense of Definition 3.2. To see this, assume that there are two
solutions u and v, and let d = u − v. Then

d(t, x) =
∫ t

0

∫
Rd

G(t − s, x − y)d(s, y)W(δs, δy).
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The L2(
)-norm of the Skorohod integral above is a sum of two terms, the second
one involving the Malliavin derivative of d; see [42], relation (1.11). This second
term vanishes when the noise is white in time, but when the noise is fractional in
time, it is not clear how to treat this term.

REMARK 3.4. After examining (26), we infer that in the case of equation
(SWE) with d = 3, fn(t1, ·, . . . , tn, ·, t, x) is a finite measure on R

3n given by

fn(t1, ·, . . . , tn, ·, t, x)

= G(t − tn, x − dxn)G(tn − tn−1, xn − dxn−1) · · ·
× G(t2 − t1, x2 − dx1)w(t1, x1)1{0<t1<···<tn<t},

where for fixed a ∈ R
3, we denote by G(t, a − ·) the measure defined by

G(t, a − ·)(A) = G(t, a − A) for all A ∈ B(R3).

REMARK 3.5. Notice that in both the hyperbolic and parabolic cases, the
function (or distribution) fn is stationary in the sense that, for all t1, . . . , tn ∈ [0, t]
and for any x1, . . . , xn, x ∈ R

d ,

fn(t1, x1, . . . , tn, xn, t, x) = fn(t1, x1 − x, . . . , tn, xn − x, t,0).

This remains valid for f̃n. A direct consequence is that ‖f̃n(·, t, x)‖2
H⊗n , and hence

αn(t), do not depend on x. Since the initial conditions are constant, w does not
depend on x either and the moments of u are independent of x. This justifies the
definition of Lyapunov exponent independent of x. Also, notice that it is possible to
show that the law of u(t, x) is independent of x; see, for instance, [21] in the white
noise case. These remarks are not true if the initial conditions are not constant.

We return now to series (27), which is also related to the second moment of
the solution u(t, x); see (29). An important role in the present paper is played by
the nth term of this series, which depends on αn(t). First, note that an expression
similar to (3) exists for the n-fold inner product 〈·, ·〉H⊗n . Using this expression,
we have

αn(t) = αn
H

∫
[0,t]2n

n∏
j=1

|tj − sj |2H−2ψn(t, s) dtds,(30)

where we denote t = (t1, . . . , tn) and s = (s1, . . . , sn), and we define

ψn(t, s) =
∫
Rnd

Fg
(n)
t (·, t, x)(ξ1, . . . , ξn)

(31)
×Fg

(n)
s (·, t, x)(ξ1, . . . , ξn)μ(dξ1) · · ·μ(dξn)

with g
(n)
t (·, t, x) = n!f̃n(t1, ·, . . . , tn, ·, t, x). Note that ψn(t, s) depends also on t ,

so that the correct notation should be ψn(t, s, t). To simplify the notation, we omit
writing t in ψn(t, s, t).
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An alternative calculation of the function ψn(t, s) is needed in Section 6 below,
for equation (SWE) with d ≤ 3. For this, let ρ,σ ∈ Sn be such that

0 < tρ(1) < · · · < tρ(n) < t and 0 < sσ(1) < · · · < sσ(n) < t,

and denote tρ(n+1) = sσ(n+1) = t . Then if d ≤ 2, we have

ψn(t, s) =
∫
R2nd

n∏
j=1

G(tρ(j+1) − tρ(j), xρ(j+1) − xρ(j))w(tρ(1), xρ(1))

×
n∏

j=1

G(sσ(j+1) − sσ(j), yσ(j+1) − yσ(j))w(sσ(1), yσ(1))(32)

×
n∏

j=1

f (xj − yj ) dxdy,

with the notation x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ R
nd , whereas if d = 3,

ψn(t, s) =
∫
R2nd

n∏
j=1

G(tρ(j+1) − tρ(j), xρ(j+1) − dxρ(j))w(tρ(1), xρ(1))

×
n∏

j=1

G(sσ(j+1) − sσ(j), yσ(j+1) − dyσ(j))w(sσ(1), yσ(1))(33)

×
n∏

j=1

f (xj − yj ).

(In both integrals above, we use the notation xρ(n+1) = yσ(n+1) = x.)
This concludes the summary of the results of [3] which are needed here.

4. Hyperbolic case: Existence of the solution. In this section, we prove the
existence of a solution of equation (SWE) [given by (28)] in any space dimension
d ≥ 1, when f is a kernel of cases (i)–(iv). This yields the conclusion of Theo-
rem 2.1(a) and (b) (with p = 2).

We let G = Gw and w = ww. We introduce the following constant:

K(μ) := sup
η∈Rd

∫
Rd

1

1 + |ξ − η|2 μ(dξ).(34)

Note that K(μ) < ∞ if and only if (DC) holds; see the proof of Lemma 8 in [24].
Note that (DC) is satisfied in cases (i) and (iv). In cases (ii) and (iii), (DC) holds

if and only if

a < 2.(35)
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We define a constant Kw by

Kw =
⎧⎪⎨⎪⎩

μ
(
R

d
)
, in case (i),

4K(μ), in cases (ii) and (iii),
π, in case (iv).

(36)

We have the following preliminary result.

LEMMA 4.1. Let f be a kernels of cases (i)–(iv). Assume that (DC) holds.
For any t > 0 and for any t = (t1, . . . , tn) in [0, t]n,

ψn(t, t) ≤ (u0 + tv0)
2Kn

w(u1, . . . , un)
2−a,

where a is given by (9), uj = tρ(j+1) − tρ(j) for j = 1, . . . , n, tρ(1) < · · · < tρ(n)

for some ρ ∈ Sn, tρ(n+1) = t , and Kw is the constant defined in (36).

PROOF. As in the proof of Lemma 3.2 of [3], by (31), (26) and (15), we obtain

ψn(t, t)

= (u0 + tρ(1)v0)
2
∫
Rnd

sin2(u1|ξ1|)
|ξ1|2 · · ·

× sin2(un|ξ1 + · · · + ξn|)
|ξ1 + · · · + ξn|2 μ(dξ1) · · ·μ(dξn).

We consider separately the four cases:

• Case (i). Using the fact that |x−1 sinx| ≤ 1, we have

ψn(t, t) ≤ (u0 + tv0)
2[μ(Rd)]n(u1, . . . , un)

2.

• Case (ii). This case was treated in Lemma 3.2 of [3].
• Case (iii). Let c = c(αj )j . Using the change of variables ηj = ξ1 + · · · + ξj ,

ψn(t, t) = cn(u0 + tρ(1)v0)
2
∫
Rd

dη1
sin2(u1|η1|)

|η1|2
d∏

j=1

|η1,j |αj−1

×
∫
Rd

dη2
sin2(u2|η2|)

|η2|2
d∏

j=1

|η2,j − η1,j |αj−1

...

×
∫
Rd

dηn

sin2(un|ηn|)
|ηn|2

d∏
j=1

|ηn,j − ηn−1,j |αj−1,
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where ηi = (ηi,j )j=1,...,d with ηi,j ∈ R. Note that for any t > 0 and η ∈R
d ,

c

∫
Rd

sin2(t |ξ |)
|ξ |2

d∏
j=1

|ξj − ηj |αj−1 dξ

= ct2−a
∫
Rd

sin2(|ξ |)
|ξ |2

d∏
j=1

|ξj − tηj |αj−1 dξ

= t2−a
∫
Rd

sin2(|ξ + tη|)
|ξ + tη|2 μ(dξ)

≤ 4t2−a
∫
Rd

μ(dξ)

1 + |ξ + tη|2 ≤ 4t2−aK(μ),

since (sin(x)/x)2 ≤ 4/(1 + x2) for all x > 0. Hence

ψn(t, t) ≤ (u0 + tv0)
2(4K(μ)

)n
(u1, . . . , un)

2−a.

• Case (iv). Using the change of variables ηj = ξ1 + · · · + ξj , we have

ψn(t, t) = (u0 + tρ(1)v0)
2
∫
Rn

sin2(u1|η1|)
|η1|2 · · · sin2(un|ηn|)

|ηn|2 dη1 · · · dηn.

Using (14), (15) and Plancherel’s theorem, we obtain that for any t > 0,∫
R

sin2(t |ξ |)
|ξ |2 dξ = πt.

Hence

ψn(t, t) = (u0 + tv0)
2πnu1, . . . , un. �

The following result is an extension of Proposition 3.1 of [25] to the case of the
fractional noise in time.

PROPOSITION 4.2. Let f be a kernel of cases (i)–(iv), and ρw, a,Kw be the
constants given by (8), (9), respectively (36). Assume that (DC) holds. Then:

(a) for any t > 0 and for any integer n ≥ 1,

αn(t) ≤ (u0 + tv0)
2cnKn

w
t (2H+2−a)n

(n!)2−a
,(37)

where αn(t) is given by (30) and c is a constant depending on H and a;
(b) for any d ≥ 1, equation (SWE) has a solution u(t, x) [given by (28)] which

has the following property: for any x ∈R
d and for any t > 0,

E
∣∣u(t, x)

∣∣2 ≤ c1(u0 + tv0)
2 exp

(
c2K

1/(3−a)
w tρw

)
,

where c1 > 0 is a constant depending on a, and c2 > 0 is a constant depending on
H and a.
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PROOF. (a) We proceed as in the proof of Proposition 3.3 of [3].
For any t = (t1, . . . , tn) ∈ [0, t]n, we define β(t) = ∏n

j=1 uj , where uj =
tρ(j+1) − tρ(j), and ρ ∈ Sn is chosen such that tρ(1) < · · · < tρ(n), and tρ(n+1) = t .

