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For assessing in real time the short-term trend of major economic indica-
tors, official statistical agencies generally rely on asymmetric filters that were
developed by Musgrave in 1964. However, the use of the latter introduces
revisions as new observations are added to the series and, from a policy-
making viewpoint, they are too slow in detecting true turning points. In this
paper, we use a reproducing kernel methodology to derive asymmetric filters
that converge quickly and monotonically to the corresponding symmetric one.
We show theoretically that proposed criteria for time-varying bandwidth se-
lection produce real-time trend-cycle filters to be preferred to the Musgrave
filters from the viewpoint of revisions and time delay to detect true turning
points. We use a set of leading, coincident and lagging indicators of the US
economy to illustrate the potential gains statistical agencies could have by
also using our methods in their practice.

1. Introduction. In recent years, statistical agencies have shown an interest
in providing trend-cycle or smoothed seasonally adjusted graphs to evaluate the
stage of the cycle at which the economy stands. This is known as recession and
recovery analysis, and differs from business cycle studies where cyclical fluctua-
tions are measured around a long-term trend to estimate complete business cycles
[see, e.g., Azevedo (2011), Azevedo, Koopman and Rua (2006), Christiano and
Fitzgerald (2003), de Carvalho, Rodrigues and Rua (2012), de Carvalho and Rua
(2014), Hodrick and Prescott (1997)]. Among other reasons, this interest origi-
nated from the recent crisis and major economic and financial changes of global
nature which have introduced more variability in the data. The US entered in re-
cession in December 2007 till June 2009, and this has produced a chain reaction all
over the world. There is no evidence of a fast recovery as in previous recessions.
The economic growth is sluggish and high levels of unemployment have been ob-
served. It has become difficult to determine the direction of the short-term trend
by simply looking at month to month (quarter to quarter) changes of seasonally
adjusted values, particularly to assess the upcoming of a true turning point. Failure
in providing reliable trend-cycle estimates in real time could lead to the adoption
of counteract policies that will affect the whole economy in a negative way.
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The linear filter developed by Henderson (1916) is one of the most frequently
applied to estimate the trend-cycle component of seasonally adjusted economic in-
dicators. It is available in nonparametric seasonal adjustment software, such as the
US Bureau of the Census X11 method [Shiskin, Young and Musgrave (1967)] and
its variants, X11/X12ARIMA and X13. The Henderson smoother has the prop-
erty that fitted to exact cubic functions will reproduce their values, and fitted to
stochastic cubic polynomials it will give smoother results than those estimated
by ordinary least squares. The properties and limitations of the Henderson filters
have been extensively discussed by many authors, among them, Cholette (1981),
Kenny and Durbin (1982), Dagum and Laniel (1987), Dagum (1996), Gray and
Thomson (1996), Loader (1999), Ladiray and Quenneville (2001), Findley and
Martin (2006), Dagum and Luati (2009a, 2012). Dagum and Bianconcini (2008)
represented the Henderson filter using Reproducing Kernel Hilbert Space (RKHS)
methodology [we refer the reader to Berlinet and Thomas-Agnan (2004) for a de-
tail description of RKHS]. Their approach is based on a theoretical result due to
Berlinet (1993), according to which a kernel estimator of order p can always be
decomposed into the product of a reproducing kernel R, 1, belonging to the space
of polynomials of degree at most p — 1, and a probability density function fy with
finite moments up to order 2p. The authors found that a kernel function obtained
as the product of the biweight density function and the sum of its orthonormal
polynomials is particularly suitable when the length of the filter is rather short,
say, between 5 to 23 terms, which are those often applied by statistical agencies.

At the beginning and end of the sample period, the Henderson filter of length,
say, 2m + 1, cannot be applied to the m data points, hence, only asymmetric filters
can be used. The estimates of the real time trend are then subject to revisions due
to the innovations brought by the new data entering in the estimation and to the
fact that the asymmetric filters are time varying in the sense of being different for
each of the m data points.

In this paper, we propose a new set of asymmetric weights to replace the Mus-
grave ones officially adopted by statistical agencies to detect the direction of the
short-term trend in real time. From an applied viewpoint, we are motivated by the
need of obtaining reliable short-term estimates in real time, which can be more
useful from a policy-making viewpoint. We apply the new filters to leading, co-
incident and lagging indicators of the US economy, which is known to be a key
player from an international macroeconomic perspective. We will concentrate on
the reduction of revisions only due to filter changes, and ignore those introduced
by new innovations entered with new data. In other words, the filter revisions de-
pend on how close the asymmetric filters are with respect to the symmetric one
[Dagum (1996), Dagum and Laniel (1987)]. Besides the filter revisions, we shall
deal with the time delay to identify the upcoming of a true turning point. Another
important property analyzed for the new set of asymmetric filters is the time path
followed by the last trend-cycle point as new observations are added to the series.
This is obtained by calculating the number of months (quarters) it takes for the
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last trend-cycle estimate to identify a true turning point in the same position of
the final trend-cycle data. An optimal asymmetric filter should have a time path
that converges fast and monotonically to the final estimate as new observations are
added to the series.

Several authors have studied the properties and limitations of the Musgrave
filters [Doherty (2001), Gray and Thomson (2002), Laniel (1985), Quenneville,
Ladiray and Lefrancois (2003), Dagum and Luati (2009b, 2012), Bianconcini and
Quenneville (2010)]. Dagum and Bianconcini (2008, 2013) introduced a RKHS
representation of the asymmetric filters of Musgrave (1964). In the RKHS frame-
work, given the density function (in our case the biweight), once the length of the
symmetric filter is chosen, say 2m + 1, the statistical properties of the asymmet-
ric filters are strongly affected by the bandwidth parameter of the kernel function
from which the weights are derived. In previous works, Dagum and Bianconcini
(2008, 2013) made the bandwidth parameters equal for all the asymmetric filters
(global time-invariant bandwidth) to closely approximate the Musgrave filters.

Additionally, we propose here time varying bandwidth parameters since the
asymmetric filters are time varying. We consider three specific criteria of band-
width selection based on the minimization of the following:

1. the distance between the transfer functions of asymmetric and symmetric
filters,

2. the distance between the gain functions of asymmetric and symmetric filters,
and

3. the phase shift function over the domain of the signal.

