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The latent multinomial model (LMM) of Link et al. [Biometrics 66
(2010) 178–185] provides a framework for modelling mark-recapture data
with potential identification errors. Key is a Markov chain Monte Carlo
(MCMC) scheme for sampling configurations of the latent counts of the true
capture histories that could have generated the observed data. Assuming a lin-
ear map between the observed and latent counts, the MCMC algorithm uses
vectors from a basis of the kernel to move between configurations of the la-
tent data. Schofield and Bonner [Biometrics 71 (2015) 1070–1080] shows that
this is sufficient for some models within the framework but that a larger set
called a Markov basis is required when errors are more complex. We address
two further challenges: (1) that models with complex error mechanisms may
not fit within the LMM framework and (2) that Markov bases can be difficult
to compute for studies of even moderate size. We extend the framework to
model the capture/demographic and error processes separately and develop a
new MCMC algorithm using dynamic Markov bases. Our work is motivated
by a study of queen snakes (Regina septemvittata) and we use simulation to
compare estimates of survival rates when snakes are marked with PIT tags
which have perfect identification versus brands which are prone to error.

1. Introduction. Standard models for data from studies of marked individu-
als require that researchers are able to identify captured individuals uniquely and
without error. However, these assumptions may be violated in many ways. Re-
searchers may misread marks and provide partial identifications based on visual
sightings or poor quality photographs [McClintock et al. (2014), Morrison et al.
(2011)], allelic dropout may lead to incorrect identifications from DNA samples
[Barker et al. (2014), Lukacs and Burnham (2005), Wright et al. (2009), Yoshizaki
et al. (2011)], man-made tags may be lost or degrade [Cowen and Schwarz (2015)],
and natural marks may evolve over time [Yoshizaki et al. (2012)]. This paper con-
tinues our investigation of the application of methods from algebraic statistics to
models allowing for possible identification errors in mark-recapture type data.

Our work is based on the latent multinomial model (LMM) first introduced by
Link et al. (2010). Key to this approach was a novel Markov chain Monte Carlo
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(MCMC) algorithm for sampling configurations of the true captures consistent
with the observed data. In Schofield and Bonner (2015), we showed that the origi-
nal algorithm proposed by Link et al. (2010) may produce Markov chains that are
not irreducible and hence fail to sample from the set of all configurations with posi-
tive probability under the posterior distribution. We described an extended MCMC
algorithm incorporating Markov bases to address this issue. As one example, we
presented simulation results from a model which we called the band-read error
(BRE) model. Our original manuscript did not provide details on the implementa-
tion of the BRE model and, for simplicity, we ignored population demographics,
assuming instead that all configurations of the latent counts consistent with the
observed data were equally likely. In fact, the BRE model cannot easily be fit with
the original LMM. Here we describe an extension of the LMM framework that is
needed to fit the BRE model and other models with more complex types of errors
than those considered by Link et al. (2010). We also address a second, practical
challenge which is that Markov bases for the BRE model can only be computed
for very small experiments with four capture occasions or less. Although we focus
on the BRE model, the methods we develop are applicable to all models within the
LMM framework including model Mtα and the multiple mark models of Bonner
and Holmberg (2013), McClintock et al. (2013).

2. The latent multinomial model. The LMM of Link et al. (2010) accounts
for possible errors in the data by recasting the mark-recapture model as a miss-
ing data problem. Suppose that individuals are sampled from the population on
T capture occasions. On each occasion, the individuals are identified, marked if
necessary, and returned to the population. Let nTot be the number of distinct indi-
viduals captured. The raw data consist of nTot vectors in {0,1}T , called the capture
histories, such that ωit = 1 if individual i was captured on occasion t . If T = 5
then the history ωi = 01010 indicates that the ith marked individual was captured
on occasions 2 and 4. We use I to denote the number of unique capture histories
that can be observed during the experiment. If the population is homogeneous then
the probabilities assigned to each capture history are the same for all individuals
and the I -vector of counts, n, recording the number of times each unique history
was observed is sufficient. The likelihood is then defined by the distribution of n.

