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The p-beauty contest is a multi-player number guessing game that is
widely used to study strategic behavior. Using new data from a specially-
designed web experiment, we examine the evidence in favor of a popular
class of behavioral economic models called k-step thinking models. After
fitting a custom Bayesian spline model to the experimental data, we estimate
that the proportion of players who could be using a k-step thinking strategy
is approximately 25%.

1. Introduction. Game theory provides a formal language for describing sit-
uations where outcomes are determined by the behavior of multiple individuals,
all acting in their own interests. By “solving puzzles about how idealized players
will behave” [Camerer (2003a)], game theoretic models admit rigorous analysis
and furnish sharp predictions, making them an important tool for characterizing
agent interactions in a variety of areas, from biological, to social, to industrial.

However, in some contexts—such as first-time interactions—the predictions
from idealized game theoretic models fail to characterize observed game play.
Mindful of this discrepancy, behavioral game theory takes up the challenge of
describing how people actually play games (in the broad sense). Behavioral game
theorists use “experimental evidence to inform mathematical models of cognitive
limits, learning rules and social utility” [Camerer (2003a)], combining the rigor
and precision of mathematical game theory with the experimental methods of cog-
nitive science. Behavioral game theory is an active and rapidly expanding field
[e.g., Chong, Ho and Camerer (2014)], and to even outline its recent developments
would require far more space than we have here. For a book-length introduction
see [Camerer (2003b)]. Suffice it to say that improved understanding of how peo-
ple reason strategically would be useful in a broad range of settings, from product
pricing to battlefield decision-making.

In this paper, we focus on a multi-player number guessing game called the p-
beauty contest [Bosch-Domenech et al. (2002), Ho, Camerer and Weigelt (1998),
Nagel (1995)]. The p-beauty game has been widely used in previous literature to
elicit strategic behavior among study participants because it is both easy to explain
and simple to analyze theoretically; see Section 2. Understanding how people ap-
proach simple multi-player games like beauty contests is an important step toward
characterizing the ways that people tend to reason about the reasoning of others.
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Previous beauty contest studies, as well as studies focusing on similar experi-
mental games [Costa-Gomes and Crawford (2006), Stahl and Wilson (1995)], have
yielded two broad conclusions. First, subjects seldom play as formal game theory
would predict and, second, “[s]ubjects’ thinking is heterogeneous, so no model that
imposes homogeneity will do justice to their behavior” [Crawford, Costa-Gomes
and Iriberri (2013)]. Accordingly, theories which allow for player heterogeneity
have been developed to account for the observed game play [Camerer, Ho and
Chong (2004), Costa-Gomes and Crawford (2006), Crawford and Iriberri (2007),
Nagel (1995), Stahl and Wilson (1995)]. Here, we examine a well-known class of
behavioral theories of strategic reasoning which hold that players arrive at their
strategies via a process called k-step reasoning.

Previous empirical work on k-step reasoning models has focused on estimation
and interpretation of model parameters, rather than on model validation. On the
one hand, this focus is understandable, as such models are intended only as ap-
proximations to human strategic thinking. On the other hand, we argue that any
lessons drawn from the parameter estimates of such models are only as good as
this approximation. In this paper, we set out to assess the goodness of the k-step
thinking model at characterizing subjects’ observed game play.

To assess the k-step thinking hypothesis, we employ a flexible statistical model
that permits each subject to play an idiosyncratic strategy, which may or may not
be compatible with k-step reasoning. Our objective is simply to estimate the preva-
lence of k-step compatible strategies, without requiring that the behavioral model
captures every individual’s game play. This approach prevents us from rejecting the
k-step hypothesis wholesale merely because one or two player’s data may grossly
deviate from it.

When applied to most previously collected beauty contest data, the extreme
flexibility of our approach leads to a lack of identification, meaning that the k-
step reasoning hypothesis implies no signature pattern of game play. Fortunately,
we are able to overcome this limitation by running a new experiment in which
study subjects play not one, but multiple (unrelated) beauty contest games. Under
this new protocol, the k-step reasoning hypothesis implies a characteristic pattern
of game play across the multiple games; our goal is to determine how often this
characteristic pattern shows up in our experimental data.

2. Beauty contest games. The beauty contest game derives its name from a
quote by John Maynard Keynes concerning stock markets:

...professional investment may be likened to those newspaper competitions in which
the competitors have to pick out the six prettiest faces from a hundred photographs, the
prize being awarded to the competitor whose choice most nearly corresponds to the
average preferences of the competitors as a whole. .. It is not a case of choosing those
which, to the best of one’s judgment, are really the prettiest, nor even those which
average opinion genuinely thinks the prettiest. We have reached the third degree where
we devote our intelligences to anticipating what average opinion expects the average
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opinion to be. And there are some, I believe, who practice the fourth, fifth and higher
degrees [Keynes (1936)].