Section 2 presents a motivating example using the US New Orders for Durable
Goods (NODG) series. Section 3 gives the RKHS representations of the Hender-
son and Musgrave linear filters, and discusses the discretization of the continuous
kernel functions when applied to data. Section 4 deals with the time-varying op-
timal bandwidth selection where a filter is defined as optimal if: (1) it minimizes
the revisions between last point and final trend-cycle values as new observations
are added, and (2) reduces the time delay to signal the upcoming of a true turn-
ing point. Section 5 provides an empirical application to leading, coincident and
lagging indicators of the US economy. Finally, Section 6 gives the conclusions.

2. Motivating example: US new orders for durable goods. The monthly se-
ries of US New Orders for Durable Goods (NODG), published by the US Census
Bureau, measures the volume of orders of goods whose intended lifespan is three
years or more. Approximately 60 percent of the orders are for cars and trucks,
with building materials, furniture and household items accounting for most of the
remaining part. The NODG series is a leading indicator of US manufacturing ac-
tivity, and an increase in orders is considered as more future business for manufac-
turers. The market often moves on accordingly in spite of its high volatility, hence,
it represents an important indicator of the state of the economy, allowing to detect
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FIG. 1. New Orders for Durable Goods, US: seasonally adjusted series and trend-cycle estimates
obtained with the 13-term Henderson filter. Source: US Census Bureau.

shifts in the US economy up to six months in advance. Figure 1 illustrates the final
vintage data of the monthly NODG series for the period February 1992-March
2013. It is evident that the NODG peaked in the middle of 2007, and underwent
thenceforth a very steep decline up to June 2009, that has been identified by the
Business Cycle Dating Committee of the National Bureau of Economic Research
(NBER) to be the last trough in the US economy. The dashed line overlaid to the
seasonally adjusted NODG series in Figure 1 is the nonparametric estimate of the
corresponding trend-cycle component produced by the application of the 13-term
symmetric filter due to Henderson (1916).

It is evident from Figure 1 that the two-sided estimates of the signal are not
available for the first and last six months, the latter being the most important for
short-term trend prediction. The corresponding estimates are derived using asym-
metric filters due to Musgrave (1964). They are known to possess the good prop-
erty of fast detection of turning points, but they tend to introduce large revisions
when new observations are added to the series. This is illustrated in Figure 2 for the
last point Musgrave filter that is the most important since it provides the real time
trend-cycle estimate corresponding to the current observation. Besides the phase
shift effect typical of asymmetric filters, that produces a temporal displacement of
the point of maxima and minima of the input series, a crude measure of the size of
the total revision of the asymmetric filter is given by the distance, for each point
in time, between the estimate obtained by its application (long dash line) and the
final estimate derived by using the symmetric filter (solid line).

To overcome the main limitations of the Musgrave filters, Dagum and Bian-
concini (2008) have provided an equivalent kernel representation of the symmetric
Henderson filter and derived the corresponding asymmetric filters using the Re-
producing Kernel Hilbert Space (RKHS) methodology. The main advantage of
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FI1G. 2. New Orders for Durable Goods, US: trend-cycle estimates based on Henderson filter, last
point Musgrave and RKHS asymmetric filters, respectively.

the asymmetric kernel filters with respect to the Musgrave ones is that the for-
mer are derived following the same criteria as the symmetric filter, whereas the
latter are determined based on different optimization criteria. Having chosen the
length of the filter, the properties of these asymmetric kernels are strongly depen-
dent on bandwidth parameters. The current authors originally made the bandwidth
parameter equal for all the asymmetric filters (global time-invariant bandwidth)
to closely approximate the Musgrave filters and ensure a fast convergence to the
corresponding symmetric one.

In this paper, several criteria for bandwidth selection are proposed based on
specific properties that the corresponding asymmetric filters should satisfy. As a
specific case, Figure 2 shows the behavior of the last point kernel filter whose
bandwidth parameter has been selected in order to ensure more accurate predic-
tions. In particular, the latter has been chosen to minimize the distance between the
gain functions of the last point and symmetric kernel filters. It can be noticed that
over the whole sample span, the kernel filter (dotted line) is the closest to the final
estimates (solid line). As discussed in the subsequent sections, the revisions are
almost 50 percent smaller than those introduced by the Musgrave filter. However,
it should be noticed that a reduction in the revisions does not necessarily imply
a reduction in the time lag to signal the upcoming of a true turning point. This
is obtained by calculating the number of months it takes for the revised real time
trend-cycle to signal a turning point in the same position as in the final trend-cycle
series. For the June 2009 turning point observed for the NODG series, this is il-
lustrated in Figure 3 for the last point Musgrave (right) and optimal kernel (left)
filters. This figure gives the revision path of the last available point (June 2009) as
we keep adding one observation at a time up to December 2009, when the final es-
timate is achieved. It can be noticed that after adding only one month to the series
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F1G. 3. US NODG series. Revision path of the June 2009 (turning point) estimate as one observa-
tion is added at a time up to December 2009 (final estimate) using the optimal last point asymmetric
kernel (left) and Musgrave (right) filters, respectively.

ending in June, the turning point is clearly detected by the RKHS filter, whereas
two months are required by the Musgrave filter.

Full details will be given in the sequel; it suffices to say at this point that the set
of asymmetric filters for detecting the short-term trend in real time introduced in
this study provides better estimates than the classically applied Musgrave filters.
The improvements are reflected in the size of total revisions and time delay to
identify the upcoming of a true turning point. This is illustrated more extensively
in Section 5.