By the Cauchy–Schwarz inequality, ψn(t, s) ≤ ψn(t, t)1/2ψn(s, s)1/2. By Lem-
ma 4.1, it follows that

ψn(t, s) ≤ (u0 + tv0)
2Kn

w
[
β(t)β(s)

](2−a)/2
.(38)

Using definition (30) of αn(t) and (38), we obtain

αn(t) ≤ (u0 + tv0)
2Kn

wαn
H

∫
[0,t]2n

n∏
j=1

|tj − sj |2H−2[β(t)β(s)
](2−a)/2

dtds.

We now use the fact that for any ϕ ∈ L1/H (Rn),

αn
H

∫
R2n

n∏
j=1

|tj − sj |2H−2∣∣ϕ(t)
∣∣∣∣ϕ(s)

∣∣dtds ≤ bn
H

(∫
Rn

∣∣ϕ(t)
∣∣1/H

dt
)2H

(39)

for some constant bH > 0; see Lemma B.3, Appendix B. We obtain

αn(t) ≤ (u0 + tv0)
2Kn

wbn
H

(∫
[0,t]n

n∏
j=1

β(t)(2−a)/(2H) dt

)2H

= (u0 + tv0)
2Kn

wbn
H

(
n!
∫
Tn(t)

[
(t − tn) · · · (t2 − t1)

](2−a)/(2H)
dt
)2H

,

where Tn(t) = {0 < t1 < · · · < tn < t}. By Lemma 3.5 of [6], for any h > −1,∫
Tn(t)

[
(t − tn)(tn − tn−1) · · · (t2 − t1)

]h
dt = �(1 + h)n+1

�((1 + h)n + 1)
t(1+h)n.

By Stirling’s formula, �((1 + h)n + 1) ∼ Cn(n!)1+h, where Cn is such that λ−n ≤
Cn ≤ λn for some constant λ > 1 depending on h; see the proof of Lemma A.1,
Appendix A. Hence∫

Tn(t)

[
(t − tn)(tn − tn−1) · · · (t2 − t1)

]h
dt ≤ �(1 + h)ncn

0

(n!)1+h
t(1+h)n

for some c0 > 0. In our case, h = (2 − a)/(2H). We obtain:

αn(t) ≤ (u0 + tv0)
2Kn

wbn
H

(
n!�(1 + h)ncn

1

(n!)1+h
t(1+h)n

)2H

= (u0 + tv0)
2Kn

wcn 1

(n!)2−a
t(2H+2−a)n,

where c = bH�(1 + h)2Hc2H
0 depends on H and a.
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(b) We use (29) and the result from part (a). We obtain that for any t > 0,

E
∣∣u(t, x)

∣∣2 ≤ (u0 + tv0)
2
∑
n≥0

cnKn
wt (2H+2−a)n

(n!)3−a
.

Since this series is convergent for any fixed t > 0, this proves the existence result.
Now, using Lemma A.1 (Appendix A), we have that for all t > 0

E
∣∣u(t, x)

∣∣2 ≤ c1(u0 + tv0)
2 exp

(
c′

2
(
cKwt2H+2−a)1/(3−a))

,

where c1 > 0 and c′
2 > 0 are some constants depending on a. The conclusion fol-

lows taking c2 = c′
2c

1/(3−a). �

5. Hyperbolic case: Upper bound on the moments. In this section, we give
an upper bound for the moments of order p > 2 of a solution of equation (SWE)
[given by (28)]. This yields the conclusion of Theorem 2.1(b).

Recall that this solution of (SWE) has the Wiener chaos expansion given
by (28). This means that u(t, x) = ∑

n≥0 Jn(t, x) where Jn(t, x) is in the nth
Wiener chaos Hn associated to the noise W , and

E
∣∣u(t, x)

∣∣2 = ∑
n≥0

E
∣∣Jn(t, x)

∣∣2 = ∑
n≥0

1

n!αn(t),

where αn(t) is defined in (29) and is estimated by (37).
The following result is an extension of Theorem 3.2 of [25] to the case of the

fractional noise in time.

PROPOSITION 5.1. Let f be one of the kernels (i)–(iv), and ρw, a,Kw be the
constants given by (8), (9), respectively (36). Assume that (DC) holds. Let u(t, x)

be a solution of (SWE), given by (28). Then for any p ≥ 2, for any x ∈ R
d and for

any t > 0,

E
∣∣u(t, x)

∣∣p ≤ c
p
1 (u0 + tv0)

p exp
(
c2K

1/(3−a)
w p(4−a)/(3−a)tρw

)
,

where c1 > 0 is a constant depending on a, and c2 > 0 is a constant depending on
H and a.

PROOF. When p = 2, the result is given by Propostion 4.2.
When p > 2, we use the same idea as in the proof of Theorem 4.1 of [3]. We

denote by ‖ · ‖p the Lp(
)-norm. We use the fact that for elements in a fixed
Wiener chaos Hn, the ‖ · ‖p-norms are equivalent; see the last line of page 62
of [43] with q = p and p = 2. More precisely,

∥∥Jn(t, x)
∥∥
p ≤ (p − 1)n/2∥∥Jn(t, x)

∥∥
2 = (p − 1)n/2

(
1

n!αn(t)

)1/2

.



INTERMITTENCY FOR WAVE AND HEAT EQUATIONS 1507

Using (37), we obtain∥∥Jn(t, x)
∥∥
p ≤ (u0 + tv0)C

n
p,Kw

tn(2H+2−a)/2 1

(n!)(3−a)/2 ,

where Cp,Kw = (p − 1)1/2c1/2K
1/2
w and c depends on H and a.

Recall Minkowski’s inequality for integrals (see Appendix A.1 of [50]),[∫
Y

(∫
X

∣∣F(x, y)
∣∣μ(dx)

)p

ν(dy)

]1/p

≤
∫
X

(∫
Y

∣∣F(x, y)
∣∣pν(dy)

)1/p

μ(dx).

We use this inequality for (X,X ) = (N,2N) with μ the counting measure,
(Y,Y, ν) = (
,F,P ) and F(n,ω) = Jn(ω, t, x). We have∥∥u(t, x)

∥∥
p =

∥∥∥∥∑
n≥0

Jn(t, x)

∥∥∥∥
p

≤ ∑
n≥0

∥∥Jn(t, x)
∥∥
p

≤ (u0 + tv0)
∑
n≥0

Cn
p,Kw

tn(2H+2−a)/2

(n!)(3−a)/2 .

Using Lemma A.1 (Appendix A), we infer that for any t > 0,∥∥u(t, x)
∥∥
p ≤ c1(u0 + tv0) exp

{
c′

2
(
Cp,Kw t (2H+2−a)/2)2/(3−a)}

,

where c1 > 0 and c′
2 > 0 are some constants depending on a. The conclusion fol-

lows taking c2 = c′
2c

1/(3−a), since 2H+2−a
2 · 2

3−a
= ρw and

pC
2/(3−a)
p,Kw

= p(p − 1)1/(3−a)c1/(3−a)K1/(3−a)
w . �

6. Hyperbolic case: FK representation for the second moment. In this sec-
tion, we develop a Feynman–Kac (FK) representation for the second moment of
a solution u(t, x) of the wave equation (SWE) [given by (28)], similar to the one
obtained in [26] in the case of white noise in time. Due to the fractional compo-
nent of the noise, our representation is based on a Poisson random measure on R

2+,
rather than a simple Poisson process. This extension follows the approach of [2]
for the parabolic case.

The following theorem is the main result of this section. This theorem is valid
for any function f for which covariance (2) of the noise W is well defined, but
may not be valid in case (iv) (since in this case, f is a distribution). Theorem 6.1
will be used in Section 7 to obtain a lower bound for the second moment of a
solution to (SWE) in cases (i)–(iii). Case (iv) will be treated differently using an
approximation based on case (ii).

THEOREM 6.1. Suppose that equation (SWE) with d ≤ 3 has a solution
u(t, x) [given by (28)], where W = {W(ϕ);ϕ ∈ H} is a zero-mean Gaussian pro-
cess with covariance specified by (1) and (2), and f is a nonnegative function on



1508 R. M. BALAN AND D. CONUS

R
d , which is the Fourier transform of a tempered measure μ on R

d . Then for any
t > 0, x ∈R

d ,

E
∣∣u(t, x)

∣∣2
= et2 ∑

n≥0

∑
i1,...,in
distinct

Ex

[
ww

(
t − τn,X

1
τn

)
ww

(
t − τ ′

n,X
2
τ ′
n

) n∏
j=1

(τj − τj−1)

×
n∏

j=1

(
τ ′
j − τ ′

j−1
) n∏
j=1

f
(
X1

Tij
− X2

Sij

)
αn

H

×
n∏

j=1

|Tij − Sij |2H−21Bi1,...,in (t)

]
,

where, by convention, the term for n = 0 is taken to be ww(t, x)2, and ww is defined
by (16). Here:

• N = ∑
i≥1 δPi

is a Poisson random measure on R
2+ of intensity the Lebesgue

measure, with Pi = (Ti, Si);
• Bi1,...,in(t) is the event that N has points Pi1, . . . ,Pin in [0, t]2;
• τ1 ≤ · · · ≤ τn and τ ′

1 ≤ · · · ≤ τ ′
n are the points Ti1, . . . , Tin , respectively

Si1, . . . , Sin arranged in increasing order;
• the processes X1 = (X1

s )s∈[0,t] and X2 = (X2
s )s∈[0,t] are defined by (41)

and (42) below, and we denote by Px a probability measure under which
X1

0 = X2
0 = x. (Ex stands for the expectation with respect to Px .)

The processes X1 and X2 are constructed as in [26], using the coordinates of
the points of N on the two axes. We explain this construction below. On the event
Bi1,...,in(t), we arrange the two sets of points {Ti1, . . . , Tin} and {Si1, . . . , Sin} in
increasing order as τ1 ≤ · · · ≤ τn, respectively τ ′

1 ≤ · · · ≤ τ ′
n. More precisely, if we

denote Uj = Tij and Vj = Sij for j = 1, . . . , n, then there exist some permutations
ρ and σ of {1, . . . , n} such that

Uρ(n) ≤ Uρ(n−1) ≤ · · · ≤ Uρ(1) and Vσ(n) ≤ Vσ(n−1) ≤ · · · ≤ Vσ(1).