The beauty contest game formalizes this notion of “anticipating what average
opinion expects the average opinion to be” as follows. Each player of a p-beauty
contest is instructed to pick a number between, say, 0 and 100. The game parameter
p is predetermined, common and known to all players. The player whose number
is closest to p times the average number across all players wins a fixed payout
(winner-take-all). Other variants of the game are possible, for example, with pay-
offs inversely proportional to the distance from the target of p times the group
average (continuous payout).

To consider a concrete example, consider five participants playing a beauty
contest with p = 3/4. Suppose the players’ numbers are 5, 15, 20, 40 and
50. To determine the winner, compute p times the average of all the numbers:
% x (54 15420+40+50)/5 = 19.5. The player who picked 20 wins, because
among all the players’ numbers, 20 is closest to 19.5.

The beauty contest is a symmetric game, meaning that all players have the same
payoff function. When the total number of players, #, is more than several dozen,
one’s own play negligibly affects the overall group mean, so that the game is effec-
tively a guessing game. In this paper, we restrict attention to p € [0, 1]. Because
every player is trying to undercut the group average by the fraction p, the Nash
equilibrium strategy is zero, meaning that everyone playing zero is the mutually
best response.

However, players in beauty contest experiments simply do not play the equi-
librium strategy; as Crawford, Costa-Gomes and Iriberri (2013) note (emphases
added):

Although Nash equilibrium can be and has been viewed as a model of strategic thinking,
experimental research shows with increasing clarity that subjects’ initial responses to
games often deviate systematically from equilibrium, and that the deviations have a
large structural component that can be modeled in a simple way. Subjects’ thinking
tends to [favor] rules of thumb that anchor beliefs in an instinctive reaction to the game
and then adjust them via a small number of iterated best responses.

Our goal in this paper will be to estimate from data the prevalence of this anchor-
adjust-iterate approach to beauty contests.

2.1. A structural model for beauty contest game play. Our model of strategy
formation in beauty contest games supposes that player heterogeneity arises from
two sources: (1) idiosyncratic beliefs about the strategies of others and (2) the
number of iterations one proceeds, conditional on these beliefs, toward the Nash
equilibrium.
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To motivate this model, consider a player pondering her strategy.! Suppose she
thinks that most people will not understand the game and will play randomly with
mean ,uo. This is, in the words of Crawford, Costa-Gomes and Iriberri (2013),
her “instinctive reaction.” Accordingly, her optimal play is pu’. Upon further re-
flection, however, she realizes that some of her opponents may have come to the
same conclusion and would also play pu°. This would mean that her optimal play
would be p times a weighted average of u° and pu®, where the weights reflect
her beliefs about the relative proportions of the first two types of players. We refer
to a totally random player as a O-step player, one who thinks a single extra step a
1-step player, and so forth.

Let y; denote the level thinking of player i. An iterated reasoning strategy for
player i can be described via the following parameterization:

e a scalar parameter ,u? € (0, 100) that represents player i’s belief as to the mean
play of the O-step players, and

e a (y; — 1)-by-y; lower-triangular right stochastic matrix €2;, which we call a
belief matrix for reasons described below.

Here, lower triangular indicates that element (4, j) is zero whenever j > h + 1;
right stochastic means that the row entries are positive numbers that sum to one.
The bottom row of 2; represents the individual’s beliefs about the relative pro-
portions of the various strategy classes below her, while the above rows reflect her
beliefs about the analogous beliefs of each of the corresponding strategy levels
below y;.

Given these two parameters, one may compute the ([L?, 2;)-optimal response
from the following recursive formula:

wl(p) = pul,
(1)

h
o
ui(p)=pY_ oy junl " (p),
j=1

where a);l j denotes the (4, j) entry of ;. A player with parameters (£2;, ,u?) has

optimal response u;(p) = ,ul?/i -1 (p); in other words, expression (1) is applied until
there are no more rows of €2;. We will refer to this model of strategy formation as
a k-step thinking model.

Clearly, /,L? and the free elements of €2; are underdetermined given only a
player’s optimal response w;(p) for a finite set of values of p. Earlier analyses
of beauty contest data have addressed this difficulty by introducing additional re-
strictions on £2; and ,u?, both in terms of the structure of €2; and also in terms

! Assume she believes that the game has enough players so that sampling variation of the mean
play of the group is negligible.
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of limiting heterogeneity by assuming some parameters are shared across play-
ers [Camerer, Ho and Chong (2004), Crawford and Iriberri (2007)]. Our approach
is distinct in that we do not estimate (£2;, ,u?). Before sketching our approach, we
briefly examine two previous models from the literature for comparison, to observe
how their additional assumptions impose restrictions on £2; and /L?.

2.1.1. Cognitive hierarchy models. A cognitive hierarchy (CH) model
[Camerer, Ho and Chong (2004)] stipulates that:

o ; = Q; whenever y; = y;. That is, all players thinking the same number of
steps have the same beliefs about their opponents (and their beliefs).

e For y; =y; — 1> 2, Q; can be obtained from £2; by removing the bottom row
and the rightmost column and rescaling each row to maintain right stochasticity.
Players thinking more steps ahead are able to accurately project themselves into
the mindset of lower level players.