When errors occur the distribution of n may be difficult to compute directly. To
make the likelihood tractable, the LMM introduces a set of J > I latent histories
identifying the true captures for each individual and describing what errors oc-
curred. Let x be the unobserved J -vector of counts for the latent histories which is
modelled by f (x|θ)1 for some vector of parameters, θ . The likelihood can then be
computed by summing f (x|θ) over all values of x consistent with n. In particular,

1Throughout we use f (y|β) to denote the assumed model of y given parameters β , π(β) the prior
distribution for β , and π(β|y) the posterior distribution of β given y.
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the LMM assumes that n is a linear function of x so that n = Ax for some known
I × J matrix A and

f (n|θ) = ∑
x∈NJ

1(n = Ax)f (x|θ) = ∑
x∈Fn

f (x|θ),(1)

where Fn = {x ∈ N
J : n = Ax} denotes the inverse image of n (called the n-fibre

in algebraic statistics) and N = {0,1,2, . . .}.
As an example, Link et al. (2010) considered a closed population model which

they called model Mtα . This model assumes that that all individuals have the same
probability of capture on occasion t , denoted by pt , that errors occur independently
with probability 1 − α each time an individual is captured, and that these errors
result in new identities that are not observed otherwise. The latent histories for this
model include the 3T strings formed by the events:

(0) indicating that the individual was not captured,
(1) indicating that the individual was captured and correctly identified, and
(2) indicating that the individual was captured and incorrectly identified.

For example, the latent history νi = 01020 indicates that individual i was captured
and correctly identified on occasion 2 and recaptured and misidentified on occa-
sion 4. It is assumed that x|p, α follows a multinomial distribution conditional on
the true population size, N , with cell probability corresponding to the latent history
ν computed as

f (ν|p, α) =
T∏

t=1

[
p

1(νt>0)
t (1 − pt)

1(νt=0)α1(νt=1)(1 − α)1(νt=2)],
where 1(·) is the indicator function.

Although equation (1) makes it easier to compute f (n|θ) in theory, Fn is often
so large that exact computation is not practical. Instead, Link et al. (2010) proposed
a Bayesian solution implemented by sampling from the joint posterior distribution
of x and θ . The specific MCMC algorithm uses a block Metropolis–Hastings (MH)
approach and the main challenge lies in constructing proposals of x|θ ,n which fall
inside the fibre. The algorithm starts by defining a lattice basis for the kernel of A;
that is, a linearly independent set B = {b1, . . . , bK} such that ∀b ∈ ker(A) ∩ Z

J

there exists c1, . . . , cK ∈ Z so that

b =
K∑

k=1

ckbk.

A proposal, xprop, is then constructed by adding an integer multiple of one of the
basis vectors to the current value of x. The magic of this approach is that any
proposal is guaranteed to satisfy the linear constraint and to have integer entries.
Note, that xprop may still fall outside Fn since there is no guarantee that x

prop
j ≥ 0

for every j .
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Link et al. (2010) implied that Markov chains constructed with this algorithm
would connect all elements in Fn and hence be irreducible. In Schofield and Bon-
ner (2015), we showed that this is true for model Mtα , provided that the right
lattice basis is chosen, and extended this result to a broader class of models con-
taining what we called simple corruptions. However, we also provided examples
of more complicated models for which the algorithm does not produce irreducible
Markov chains, including the BRE model. The central problem is that some pairs
of elements in Fn may be connected by this algorithm only by passing through
intermediate configurations containing negative entries. These elements have zero
probability under the posterior, and so the chain will never follow these paths.

Irreducible chains can always be produced by adding linear combinations of all
elements in B simultaneously, but the resulting proposals are likely to fall outside
of Fn and Diaconis and Sturmfels (1998) reported that this method is not efficient.
Instead, Diaconis and Sturmfels (1998) suggested using the one-at-a-time algo-
rithm but drawing the elements from a larger subset M ⊂ ker(A) chosen to ensure
that it is possible to move between any two elements of Fn. Diaconis and Sturm-
fels (1998) called M a Markov basis and the elements of M moves, and provided
methodology for computing this set based on the theory of toric ideals. For sim-
plicity, we consider the special case of the algorithm presented in Schofield and
Bonner (2015) in which one element is selected from M on each iteration of the
MCMC algorithm and either added to or subtracted from the current configuration
without a multiplier. Details are provided in Algorithm 1.

Algorithm 1 MCMC algorithm for sampling from the joint posterior distribution
of θ and x given a fixed Markov basis, M

Define a Markov basis, M.
Initialise θ (0) and x(0) so that n = Ax(0).
Set k = 1.

1. Update θ conditional on x(k−1). Call the result θ (k).
2. Update x conditional on θ (k).

(i) Sample b uniformly from M and c uniformly from {−1,1}.
(ii) Set xprop = x(k−1) + cb.

(iii) Calculate the Metropolis acceptance probability:

r
(
x(k−1),xprop|θ(k)) = min

{
1,

π(xprop|θ (k))

π(x(k−1)|θ (k))
· q(x(k−1)|xprop)

q(xprop|x(k−1))

}
,

where q(x′|x) is the probability of proposing x′ given the current state x.
(iv) Set x(k) = xprop with probability r . Otherwise, set x(k) = x(k−1).