We let τj = Uρ(n+1−j) and τ ′
j = Vσ(n+1−j) for any j = 1, . . . , n.

We let (�1
i )i≥1 and (�2

i )i≥1 be two independent i.i.d. collections of random
variables with the same law as �0, where �0 is a random variable with values
in R

d such that if d ≤ 2, �0 has density function Gw(1, ·), and if d = 3, �0 has
distribution Gw(1, ·). The importance of the variable �0 stems from the fact that
for any t > 0,

Gw(t, ·)
t

is the density/distribution of t�0.(40)
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Using the points τ1 ≤ · · · ≤ τn and the variables (�1
i )i≥1, we construct the pro-

cess X1 = (X1
s )s∈[0,t] by setting

X1
s = X1

τi
+ (s − τi)�

1
i+1 if τi ≤ s ≤ τi+1(41)

for any 1 ≤ i ≤ n, where τ0 = 0, τn+1 = t and X1
0 = 0. We use a similar con-

struction for the process X2 = (X2
s )s∈[0,t] using the points τ ′

1 ≤ · · · ≤ τ ′
n and the

variables (�2
i )i≥1, that is, τ ′

0 = 0, τ ′
n+1 = t , X2

0 = 0 and for any 1 ≤ i ≤ n,

X2
s = X2

τ ′
i
+ (

s − τ ′
i

)
�2

i+1 if τ ′
i ≤ s ≤ τ ′

i+1.(42)

We now give some remarks about the statement of Theorem 6.1.

REMARK 6.2. A similar formula can be obtained for E[u(t, x)u(s, y)] using
the points of N in [0, t] × [0, s] and assuming that X1

0 = x and X2
0 = y.

REMARK 6.3. Note that |Tij − Sij |2H−2 = ∞ if the point (Tij , Sij ) falls on
the diagonal D = {(s, s);0 ≤ s ≤ t} of the square [0, t]2. This is not a problem
since with probability 1, N has no points in D: P(N(D) = 0) = e−Leb(D) = 1.

REMARK 6.4. Without loss of generality we may assume that τ1 < · · · < τn

and τ ′
1 < · · · < τ ′

n since the event for which τj = τj−1 (or τ ′
j = τ ′

j−1) for some
j = 1, . . . , n has probability zero: with probability 1, no vertical (or horizontal)
line contains two distinct points of N ; see page 223 of [47].

REMARK 6.5. Theorem 6.1 is valid for any function f , not necessarily as in
one of the cases (i)–(iii). In fact, this representation remains valid if we replace
αH |t − s|2H−2 in (2) by a function η(t, s), provided that 〈·, ·〉H defines an inner
product. We only need to assume that a solution of (SWE) [given by (28)] exists.
In the new representation, αH |Tij − Sij |2H−2 is replaced by η(t − Tij , t − Sij ).

We now introduce the necessary ingredients for the proof of Theorem 6.1.
Recall first that if (Nt)t≥0 is a Poisson process on R+ of rate 1 with jump times

τ1 < τ2 < · · · , then the conditional distribution of (τ1, . . . , τn) given Nt = n co-
incides with the distribution of the order statistics of a sample of size n from the
uniform distribution on [0, t]. This property lies at the core of the FK formula
obtained in [26] and can be seen very easily as follows. For any t > 0 fixed, the
process (Ns)s∈[0,t] can be constructed as Ns = ∑Y

i=1 1{Xi≤s}, where (Xi)i≥1 are
i.i.d. random variables with a uniform distribution on [0, t], and Y is an indepen-
dent Poisson random variable with mean t . If Nt = n, the jump times of N in [0, t]
coincide with the order statistics X(1) < · · · < X(n).
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A similar property holds for the planar Poisson process. This basic observation
has enabled the first author to obtain in [2] an FK formula similar to that of [26]
in the case of the heat equation with fractional noise in time. In this section, we
develop a similar formula for the wave equation with d ≤ 3.

More precisely, let N be a Poisson random measure as in Theorem 6.1. Since the
Lebesgue measure does not have any atoms, N is a.s. simple, that is, N({t}) ≤ 1
for all t = (t1, t2) ∈R

2+ a.s. (see Exercise 2.4 of [37]). This means that with proba-
bility 1, the points (Pi)i≥1 are distinct. For any t > 0 fixed, we consider the event
Bi1,...,in(t) for distinct indices i1, . . . , in ≥ 1.

The following result plays an important role in the present paper; see also Prob-
lem 5.2, page 162 of [47].

LEMMA 6.6. Let N = ∑
i≥1 δPi

be a Poisson random measure on R
2+ of in-

tensity the Lebesque measure, with Pi = (Si, Ti). For t > 0 and distinct indices
i1, . . . , in, let Bi1,...,in(t) be the event that N has points Pi1, . . . ,Pin in [0, t]2. Given
Bi1,...,in(t), both vectors (Pi1, . . . ,Pin) and (t − Pi1, . . . , t − Pin) have a uniform
distribution on [0, t]2n, where t = (t, t) ∈ R

2+.

PROOF. The restriction of N to [0, t]2 can be constructed as N = ∑Y
i=1 δXi

,
where (Xi)i≥1 are i.i.d. random variables with a uniform distribution on [0, t]2,
and Y is an independent Poisson random variable with mean t2. If N has points
Pi1, . . . ,Pin in [0, t]2, the vector (Pi1, . . . ,Pin) of the n points coincides with a
vector (Xj1, . . . ,Xjn) for some distinct indices j1, . . . , jn, which clearly has a uni-
form distribution on [0, t]2n. The argument for the vector (t − Pi1, . . . , t − Pin) is
similar; see Lemma 2.1 of [2] for an alternative proof. �

As a consequence of the previous lemma, any n-fold integral over ([0, t]2)n of a
deterministic function F has a stochastic representation based on the points of N ;
see page 257 of [2] for the proof.

COROLLARY 6.7. For any measurable function F : [0, t]2n → R which is ei-
ther bounded or nonnegative, we have∫

[0,t]2n
F (t1, s1, . . . , tn, sn) dtds

= n!et2 ∑
i1,...,in
distinct

E
[
F(t − Ti1, t − Si1, . . . , t − Ti1, t − Sin)1Bi1,...,in (t)

]
,

where t = (t1, . . . , tn) and s = (s1, . . . , sn) with ti ∈ [0, t] and si ∈ [0, t].

The next result gives a stochastic representation for the nth term of series (29).
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LEMMA 6.8. For any t > 0 and for any integer n ≥ 1, we have

αn(t) = n!αn
Het2

× ∑
i1,...,in
distinct

E

[
n∏

j=1

|Tij − Sij |2H−2

× ψn(t − Ti1, . . . , t − Tin, t − Si1, . . . , t − Sin)1Bi1,...,in (t)

]
,

where ψn(t, s) is given by (31).

PROOF. The integral on the right-hand side of (30) can be represented in the
desired form by applying Corollary 6.7 to the function

F(t1, s1, . . . , tn, sn) = αn
H

n∏
j=1

|tj − sj |2H−2ψn(t, s).
�

The next result will be used to evaluate the term ψn(t − Ti1, . . . , t − Tin, t −
Si1, . . . , t − Sin) which appears in Lemma 6.8. For simplicity, we work first with
some nonrandom points (t1, s1), . . . , (tn, sn) in [0, t]2. These points will be re-
placed later by (Ti1, Si1), . . . , (Tin, Sin).

LEMMA 6.9. Let (t1, s1), . . . , (tn, sn) ∈ [0, t]2. Let ρ,σ ∈ Sn be such that

0 < tρ(n) < · · · < tρ(1) < t and 0 < sσ(n) < · · · < sσ(1) < t.

If d ≤ 2, then

ψn(t − t1, . . . , t − tn, t − s1, . . . , t − sn)

=
∫
R2nd

dzdw
n∏

j=1

f

(n+1−ρ−1(j)∑
k=1

zk −
n+1−σ−1(j)∑

k=1

wk

)

× Gw(tρ(n), z1)Gw(tρ(n−1) − tρ(n), z2) · · ·Gw(tρ(1) − tρ(2), zn)

× Gw(sσ(n),w1)Gw(sσ(n−1) − sσ(n),w2) · · ·Gw(sσ(1) − sσ(2),wn)

× w

(
t − tρ(1), x +

n∑
k=1

zk

)
w

(
t − sσ(1), x +

n∑
k=1

wk

)
,

where z = (z1, . . . , zn) and w = (w1, . . . ,wn) with zi ∈ R
d,wi ∈ R

d . A similar
relation holds for d = 3, replacing Gw(tρ(n), z1) dz1 by Gw(tρ(n), dz1), etc.
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PROOF. Assume first that d ≤ 2. We use the alternative definition (32) of
ψn(t, s). We proceed as in the first part of the proof of Lemma 2.2 of [2]. Denote
tρ(n+1) = sσ(n+1) = 0 and xρ(n+1) = yσ(n+1) = x. Note that

0 < t − tρ(1) < · · · < t − tρ(n) < t and 0 < t − sσ(1) < · · · < t − sσ(n) < t

and Gw(t, x) = Gw(t,−x). By definition, ψn(t − t1, . . . , t − tn, t − s1, . . . , t − sn)

is equal to∫
R2nd

dxdy
n∏

j=1

Gw(tρ(j) − tρ(j+1), xρ(j) − xρ(j+1))w(t − tρ(1), xρ(1))

×
n∏

j=1

Gw(sσ(j) − sσ(j+1), yσ(j) − yσ(j+1))w(t − sσ(1), yσ(1))

×
n∏

j=1

f (xj − yj ).

The result follows by the change of variables xρ(j) − xρ(j+1) = zn+1−j and
yσ(j) − yσ(j+1) = wn+1−j for j = 1, . . . , n.