Thus, in a cognitive hierarchy model, the belief matrices of lower-level thinkers
are nested inside the belief matrices of higher-level thinkers. Specific cognitive
hierarchy models may make additional assumptions. Common ones include:

° ,u? is common across ; all players assume the same mean for the O-step players,
e 10 is in fact the actual mean of the level-0 players,
e players’ beliefs about the relative proportions of thinker types is accurate.

For example, if y; = 3, the CH-Poisson model of Camerer, Ho and Chong (2004)
yields

O 1 pMH 2 o
LO+ (1) 3 HLO)+ (1) 3
Q= £2(0) 1 fa(l) 2 £2) 2 |

HO + AN+ A2 5 HO+AD+HQ 5 AO+ LD+ HQ) 5

where f;(-) denotes the Poisson probability mass function with parameter 7 (set
here to two). In addition to determining the elements of €2 for each player type, the
accuracy assumption (third bullet point just above) means that 7 also governs the
frequency of player types in the population.

2.1.2. Level-k models. A “level-k” model [see, e.g., Nagel (1995), Stahl and
Wilson (1995) and Crawford and Iriberri (2007)] stipulates that each player be-
lieves that all of her opponents are reasoning one step fewer than she is. In our
notation, if y; =k, ©; has a);’gJrl = 1 and zeros elsewhere for g =1,...,k — 1.

When k = 3 this gives
01 0
Q; = .
<O 0 1 >

While the belief matrix is assumed fixed for all player types, the distribution of
players among these types is assumed to be general and can be estimated from
data.
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2.1.3. Our approach: estimating the prevalence of k-step thinking. Because
the extreme flexibility of the heterogeneous (£2;, ,u?) k-step thinking model pre-
cludes estimation of model parameters, our analysis instead centers around general
properties that would be exhibited by any k-step thinking strategy, for any param-
eter values. Specifically, any k-step thinking strategy will satisfy the following
straightforward conditions:

(i) at p =1, if individual i is a nonrandom player, her optimal play is M?,

(i1) at p =0, the optimal play for any nonrandom player is O,

(iii) if y; = k, then her optimal play lies in the interval ( pk M?» pu?) [this fol-
lows from the extreme cases of assuming that all players are (k — 1)-step or O-step
players, resp.], and

(iv) a k-step iterated reasoning strategy is a positive linear combination of the
monomial terms p, pz, e pk , S0 is strictly increasing in p and convex on [0, 1].

Our statistical analysis will assess the probability that these conditions are satisfied
for a randomly selected player from the population, by fitting a purely descriptive
spline-based model to each player’s response data. Because the descriptive model
is not restricted to satisfy the criteria above, it allows that some players may not
play a k-step thinking strategy of any form, without requiring that such a player is
a O-step thinker in the sense of playing entirely at random.

Our approach differs from most previous statistical analyses of beauty contest
data in that we aim neither to estimate a particular identified instantiation of a
k-step model, nor to fest if a given instantiation fits a particular data set well.
Instead, our approach puts player heterogeneity at its center and asks a related
question: what proportion of players’ responses are consistent with some implicit
k-step thinking model?

2.2. Literature overview. The literature review below is geared primarily to-
ward providing background for the present data analysis. For a scholarly and com-
prehensive review, we recommend the survey article Crawford, Costa-Gomes and
Iriberri (2013); specifically, Section 3 of that paper reviews the beauty contest lit-
erature at length. We quote directly from their thorough exposition in framing the
contribution of this paper.

2.2.1. Data and theories. Among the first empirical studies of beauty con-
test experiments are Ho, Camerer and Weigelt (1998), Nagel (1995), and Bosch-
Domenech et al. (2002). The first two studies directed subjects to play the game
multiple times sequentially, with the outcome revealed after each round (feed-
back), so only the first round of play can be regarded as an initial response. Re-
stricting attention to initial response data serves to isolate the role of strategic rea-
soning from the influence of adaptation to outcomes from previous rounds of play.
The Bosch-Domenech et al. (2002) study is notable for being large scale: roughly
7500 beauty contest responses were solicited from readers of several newspapers
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(Financial Times, Spektrum der Wissenchaft and Expansion). The main message
of these studies was twofold. First, “[s]Jubjects seldom made equilibrium guesses
initially” and, second, “[s]ubjects’ thinking is heterogeneous, so no model that
imposes homogeneity will do justice to their behavior” [Crawford, Costa-Gomes
and Iriberri (2013)]. A characteristic feature of the distribution of guesses in these
experiments was local modes at approximately 50p, 50p? and 50p> across dif-
ferent values of p. This feature was hypothesized to arise via players applying
iterated best response k times for differing values of k (as in the structural model
described above), anchoring on an initial guess of 50. However, this interpretation
is underpinned by the strong assumption that players share the same initial guess
of 50. Also, “subjects’ initial responses were limited to one game. One observation
yields very limited information about the rule a subject was following” [Crawford,
Costa-Gomes and Iriberri (2013)]. Later papers collected multiple initial responses
for differing values of p, without feedback, notably Coricelli and Nagel (2009), but
none on the large scale of Bosch-Domenech et al. (2002). In our study, we collected
multiple initial responses (without feedback) for multiple values of p per subject.
We recruit more participants than Coricelli and Nagel (2009) (whose main focus
was conducting fMRI experiments), and do not require subjects’ initial guess to be
shared.