3. Increment k.
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3. Data. As an example, we consider data from a study of queen snakes con-
ducted in Jessamine County, Kentucky. An initial sample of 61 snakes was cap-
tured and marked in the fall of 2013 and a second sample of 41 snakes was marked
in the spring of 2014. All snakes were implanted with PIT tags and a subset of 73
snakes were also branded with unique marks as described in Winne et al. (2006). In
the summer of 2014, two technicians visited the site to locate and identify snakes
approximately every two weeks. On each visit the technicians conducted searches
using a PIT receiver and attempted to physically capture any snakes that were
detected so that their brands could be read. The 102 snakes were re-encountered
191 times in total, an average of 1.87 per snake. The study is aimed primarily at
modelling the survival and movements of the snakes in this population and un-
derstanding impacts of snake fungal disease, an emerging pathogen about which
little is yet known [Allender et al. (2013), Sleeman (2013)]. For illustration, we fo-
cus on modelling the apparent over-wintering survival, the probability that a snake
marked in the fall of 2013 is still in the population in 2014.

Previous studies have found that snakes may expel PIT tags [e.g., Roark and
Dorcas (2000)] and some loose tags were found at the study site. However, we
believe that the rate of expulsion is small and there is no reason to think that PIT
tags are ever misidentified. With these assumptions, capture histories formed using
the PIT tag encounters can be modelled with standard Cormack–Jolly–Seber (CJS)
type models ignoring identification errors and tag loss [see Lebreton et al. (1992),
Seber (2002), Williams, Nichols and Conroy (2002), and references therein]. An
introduction to the CJS model is provided in Appendix A. We use the common
notation pt and φt to denote the capture and survival probabilities.

In comparison, brands can be difficult to read and the identification of physically
captured snakes is prone to error. A total of 9 branded snakes were recaptured
physically during the summer of 2014. By comparing with the PIT tag records we
knew that the first technician identified 8 of 9 (89%) correctly while the second
technician identified only 6 of 9 (67%) correctly. The small number of physical
recaptures did not allow us to compare results based on the PIT tag and brand
data directly. Instead, we examine the feasibility of branding snakes by analysing
simulated data generated with survival and capture probabilities obtained from the
PIT tag data and error rates matching those of the two technicians.

4. Model. The specific model we consider both for generating and analysing
the simulated data combines the standard CJS model for the demographic and
capture processes and the BRE model of the errors. We call this combined model
the CJS/BRE model. Suppose that researchers visit a location on T occasions. On
each visit they capture a number of unmarked individuals, mark them, and return
them to the population. At the same time, the researchers also conduct surveys to
identify previously marked individuals. The assumptions of the BRE model are
that:
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1. all individuals are correctly identified when first captured and marked,
2. recaptured individuals are correctly identified with probability α on each occa-

sion,
3. errors cause one marked individual to be misidentified as another marked indi-

vidual, and
4. each individual can be involved in only one event on each occasion. In particu-

lar, it is not possible to mistake individual j for individual i if individual i has
been captured on the same occasion.

Assumption 3 contrasts directly with the assumptions of model Mtα and is justi-
fied by the differences between man-made marks and natural marks. Model Mtα

is intended for use with natural marks including genotypes and pigmentation pat-
terns. The set of possible natural marks is usually unknown and the number of
possible marks is so large that it is unlikely for an error to reproduce the identity of
another individual exactly. On the other hand, the BRE model is intended for use
with man-made marks. The set of possible marks is known when using man-made
marks, and this means that erroneous sightings of marks which have never been
released can be detected and removed from the data prior to the analysis. The only
errors that cannot be detected occur when one marked individual is mistaken for
another marked individual. The fourth assumption is not realistic, but simplifies
the model and we will work to relax this in the future. We present the likelihood
for this model in Section 5.1 after introducing the extended modelling framework.

5. Methods.

5.1. Extended framework. The first challenge is that the CJS/BRE model does
not fit easily in the framework of the LMM. Link et al. (2010) focused on models,
like Mtα , for which x follows a multinomial distribution. Although they suggested
that the methods could be applied more generally, examples were not provided.
The CJS/BRE model does not result in a multinomial distribution for x, and it is
difficult to determine the density of x explicitly.

To address this, we extend the LMM to include a second vector of latent counts.
This allows the mark-recapture process and the error mechanism to be modelled
separately. Suppose, for example, that an experiment has T = 2 occasions and in-
dividual i is captured on both occasions, correctly identified on the first occasion,
and identified as an entirely new individual on the second occasion (this is the er-
ror mechanism for model Mtα). In the terminology of Link et al. (2010), individ-
ual i would have latent history νi = 12 and would produce the recorded histories
ωi1 = 10 and ωi2 = 01. The original LMM assigns probabilities to the latent his-
tories, νi , directly by simultaneously modelling the capture and error processes.
Our formulation introduces a second latent history, ξ i , identifying the occasions
on which the individual was truly captured but ignoring the errors. The new latent
history would be ξ i = 11 since the individual was truly captured on both occa-
sions. We then model the joint distribution of νi and ξ i by assigning probabilities
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first to ξ i and second to νi given ξ i . We distinguish between the two sets of latent
histories by calling νi the latent error history and ξ i the latent capture history.