The same argument works also for d = 3, using the alternative definition (33)
of ψn(t, s). To see this, assume for simplicity that n = 2, 0 < t1 < t2 < t and
0 < s2 < s1 < t . (The same argument applies in the general case.) Then ψ2(t −
t1, t − t2, t − s1, t − s2) is equal to∫

R4d
h(x1, x2, y1, y2)Gw(t1, dx1 − x)Gw(t2 − t1, dx2 − x1)

× Gw(s2, dy2 − x)Gw(s1 − s2, dy1 − y2),

where h(x1, x2, y1, y2) = f (x1 − y1)f (x2 − y2)w(t − t2, x2)w(t − s1, y1) and we
used the fact that Gw(t, a − dx) = Gw(t, dx − a). We claim that for any nonneg-
ative measurable function ϕ :R4d →R,∫

R4d
ϕ(x1, x2, y1, y2)Gw(t1, dx1 − x)Gw(t2 − t1, dx2 − x1)

× Gw(s2, dy2 − x)Gw(s1 − s2, dy1 − y2)
(43)

=
∫
R4d

ϕ(x + z1, x + z1 + z2, x + w1 + w2, x + w1)

× Gw(t1, dz1)Gw(t2 − t1, dz2)Gw(s2, dw1)Gw(s1 − s2, dw2).

(This means that we can apply informally the change of variables x1 − x =
z1, x2 −x1 = z2 and y2 −x = w1, y1 −y2 = w2.) Assuming that ϕ(x1, x2, y1, y2) =
φ1(x1)φ2(x2)ψ1(y1)ψ2(y2), relation (43) follows using the fact that for any non-
negative measurable function φ :Rd →R,∫

Rd
φ(x)Gw(t, dx − a) =

∫
Rd

φ(a + y)Gw(t, dy).
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The case of an arbitrary function ϕ follows by approximation. The conclusion
follows applying (43) to the function ϕ = h. �

REMARK 6.10. In the case of the heat equation, Gh(t − s, ·) is the density of
B1

t − B1
s , where (B1

t )t≥0 is a d-dimensional Brownian motion, and the product

Gh(tρ(n), z1)Gh(tρ(n−1) − tρ(n), z2) · · ·Gh(tρ(1) − tρ(2), zn),

which appears in Lemma 6.9 is the density of the random vector(
B1

tρ(n)
,B1

tρ(n−1)
− B1

tρ(n)
, . . . ,B1

tρ(1)
− B1

tρ(2)

)
.

Applying a similar argument for the other n-term product (depending on s) and
using an independent Brownian motion (B2

t )t≥0, we infer that

ψn(te − t, te − s)

= E

[
w
(
t − tρ(1), x + B1

tρ(1)

)
w
(
t − sσ(1), x + B2

sσ(1)

) n∏
j=1

f
(
B1

tj
− B2

sj

)]
,

where e = (1, . . . ,1) ∈ R
n, t = (t1, . . . , tn) and s = (s1, . . . , sn). Something similar

will happen in the case of the wave equation, conditionally on N .

REMARK 6.11. Due to (40), when d ≤ 2, the product

Gw(τ1, z1)

τ1
· Gw(τ2 − τ1, z2)

τ2 − τ1
· · · Gw(τn − τn−1, zn)

τn − τn−1

is the conditional density of Y1 = (X1
τ1

,X1
τ2

− X1
τ1

, . . . ,X1
τn

− X1
τn−1

) given N .

Let Y2 = (X2
τ ′

1
,X2

τ ′
2
− X2

τ ′
1
, . . . ,X2

τ ′
n
− X2

τ ′
n−1

). Since X1 and X2 are conditionally

independent given N ,
n∏

j=1

Gw(τj − τj−1, zj )

τj − τj−1

n∏
j=1

Gw(τ ′
j − τ ′

j−1,wj )

τ ′
j − τ ′

j−1

is the conditional density of (Y1,Y2) given N . A similar thing happens when
d = 3. Therefore, for the wave equation, the processes X1,X2 play the same role
(conditionally on N ), as the Brownian motions B1,B2 for the heat equation; see
Remark 6.10.

PROOF OF THEOREM 6.1. By applying Lemma 6.9 to the points (tj , sj ) =
(Tij , Sij ) we obtain that on the event Bi1,...,in(t),

ψn(t − Ti1, . . . , t − Tin, t − Si1, . . . , t − Sin)

=
∫
R2nd

dzdw
nd∏

j=1

f

(n+1−ρ−1(j)∑
k=1

zk −
n+1−σ−1(j)∑

k=1

wk

)
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× Gw(τ1, z1)Gw(τ2 − τ1, z2) · · ·Gw(τn − τn−1, zn)

× Gw
(
τ ′

1,w1
)
Gw

(
τ ′

2 − τ ′
1,w2

) · · ·Gw
(
τ ′
n − τ ′

n−1,wn

)
× ww

(
t − τn, x +

n∑
k=1

zk

)
ww

(
t − τ ′

n, x +
n∑

k=1

wk

)
,

assuming that d ≤ 2. A similar identity holds for d = 3 replacing Gw(τ1, z1) dz1

by Gw(τ1, dz1), and so on. Inside this integral, we multiply and divide by∏n
j=1(τj − τj−1)

∏n
j=1(τ

′
j − τ ′

j−1).

We assume that X1
0 = X2

0 = 0. Using Remark 6.11, we infer that on the event
Bi1,...,in(t), ψn(t − Ti1, . . . , t − Tin, t − Si1, . . . , t − Sin) is equal to the conditional
expectation of

n∏
j=1

f

(n+1−ρ−1(j)∑
k=1

(
X1

τk
− X1

τk−1

)−
n+1−ρ−1(j)∑

k=1

(
X2

τ ′
k
− X2

τ ′
k−1

))

× ww

(
t − τn, x +

n∑
k=1

(
X1

τk
− X1

τk−1

))
ww

(
t − τ ′

n, x +
n∑

k=1

(
X2

τ ′
k
− X2

τ ′
k−1

))

×
n∏

j=1

(τj − τj−1)

n∏
j=1

(
τ ′
j − τ ′

j−1
)

given N . Note that

n+1−ρ−1(j)∑
k=1

(
X1

τk
− X1

τk−1

)= X1
τ
n+1−ρ−1(j)

and
n∑

k=1

(
X1

τk
− X1

τk−1

)= X1
τn

(these are telescopic sums whose first term is X1
τ0

= 0). Recall that τk = Uρ(n+1−k)

for any k = 1, . . . , n (where Uj = Tij ). Hence

τn+1−ρ−1(j) = Uρ(n+1−n−1+ρ−1(j)) = Uρ(ρ−1(j)) = Uj = Tij .

A similar argument applies to the terms depending on X2. We obtain that on the
event Bi1,...,in(t),

ψn(t − Ti1, . . . , t − Tin, t − Si1, . . . , t − Sin)

= E

[
n∏

j=1

f
(
X1

Tij
− X2

Sij

)
ww

(
t − τn, x + X1

τn

)
ww

(
t − τ ′

n, x + X2
τ ′
n

)

×
n∏

j=1

(τj − τj−1)

n∏
j=1

(
τ ′
j − τ ′

j−1
)∣∣∣∣N

]
.
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Looking now back at the representation of αn(t) (Lemma 6.8), we obtain

1

n!αn(t)

= et2 ∑
i1,...,in
distinct

E

[
1Bi1,...,in (t)

n∏
j=1

|Tij − Sij |2H−2

× E

[
n∏

j=1

f
(
X1

Tij
− X2

Sij

)
ww

(
t − τn, x + X1

τn

)
× ww

(
t − τ ′

n, x + X2
τ ′
n

)
×

n∏
j=1

(τj − τj−1)

n∏
j=1

(
τ ′
j − τ ′

j−1
)∣∣∣∣N

]]
.

Note that 1Bi1,...,in (t)

∏n
j=1 |Tij − Sij |2H−2 is measurable with respect to N , and

so, this term goes inside the conditional expectation with respect to N . The result
follows using the fact that E[E[·|N ]] = E[·] and taking the sum over n ≥ 1. In the
final step, the values x + X1

τn
and x + X2

τ ′
n

are replaced by X1
τn

, respectively X2
τ ′
n
,

under the probability measure Px . �

7. Hyperbolic case: Lower bound on the moment of order 2. In this sec-
tion, we give a lower bound for the second moment of a solution u to (SWE)
[given by (28)], when f is a kernel of cases (i)–(iv). This yields the conclusion of
Theorem 2.1(c).

For cases (i)–(iii), we follow the approach of Dalang and Mueller [25]. This
means that for any x, y ∈ R

d with x �= y, we consider the solid (infinite) cone
C(x, y) in R

d , with vertex y, axis oriented in the direction of the vector x − y and
an angle of π/4 between the axis and any lateral side. This cone has the following
properties:

(i) if |z − y| ≤ δ, |y − x| ≤ δ and z ∈ C(x, y), then |z − x| ≤ δ;
(ii) y + z ∈ C(x, y) if and only if y + rz ∈ C(x, y) for any r > 0;

(iii) C(x, y) + z = C(x + z, y + z).

7.1. Case (i): Spatially smooth noise. In this case, since f is continuous at 0,
limx→0 f (x) = f (0) = μ(Rd) = Kw. Letting α0 = Kw/2, we infer that there ex-
ists δ > 0 such that

f (x) ≥ α0 for all x ∈R
d, |x| ≤ 2δ;(44)

that is, f satisfies Assumption C of [25]. We assume that δ is a rational number.
The next result corresponds to Theorem 2.1(c), in case (i). Its proof relies on the

Feynman–Kac formula developed in Section 6.



1516 R. M. BALAN AND D. CONUS

THEOREM 7.1. Let f be a kernel of case (i). Then, for any x ∈ R
d and for

any t > 0,

E
∣∣u(t, x)

∣∣2 ≥ c3u
2
0 exp

(
c5K

1/3
w tρw

)
,

where c3 > 0 and c5 > 0 are some constants depending on H , and the constants
ρw and Kw are given by (8), respectively (36).