3. Linear filters in RKHS. Let {y;,# =1,..., N} denote the input series,
supposed to be seasonally adjusted where trading day variations and extreme val-
ues, if present, have been also removed. We assume that it can be decomposed into
the sum of a systematic component (signal) g;, that represents the trend and cycle
usually estimated jointly, plus an erratic component u,, called the noise, such that

3.1 Vi =& +uy.

The noise u; can be either a white noise, WN(O, cruz), or, more generally, a sta-
tionary and invertible AutoRegressive Moving Average (ARMA) process. On the
other hand, the signal g;,# =1,..., T, is assumed to be a smooth function of
time, such that it can be represented locally by a polynomial of degree p in a
variable j, which measures the distance between y; and its neighboring observa-
tions y;y;, j = —m, ..., m. This is equivalent to estimating the trend-cycle g; as a
weighted moving average as follows:

m
(3.2) = > wiyg;=wy, t=m+1,...,N —m,
j=—m
where W = [w_,, --+ wo --- wy,] contains the weights to be applied to the input
datay ={[y;—m --+ ¥t -*- Yr+m] to get the estimate g, for each point in time.

Several nonparametric estimators, based on different sets of weights w, have
been developed in the literature. The Henderson filter [Henderson (1916), Kenny
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and Durbin (1982), Ladiray and Quenneville (2001), Loader (1999)] results from
fitting a cubic polynomial to the input values y by means of weighted least squares,
that is,

(3.3) rr}Sin[y — XB1'Wly — X8],
where
M1 —m m? —m3 ]
1 —m=1 (m-=D* —(m-=1)>3
. ... ... . ﬂo
' ' Bi
X = =
1 0 0 Q : B 5 |
B3

1 m—-1) m-D% m-1)>3
1 m m? m3

and W = diag(W_y, ..., Wy, ..., Wy,) with generic element W; o {(m + 1)? —
jz}{(m +2)2— jz}{(m +3)2 — j2}, chosen as to minimize the sum of squares of
the third differences of the weights w. As discussed by Loader (1999), the latter
are given by the product of a cubic polynomial ¢ (j) and W;, such that

m
gr= Z ¢(j)Wth+j-
j=—m
For large m, Loader (1999) provided an equivalent kernel representation of the
weights by showing that W; can be approximated by the triweight function
mS(1 — (j/m)?)3, such that the weight diagram is approximately (315/512)(3 —
11(j/m)*)(1 = (j/m)?)>.

Different kernel characterizations of the Henderson filter have been derived by
Dagum and Bianconcini (2008, 2013) based on the Reproducing Kernel Hilbert
Space (RKHS) methodology. A RKHS is a Hilbert space characterized by a ker-
nel that reproduces, via an inner product, every function of the space. It follows
that a kernel estimator of order p can always be decomposed into the product of
a reproducing kernel R, i, belonging to the space of polynomials of degree at
most p — 1, and a probability density function fj with finite moments up to order
2p [Berlinet (1993)]. In this context, the equivalent kernel representation of the
Henderson filter is given by

3
(3.4 K4(1) =) Pi(1)Pi(0) fo (1), re[-1,1],

i=0
where fj is the density function, defined on [—1, 1], obtained through normaliza-
tion of W;, and the P; are the corresponding orthonormal polynomials. Equiva-
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lently, the kernel in (3.4) can be written as

det(HY[1, ¢t

(3.5) K==, RO el

where Hg is the Hankel matrix whose elements are the moments of fy, that is,
wr=[ _1 1" fo(t)dz. In particular, the first row contains the moments from o to
3, whereas the last row those from 3 to . Hg[l , t] is the matrix obtained by
replacing the first column of Hg by the vector t =[1 ¢ > 3]’

The density fo depends on W;, hence, on the length of the filter, and it needs
to be determined any time that m changes. The kernel representation based on the
triweight function allows to overcome such limitation, but Dagum and Bianconcini
(2008) have found that the biweight function fop(r) = (15/16)(1 — 1?1t e
[—1, 1], provides a better approximation for Henderson filters of short length,
say, between 5 to 23 terms which are those used by statistical agencies [see also
Bianconcini and Quenneville (2010)].

When applied to real data, the symmetric filter weights are derived as follows:

(3.6) wj= Ka(j/b) j=-m,...,m,

. Ka(j/b)
where b is a time-invariant global bandwidth parameter (same for all t = m +
1,..., N —m) selected to ensure a symmetric filter of length 2m + 1. The band-
width parameter relates the discrete domain of the filter, that is, {—m, ..., m}, with
the continuous domain of the kernel function, that is, [—1, 1]. The weights given
in (3.6) can be also rewritten in matrix form as follows.

PROPOSITION 3.1. The weights w derived using the kernel function in (3.4)
admit the following representation:

(3.7) w =e H, X F,,

where €, =[1 0 0 0], Hy = HJ[1,S] with S’ =[Sy 0 S, O], being S, =
b1 ZTz_m (j/b) fo(j/b) the discrete approximation of (i,, and b the bandwidth
parameter. In addition, Xj, has the same form as X in (3.3), but with generic row

given by [1 j/b (j/b)* (j/b)*), j = —m,...,m, and Fy = diag(1/bfop(—m/b),
..., 1/bfop(m/b)).

A formal proof of Proposition 3.1 is provided in the Appendix. It can be easily
shown that the generic element of w is given by

[ — Mz(j/b)z] 1 <J> .
3.8 = — | — =, =—m,...,m.
(3.8) W [Som—SzMz beB 5 j m m

In this setting, once the length of the filter is selected, the choice of the bandwidth
parameter b is fundamental. It has to be chosen to ensure that only, say, 2m + 1
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observations surrounding the target point will receive nonzero weights as well as
to approximate, as close as possible, the continuous density function with the dis-
crete one as well as its moments. Indeed, we can separate (3.7) into two parts. One
concerns the discretization of the density function fj in terms of adjacent rectan-
gles, erected over discrete intervals, whose width is determined by the bandwidth
b. The second part corresponds to the discretization of the reproducing kernel that
depends on the discrete moments Sg and S;. Of these two parts, the former plays
the most important role to approximate the continuous kernel given in (3.4) for the
Henderson filter representation. Its bandwidth parameter selection is done to guar-
antee specific inferential properties of the trend-cycle estimators. In this regard,
Dagum and Bianconcini (2008, 2013) used a time-invariant global bandwidth b
equal to m + 1, which gave excellent results.