2.2.2. Model fitting and evaluation. On the statistical front, a common ap-
proach to investigating iterated reasoning has been to specify a structural model,
to propose an error model to capture moderate deviations from the defined struc-
ture, and to fit maximum-likelihood estimates to the model parameters. Particularly
popular are mixture models positing a discrete number of player types. Influential
papers taking this approach include Stahl and Wilson (1995) and Costa-Gomes
and Crawford (2006) (although neither of these papers considers beauty contests
specifically). This approach has two limitations. First, maximum likelihood esti-
mation is known to suffer from overfitting of the data, especially in latent variable
models where the number of unknown parameters (player type indicators in this
case) scales with the number of observations. This problem can be mitigated using
penalized likelihood methods or, as we do here, Bayesian priors and/or hierar-
chical models. In a similar vein, finite mixture models present the possibility of
model misspecfication in terms of the number of types allowed. Costa-Gomes and
Crawford (2006) are mindful of this possibility, but the hazard is underscored by
the fact that they leave 33 of their 88 subjects unclassified. In this paper we allow
each subject to play their own distinct strategy, while using hierarchical priors to
“shrink™ strategies toward one another so as to discourage overfitting.

A related, and more serious, drawback is that likelihood-based model selec-
tion is inherently sensitive to the specification of null hypotheses and inessen-
tial modeling decisions (such as error distributions). One approach to overcom-
ing this difficulty has been to seek external validating evidence to “test a model’s



1466 P.R. HAHN, I. GOSWAMI AND C. F. MELA

specification and evaluate the credibility of its explanation of behavior” [Craw-
ford, Costa-Gomes and Iriberri (2013)]. A promising method in this direction
“is to study cognition via measures that complement decisions, such as monitor-
ing subjects’ searches for hidden information or monitoring their neural activity”
[Crawford, Costa-Gomes and Iriberri (2013)]. Techniques such as gaze-tracking
[Wang, Spezio and Camerer (2010)] or mouse-tracking [Costa-Gomes, Crawford
and Broseta (2001)] have been used for this purpose. Functional magnetic res-
onance imaging (fMRI) studies have even been conducted on subjects as they
play the game. For example, Coricelli and Nagel (2009) correlate estimated level
thinking in a beauty contest with neural activity in the medial prefrontal cortex.
For additional studies taking similar auxiliary confirmatory evidence approaches,
see again Crawford, Costa-Gomes and Iriberri (2013), specifically Section 3.5,
page 23.

In our study, we do not seek such external validating evidence, but neither do
we test our model against a null model with a formal statistical test. Instead, our
approach is to use multiple values of p as a confirmatory experiment. Specifically,
the k-step thinking hypothesis entails a specific prediction about how people ought
to play as a function of p. In a Popperian spirit [Gelman and Shalizi (2013)],
we simply collect data and check—using a flexible statistical model—how often
players’ responses appear to satisfy that condition.

3. Data collection.

3.1. Estimation strategy. The primary focus of our analysis will be to assess
if subjects’ game responses are consistent with a k-step thinking strategy. As dis-
cussed in Section 2.1.3, it is possible to address this question without having to
reference the structural parameter €2;. Instead, we need only check that a player’s
strategy function satisfies two necessary (though not sufficient) conditions: (i) that
it runs through the origin, and (ii) that it is an increasing convex function of the
game parameter p. We will refer to these two conditions as the k-step compatibility
criteria.

Because we do not impose this characteristic k-step shape during estimation,
data which nonetheless exhibit this shape provide an estimate of (an upper bound
on) the proportion of players who k-step reason. Critically, this approach demands
collecting data for multiple values of the game parameter p per subject without
feedback. The next section details our protocol for collecting game data from sub-
jects for multiple values of p.

3.2. Study protocol. Our data were collected from Amazon’s Mechanical
Turk, a web interface that allows anonymous compensation to game participants.
See Buhrmester, Kwang and Gosling (2011) for an introduction to the use of Ama-
zon Mechanical Turk in social science research.

A preliminary round of data collection was obtained where participants were
randomly assigned values of p € [0, 1] (including exactly 0). This data is de-
picted in the scatterplot shown in Figure 2. This preliminary study was used
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to ascertain a reasonable class of regression functions to use for modeling the
player strategies and to help determine (informally) what fixed values of p to use
in the second phase of collection. In the end, each subject played the game for
p€{0.3,0.4,0.5,0.6,0.7,1.0}.2

All participants were paid a base fee of $0.25 for participation, regardless of
the game outcome. The winner of each game (for each value of p) was awarded
a $50 bonus. We also conducted a distance-based payoff version of the game,
but, for clarity and brevity, we do not report those results here, as the substantive
conclusions were comparable.