PROOF. We proceed as in the proof of Theorem 4.1 of [25]. To facilitate the
comparison with the proof of these authors, we use the same notation; that is, we
denote n by k in the statement of Theorem 6.1 above. We let Nt = N([0, t]2).

Step 1. First step for the lower bound of E|u(t, x)|2.
Let k ∈ Z+ be a large enough value (depending on t) such that

m := kδ ∈ Z+,(45)

where δ is given by (44). (The precise value of k will be given in step 8 below.)
Notice that for all t > 0 and x ∈ R

d , ww(t, x) = u0 + v0t ≥ u0, since v0 ≥ 0.
Hence, by Theorem 6.1,

E
∣∣u(t, x)

∣∣2 ≥ u2
0e

t2
αk

H

× ∑
i1,...,ik
distinct

Ex

[
k∏

j=1

(τj − τj−1)

k∏
j=1

(
τ ′
j − τ ′

j−1
)

(46)

×
k∏

j=1

f
(
X1

Tij
− X2

Sij

) k∏
j=1

|Tij − Sij |2H−21Bi1,...,ik
(t)

]
.

Step 2. The event D(t).
We consider the event D(t) = D1(t) ∩ D2(t), where

D1(t) = {
X1

τj
+ �1

j+1 ∈ C
(
x,X1

τj

)
for all j = 1, . . . , k − 1

}∩ Bi1,...,ik (t),

D2(t) = {
X2

τ ′
j
+ �2

j+1 ∈ C
(
x,X2

τ ′
j

)
for all j = 1, . . . , k − 1

}∩ Bi1,...,ik (t).

On the event D1(t), if we assume that τj − τj−1 ≤ δ for all j = 1, . . . , k, then∣∣X1
τj

− x
∣∣≤ δ for all j = 1, . . . , k.(47)

We first prove (47) by induction on j , using the properties of the cone. The
argument is the same as in [25]. We include it for the sake of completeness. If
j = 1, then X1

τ1
= x + τ1�

1
1 and |X1

τ1
− x| = τ1|�1

1| ≤ δ since |�1
1| ≤ 1. Assume

now that |X1
τj

− x| ≤ δ. We use property (i) of the cone for points x′ = 0, y′ =
X1

τj
− x and z′ = X1

τj+1
− x. We note that |z′ − y′| = |X1

τj+1
− X1

τj
| = (τj+1 −

τj )|�1
j+1| ≤ δ, and |y′ − x′| = |X1

τj
− x| ≤ δ by the induction hypothesis. We
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also have z′ ∈ C(x′, y′), that is, X1
τj+1

− x ∈ C(0,X1
τj

− x). [This is equivalent to

X1
τj+1

∈ C(0,X1
τj

−x)+x = C(x,X1
τj

), using property (iii) of the cone for the last

equality, which is in turn equivalent to X1
τj

+ (τj+1 − τj )�
1
j+1 ∈ C(x,X1

τj
), using

the definition of X1
τj+1

. By property (ii) of the cone, this last property is equivalent

to X1
τj

+ �1
j+1 ∈ C(x,X1

τj
), which holds true on the event D1(t).] By property (i)

of the cone, it follows that |z′ − x′| ≤ δ, that is, |X1
τj+1

− x| ≤ δ. This completes
the proof of (47).

Recall that τj = Uρ(k+1−j) for some permutation ρ of {1, . . . , k}, where Uj =
Tij . As j runs through the set {1, . . . , k}, so does the value ρ(k+1−j). Therefore,
on the event D1(t), if we assume that τj − τj−1 ≤ δ for all j = 1, . . . , k, then
|X1

Tij
− x| ≤ δ for all j = 1, . . . , k, by (47). A similar property holds for X2 on

the event D2(t). Hence, on the event D(t), if we assume that τj − τj−1 ≤ δ and
τ ′
j − τ ′

j−1 ≤ δ for all j = 1, . . . , k, then∣∣X1
Tij

− X2
Sij

∣∣≤ 2δ for all j = 1, . . . , k

and so

f
(
X1

Tij
− X2

Sij

)≥ α0 for all j = 1, . . . , k.(48)

Step 3. The islands (Ij,l)1≤j,l≤k .
The idea of the proof is to build some small islands around the k points of the

process N in the region [0, t]2. Figure 1 shows these islands for k = 4. To define

FIG. 1. The islands Ij,l (for k = 4) with points situated on the islands I11, I24, I32, I43 corre-
sponding to the permutation (l1, l2, l3, l4) = (1,4,2,3).
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these islands, we let ε = δt
m+1 and tj = jε for any j = 1, . . . , k. Due to (45), we

have

tk = kε = m

m + 1
t ≈ t if m is large.

We consider the intervals Ij = [aj , bj ] with j = 1, . . . , k, where aj = tj − ε/4 for
j = 1, . . . , k, bj = tj + ε/4 if j ≤ k − 1, and bk = t . For any j, l = 1, . . . , k, we
define

Ij,l = Ij × Il.

The area of each square island Ij,l is greater than (ε/4)2. In both the horizontal
and vertical directions, the islands are separated by intervals of length ε/2.

Step 4. The event Ci1,...,ik (t).
Let Ci1,...,ik (t) be the event that N has points Pi1, . . . ,Pik in [0, t]2 located on

the islands I1,l1, . . . , Ik,lk , for some permutation (l1, . . . , lk) of {1, . . . , k}.
Clearly, Ci1,...,ik (t) is included in Bi1,...,ik (t). Notice that on the event Ci1,...,ik (t),

it is not possible to have two points (Tip , Sip) and (Tiq , Siq ) of N in [0, t]2 such
that Tip , Tiq are in the same interval Ij or Sip , Siq are in the same interval Il . There-
fore, on the event Ci1,...,ik (t), for any j = 1, . . . , k, we have τj ∈ Ij , τ

′
j ∈ Ij , and

hence
ε

2
≤ τj − τj−1 ≤ 2ε and

ε

2
≤ τ ′

j − τ ′
j−1 ≤ 2ε.(49)

In particular, if

m ≥ m0(t) := [2t − 1],(50)

then τj − τj−1 ≤ δ and τ ′
j − τ ′

j−1 ≤ δ for all j = 1, . . . , k. It follows that

inequality (48) holds on the event D(t) ∩ Ci1,...,ik (t),(51)

provided that m ≥ m0 = m0(t).
Step 5. Second step for the lower bound of E|u(t, x)|2.
On the event Bi1,...,ik (t), we define Z̃t = ∏k

j=1(τj − τj−1)
∏k

j=1(τ
′
j − τ ′

j−1).
Using (46) and (51), we obtain

E
∣∣u(t, x)

∣∣2
≥ u2

0e
t2

αk
H

∑
i1,...,ik
distinct

Ex

[
Z̃t

k∏
j=1

f
(
X1

Tij
− X2

Sij

)

×
k∏

j=1

|Tij − Sij |2H−21D(t)1Ci1,...,ik
(t)

]
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≥ u2
0e

t2
αk

Hαk
0

∑
i1,...,ik
distinct

Ex

[
Z̃t

k∏
j=1

|Tij − Sij |2H−21D(t)1Ci1,...,ik
(t)

]

= u2
0e

t2
αk

Hαk
0

∑
i1,...,ik
distinct

Ex

[
Z̃t

k∏
j=1

|Tij − Sij |2H−21Ci1,...,ik
(t)Px

[
D(t)|N]]

.

Since the events D1(t) and D2(t) are conditionally independent given N ,

Px

[
D(t)|N]= Px

[
D1(t)|N]

Px

[
D2(t)|N]

.

Using the properties of the cone and the independence of (�1
i )i≥1, it can be shown

that Px[D1(t)|N] = γ Nt−1, where γ = P(y + �0 ∈ C(0, y)) ∈ (0,1) does not
depend on y ∈ R

d . Note that γ depends on d . A similar property holds for D2(t).
Hence,

Px

[
D(t)|N]= γ 2(Nt−1) > γ 2Nt .

Combining this with the previous lower bound for E|u(t, x)|2, we obtain

E
∣∣u(t, x)

∣∣2 ≥ u2
0e

t2
αk

Hαk
0γ 2k

× ∑
i1,...,ik
distinct

Ex

[
Z̃t

k∏
j=1

|Tij − Sij |2H−21Ci1,...,ik
(t)

]
.

We define the conditional expectation of a random variable X with respect to an
event B by E[X|B] = E[X1B ]/P (B). (This is not the same as E[X|G], where G =
σ({B}) = {∅,B,Bc,
} since E[X|G] = E[X|B]1B + E[X|Bc]1Bc .) In our case,
X is the random variable appearing in the expectation above and B = Bi1,...,ik (t).
We obtain

E
∣∣u(t, x)

∣∣2 ≥ u2
0e

t2
αk

Hαk
0γ 2k

× ∑
i1,...,ik
distinct

Ex

[
Z̃t

k∏
j=1

|Tij − Sij |2H−21Ci1,...,ik
(t)

∣∣∣∣Bi1,...,ik (t)

]

× Px

(
Bi1,...,ik (t)

)
.

Note that by (49), on the event Ci1,...,ik (t), we have Z̃t ≥ (ε/2)2k . Using the fact
that δ = m/k [by the definition (45) of m], we see that

ε

2
= δt

2(m + 1)
= m

m + 1
· t

2k
≥ ct

k
(52)
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with c = 1/8. Hence Z̃t ≥ (ct/k)2k and

E
∣∣u(t, x)

∣∣2 ≥ et2
αk

Hαk
0γ 2k

(
ct

k

)2k

× ∑
i1,...,ik
distinct

Ex

[
k∏

j=1

|Tij − Sij |2H−21Ci1,...,ik
(t)

∣∣∣∣Bi1,...,ik (t)

]

× Px

(
Bi1,...,ik (t)

)
.

Since both Tij and Sij are in [0, t], we obviously have |Tij −Sij | < t . Thus since
2H − 2 < 0,

k∏
j=1

|Tij − Sij |2H−2 > t(2H−2)k.