Generally, we let n be the I -vector of counts for the observable histories, x the
J -vector of counts for the latent error histories, and z the K-vector of counts for
the latent capture histories. As in Link et al. (2010), we assume that n = Ax for
some known matrix A. Further, we assume that z = Bx for some known matrix B.
The complete data likelihood is then constructed in two stages: (1) modelling the
process of capturing, marking, and recapturing individuals to define f (z|θ) and (2)
modelling the error process conditional on the true captures to define f (x|z, θ). We
expect the parameters in the two components to be disjoint and label them as θ1

and θ2. The posterior distribution of the complete data and parameters is

π(x, θ1, θ2|n) ∝ 1(n = Ax)f (x|z, θ2)f (z|θ1)π(θ1)π(θ2),

where π(θ1) and π(θ2) represent priors assumed to be independent. For conve-
nience we identify entries in the vectors of counts, n, x, and z, both by index and
by the corresponding history. For example, ni represents the count for the ith ele-
ment of n using some implicit ordering while nω represents the count of history ω.
This allows us to define sums in two equivalent ways as either nTot = ∑I

i=1 ni or
nTot = ∑

ω∈{0,1}T /0 nω. A table summarising our notation for the extended LMM
is provided in Appendix B.

To fit the CJS/BRE into the extended framework we need to (1) identify the sets
of observable histories, latent error histories, and latent capture histories, (2) con-
struct the constraint matrices, and (3) define the components of the likelihood func-
tion. As with the CJS model, the set of observable histories includes the I = 2T −2
in {0,1}T excluding the zero history and the history ending with a single capture.
The latent capture histories also belong to the same set so that K = 2T − 2 as
well. In defining the latent error histories, four events can occur on each occasion
after an individual is marked. The ith individual may be not resighted (event 0),
resighted and correctly identified (event 1), or resighted and incorrectly identified
(event 2). Finally, another marked individual may be captured and incorrectly iden-
tified as individual i (event 3). Events 2 and 3 represent false negative and false
positive resightings. A total of 4T possible histories can be constructed from these
events but many of these can be ignored in the likelihood. We first remove the zero
history and the three histories with a single non-zero event on the final occasion,
since these histories do not contribute to the likelihood of the CJS model. Assum-
ing that individuals are correctly identified when first captured we can also ignore
any history whose leading non-zero entry is not 1. This leaves J = (4T − 4)/3 that
contribute to the likelihood.

Next, we construct the constraint matrices. One factor that makes the CJS/BRE
model more complicated than model Mtα is that it contains constraints on x beyond
those imposed by the observed counts. In particular, the number of false positive
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and false negative captures on occasion t must be the same for all t = 2, . . . , T .
The A matrix is constructed as

A =
[

A1
A2

]
,

where A1 is a (2T −2)×J matrix modelling the relationship between x and n that
is defined similar to the matrix A′ in Link et al. (2010), and A2 is a (T − 1) × J

matrix constraining the number of false positives and negatives on the final T − 1
occasions. Mathematically,

A1ij =
{

1, if ωit = 1(νjt = 1) + 1(νjt = 3) for all t = 1, . . . , T ,
0, otherwise

and

A2tj =
⎧⎨
⎩

−1, if νj,t+1 = 2,
1, if νj,t+1 = 3,
0, otherwise.

The t th row of A2 computes the difference between the number of 2s and 3s in
the latent error histories, and the vector n must also be extended by concatenating
T − 1 extra 0s corresponding to the added constraints. The matrix B is defined
such that Bjk = 1 if the j th latent capture history has the same pattern of captures
as the kth latent error history. That is

Bjk =
{

1, if ξkt = 1(νjt = 1) + 1(νjt = 2) for all t = 1, . . . , T ,
0, otherwise.

Finally, we define the distributions of z and x|z. For the CJS/BRE model θ1 =
{φ,p} and θ2 = {α}. Let at denote the number of individuals first captured and
marked on occasion t , Mt the number of individuals marked before occasion t , and
mt the number of these individuals resighted on occasion t . Then z is a product
multinomial random variable with density

f (z|φ,p) =
∏T −1

t=1 at !∏K
k=1 zk!