3.1. Asymmetric filters. The derivation of the symmetric Henderson filter has
assumed the availability of 2m + 1 input values centered at r. However, at the
end of the sample period, thatis, t =N — (m + 1),..., N, only 2m,...,m + 1
observations are available, and asymmetric filters of the same length have to be
considered. Hence, at the boundary, the effective domain of the kernel function K4
is [—1, g*], with g* « 1, instead of [—1, 1] as for any interior point. This implies
that the symmetry of the kernel is lost, and it does not integrate to unity on the
asymmetric support [ ff: K4(t) dt # 1]. Furthermore, the moment conditions are

no longer satisfied, that is, fff; tiK4(t) dr #0, fori =1, 2, 3. To overcome these
limitations, several boundary kernels have been proposed in the literature.

In the context of real time trend-cycle estimation, the condition that the kernel
function integrates to unity is essential, whereas the unbiasedness property can
only be satisfied with a great increase in the variance of the estimates. This is a
consequence of the well-known trade-off between bias and variance. This latter
becomes very large because most of the contribution to the real time trend-cycle
estimates comes from the current observation which gets the largest weight. Based
on these considerations, Dagum and Bianconcini (2008, 2013) have suggested
following the so-called “cut and normalize” method [Gasser and Miiller (1979),

Kyung-Joon and Schucany (1998)], according to which the boundary kernels KZ*
are obtained by cutting the symmetric kernel K4 to omit that part of the function
lying between ¢* and 1, and by normalizing it on [—1, g*]. That; that is,

Ki(t)  det(HQ[1,t]) for(0)

39) K9 ()= — —
G2 4 f_qlK4(t)dt det(Hg[l,,m*])

re[-1,4%]

where u?" = [Mg* ,u’f* ,ug* Mg*] with M?* = ff: t" fop (t) dt being proportional to
the moments of the truncated biweight density fop on the support [—1, g*], which
from now on we simply refer to as truncated moments.
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Applied to real data, the “cut and normalize” method yields the following for-
mula for the asymmetric weights:

K G/b)  _ detHSLL /gD (1/by) fon(i/by)
K& (i/by) det(H,) ’

j:—m

(3.10) w,j =

forj=-m,...,q,andq =0, ...,m—1, where b;,q =0, ...,m — 1, is the local
bandwidth, specific for each asymmetric filter. As before, b, allows us to relate
the discrete domain of the filter, that is, {—m, ..., q}, foreachg =0,...,m — 1,
to the continuous domain of the kernel function, that is, [—1, ¢*]. Furthermore,
/by =11(i/byg) (j/bg)* (j/bg)*],and H, = HY[1, 89] with 8¢ =[S ST 57 571,
and S = Zzzfm(l/bq)(j/bq)’fog(j/bq) the discrete approximation of u?*.

PROPOSITION 3.2.  Each asymmetric filter Wy = [wq,—p - - - Wy 41" of length
(m+q+1),forq=0,...,m— 1, admits the following matrix representation:

(3.11) w,=e/H,”'X_F,, ¢=0,....m—1,

where X is a matrix of dimensions (m +q + 1) x 4, whose generic row is given by

J/bg, j=—m,....q,and ¥y =diag((1/by) fop(—m/by), ..., (1/by) for(q/by))-
It can be easily shown that the generic element of W, is

pa — 12(j/bg)*7 1 j
(3.12) wq,j:[#}_ﬁw(i)
Soma — Sypa by by

where j =—m,...,qandqg=0,...,m — 1.

The proof of Proposition 3.2 is similar to that of Proposition 3.1 and, for space
reasons, is omitted.

3.1.1. Properties of the asymmetric filters. Since the trend-cycle estimates for
the last m data points do not use 2m + 1 observations for any interior point, but
2m,2m — 1,...,m + 1 data, they are subject to revisions due to the following:
(1) new observations entering in the estimation and (2) filter changes. As said be-
fore, we will concentrate on the reduction of revisions due to filter changes. The
reduction of these revisions is an important property that the asymmetric filters
should possess together with a fast detection of true turning points. In the spe-
cific case of the RKHS filters, (3.12) shows how the asymmetric filter weights
are related to the symmetric ones given in (3.8). It is clear that the convergence
depends on the relationship between the two discretized biweight density func-
tions, truncated and nontruncated, jointly with the relationship between their re-
spective truncated S; and untruncated S, discrete moments. The latter provide an
approximation of the continuous moments u,, which improves as the asymmet-
ric filter length increases. Similarly, the convergence of S/, g =0, ..., m, to the
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FIG. 4. Behavior of S8 with m = 6, bg =7 (left) and by = 12 (right).

corresponding nontruncated moment S, depends on the length of the asymmetric
filter given by ¢ and on the local bandwidth b, . It should be noticed that b, plays
a very important role in the convergence property. For the last trend-cycle point
weight, g =0, (3.12) reduces to

_ Ha 15
SQua — S9pup 16bo”

wo,0

It is apparent that the larger bo, the smaller is the weight given to the last trend-
cycle point. Since the sum of all the weights of the last point asymmetric filter,
wo,—m, - - - » Wo,0, Must be equal to one, this implies that the weights for the re-
maining points are very close to one another. This can be seen in Figure 4 (right
side) that shows, for m = 6, the truncated continuous biweight density function
and its discretized version when by is equal to 12. The opposite is observed when
bg is smaller, as shown in the same figure (left side) for by equal to 7. Since a larger
weight is given to the last point, much smaller weights have to be assigned to the
remaining ones for all of them to add to one. Next, we introduce time-varying local
bandwidths to improve the properties of the asymmetric filters in terms of size of
revisions and time delay to signal the upcoming of true turning points.

4. Optimal bandwidth selection. The main effects induced by a linear filter
on a given input are fully described in the frequency domain by its transfer function

m
Fw)= Y wjexp(—i2nw)), wel[—1/2,1/2],
j=—m
where, for better interpretation, the frequencies w are given in cycles for unit of
time instead of radians. Here, I"(w) represents the Fourier transform of the filter
weights, w;, j = —m, ..., m, and it relates the spectral density &y (w) and hg(w)
of the input and of the output, respectively, by

hg(w) =T(w)hy(w).
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Thus, the transfer function I' (w) measures the effect of the filter on the total vari-
ance of the input at different frequencies. It is generally expressed in polar coordi-
nates

4.1 I'(w) = G(w) exp(—i2n ¢ (w)),

so that the impact of the filter on a (complex-valued) series y; = exp(i2w wt), for
wel-1/2,1/2],1s

& =(w)exp(i2nwt)
= G(w) exp(—i2n ¢ (w)) exp(i2w wt)
= G (w)exp{i2n|[wt — ¢(w)]}.