This turns out to be enough for our purposes. With this bound, we have

E
∣∣u(t, x)

∣∣2 ≥ u2
0e

t2
αk

Hαk
0γ 2k

(
ct

k

)2k

t (2H−2)k

(53)
× ∑

i1,...,ik
distinct

Px

(
Ci1,...,ik (t)|Bi1,...,ik (t)

)
Px

(
Bi1,...,ik (t)

)
.

Step 6. The conditional probability Px(Ci1,...,ik (t)|Bi1,...,ik (t)).
Let Sk be the set of all permutations (l1, . . . , lk) of {1, . . . , k}. By the definition

of the event Ci1,...,ik (t),

Px

(
Ci1,...,ik (t)|Bi1,...,ik (t)

)= ∑
(l1,...,lk)∈Sk

Px

(
Ai1,...,ik

(
t, (l1, . . . , lk)

)|Bi1,...,ik (t)
)
,

where Ai1,...,ik (t, (l1, . . . , lk)) is the event that N has points Pi1, . . . ,Pik in [0, t]2

located on the islands I1,l1, . . . , Ik,lk . Note that

Ai1,...,ik

(
t, (l1, . . . , lk)

)= ⋃
(j1,...,jk)∈Sk

{Pi1 ∈ Ij1,l1, . . . ,Pik ∈ Ijk,lk }.

Given Bi1,...,ik (t), (Pi1, . . . ,Pik ) has a uniform distribution on [0, t]2k . Hence

Px

(
Pi1 ∈ Ij1,l1, . . . ,Pik ∈ Ijk,lk |Bi1,...,ik (t)

)
= Leb(Ij1,l1 × · · · × Ijk,lk )

Leb([0, t]2k)

≥ 1

t2k

(
ε

4

)2k

.
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Since the last quantity does not depend on the permutations (j1, . . . , jk) and
(l1, . . . , lk), we obtain that

Px

(
Ci1,...,ik (t)|Bi1,...,ik (t)

)= (k!)2 1

t2k

(
ε

4

)2k

≥ (k!)2
(

c

k

)2k

,(54)

using (52) for the inequality. Relation (54) is the analogue of (4.7) of [25] (with
n = 2) for the fractional noise.

Step 7. Third step for the lower bound of E|u(t, x)|2.
Combining (53) and (54), we get

E
∣∣u(t, x)

∣∣2 ≥ u2
0e

t2
αk

Hαk
0γ 2k

(
ct

k

)2k

t (2H−2)k(k!)2
(

c

k

)2k

× ∑
i1,...,ik
distinct

Px

(
Bi1,...,ik (t)

)
.

We now use the fact that {Nt = k} is the disjoint union of all events Bi1,...,ik (t) for
all sets {i1, . . . , ik} of cardinality k. Moreover, Nt has a Poisson distribution with
mean t2. Hence P(Nt = k) = e−t2

t2k/k! and

E
∣∣u(t, x)

∣∣2 ≥ u2
0e

t2
αk

Hαk
0γ 2k

(
ct

k

)2k

t (2H−2)k(k!)2
(

c

k

)2k

e−t2 t2k

k!
= u2

0
(
α0αHγ 2c4)kt (2H+2)k 1

k4k
k!.

By Stirling’s formula, there exists some k0 ≥ 1 such that k! ≥ e−kkk for all k ≥ k0.
It follows that if k ≥ k0, then

E
∣∣u(t, x)

∣∣2 ≥ u2
0

(
α0cH

t2H+2

k3

)k

,(55)

where cH = αHγ 2c4e−1 depends on H . (cH depends also on d , through γ .)
Step 8. The choice of k.
Let

k = [
e−1/3α

1/3
0 c

1/3
H t(2H+2)/3],

where [x] = k ∈ Z if k ≤ x < k + 1. Since k ≤ e−1/3α
1/3
0 c

1/3
H t(2H+2)/3, it follows

that e ≤ α0cH t2H+2/k3. On the other hand, letting

k1 = 1
2

(
e−1α0cH

)1/3 = α
1/3
0 · 1

2

(
αHγ 2c4e−2)1/3 =: α1/3

0 c∗
1,

we have k > 2k1t
(2H+2)/3 − 1 ≥ k1t

(2H+2)/3 if k1t
(2H+2)/3 ≥ 1. Using (55), we

infer that

E
∣∣u(t, x)

∣∣2 ≥ u2
0e

k ≥ u2
0 exp

(
k1t

(2H+2)/3) if α0t
2H+2 ≥ t ′1 := (

c∗
1
)−3

.
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Note that k ≥ k0 if α0t
2H+2 ≥ t ′′1 := k3

0ecH . We take t1 = t ′1 ∨ t ′′1 .

Let c4 = c∗
1α

1/3
0 = c∗

12−1/3K
1/3
w . This proves that for any t > 0 such that

α0t
2H+2 ≥ t1 (i.e., for all t ≥ t0 for some t0 > 0),

E
∣∣u(t, x)

∣∣2 ≥ u2
0 exp

(
c4t

ρw
)
.

Step 9. Extension to all t > 0.
Using (29) and the fact that u0 > 0 and v0 > 0, we infer that for any 0 < t < t0,

E
∣∣u(t, x)

∣∣2 ≥ w(t, x)2 = (u0 + tv0)
2 ≥ c∗

3u
2
0 exp

(
c4t

ρw
0

)≥ c∗
3u

2
0 exp

(
c4t

ρw
)
,

where c∗
3 = exp(−c4t

ρw
0 ). Finally, we let c3 = min(1, c∗

3) and c5 = c∗
12−1/3. �

7.2. Cases (ii) and (iii): Fractional noise in space. These cases are treated
similar to case (i), using Theorem 6.1. The difference is that instead of (44), we
use the fact that for any δ > 0,

f (x) ≥ α0(δ) := (2δ)−a for all x ∈ R
d, |x| ≤ 2δ,(56)

where a is given by (9).
The next result corresponds to Theorem 2.1(c), in cases (ii)–(iii).

THEOREM 7.2. Let f be a kernel of either case (ii) or (iii). If (35) holds, then
for any x ∈ R

d and for any t > 0,

E
∣∣u(t, x)

∣∣2 ≥ c3u
2
0 exp

(
c4t

ρw
)
,

where c3 > 0 and c4 > 0 are some constants depending on H and a, and the
constants ρw and a are given by (8), respectively (9).

PROOF. We use the same argument as in the proof of Theorem 7.1, but with a
different method of specifying the parameters.

More precisely, we let k ∈ Z+ be a large enough value (depending on t) which
will be chosen later. We choose δ = m/k where m = [2t]. This ensures that (45)
and (50) are satisfied. Note that δ depends on t/k.

Let cH = αHγ 2c4e−1. Relation (55) says that if k ≥ k0, then

E
∣∣u(t, x)

∣∣2 ≥ u2
0

(
cH (2δ)−a t2H+2

k3

)k

= u2
0

(
cH 2−a

(
m

k

)−a t2H+2

k3

)k

≥ u2
0

(
cH 2−a

(
2t

k

)−a t2H+2

k3

)k

= u2
0

(
c∗
H

t2H+2−a

k3−a

)k

,

where c∗
H = cH 4−a . We let

k = [(
e−1c∗

H t2H+2−a)1/(3−a)]
.
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(This choice will ensure that δ is small since δ ≈ 2t/k ≈ Ct1−ρw and ρw > 1.)
Then e ≤ c∗

H t2H+2−a/k3−a . On the other hand, letting

c4 = 1
2

(
e−1c∗

H

)1/(3−a)
,(57)

we have k > 2c4t
ρw − 1 ≥ c4t

ρw if c4t
ρw ≥ 1. Hence

E
∣∣u(t, x)

∣∣2 ≥ u2
0e

k ≥ u2
0 exp

(
c4t

ρw
)

for all t ≥ t0,

where

t0 = (
ec−1

H 23+a)1/(2H+2−a)
.(58)

For 0 < t < t0, we argue as in step 9 of the proof of Theorem 7.1. �

7.3. Case (iv): White noise in space. In this case, we cannot apply directly
Theorem 6.1 since f is not a function. Instead of this, we will use an approximation
technique based on case (ii).

The fact that we use this approximation may be surprising, since in many in-
stances, it is easier to deal with the white noise than a correlated noise. This is due
to the fact that our method for proving the lower bound relies on the representa-
tion given by Theorem 6.1. Obtaining a similar representation in the case f = δ0
is more delicate. (The Dirac distribution would have to be approximated in some
sense, so that the representation make sense.) Instead of this, we decided to use an
approximation directly for obtaining the lower bound.

Our procedure can be viewed as another method to smoothen the noise, par-
alleling the method used in [35] and [33]. The fact that we approximate δ0
by a Riesz kernel allows us to use the result that we proved for case (ii).
A more standard procedure in the literature is to approximate δ0 by the heat ker-
nel pε(x) = (2πε)−1/2 exp(−|x|2/(2ε)) as ε ↓ 0. This is a kernel of case (i),
with limx→0 pε(x) = (2πε)−1/2. Denoting by uε(t, x) the solution of (SWE)
driven by a noise Wε with spatial covariance pε , one infers by Theorem 7.1
that E|uε(t, x)|2 ≥ u2

0 exp(c1α0(ε)t
(2H+2)/3), with α0(ε) = (2πε)−1/2/2. How-

ever, this approximation is not suitable for our purposes, since limε↓0 α0(ε) = ∞.
We begin to explain this approximation technique. For any a ∈ (0,1), let Wa =

{Wa(ϕ);ϕ ∈ Ha} be an isonormal Gaussian noise with covariance E[Wa(ϕ) ×
Wa(ψ)] = 〈ϕ,ψ〉Ha where 〈·, ·〉Ha is given by (2) with f (x) replaced by fa(x) =
|x|−a . Note that f = Fμa where μa(ξ) = (2π)−1|ξ |a−1 dξ . Let ua(t, x) be the
solution of the equation

∂2u

∂t2 = �u + uẆa (t > 0, x ∈ R)

with initial conditions u(0, x) = u0 and ∂u
∂t

(0, x) = v0. This solution has the
Wiener chaos expansion ua(t, x) = ∑

n≥0 In,a(fn(·, t, x)) where In,a denotes the
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multiple Wiener integral with respect to Wa . Hence

E
∣∣ua(t, x)

∣∣2 = ∑
n≥0

1

n!αn,a(t),

where

αn,a(t) = αn
H

∫
[0,t]2n

n∏
j=1

|tj − sj |2H−2ψn,a(t, s) dtds(59)

and

ψn,a(t, s)
(60)

=
∫
R2n

g
(n)
t (x1, . . . , xn, t, x)g(n)

s (y1, . . . , yn, t, x)

n∏
j=1

fa(xj − yj ) dxdy

and g
(n)
t (x1, . . . , xn, t, x) = ∏n

j=1 Gw(tρ(j+1) − tρ(j), xρ(j+1) − xρ(j))w(tρ(1),

xρ(1)) if tρ(1) < · · · < tρ(n).