Our subject pool was restricted to Amazon Turk users in the United States with a
demonstrated track record of successful task completion.? See Buhrmester, Kwang
and Gosling (2011) for general technical details about Amazon Turk recruitment
procedures.

Game instructions were provided in the form of a voice-over video with
visual aids, which can be seen at http://faculty.chicagobooth.edu/richard.hahn/
instructions.html. Subjects were not explicitly told how many opponents they
would be playing against, but were told they would be playing against other Ama-
zon Turk workers.*

Subjects were given an attention task at the end of the game instructions. Sub-
jects were instructed to answer a post-game questionnaire item asking for their
favorite color by entering the word “SQUARE.” This allowed us to screen for par-
ticipants who did not watch the instructional video to its completion.

During the game, players were provided visual feedback of their picks across
different values of p via a web interface. A screen shot of this interface can be
seen in Figure 1. The interface allowed adjustment of all six numbers (one for
each value of p), in any order, prior to submission. The web form automatically
recorded the total time taken to complete the games. Simultaneous submission,
along with the graphical interface, permitted users to adjust their game play to
be mutually coherent without having to remember their responses for previous
values of p. This feature was introduced to ease concerns about the influence of an
ordering effect [Hogarth and Einhorn (1992)], whereby the order in which players
are presented with the various values of p could systematically affect players’
approach to the game.

The post-game questionnaire collected additional demographics on each sub-
ject, including age, gender and level of education. Also included was a question
adapted from the Cognitive Reflection Task [Frederick (2005)], consisting of the
following elementary (but nontrivial) algebra problem:

ZA sensitivity analysis examining how posterior inferences change as these design points are omit-
ted from the analysis is provided in the supplemental article [Hahn, Gowswami and Mela (2015)].

3The pilot data collection was restricted to India.

We presume that Turk participants are used to large numbers of other participants in this context;
however, the instructional video demonstrates the game with only four players.
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A guessing game

Record your guesses below.

30% of the average number chosen across all players:
15

40% of the average number chosen across all players:
15

50% of the average number chosen across all players:
15

60% of the average number chosen across all players:
15

70% of the average number chosen across all players:

15

100% of the average number chosen across all
players:
15

When you are happy with your guesses,
click the button below to reveal your
confirmation number. Enter your number
on Amazon Turk to recieve payment.

Submit

(=

o

£g

o

50

£% B

o | h o o

N X X X X X X

i r T T T T T 1
0.0 03 04 05 06 07 1.0

Fraction of group average

Your response is shown as an X. The group average response implied by your response is shown as
acircle.

FIG. 1. Game interface as presented to study subjects online. The form is presented to subjects
empty to start. Here, to demonstrate the plotting functionality, it is shown configured as if a player
responded with the number 15 for every value of p.

A bat and ball cost $30.10 in total. The bat costs $25 more than the ball. How much

does the ball cost?

The time-taken to complete the questionnaire was also recorded.

3.3. Data summaries.

In this section we present some summary statistics from

our data collection effort. These summaries serve to characterize our study popu-
lation and thus will help put our findings in context. We also show example game
play data in order to illustrate the variety of patterns observed.

o
S
e
o
@

3 o
s ©
S
&
e g

o
o
3
o

FIG. 2. Responses of 100 subjects over eight one-shot beauty contests. The smoothed empirical
mean is shown in solid and the ex post optimal strategy is shown dashed. Note the non-Nash plays at

p=0.
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TABLE 1
Educational statistics of our study population

Education Prevalence (%)
Associates deg. 8.5
Bachelors deg. 36.0
Graduate deg. 13.0
High school diploma 7.5
Some college 31.0
Some high school 4.0

In the final collection, we had n = 106 subjects, 56% female and 44% male,
with median age of 30. Education level statistics are given in Table 1. While 80%
satisfied the attention task, only 34% passed the cognitive reflection task. Figure 3
shows histograms of age, time to complete all six games, and combined time to
complete games and questionnaire.

To be conservative, our inferences can be interpreted as applying narrowly to the
population of U.S.-based Amazon Turkers. It is reassuring, however, that the col-
lected demographics reveal this group to be a diverse subpopulation. For compar-
ison, earlier studies were based on populations of undergraduate business majors
at a southeast Asian university [Ho, Camerer and Weigelt (1998)], undergraduate

30
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jm| ° [1
l T T T T 1 l T T T T 1
20 30 40 50 60 70 0 2 4 6 8 10

Age in years Time in minutes

30

20

Frequency

0 5 10

Mo
[ T T T T T 1

0 5 10 15 20 25 30

Time in minutes

FIG. 3. Histograms of (from left to right) subject age, time to complete all six games, and the time
to complete both the six games and the questionnaire.
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FIG. 4. Histograms of player responses for each value of p. Responses are rescaled to the unit
interval.

and graduate students at University of York, University of California, San Diego
[Costa-Gomes and Crawford (2006)], and University of Arizona [Costa-Gomes,
Crawford and Broseta (2001)], undergraduate accounting and finance majors at
the University of Texas at Austin [Stahl and Wilson (1995)], as well as the previ-
ously mentioned newspaper surveys [Bosch-Domenech et al. (2002)].