G (w) = |I'(w)] is the gain of the filter, which measures the amplitude of the output
for a sinusoidal input of unit amplitude, whereas ¢ (w) is the phase function, which
shows the shift in phase of the output compared with the input. Hence, the transfer
function plays a fundamental role to measure that part of the total revisions due to
filter changes.

The measure of total revisions introduced by Musgrave (1964) is

m

q 2
4.2) E[ D wgvi—j— Y. wjy,_j} ., g=0,....m—1,

j=—m j=—m

where, in our case, wg, ; and w; are given by (3.12) and (3.8), respectively. This
criterion can be expressed in the frequency domain as follows:

2
q m
E|: Z wq,jeﬂnw(t—]) _ Z wjeﬂna)(t—]):|

j:—m j:—m

(4.3) = E[(T,(®) — T(w))e! ™)
1/2 ,
_ / Iy (@) — T (@)™ () do,
—12

where iy (w) is the unknown spectral density of y;, whereas I'y (@) and I'(w) are
the transfer functions corresponding to the asymmetric and symmetric filters, re-
spectively. Similarly to (4.2), expression (4.3) shows that, as new observations
become available, revisions are due to two sources: (a) the new innovations enter-
ing the input series, and (b) changes in the asymmetric filters. In order to improve
the current trend-cycle prediction based on the asymmetric Henderson filters, we
study that part of the revisions due to asymmetric filter changes. Because the esti-
mation of the real time trend-cycle is done concurrently, that is using all of the data
up to and including the most recent value, knowledge of the speed of convergence
of the last point trend-cycle filter to the central one gives valuable information on
how often the real time trend estimate should be revised.
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The quantity |’y (w) — F(a))|2 accounts for the revisions due to filter changes
[Dagum (1982a, 1982b)], and it can be decomposed using the law of cosines as
follows:

i) Ty (w) — F(a))|2 =|G4(w) — G(a))]2 +2G 4 (@)G(w)[1 — cos(¢y(w))]

2
=|G4(w) — G(a)){2 +4G4(0)G(w) sin<¢q (%)) ’

where the phase shift for the symmetric filter is equal to 0 or 7, and where
1 —cos(¢y(w)) = 2sin(¢y (w/ 2))2. Based on (4.4), the mean square filter revision
error can be expressed as follows:

172 1/2
2/ |Fq(a))—F(a))|2da)=2/ G, () — G(w)]* do
45) " 0

+38 01/2Gq(a))G(a))sin(qﬁ(%))zdw.

The first component reflects the part of the total mean square filter error which is
attributed to the amplitude function of the asymmetric filter. On the other hand,
the second term measures the distinctive contribution of the phase shift. The term
G4(w)G(w) is a scaling factor which accounts for the fact that the phase function
is dimensionless, that is, it does not convey level information [Wildi (2008)].

As previously discussed, once the length of the filter is chosen, the properties
of the asymmetric filters derived in RKHS are strongly affected by the choice of
the time-varying local bandwidths b,,g =0, ..., m — 1. Here, we propose several
criteria for bandwidth selection based on (4.5), and analyze the properties of the
corresponding optimal filters. We define as optimal a filter that minimizes both re-
visions and time delay to detect a true turning point. The LHS of (4.5) is a measure
of total filter revision that provides the best compromise between the amplitude
function of the asymmetric filter (gain) and its phase function (time displacement)
[Dagum (1982a, 1982b), Dagum and Laniel (1987)]. Optimal asymmetric filters
in this sense can be derived using local bandwidth parameters selected according
to the following criterion:

1/2
(4.6) by.r :rrgin\/Z/ Ty (@) — T ()] do.
q 0

Based on the decomposition of the total filter revision error provided in (4.5), fur-
ther bandwidth selection criteria can be defined by emphasizing more the gain or
phase shift effects, and/or by attaching varying importance to the different fre-
quency components, depending on whether they appear in the spectrum of the
initial time series or not. In the context of smoothing a monthly input, the fre-
quency domain 2 = {0 < w < 0.50} can be partitioned in two main intervals:
(1) 25 ={0 < w < 0.06} associated with cycles of 16 months or longer attributed
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TABLE 1
Optimal bandwidth values selected for each of the biweight asymmetric filters corresponding to the
9-, 13- and 23-term Henderson symmetric filters

q 0 1 2 3

bg,r 6.47 521 490 492
by, 800 567 487 490
bg.¢ 401 445 597 693

by,r 9.54 788 7.07 6.88 6.87 694
by 1178 924 734 685 6.84 695
bq.¢ 6.01 601 7.12 844 946 10.39

q 0 1 2 3 4 5 6 7 8 9 10

bgr 1732 1535 13.53 1247 12,05 1186 11.77 11.77 11.82 1191 11.98
by 21.18 18.40 16.07 13.89 1244 1190 11.72 11.73 11.83 11.92 11.98
bqe 11.01 11.01 11.01 11.01 11.41 13.85 15.13 16.21 17.21 18.15 19.05

to the signal (trend-cycle) of the series, and (2) Qs = {0.06 < < 0.50} corre-
sponding to short cyclical fluctuations attributed to the noise.
We derive a class of optimal asymmetric filters based on bandwidth parameters

by,q=0,...,m— 1, selected as follows:
1/2 5
4.7) by.c = rrgin 2/ |Gq (w) — G(a))| dw
q 0
and
4.8) by = ngin\/Z/ Gq(a))G(w)[l — cos(¢q (w))] do.
q Qg

It has to be noticed that the minimization of the phase error in (4.8) is very close
to minimizing the average phase shift in month for the signal, that is,

de].

49 by ¢ = min| ——
49) a9 min[o.% s 27w

b

Table 1 illustrates the bandwidth parameters b, r, by G,bg.9,.q =0,...,m — 1,

derived as minimizers of (4.6), (4.7) and (4.9), respectively, corresponding to the
9-, 13- and 23-term symmetric filters.