K∏
k=1

f (ξ k|φ,p)zk ,(2)

where f (ξ k|φ,p) denotes the probability assigned to history ξ k by the standard
CJS model. To construct the second component of the likelihood we consider
occasions t = 2, . . . , T separately first modelling the number of errors that oc-
cur, et (x) = ∑J

j=1 xj1(νjt = 2) = ∑J
j=1 xj1(νjt = 3), and then modelling the

exact configuration of false positives and false negatives given e = (e1, . . . , eT )′
to obtain a specific configuration of x. Under the assumptions in Section 4,
et ≤ m∗

t = min(mt ,Mt − mt) and follows the (possibly) truncated binomial with
density

f (et |z, α) ∝
(

mt

et

)
(1 − α)et αmt−et , et = 0, . . . ,m∗

t .
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We further assume that all assignments of false positives and false negatives are
equally likely conditional on et . For each t = 2, . . . , T there are

(mt

et

)
and

(Mt−mt

et

)
ways to select the false negatives and false positives and so

f (x|e, z) = 1(z = Bx)

T∏
t=2

[(
mt

et

)(
Mt − mt

et

)]−1
.

The second component of the likelihood is

f (x|z, α) = 1(z = Bx)

∏K
k=1 zk!∏J
j=1 xj !

T∏
t=2

[
(1 − α)et αmt−et

(Mt−mt

et

)∑m∗
t

et=0

(mt

et

)
(1 − α)et αmt−et

]
,

where the initial term accounts for the many relabellings of the marked individuals
that would produce the same counts in x and z.

The joint posterior distribution is completed by specifying a prior distribution.
Link et al. (2010) noted that the observed histories contain almost no information
about the error rate and so assigned α a very informative prior. Alternatively, in-
formation about α could be obtained from double observers or double tags, as in
the queen snake study. For convenience, we simply fix α to the known value in
our analysis of the simulated data and remove α from the posterior distribution.
Finally, we assume that the prior chosen for φ and p is positive over the entire
unit hypercube so that π(φ,p) > 0 if and only if φ ∈ (0,1)T −1 and p ∈ (0,1)T −1.
In particular, we assume independent, uniform priors in our simulation study such
that π(φ,p) ∝ 1(φ ∈ (0,1)T −1) · 1(p ∈ (0,1)T −1).

5.2. Dynamic Markov bases. The second challenge in fitting the CJS/BRE
model is that the Markov basis grows very quickly with the number of occasions
and could only be computed for small values of T with 4ti2, a commonly used
free software package for algebraic statistics [Hemmecke et al. (2013)]. Addition
of the second vector of latent counts does not complicate matters because z is
a deterministic function of x. Consistent proposals for x and z could, in theory,
be constructed by defining a Markov basis, M, sampling a move b ∈ M, and
setting xprop = x + b and zprop = Bxprop. However, 4ti2 ran out of memory on a
computer with 8 GB of RAM before completing the calculations when T ≥ 5.

We avoid this problem by using dynamic Markov bases. Dobra (2012) defined
a dynamic Markov basis to be a collection of sets of local moves, M(x), which
connect each x ∈ Fn to a relatively small number of neighbours. A proposal is
generated on the kth iteration of the MCMC algorithm by sampling a move from
M(x(k−1)). This avoids the need to compute the entire Markov basis a priori. The
method Dobra (2012) described for constructing M(x) applies generally to all
models with constraints of the form n = Ax and, possibly, further bounds on the
counts in individual cells. In short, local moves are generated by permuting the
counts in a random selection of “free” cells—entries of x whose values are not
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fixed by the information in n and the cell bounds. The method we describe is
specific to the mark-recapture framework but produces a dynamic Markov basis
containing intuitive moves that are easily sampled. Further comparison with Dobra
(2012) is provided in Section 8.

The dynamic Markov basis we propose allows the chain to move through Fn
using operations that either add or remove errors from the current configuration.
Each of these operations modifies four entries in the vector of counts for the latent
error histories, increasing two counts and decreasing two counts. Errors are added
by decreasing the counts for a pair of histories with a 0 and 1 on some occasion, t ,
and increasing the counts of the corresponding histories formed by changing the 0
in the first history to a 2 and the 1 in the second history to a 3. Errors are removed
using the opposite operation.

To make this explicit, define

Xvt (x) = {ν : νs = 1 for some s < t, νt = v, and xν > 0}
to be the set of latent error histories with an initial capture before occasion t , event
v on occasion t , and positive entry in x. Moves in M(x) modify the counts for one
history drawn from each of the sets X0t (x), X1t (x), X2t (x), and X3t (x), for some
common t and are divided into two classes: M1(x) containing the moves that add
errors and M2(x) containing the moves that remove errors. A key advantage of this
approach is that moves in M1(x) and M2(x) can be sampled without ever having
to construct the entire sets. Moves in M1(x) are denoted by b+(ν0, ν1, ν2, ν3) and
are generated by sequentially sampling:

1. ν1 ∈ χ1·(x) = ⋃T
t=2 X1t (x),

2. s ∈ {t : ν1t = 1},
3. ν0 ∈ X0s(x),

all uniformly, and setting

ν2t =
{

2, if t = s,
ν0t , otherwise

and ν3t =
{

3, if t = s,
ν1t , otherwise.