LEMMA 7.3. For any integer n ≥ 1 and for any t, s ∈ [0, t]n,

lim
a↑1

ψn,a(t, s) = ψ(t, s),

where ψn(t, s) is given by (32) with d = 1 and f = δ0, that is,

ψn(t, s) =
∫
Rn

n∏
j=1

Gw(tρ(j+1) − tρ(j), xρ(j+1) − xρ(j))ww(tρ(1), xρ(1))

×
n∏

j=1

Gw(sσ(j+1) − sσ(j), xσ(j+1) − xσ(j))ww(sσ(1), xσ(1)) dx,

where the permutations ρ,σ ∈ Sn are chosen such that tρ(1) < · · · < tρ(n) and
sσ(1) < · · · < sσ(n), tρ(n+1) = sσ(n+1) = t and xρ(n+1) = xσ(n+1) = x.

PROOF. Note that for any g,h ∈ L1(R) ∩ L2(R),

lim
a↑1

∫
R

∫
R

g(x)h(y)fa(x − y)dx dy

= lim
a↑1

1

2π

∫
R

Fg(ξ)Fh(ξ)|ξ |a−1 dξ

= 1

2π

∫
R

Fg(ξ)Fh(ξ) dξ =
∫
R

g(x)h(x) dx,
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by the dominated convergence theorem. To justify the application of this theorem,
we note that for a > 1/2, the integrand |Fg(ξ)||Fh(ξ)||ξ |a−1 is bounded by the
integrable function

‖g‖1‖h‖1|ξ |−1/21{|ξ |≤1} + ∣∣Fg(ξ)
∣∣∣∣Fh(ξ)

∣∣1{|ξ |≥1}.
From here we infer that for any g,h ∈ L1(Rn) ∩ L2(Rn),

lim
a↑1

∫
Rn

∫
Rn

g(x)h(y)

n∏
j=1

fa(xj − yj ) dxdy =
∫
Rn

g(x)h(x) dx,

with x = (x1, . . . , xn) and y = (y1, . . . , yn). We apply this to g = g
(n)
t (·, t, x) and

h = g
(n)
s (·, t, x), using the fact that

ψn(t, s) =
∫
Rn

g
(n)
t (x, t, x)g(n)

s (x, t, x) dx. �

LEMMA 7.4. For any t > 0 and for any integer n ≥ 1,

lim
a↑1

αn,a(t) = αn(t).

PROOF. This follows by Lemma 7.3 and the dominated convergence theo-
rem. It remains to justify the application of this theorem. For this, we note that
ψn,a(t, s) ≤ ψn,a(t, t)1/2ψn,a(s, s)1/2. Let uj = tρ(j+1) − tρ(j). As in the proof of
Lemma 4.1, it follows that for any t ≥ 1,

ψn,a(t, t) ≤ (u0 + tv0)
2 1

(2π)n
(4Ka)

n(u1, . . . , un)
2−a

≤ (u0 + tv0)
2 1

(2π)n
(4Ka)

ntn(1−a)u1, . . . , un

≤ (u0 + tv0)
2 tn

(2π)n
(4Ka)

nu1, . . . , un,

where Ka := K(μa) is given by (34). We now prove that

Ka = La :=
∫
R

1

1 + |ξ |2 μa(dξ).(61)

To see this, note first that La ≤ Ka . On the other hand, for any η ∈R,∫
R

1

1 + |ξ − η|2 μa(dξ) =
∫
R

eiηxp(x)|x|−a dx,

where p(x) = (4π)−1/2 ∫∞
0 e−uu−1/2e−|x|2/(4u) du; see (3.4) of [24]. Taking the

modulus on both sides and using (3.5) of [24], we obtain that for any η ∈ R,∫
R

1

1 + |ξ − η|2 μa(dξ) ≤
∫
R

p(x)|x|−a dx = La.
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Taking the supremum over η ∈ R, we obtain that Ka ≤ La . This proves (61).
By considering separately the regions {|ξ | ≤ 1} and {|ξ | ≥ 1}, we see that La ≤

2(a−1 + (2 − a)−1). Hence La ≤ 6 if a > 1/2.
Denote β(t) =∏n

j=1(tρ(j+1) − tρ(j)). It follows that for any a ∈ (1/2,1),

ψn,a(t, s) ≤ (u0 + tv0)
2 tn

(2π)n
24n[β(t)β(s)

]1/2
.(62)

The claim is justified since
∫
[0,t]2n

∏n
j=1 |tj − sj |2H−2[β(t)β(s)]1/2 dtds < ∞; see

the proof of Theorem 4.2. �

LEMMA 7.5. For any t > 0 and for any x ∈ R
d ,

lim
a↑1

E
∣∣ua(t, x)

∣∣2 = E
∣∣u(t, x)

∣∣2.
PROOF. The result follows by Lemma 7.4 and the dominated convergence

theorem. We justify the application of this theorem. By (59) and (62),

αn,a(t) ≤ (u0 + tv0)
2 tn

(2π)n
24n

∫
[0,t]2n

n∏
j=1

|tj − sj |2H−2[β(t)β(s)
]1/2

dtdsdtds

≤ (u0 + tv0)
2cn 1

n! t
(2H+1)n,

for any a ∈ (1/2,1), where the last inequality follows as in the proof of Theo-
rem 4.2. Since

∑
n cnt(2H+1)n/(n!)2 < ∞, the proof is complete. �

The next result corresponds to Theorem 2.1(c), in case (iv).

THEOREM 7.6. Let f be the kernel of case (iv). Then, for any x ∈ R and for
any t > 0, we have

E
∣∣u(t, x)

∣∣2 ≥ c3u
2
0 exp

(
c4t

ρw
)
,

where c3 > 0 and c4 > 0 are some constants depending on H , and ρw is given
by (8).

PROOF. By Theorem 7.2, for any x ∈ R
d and for any t ≥ ta ,

E
∣∣ua(t, x)

∣∣2 ≥ u2
0 exp

(
cat

(2H+2−a)/(3−a)),(63)

where the constants ca > 0 and ta > 0 are given by (57) and (58), that is,

ca = 1
2

(
e−1cH 4−a)1/(3−a) and ta = (

ec−1
H 23+a)1/(2H+2−a)

.
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Let c4 = lima↑1 ca and t ′0 = lima↑1 ta . Then ta ≤ 2t ′0 =: t0 for all a ∈ (a0,1). Fix
t ≥ t0. We let a ↑ 1 in (63). Using Lemma 7.5, we infer that

E
∣∣u(t, x)

∣∣2 ≥ u2
0 exp

(
c4t

ρw
)

for all t ≥ t0.

For 0 < t < t0, we argue as in step 9 of the proof of Theorem 7.1. �

Summarizing the results of this section, we can say that Theorems 7.1 and 7.2
generalize Theorem 4.1 of [25] (with p = 2) to the case of the fractional noise in
time. However, reference [25] does not contain a result analogous to Theorem 7.6
for the case H = 1/2, that is, when W is a space–time white noise.

8. Parabolic case: Proof of Theorem 2.2. In this section, we examine equa-
tion (SHE). We state and sketch the proof of two results, which together give the
conclusion of Theorem 2.2. The proofs are similar to those presented above in
the hyperbolic case, taking G = Gh and w = wh. For the lower bound, we use a
FK representation similar to the one given in [2], except that here we work with
processes X1,X2 defined by (65) and (66) below, instead of Brownian motions
B1,B2.

We define a different constant Kh than in the hyperbolic case, namely

Kh =
⎧⎪⎨⎪⎩

μ
(
R

d
)
, in case (i),

K(μ), in cases (ii) and (iii),√
π, in case (iv).

(64)

We recall that in the parabolic case, the spatial dimension d ≥ 1 is arbitrary. The
first result gives the existence of the solution and an upper bound for its moments
of order p ≥ 2.

PROPOSITION 8.1. Let f be a kernel of cases (i)–(iv), and ρh, a,Kh be the
constants given by (8), (9), respectively (64). Assume that (DC) holds. Then:

(a) for any t > 0 and for any integer n ≥ 1,

αn(t) ≤ u2
0K

n
h cn(n!)a/2t (4H−a)n/2,

where c is a constant depending on H and a;
(b) equation (SHE) has a unique solution u(t, x) which has the following prop-

erty: for any p ≥ 2, for any x ∈ R
d and for any t > 0,

E
∣∣u(t, x)

∣∣p ≤ c
p
1 u

p
0 exp

(
c2K

2/(2−a)
h p(4−a)/(2−a)tρh

)
,

where c1 > 0 is a constant depending on a, and c2 > 0 is a constant depending on
H and a.
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PROOF. (a) Similar to Lemma 4.1, it can be shown that

ψn(t, t)

= u2
0

∫
Rnd

exp
(−u1|ξ1|2) · · · exp

(−un|ξ1 + · · · + ξn|2)μ(dξ1) · · ·μ(dξn)

≤ u2
0K

n
h (u1, . . . , un)

−a/2.