It can be noticed that, as g approaches m, the bandwidth parameters selected to

optimize the criteria (4.6) and (4.7) get closer to m + 1, that is the global bandwidth

considered for the symmetric Henderson filter. Hence, based on the relationships
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FIG. 5. Time path of the asymmetric filters based on by 1 (left), by G (right) corresponding to the
13-term symmetric filter.

between truncated and untruncated discrete biweight density functions and respec-
tive discrete moments previously discussed, the asymmetric filters based on by
and b; G, q =0,...,m — 1, should be characterized by a fast convergence to the
symmetric filter. This is confirmed by Figure 5 that illustrates, as an example, the
time path of these filters corresponding to the 13-term symmetric one. Other filter
lengths have been considered, but, for space reasons, we only show the results for
the 13-term filter. However, similar conclusions can be drawn for different filter
lengths.

The asymmetric filters based on b, r and by g, ¢ =0,...,m — 1, converge
very fast to the symmetric filter, particularly after the previous to the last point,
with the main differences observed for the last point filters. For these latter, the
different behavior is analyzed in the frequency domain in Figure 6, that shows the
corresponding gain and phase shift functions. It can be noticed that, as expected,
the filter whose bandwidth b ¢ is derived as minimizer of (4.7) shows a gain
function closer to that of the symmetric Henderson filter than the one based on
bo.r, suppressing more noise at the highest frequencies, and it reproduces very
well the signal in the lower frequency band.

In terms of phase shift or time delay, the filters that behave better are the ones
based on the bandwidth parameters selected to minimize the average phase shift in
months over the signal domain. However, as shown in Figure 7, their time path is

N 2
- - —bo,g—bo,r —bo,  Mus
S 2
~o AO
3 i 3 07 i
S 3 S| p—
O« S et
o E 7z
£
4 O*—/
= «
© T T T T T [ T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
w w

FI1G. 6. Gain (left) and phase shift (right) functions for the last point asymmetric filters based on
bo,r, bo,G and by y compared with the last point Musgrave filter.
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FIG. 7. Time path of the asymmetric filters based on by ¢ (left) and of the Musgrave asymmetric
filters (right) corresponding to the 13-term symmetric filter.

only very close to that of the filters derived by Musgrave (1964) up to g = 2, but
there is no monotonic convergence of these asymmetric filters to their final one.
This property is reflected in their phase shift function that, for the last point filter,
is illustrated in Figure 6. As already said, the Musgrave filters are based on the
minimization of the mean squared revision between the final estimates, obtained
by the application of the symmetric filter, and the preliminary estimates, obtained
by the application of an asymmetric filter, subject to the constraint that the sum of
the weights is equal to one [Doherty (2001), Laniel (1985)]. These filters have the
good property of fast detection of turning points.

As we can see, both the last point Musgrave filter and the one based on b ¢ pro-
duce almost one half of the phase shift introduced by the filter based on by r and
a quarter of the one introduced by the filter based on bg ¢ at the signal frequency
band. However, the reduced phase shift produced by these two filters is compen-
sated by larger revisions introduced in the final estimates. Indeed, as shown by
the corresponding gain functions, the last point Musgrave filter and the one based
on by 4 suppress much less noise than the filters obtained through minimization of
(4.6) and (4.7). Furthermore, the Musgrave filter has the worst performance since it
introduces a large amplification of the power attributed to the trend and suppresses
less noise.

5. Application to the US economy. We have chosen a set of leading, coinci-
dent and lagging indicators of the US economy to illustrate some of the potential
gains of using these new asymmetric filters. Time series that exhibit a turning
point before the economy as a whole are called leading indicators, whereas those
that change direction approximately at the same time are called coincident indica-
tors. The lagging indicators are those that usually change direction after the whole
economy does. The composite indexes are typically reported in financial and trade
media. The series analyzed in this study are obtained from the St. Louis Federal
Reserve Bank database, the Bureau of Labor Statistics, the Conference Board and
the National Bureau of Economic Research (NBER). They are all final vintages
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data in the sense that they will no longer be revised. We have chosen the following
as leading indicators:

Composite index of ten leading indicators (2010 = 100)."

— Average weekly overtime hours, manufacturing.

— New orders for durable goods.

— New orders for nondefense capital goods.

— New private housing units authorized by building permits.

— Stock prices, S&P common stocks.

— Money supply, M2.

— Interest rate spread, 10-year treasury bonds less federal funds.
— Index of consumer expectation (University of Michigan).

We consider the following as coincident indicators:

— Composite index of four coincident indicators (2010 = 100).
— Employees on nonagricultural payrolls.

— Personal income less transfer payments.

— Industrial production index.

— Manufacturing and trade sales.

Finally, the lagging indicators treated are as follows:

Composite index of seven lagging indicators (2010 = 100).
— Average duration of unemployment, weeks.

— Ratio, manufacturing and trade inventory to sale.

Change in labor cost per unit of output, manufacturing.

— Commercial and industrial loans outstanding.

The asymmetric filters derived following the RKHS methodology versus the Mus-
grave filters, applied in conjunction with the symmetric Henderson filter, are eval-
uated as follows.

5.1. Reduction of revision size in real time short-term trend estimates. The
reduction of revisions in real time trend-cycle estimates is very important because
the estimates are preliminary and often used to assess the current stage of the
economy. Statistical agencies and major users of these indicators are reluctant to
large revisions because these can lead to wrong decision taking and policy making
concerning the current economic situation. The series considered are all seasonally
adjusted, where also trading day variations and extreme values have been removed
if present. The indicators are series of different length, but the periods selected
sufficiently cover the various lengths published for these series. For each series,