More compactly, ν2 = ν0 +2δt and ν3 = ν1 +2δt where δt represents the J -vector
with a single 1 in entry t . Indexing by name, as described in Section 5.1, the cor-
responding move has entries

b+
ν (ν0, ν1, ν2, ν3) =

⎧⎨
⎩

−1, if ν = ν0 or ν = ν1,
1, if ν = ν2 or ν = ν3,
0, otherwise.

Similarly, moves in M2(x) are denoted by b−
ν (ν0, ν1, ν2, ν3) and are generated by

sequentially sampling:

1. ν2 ∈ χ2·(x) = ⋃T
t=1 X2t (x),

2. s ∈ {t : ν2t = 2},
3. ν3 ∈ X3s(x)
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and setting ν0 = ν2 − 2δt and ν1 = ν3 − 2δt . The corresponding move has entries

b−
ν (ν0, ν1, ν2, ν3) =

⎧⎨
⎩

1, if ν = ν0 or ν = ν1,
−1, if ν = ν2 or ν = ν3,
0, otherwise.

On the kth iteration of our MCMC algorithm a proposal, xprop, is generated by
choosing whether to add or remove an error from the current configuration, x(k−1)

with equal probability and sampling a move as described above. The proposal
density when adding an error is

q
(
xprop|x(k−1)) = 0.5

#χ1·(x(k−1)) · #{t : ν1t = 1} · #χ0s(x(k−1))
(3)

and when removing an error is

q
(
xprop|x(k−1)) = 0.5

#χ2·(x(k−1)) · #{t : ν2t = 2} · #χ3s(x(k−1))
,(4)

where #S denotes the cardinality of S . If we propose to add an error and x(k−1)

contains no errors, χ3·(x(k−1)) = ∅, or if we propose to remove an error and x
contains no correct identifications, χ3·(x(k−1)) = ∅, then we set x(k) = x(k−1) and
continue to the next iteration. Full details are provided in Algorithm 2. Proof that
the resulting chains converge to the joint posterior distribution of x, φ, and p is
provided in the supplementary material (Supplement A [Bonner et al. (2015)]).

6. Results. In our analysis of the queen snake data we fit an initial CJS model
to the original PIT tag data (Model 1). We then simulated data mimicking what
might be observed from the branding data by generating new data from the esti-
mated demographic parameters and adding errors following the BRE model using
the observed identification rates, α = 8/9 and α = 6/9. We refit the CJS model to
each data set to assess the effects of errors that are not modelled (Model 2), and
then fit the CJS/BRE model to each data set using the methods described in Sec-
tion 5 (Model 3). One hundred simulated data sets were generated for each value
of α.

Analysis of the PIT tag data using maximum likelihood methods in Program
MARK [White and Burnham (1999)] strongly supported a simplified CJS model
which allowed the capture probabilities to vary independently across all occasions
but constrained survival to be equal on the final eight occasions. The estimated sur-
vival probabilities were φ̂1 = 0.66, φ̂2 = 1.00, and φ̂3 = · · · = φ̂9 = 0.93. Clearly
the overwintering survival rate, φ1, has the largest effect on the population and is
of most interest.

Figure 1 compares the bias of the posterior means and the width and coverage of
the central 95% credible intervals (CIs) for the three models. Fitting the standard
CJS model to the data without errors (Model 1) provides an estimate of φ1 that
is almost unbiased and 95% CIs with coverage above the nominal value. Fitting
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Algorithm 2 Proposed algorithm for sampling from the posterior distribution of
the CJS/BRE model using the dynamic Markov basis

Initialise φ(0) and p(0).
Initialise x(0) so that n = Ax(0) and set z(0) = Bx(0).
Set k = 1.

1. Update φ and p conditional on z(k−1). Call the results φ(k) and p(k).
2. Update x and z conditional on φ(k) and p(k) as follows.

(i) With probability 0.5 sample b from M1(x(k−1)). If M1(x(k−1)) =∅ then
set x(k) = x(k−1) and continue to step (v).
Otherwise sample b from M2(x(k−1)). If M2(x(k−1)) = ∅ then set x(k) =
x(k−1) and continue to step (v).