Figure 4 shows histograms of player responses at each value of p. This has been
a standard way to visualize beauty contest data. Observe that the modes in the data
appear to migrate upward with higher values of p. Notice also a clear mode near
1/2 in the p =1 data.

For data with multiple games per subject without feedback, such as ours, it is
perhaps more illuminating to look at the data in a scatterplot, per subject. Fig-
ure 5 shows four sets of data collected from representative subjects. The fact that
responses typically increase with p suggests that subjects are generally attending
to the experimental task. Indeed, 72% of our subjects had numbers that were in-
creasing in p. However, a mere 10% of subjects played numbers that were strictly
concave as a function of p, as a k-step thinking strategy would entail.

4. A statistical model for beauty contest data. Our statistical analysis fol-
lows from a hierarchical model in which each individual has their own mean re-
gression curve, which describes their strategy as a function of the game parame-
ter p. These individual strategies share a common prior distribution with unknown
hyperparameters.
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F1G. 5. Game data from four subjects. Responses are rescaled to the unit interval.

In this section we provide the details of this model, including prior specifica-
tion.> We specify our model in terms of three components: a model for random
variation in players’ responses, a model for each player’s strategy as a function
of p, and a description of the hyperparameters that are shared across players.

4.1. Random variation in player responses. We allow that players’ responses
can deviate from their underlying strategy owing to inattention or other unob-
served contextual factors.® Specifically, we assume that player responses y;(p)
(rescaled to the unit interval) arise as draws from a Beta distribution. Letting
wi(p) =E{yi(p)}, our player response model is

2) yi(p)lwi, si ~Beta(ci i (p), ci(1 — wi(p))).

We assume that, conditional on w;(p), y;(p) AL y;/(p) for all i # i’ and all p.
Furthermore, we assume that y; (p) AL y; (p’); this assumption is discussed further
in the supplemental article [Hahn, Gowswami and Mela (2015)].

To restrict this model to be unimodal, we define ¢; = s; x max(1/u;, 1/(1—u;))
with s; > 1. In this parametrization, s; controls the precision of player response dis-
tributions; higher values of s; correspond to higher values of ¢;, which correspond
in turn to density functions that are more sharply peaked about the mean, u;(p).

5 Computational details, as well as trace plots and other diagnostic plots of key model parameters,
are provided in the supplemental article [Hahn, Gowswami and Mela (2015)].

5We do not suppose that players entertain the possibility that their opponents will bid with error.
This possibility can be accommodated with additional assumptions on the nature of the errors, but
we do not further consider this issue here.
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FIG. 6. Players can be one of five types, differing in the amount of precision with which they play
about their mean strategy. Here, the densities of the five types are shown for their corresponding
values of s when the mean strategy is fixed at 0.3.

We place a discrete prior on s;, defined by the five possible values, {1.2, 3, 21,
51, 101}, and a probability vector w. The choice of these values gives a wide range
of player “types” ranging from imprecise to precise, as shown in Figure 6. The
prior on w is discussed in Section 4.2.2.

4.2. Mean response (strategy) curves. The k-step compatibility criteria from
Section 3.1 can now be stated directly in terms of the expected player response
function u;(p): (1) ;i (0) =0, and (i1) ©;(p) is convex and increasing in p. To
facilitate verifying that these criteria are satisfied, we specify w;(p) in terms of a
four-parameter vector, 6; = (n;, ¢;, v;, ,u?), using a spline representation. (In the
following discussion, we suppress subscripts for convenience.)

Intuitively, 6 defines three control points in the (p, y) plane: (0, ¢), (1, v) and
(1, u%). The function u(p) is determined by drawing a smooth monotone curve
through these points. By monotone,’” we mean that 1(p) is monotonically increas-
ing if and only if ¢ <v < ,uo. The left control point, (0, ¢), controls whether or
not w(p) intersects the origin, which happens precisely when ¢ = 0. Likewise, the
right control point is given by (1, u"). Now, imagine drawing a straight line be-
tween (0, ¢) and (1, ,uo). If the interior control point, (1, v), lies below this line,
then u(p) is convex, otherwise it is not. In other words, u;(p) will be convex if
and only if

3) v< (=) +¢.

This inequality allows us to control the prior probability of a convex strategy via
the prior for v;, conditional on the other three spline parameters (¢, 7, u°). Exam-
ple curves are shown in Figure 7.