IThe index is rebased to average 100 in 2010. The history of the index is multiplied by 100 and
divided by the average for the twelve months of the based year, currently 2010.
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TABLE 2
Ratio of the mean square percentage revision errors of the last point asymmetric filters based on
by, bo,r and by g, and the last point Musgrave filter

bo,G bo,r bo,p

Macro-area Series Mits Mas Mus
Leading Composite index of ten leading indicators 0.503 0.643 0.933
Average weekly overtime hours: Manufacturing 0492  0.630 0.922
New orders for durable goods 0493 0.633 0931
New orders for nondefense capital goods 0.493 0.633 0.931
New private housing units authorized by building permits  0.475  0.651  0.927
S&P 500 stock price index 0.454 0.591 0.856
M2 money stock 0.508 0.655 0.932
10-year treasury constant maturity rate 0.446 0.582 0.849
University of Michigan: Consumer sentiment 0480 0.621 0912
Coincident Composite index of four coincident indicators 0.504 0.651 0.931
All employees: total nonfarm 0.517 0.666 0.951
Real personal income excluding current transfer receipts 0.484 0.627 0.903
Industrial production index 0477 0.616 0.884
Manufacturing and trade sales 0471 0.606 0.869
Lagging Composite index of seven lagging indicators 0.523 0.653 0.966
Average (mean) duration of unemployment 0.509 0.649 0.937
Inventory to sales ratio 0.483 0.618 0.894
Index of total labor cost per unit of output 0.515 0.663 0.983

Commercial and industrial loans at all commercial banks  0.473 0.610 0.871

the length of the filters is selected according to the //C (noise to signal) ratio,
as classically done in the X11/X12ARIMA procedure [Ladiray and Quenneville
(2001)]. In the sample, the ratio ranges from 0.20 to 1.98, hence filters of length 9
and 13 terms are applied.

The comparisons are based on the relative filter revisions between the final sym-
metric filter S and the last point asymmetric filter A, that is,
(5.1) R=2TA N

St

For each series and for each estimator, we calculate the ratio between the Mean
Square Percentage Error (MSPE) of the revisions corresponding to the filters de-
rived following the RKHS methodology and those corresponding to the last point
Musgrave filter. For all the estimators, the results illustrated in Table 2 show that
the ratio is always smaller than one, indicating that the kernel last point predictors,
based on time-varying bandwidth parameters, introduce smaller revisions than the
Musgrave filter. This implies that the estimates obtained by the former will be
more accurate than those derived by the application of the latter. In particular, as
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expected, the best performance is shown by the filter based on the optimal band-
width bo ¢ derived to minimize the criterion (4.7). In almost all the series its ratio
with the last point Musgrave filter is less than one half and, on average, around
0.489. This implies that when applied to real data, the filter based on by g pro-
duces a reduction of almost fifty percent of the revisions introduced in the real
time trend-cycle estimates given by the Musgrave filter. The filter based on bg r,
derived to minimize the size of total filter revisions as defined by (4.6), also per-
forms very well with more than thirty percent of revision reduction with respect to
the Musgrave filter. In this case, the ratio is greater than the one corresponding to
the filter based on by ¢, but always less than 0.7 for all the series, being, on aver-
age, around 0.631. The filter whose bandwidth parameter is selected to minimize
the average phase shift over the signal domain performs more similarly to the last
point Musgrave filter but still shows revisions reduction, on average, around ten
percent.

5.2. Turning point detection. It is important that the reduction of revisions
in real time trend-cycle estimates is not achieved at the expense of increasing the
time lag to detect the upcoming of a true turning point. A turning point is generally
defined to occur at time ¢ if (downturn)

Vi—k = =Vi-1 >Vt ZVi+1 = - = Vt+m

or (upturn)
Vi—k = Z V-1 <Yt ZVt41 =" = Vt+m-

Following Zellner, Hong and Min (1991), we have chosen k =3 and m = 1
given the smoothness of the trend-cycle data. For each estimator, the time lag to
detect the true turning point is affected by the convergence path of its asymmetric
filters wy, g =0, ..., m — 1, to the symmetric one w.

To determine the time lag needed by an indicator to detect a true turning point,
we calculate the number of months it takes for the real time trend-cycle estimate
to signal a turning point in the same position as in the final trend-cycle series. For
the series analyzed in this paper, the time delays for each estimator are shown in
Table 3. It can be noticed that the filters based on the bandwidth b, ¢ take two
months (on average) as the Musgrave filters to detect the turning point. This is due
to the fact that, even if b,  filters are designed to be optimal in timeliness, their
convergence path to the symmetric filter is slower and not monotone.

On the other hand, the filters based on by r,qg =0,...,m — 1, and by G,q =
0,...,m — 1, perform strongly better. In particular, whereas the former detect the
turning point with an average time delay of 1.44 months, the latter takes 1.22
months.

The faster the upcoming of a turning point is detected, the faster new policies
can be applied to counteract the impact of the business cycle stage. Failure to



1452 E. B. DAGUM AND S. BIANCONCINI

TABLE 3
Time lag in detecting true turning points for the asymmetric filters based on by G, by, T and by ¢,
and the Musgrave filters
Series by, bgq,r by, Musgrave
Leading  Composite index of ten leading indicators 1 1 3 3
Average weekly overtime hours: Manufacturing 1 1 1 1
New orders for durable goods 1 2 3 2
New orders for nondefense capital goods 1 2 2 3
New private housing units authorized by building permits 2 2 3 3
S&P 500 stock price index 1 2 2 2
10-year treasury constant maturity rate 1 1 1 2
University of Michigan: Consumer sentiment 1 1 1 1
Coincident Composite index of four coincident indicators 1 1 2 2
All employees: total nonfarm 1 1 1 2
Real personal income excluding current transfer receipts 1 1 1 1
Industrial production index 1 1 1 1
Manufacturing and trade sales 1 2 3 3
Lagging  Composite index of seven lagging indicators 1 1 3 3
Average (mean) duration of unemployment 3 3 4 3
Inventory to sales ratio 1 1 1 2
Index of total labor cost per unit of output 2 2 3 2
Commercial and industrial loans at all commercial banks 1 1 1 1
Average time lag in months 1.22 1.44 2.00 2.06

recognize the downturn in the cycle or taking a long time delay to detect it may
lead to the adoption of policies to curb expansion when, in fact, a recession is
already underway.

To better highlight how the proposed filters perform when applied to series that
are impacted differently by the short-term trend, we look at the revision path of
the corresponding estimates. In this regard, we compare the performance of the
filters on the three composite indicators, namely, leading, coincident and lagging,
illustrated in Figure 8 for the period January 1995-December 2014. The composite
index of ten leading indicators presents a deep turning point on May 2009, whereas
shallow turning points are shown by the coincident and lagging composite indica-
tors on August 2009 and May 2010, respectively.