(ii) Set xprop = x(k−1) + b.
(iii) Calculate the Metropolis acceptance probability:

r
(
x,xprop|φ(k),p(k), α

)

= min
{

1,
π(xprop|n,φ(k),p(k), α)

π(x(k−1)|n,φ(k),p(k), α)
· q(x(k−1)|xprop)

q(xprop|x(k−1))

}
.

(iv) Set x(k) = xprop with probability r(x,xprop|φ(k),p(k), α) and x(k) = x(k−1)

otherwise.
(v) Set z(k) = Bx(k).

3. Increment k.

the same CJS model to the data with errors (Model 2) produced very poor results.
When α = 8/9 the estimated bias of φ̂1 was 0.15 (23%) and the coverage of φ1 was
only 47%. The bias increased one and a half times to 0.24 (36%) and the coverage
dropped to only 6% when α decreased to 6/9. In comparison, the posterior mean
of φ1 from the CJS/BRE model (Model 3) was negligibly biased for both levels of
error and coverage of the 95% CI again exceeded the nominal rate. As expected,
credible intervals from Model 3 were wider than those from Model 1 to account for
the extra uncertainty introduced by the errors. All models produced estimates of φ2
that were biased because the true parameter lies on the boundary of the parameter
space. Coverage of this parameter was zero for all models and is not reported.
The posterior mean of φ2 from Model 3 was significantly more biased than that of
Model 1, underestimating φ2 by 9% when α = 8/9 and 16% when α = 6/9. This is
due to there being more significant shrinkage toward the prior mean of 0.50 when
there is more uncertainty in the data.

7. Computational efficiency. Not only does the dynamic Markov basis allow
us to fit the CJS/BRE model when T is large, but it also leads to more efficient sam-
pling when the full Markov basis can be computed. To illustrate this, we present
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FIG. 1. Results of the analysis of the queen snake data. The three panels present the estimated
bias of the posterior means (Panel A) and the estimated width (Panel B) and coverage probability
(Panel C) of the 95% credible interval for the survival probabilities for the three models described in
Section 6. The different models are indicated by the shape of the plotting symbol. The rates of error
for Models 2 and 3 are indicated by the colour of the symbol. Coverage of φ2 is not reported because
the true parameter lies on the boundary of the parameter space.

results from analysing a single simulated data set with T = 4 capture occasions
(the largest number for which we can compute the Markov basis using 4ti2).
Data was generated for a sample of 30 individuals with constant survival proba-
bility φ1 = φ2 = φ3 = 0.8, constant capture probability p2 = p3 = p4 = 0.5, and
error rate α = 0.5. Samples from the joint posterior distribution of x and z were
then drawn using Step 1 of Algorithm 1 and Step 2 of Algorithm 2 while keeping
φ and p fixed at their true values.

We assessed how well the chains mixed by comparing the acceptance rates and
the number of unique solutions for x identified. The chain constructed using Algo-
rithm 1 identified a total of 79 unique configurations among the 7500 values of x
sampled after the burn-in phase. Less than 1% of the proposed configurations were
accepted. In comparison, the chain constructed with Algorithm 2 identified 2548
unique configurations and 38% of the proposed configurations were accepted. Fig-
ure 2 provides traceplots of the chains using the number of errors in the configu-
rations sampled on each accept/reject step as a metric. These summaries all make
it clear that the chain constructed from Algorithm 2 is mixing and moving through
the fibre much more quickly than the chain constructed from Algorithm 1.

8. Discussion. The results in Section 6 clearly illustrate the problems with
misidentification. The overwintering survival probability was overestimated by
23% or 36% depending on the error rate and coverage of the 95% CIs were always
less than 50%. In comparison, estimates from the CJS/BRE model were almost
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FIG. 2. Comparison of the chains sampling from the posterior distribution of the CJS/BRE model
applied to the simulated data. The figures trace the number of errors in x for the algorithms using
the fixed basis (left) and dynamic basis (right). The grey dotted lines represent the true number of
errors in the data set.

unbiased and the credible intervals had above nominal coverage. The extra un-
certainty in the error does increase the posterior variances and the obvious recom-
mendation is to reduce error rates experimentally by using marks that are clearer or
tagging individuals twice. Uncertainty could also be reduced by pairing observers
or simply by increasing the number of hours spent in the field to raise capture rates.
Of course, these measures would increase expense, and we are currently assessing
the costs and benefits of these options.