4.2.1. Prior for pni(p). The prior on each u;(p) is induced via priors on the
parameters 7;, ¢;, v; and u?.

TWe implement the spline component of the model via the R function splineFun () with setting
method = ‘mono’, which is based on the method of Fritsch and Carlson (1980).
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F1G. 7. Three curves are shown with associated parameters Ogashed = (0.4,0.3,0.7,0.4),
Bdotted = (0.5,0,0.2,0.5) and 641 = (0.3, 0, 0.4, 0.7) shown as points. The dashed curve neither
intersects the origin nor is convex. The dotted curve intersects the origin but is not convex. The solid
curve both intersects the origin and is convex. Only the solid curve could represent a k-step thinking
strategy.

Priors over u? and n;. First, ,u,?, which defines the right control point (1, u0),
is given an independent Beta(3/2, 1) prior. Similarly, n;, which determines the
horizontal location of the interior control point (7;, v;), is given an independent
Beta(5, 5) prior, rescaled to be supported on interval [0.3, 0.7]. This restricted sup-
port improves numerics by preventing linear trends from being fit by n; values near
Oorl.

Prior over ¢;. Next, ¢; defines the left control point (0, ¢). To control the prob-
ability that w;(p) runs through the origin, we place a prior over ¢; with a point
mass at zero:

(4) ilp. g ~ pdo+ (1 — p)Beta(cp, c(1 — 1))

and ¢ =2max (1/ u?, 1/(1 — ,u?)). This is a zero-inflated mixture with weights p
and 1 — p. We condition on pq so that the continuous portion of the prior speci-
fies E(qﬁl,u?, ¢ #0)= /L?. The parameter p thus determines the probability that a
randomly selected strategy runs through the origin.

Prior over v;. Finally, we describe a prior over v;, the vertical component of
the interior control point (7;, v;). We specify this prior in terms of a binary latent
variable, «;, that designates if u;(p) is convex or not. Specifically, if k; = 1, we
must have that v; < (,u,? — ¢i)n; + ¢;; the interior control point lies below the line
segment running between the left control point (0, ¢) and the right control point
(1, u°). As we wish to remain uninformative about the likely values of v;, we give
it a uniform prior on [0, (M? — ¢i)ni + ¢;]. By the same reasoning, if k; = 0, we
give v; a uniform prior on [(,u? —¢ini + ¢i, 1]

To complete this prior, we give the latent indicator of convexity, «;, a Bernoulli
distribution that depends explicitly on the left control point (0, ¢;); strategy curves
that intersect the origin can have different probabilities of being convex than
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strategies that do not intersect the origin. That is, Pr(x; = 1|¢; = 0) = g¢ and
Pr(x; = 1|¢; #0) = q;.

The above parametrization allows us to conveniently express the probability that
a randomly selected strategy could have arisen from k-step reasoning:

&) Pr(k; =1, ¢i = 0) =Pr(¢; = 0) Pr(k; = 1|¢; = 0) = pqo.

Posterior inferences concerning prevalence of k-step thinking will thus follow di-
rectly from the posterior over these parameters.

4.2.2. Priors over shared hyperparameters. Figure 8 illustrates the depen-
dence structure between the data y;, the parameters governing w;(p), {¢:, ni,
Vi, M?}, and the shared hyperparameters, {w, qo, g1, p}. Although each player
is permitted to have her own strategy, the shared hyperparameters shrink the
individual estimates toward the group mean, mitigating the risk of overfitting.
Expression (5) shows that p and gg directly quantify the prevalence of k-step
compatible strategies. Hence, priors over these parameters have the potential to
strongly influence posterior inferences. For the analysis described in Section 5, we
used p ~ Beta(3, 1), go ~ Beta(3, 1) and g ~ Beta(1, 3). These choices reflect a
favorable bias toward k-step compatible strategies, in that E(pgo) = 9/16, but are
sufficiently diffuse to allow the data to contradict this bias.

The above choices, as well as the priors over ,u? and n; described above, were
guided by visual inspection of strategy curves drawn from the prior. The first panel
of Figure 9 illustrates many realizations from the prior over u(p). Strategies con-
sistent with k-step reasoning are shown in black, and non-k-step-compliant strate-
gies are shown in gray.

FI1G. 8. A diagram of the dependence structure in our statistical model of beauty contest strategies
curves and observed responses. The dotted box indicates n replicates, indexed by i. The circled
variable y; denotes the vector of observed responses. The solid box with rounded edges contains
the parameters defining the mean response function ;(p) by monotone spline interpolation. The
parameter s; controls the response error scale. The hyperparameters w, p and q = (qq, q1) are
shared across all players.
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FIG. 9. The first panel shows one hundred randomly drawn strategies from the prior;
k-step-compliant strategies are shown in black and non-k-step compatible strategies are shown in
gray. For comparison, the second panel shows level-k strategies (out to ten levels).

Last, the parameter w governs the prevalence of “imprecise” players versus
“precise” players in that it encodes the relative frequencies of more diffuse Beta
distributions versus less diffuse (more concentrated) Beta distributions. We give
w a Dirichlet prior with mode parameter « = (0.1, 0.25, 0.3,0.25, 0.1), which is
symmetric and unimodal over the range of possible values, {1.2, 3,21, 51, 101}.
See again Figure 6 for a visualization of the Beta distributions implied by these
values.