Figure 9 exhibits the behavior of the Musgrave filters (right) and of the kernel
filters based on b, ¢ in detecting the May 2009 turning point of the composite
leading index. In particular, the figure shows the revision path of the last available
point (May 2009) as we keep adding one observation at a time up to October 2009,
when the final estimate is achieved.
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FI1G. 8. Composite leading, coincident and lagging indicators of the US economy (2010 = 100).

It can be noticed that after adding one month at the series ending at May 2009,
the turning point is clearly detected by the kernel filters, whereas three months are
required by the Musgrave ones.

A similar pattern is observed in Figures 10 and 11 that are the “porcupine”
graphs for the August 2009 and May 2010 turning points of the coincident and
lagging composite indicators, respectively. For both series, the kernel filters detect
the turning points after one month they have occurred, whereas the Musgrave fil-
ters take two months for the former, and three months for the latter. Hence, based
on our previous considerations, the filters based on local bandwidth parameters se-
lected to minimize criterion (4.7) are optimal, since they drastically reduce the total
revisions by one half with respect to the Musgrave filters and, similarly, almost by
one half the number of months needed to detect a true turning point.
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FI1G. 9. Composite index of ten leading indicators (2010 = 100): revision path of the May 2009
(turning point) estimate as one observation is added at a time up to November 2009 (final estimate)
using the asymmetric kernels based on by G (left) and Musgrave (right) filters, respectively.
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F1G. 10. Composite index of four coincident indicators (2010 = 100): revision path of the August
2009 (turning point) estimate as one observation is added at a time up to November 2009 (final
estimate) using the asymmetric kernels based on by ¢ (left) and Musgrave (right) filters, respectively.

6. Discussion. This paper deals with the problem of assessing, in real time,
the direction of the short-term trend with an application to some key indicators of
the US economy. The linear asymmetric filters here proposed are developed us-
ing the RKHS methodology. Given the length of the RKHS asymmetric filter, its
properties strongly depend on the bandwidth parameter of the asymmetric kernel
function from which the filter weights are derived. Since the m asymmetric filters
corresponding to a 2m + 1 symmetric filter are time varying, one for each spe-
cific point, we are here proposing local time-varying bandwidth parameters. We
consider three main criteria for bandwidth selection in order to determine an opti-
mal smoother. An optimal filter is defined as the one that minimizes revisions and
time lag to detect the upcoming of a true turning point. The three main criteria of
bandwidth parameter selection are minimization of the following: (1) the distance
between the gain functions of asymmetric and symmetric filters, (2) the distance
between the transfer functions of asymmetric and symmetric filters, and (3) the
phase shift function over the domain of the signal.

We show theoretically that any of the three criteria produces asymmetric trend-
cycle filters to be preferred to those developed by Musgrave concerning both size
of revisions and time delay to detect the upcoming of true turning points. To high-
light how the proposed filters perform when applied to series that are impacted

102
102

101
101

102

(Level in percent)
102

(Level in percent)

99
99

T T T L T T > T
Nov-09 Apr-10 Sep-10 Nov-09 Apr-10 Sep-10

FI1G. 11. Composite index of seven lagging indicators (2010 = 100): revision path of the May 2010
(turning point) estimate as one observation is added at a time up to November 2010 (final estimate)
using the asymmetric kernels based on by ¢ (left) and Musgrave (right) filters, respectively.
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differently by the long-term trend, we look at the revision path of the correspond-
ing estimates. In this regard, we compare the performance of the filters on three
composite indicators, namely, leading, coincident and lagging. The composite in-
dex of ten leading indicators presents a deep turning point on May 2009, whereas
shallow turning points are shown by the coincident and lagging composite indica-
tors on August 2009 and May 2010, respectively. The real time trend-cycle filter
calculated with the bandwidth parameter that minimizes the distance between the
asymmetric and symmetric filters gain functions is to be preferred. This last point
trend-cycle filter reduces around one half the size of the total revisions as well as
the time delay to detect a true turning point with respect to the Musgrave filter.
The new set of asymmetric kernel filters can be applied in many fields, such as
economics, finance, health, hydrology, meteorology, criminology, physics, labor
markets, utilities and so on, in fact, in any time series where the impact of trend
plus cyclical variations is of relevance. For interested readers, the weight systems
of these filters are given in the supplementary material [Dagum and Bianconcini
(2015)] for 9- and 13-term symmetric filters.

APPENDIX: PROOF OF PROPOSITION 3.1

As shown by Dagum and Bianconcini [(2008) and (2013)], the symmetric filter
weights are derived as follows:

Kb
I Kb
where b is the time-invariant global bandwidth parameter (same for all t =m +

1,..., N —m) selected to ensure a symmetric filter of length 2m + 1. Based on
(3.5), we obtain that

o det@®GIL j/dD(1/b) fos (j/b)
T, det(HSL1, j/bl)(1/b) fos (j/b)
_ det(HIL.§/bD(1/b) fop(j/b)
det(HQ[1, X1, §/b(1/b) for (j /D)D)
_ det(HY[1, j/bN)(1/b) fo(j/b) _ det(HYIL, j/bD)(1/b) fon(j/b)
B det(HY[1, S]) B det(H;) ’

where Hy = HY[1, S], with S =[S, 0, S%,01, and S? = 0 for odd r. The expres-
sion above is exactly the same as we would obtain by solving for 30 = g the
system of linear equations

=—-m,...,m,

H,B8 = X'Fy.
Indeed, setting ¢ = XZFby, the first coordinate of the solution vector is
» det(H3[1,¢])  det(HJ[1, c])
© det(Hy)  det(Hy)
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Given that ¢ = j_fm(‘]/b)(l/b)fog (j/b)y:+j, it follows that

det(HJ[1,b]) = Z det(HO[ D f03< >yt+j

]——m

and, therefore,

5 = i det(HY[1, j/b])(1/b) for(j/b) Yra.
= det(Hj;)
Hence,
Bo =€ H, "' X, Fuy,
and it follows that

w =e/H;, X/ F,.
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