Although we have focused on the CJS/BRE model, we believe that the methods
presented in Section 5 should be applicable to a broad range of mark-recapture
models with possible errors. As a second example, we describe the application
of these methods to model Mtα in the supplementary material (Supplement B
[Bonner et al. (2015)]). However, the framework described in Section 5.1 can in-
corporate more complex models of both the capture and error processes than the
original LMM and is particularly useful when the distribution of the joint histories
described by the combining processes is intractable. The algorithm based on dy-
namic Markov bases presented in Section 5.2 essentially entails moving through
Fn by adding or removing errors one at a time, and we expect that the same proce-
dure can be applied to an even broader set of models, with two important caveats.
First, it must be possible to write the model in terms of the two linear constraints
described in the extended framework. This will not always be the case and does
not happen if we extend the BRE model so that individual i can be captured on
occasion t and another individual can be captured and identified as individual i at
the same time. We are working to extend these models to allow for such events.
The second caveat is that the Markov chains derived from the new algorithm may
not be irreducible if the posterior distribution assigns probability zero to some el-
ements in Fn. This might occur if certain configurations of the errors can be ruled
out a priori, and would require the Markov basis to be expanded further.
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An important issue that remains is how the connectivity of Fn and the efficiency
of the chains are affected by different dynamic Markov bases. In the methods of
Dobra (2012), moves are generated on each iteration of the MCMC algorithm by
sampling M ∈ {1,2, . . . , J } according to some density g(·), randomly sampling
a permutation function δ(·) from the set of all permutations of the indices of x,
and sequentially resampling the counts in the first M cells in δ(x) to maintain
the linear constraint. The moves in our dynamic Markov basis comprise a subset
of these moves for which (1) M = 4, (2) the set of permutations is restricted so
that the first four cells belong to ξ0t (x), ξ1t (x), ξ2t (x), and ξ3t (x), respectively, for
some t , and (3) the counts in these cells are modified by adding or subtracting
the vector (−1,−1,1,1)′. Both bases connect the fibre and produce irreducible
Markov chains. The basis of Dobra (2012) contains many more moves and has
the advantage that the chains will sometimes make larger jumps in Fn. However,
this will probably reduce the acceptance rate. Exploring the balance between these
extremes to produce efficient samples is a topic requiring further research.

APPENDIX A: CORMACK–JOLLY–SEBER MODEL

The basic assumptions of the CJS model are that [see, e.g., Seber (2002),
page 196]:

1. Each individual alive on occasion t survives to occasion t + 1 with probabil-
ity φt .

2. Each individual alive on occasion t is captured with probability pt .
3. All individuals are correctly identified when captured (i.e., marks are not lost

or misread).
4. All events are independent.

Given these assumptions, probabilities are assigned to the capture histories condi-
tional on the first release of each individual. For example, the probability assigned
to the history ω = 01010 is

f (ω|φ,p) = φ2(1 − p3)φ3p4
(
φ4(1 − p5) + (1 − φ4)

)
.

The final term accounts for the possibility that the individual was not observed on
occasion 5 either because it did not survive or because it survived and was not
captured. The likelihood can then be written as a product multinomial so that:

f (n|φ,p) ∝
I∏

i=1

f (ωi |φ,p)ni .

APPENDIX B: NOTATION

Algebraic Statistics and Markov Bases:
Fn n-fibre, Fn = {x ∈N

J : n = Ax}.
B Lattice basis for ker(A).
M Markov basis for ker(A).
M(x) Dynamic Markov basis for ker(A) computed at x.
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Extended LMM:
nTot Number of distinct individuals captured and marked.
ωi Observed capture history for the ith marked individual.
νi Latent error history for the ith marked individual.
ξ i Latent capture history for the ith marked individual.
n Observed vector of counts for the observable histories (indexed by either i

and ω).
x Unknown vector of counts for the latent error histories (indexed by either j

and ν).
z Unknown vector of counts for the latent capture histories (indexed by either

k and ξ ).
I Length of n. For the CJS/BRE model I = 2T − 2.
J Length of x. For the CJS/BRE model J = (4T − 1)/3 − 1.
K Length of z. For the CJS/BRE model K = 2T − 2.
A I × J matrix mapping x onto n, n = Ax.
B K × J matrix mapping x onto z, z = Bx.
θ1 Parameters in the model of z.
θ2 Parameters in the conditional model of x given z.

Band-Read Error Model:
pt Capture probability: the probability that an individual alive on occasion t is

captured, t = 2, . . . , T .
φt Survival probability: the probability that an individual is alive on occasion

t + 1 given that it was alive on occasion t , t = 1, . . . , T − 1.
α Correct identification rate: the probability that a captured individual is iden-

tified correctly.
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SUPPLEMENTARY MATERIAL

Supplement to “Extending the latent multinomial model with complex er-
ror processes and dynamic Markov bases” (DOI: 10.1214/15-AOAS889SUPP;
.pdf). Supplement A: Proof of convergence. Proof that the chains generated by
Algorithm 2 converge to the correct distribution. Supplement B: Model Mtα . Ap-
plication of the extended framework with dynamic Markov bases to model Mtα .
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