To prove this in cases (ii) and (iii), one uses the following inequality:∫
Rd

exp
(−t |ξ − η|2)μ(dξ) ≤ K(μ)t−a/2.

The conclusion follows as in the proof of Proposition 4.2(a). Note that

ψn(t, s) ≤ u2
0K

n
h
[
β(t)β(s)

]−a/4
.

(b) The conclusion follows as in the proof of Proposition 4.2(b) (case p = 2),
respectively Proposition 5.1 (case p > 2). �

For the lower bound, we use the following representation for the second moment
of the solution to (SHE), which can be obtained as in Section 6, assuming that f

is a function:

E
∣∣u(t, x)

∣∣2
= et2

u2
0

∑
n≥0

∑
i1,...,in
distinct

Ex

[
n∏

j=1

f
(
X1

Tij
− X2

Sij

)
αn

H

n∏
j=1

|Tij − Sij |2H−21Bi1,...,in (t)

]
.

Here, the event Bi1,...,in(t) and the points (Tij , Sij ) are defined as in Section 6, but
the processes X1 and X2 are given by

X1
s = X1

τi
+ √

s − τi�
1
i+1 if τi ≤ s ≤ τi+1,(65)

X2
s = X2

τ ′
i
+
√

s − τ ′
i�

2
i+1 if τ ′

i ≤ s ≤ τ ′
i+1,(66)

where (�1
i )i≥1 and (�2

i )i≥1 are two independent collections of i.i.d. random vari-
ables with values in R

d with the same law as �0, and �0 has a d-dimensional
standard normal distribution. Note that in this case,

Gh(t, ·) is the density of
√

t�0.(67)

(Alternatively, X1,X2 can be two independent d-dimensional standard Brownian
motions; see Remark 6.11 and [2].)

PROPOSITION 8.2. Let f be a kernel of cases (i)–(iv), and ρh be the constant
given by (8). Then for any x ∈R

d and for any t > 0,

E
∣∣u(t, x)

∣∣2 ≥ c3u
2
0 exp

(
c4t

ρ),
where c3 > 0 and c4 > 0 are some constants depending on H and a.
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PROOF. In case (i), the argument is similar to the one used in Theorem 7.1.
One difference is that we replace δ by δ2. This is essentially due to the use of a
parabolic rather than hyperbolic scaling; compare (67) with (40). In addition, in the
events D1(t),D2(t), we add the condition |�1

j+1| ≤ 1, respectively |�2
j+1| ≤ 1,

for all j = 1, . . . , k − 1. Note that the variable Z̃t (in step 5) is replaced by 1.
Instead of (55), we obtain that for all k ≥ k0,

E
∣∣u(t, x)

∣∣2 ≥ u2
0

(
α0cH

t2H

k

)k

.

The argument for cases (ii)–(iii) is similar to the proof of Theorem 7.2, leading to
the following lower bound: there exists k0 > 0 such that for all k ≥ k0,

E
∣∣u(t, x)

∣∣2 ≥ u2
0

(
c∗
H

t2H−a/2

k1−a/2

)k

.

Choosing k appropriately completes the proof. The argument for case (iv) is similar
to the proof of Theorem 7.6. In all cases, the argument is extended to all t > 0, as
in step 9 of the proof of Theorem 7.1. �

APPENDIX A: AN ELEMENTARY RESULT

LEMMA A.1. For any a > 0, we have∑
n≥0

xn

(n!)a ≤ c1 exp
(
c2x

1/a) for all x > 0,

where c1 > 0 and c2 > 0 are some constants depending on a.

PROOF. Note that for any a > 0, we have

lim
n→∞

�(an + 1)

(n!)aaan+1/2(2πn)(1−a)/2 = 1;(68)

see also (3.19) of [35]. To see this, we use Stirling’s formula in the following
format:

lim
x→∞

�(x + 1)

xxe−x
√

2πx
= 1

(see, e.g., Corollary 3 of [39]), from which we infer that

�(an + 1) ∼ (an)ane−an(2πan)1/2 and n! = �(n + 1) ∼ nne−n(2πn)1/2.

Here we use the notation an ∼ bn to indicate that an/bn → 1 as n → ∞.
From (68), it follows that there exists a constant C1 > 0 depending on a, such

that
�(an + 1)

Cn(n!)a ≤ C1 for all n ≥ 0,
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where Cn = aann(1−a)/2. Clearly, we can choose a constant λ > 1 (depending
on a) such that λ−n ≤ Cn ≤ λn for all n. Therefore,∑

n≥0

xn

(n!)a ≤ C1Ea(λx),(69)

where Ea(x) =∑
n≥0 xn/�(an + 1) denotes the Mittag–Leffler function.

We now use the asymptotic behavior of Ea(x) for x > 0:

lim
x→∞

Ea(x)

exp(x1/a)
= 1

a
for all a > 0

(see Theorem 1 of [30]). Hence there exist some constants C2 > 0 and x0 > 0
depending on a such that

Ea(x) ≤ C2 exp
(
x1/a) for all x ≥ x0.

If 0 < x < x0, then xn ≤ xn
0 and Ea(x) ≤ C3 ≤ C3 exp(x1/a), where C3 = Ea(x0)

depends only on a. Taking C4 = max(C2,C3), it follows that

Ea(x) ≤ C4 exp
(
x1/a) for all x > 0.(70)

The conclusion follows from (69) and (70). �

APPENDIX B: A FUNDAMENTAL INEQUALITY

In this section, we prove inequality (39) which is used in the proof of Proposi-
tion 4.2. Note that this inequality is a simplified form of (2.5) of [35].

We first recall the Hardy–Littlewood–Sobolev theorem.

THEOREM B.1 (Theorem 1, page 119 of [50]). Let 0 < α < n and 1 < p <

∞. Let q > p be such that 1/p − 1/q = α/n. For any ϕ ∈ Lp(Rn), the integral

(Iαϕ)(x) :=
∫
Rn

ϕ(y)|x − y|−n+α dy

converges absolutely for almost all x ∈ R
n, and

‖Iαϕ‖Lq(Rn) ≤ Cn,α,p‖ϕ‖Lp(Rn),(71)

where Cn,α,p > 0 is a constant depending on n,α and p.

The following inequality is due to [40]. We include its proof for the sake of
completeness.



INTERMITTENCY FOR WAVE AND HEAT EQUATIONS 1531

LEMMA B.2. Let H ∈ (1/2,1) and αH = H(2H − 1). For any f,g ∈
L1/H (R), ∫

R

∫
R

∣∣f (t)
∣∣∣∣g(s)

∣∣|t − s|2H−2 dt ds

(72)

≤ CH

(∫
R

∣∣f (t)
∣∣1/H

dt

)H(∫
R

∣∣g(t)
∣∣1/H

dt

)H

,

where CH > 0 is the constant from (71) with n = 1, α = 2H − 1 and p = 1/H .

PROOF. Using Hölder’s inequality with p = 1/H and q = 1/(1 − H), we
infer that the left-hand side of (72) is smaller than(∫

R

∣∣f (t)
∣∣1/H

dt

)H[∫
R

(∫
R

|g(s)||t − s|2H−2 ds

)1/(1−H)

dt

]1−H

= ‖f ‖L1/H (R) ·
{∫

R

[(
I2H−1|g|)(t)]1/(1−H)

dt

}1−H

= ‖f ‖L1/H (R)

∥∥I2H−1|g|∥∥L1/(1−H)(R).

The conclusion now follows by (71) with n = 1, α = 2H − 1, p = 1/H and q =
1/(1 − H). �

LEMMA B.3. For any ϕ ∈ L1/H (Rn),∫
Rn

∫
Rn

ϕ(t)ϕ(s)
n∏

i=1

|ti − si |2H−2 dtds ≤ Cn
H

(∫
Rn

∣∣ϕ(t)
∣∣1/H

dt
)2H

,(73)

where CH > 0 is the constant from Lemma B.2, and we denote t = (t1, . . . , tn) and
s = (s1, . . . , sn).

PROOF. We proceed by induction on n. For n = 1, the result holds by
Lemma B.2. Suppose that (73) holds for n − 1. By applying Lemma B.2 to
the functions f (·) = ϕ(t1, . . . , tn−1, ·) and g(·) = ϕ(s1, . . . , sn−1, ·) for fixed
(t1, . . . , tn−1) ∈ R

n−1 and (s1, . . . , sn−1) ∈ R
n−1, we obtain that∫

R

∫
R

∣∣ϕ(t1, . . . , tn−1, tn)
∣∣∣∣ϕ(s1, . . . , sn−1, sn)

∣∣|tn − sn|2H−2 dtn dsn

≤ CH

∥∥ϕ(t1, . . . , tn−1, ·)
∥∥

1/H

∥∥ϕ(s1, . . . , sn−1, ·)
∥∥

1/H ,

where ‖ · ‖1/H denotes the L1/H (R)-norm. [By Fubini’s theorem, the functions
f and g are in L1/H (R) for almost all (t1, . . . , tn−1) ∈ R

n−1 and (s1, . . . , sn−1) ∈
R

n−1.] Hence, the left-hand side of (73) is less that

CH

∫
R

∫
R

∥∥ϕ(t1, . . . , tn−1, ·)
∥∥

1/H

∥∥ϕ(s1, . . . , sn−1, ·)
∥∥

1/H

(74)

×
n−1∏
i=1

|ti − si |2H−2 dtn−1 dsn−1,
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where tn−1 = (t1, . . . , tn−1) and sn−1 = (s1, . . . , sn−1).
By the induction hypothesis, (74) is less than

Cn
H

(∫
Rn−1

∥∥ϕ(t1, . . . , tn−1, ·)
∥∥1/H

1/H dt1, . . . , dtn−1

)2H

= Cn
H

(∫
R

∫
R

∣∣ϕ(t)
∣∣1/H

dt
)2H

,

where t = (t1, . . . , tn). This proves (73). �
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