5. Results and future work. The analysis below is based on 10,000 sam-
ples drawn from a Markov chain Monte Carlo simulation of our posterior distri-
bution, after a burn-in period of 5000 samples. For details on our computational
implementation and convergence diagnostics, see the supplemental article [Hahn,
Gowswami and Mela (2015)]. The code to reproduce our plots, as well as the data
to run it on, can be found online at http://faculty.chicagobooth.edu/richard.hahn/.

5.1. The prevalence of k-step compatible strategies. Our main finding is that
approximately 25% of subjects appear to play k-step compatible strategies. Recall
that pgo represents (an upper bound on) the probability that a randomly selected
subject applies k-step reasoning. The posterior mean of pgq is 26%, with a 95%-
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F1G. 10. The probability that a randomly selected participant plays a strategy that is k-step com-
patible is calculated as pqq. Top panel: the solid line shows the posterior density of pqq, and the
dashed line shows the corresponding prior density. The posterior mean is 26%. Bottom panel: a pos-
terior scatterplot of p against q.

tile of 35%. By contrast, the prior mean was 56% with a 95%-tile of 89%. Figure 10
depicts a kernel-smoothed Monte Carlo estimate of the posterior density of pgg.

On the other hand, a majority of player strategies seem to satisfy the first k-
step compatibility criterion: intersecting the origin. Recall that p represents the
probability that a randomly selected participant’s strategy intersects the origin. The
posterior mean of p is 87%. Figure 11 depicts a kernel-smoothed Monte Carlo
estimate of the posterior density of p.

However, even among players whose strategy intersects the origin, convex
strategies are not the norm. Recall that go represents the probability that a ran-

Density

Yo

FI1G. 11. The probability that a randomly selected participant plays a strategy that runs through
the origin is given by the parameter p. The solid line shows the posterior density of p, and the dashed
line shows the corresponding prior density. The posterior mean is 87%.
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FI1G. 12.  The probability that a randomly selected participant plays a convex strategy, given that
they play a strategy that intersects the origin, is given by the parameter qq. The solid line shows the
posterior density of qq, and the dashed line shows the corresponding prior density. The posterior
mean is 30%.

domly selected participant plays a convex strategy, given that her strategy inter-
sects the origin. The posterior mean of gq is 30%, with a 95%-tile of 40%. Fig-
ure 12 depicts a kernel-smoothed Monte Carlo estimate of the posterior density
of qo.

Therefore, while some individuals may arrive at their strategies via k-step rea-
soning, many more appear to play strategies that do not correspond to any k-step
derived strategy. This finding is in broad agreement with that of Coricelli and Nagel
(2009), who classify 7 out of 20 of their participants as greater than 1-step thinkers
(35%). Their classification is based on a simple least-squares-based classification
with no pooling of data. To quantify what we mean by “broad agreement,” we
compute the expected probability of drawing 7 k-step compatible strategies from a
group of 20, if p and g9 were known; then, we take the average of this probability
with respect to our posterior distribution over p and gg. We find that, according
to our posterior, observing the proportion of k-step compliant players reported in
Coricelli and Nagel (2009) is an expected probability of 12%.

Additionally, we find that the more precise a subject’s strategy appears, the less
likely they are to be classified as k-step compliant. To visualize this, we examine
the posterior probability (across all players) of the various precision levels, segre-
gated (iteration by iteration) by k-step compliant versus noncompliant; the results
are show in Figure 13.

5.2. Individual-level posterior analysis. We also obtain, for each individual,
a strategy curve estimate and corresponding point-wise 95% posterior credible in-
tervals, as well as an estimate that her strategy is k-step compatible. An illustration
is provided in Figure 14, using the same subjects depicted in Figure 5.

These plots guide our intuition as to how the statistical model “interprets” the
data. For instance, the plots reinforce the findings described above based on the
posterior distributions of p and go: many players fail the convexity criterion, de-
spite exhibiting responses that generally increase in p. We also observe that players
with “orderly” responses that fail convexity are judged to have lower probability
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FI1G. 13. A posteriori, the more haphazard the play—as measured by the precision of the beta
distribution—the harder it is to rule out k-step compliance; the more precise the play, the easier it is
to rule out k-step compliance. In other words, few subjects exhibit precise k-step compliant play.

of k-step compliance than players who play more haphazardly; this reflects the
fact that for the imprecise player we cannot be certain that she does not intend to
play convex increasing and through the origin, but simply does so poorly. This ef-
fect can be seen in the second and third panels of Figure 14. Although the general
trend of each set of responses appears roughly the same, the tighter precision of
the points in the upper right panel (the first five data points lie perfectly on a line)
leads to less uncertainty, as seen in the narrower shaded credible region compared
to the lower left panel. This tighter uncertainty, along with a data point at p =1
that is better fit by a concave strategy, leads to a much lower estimated probability
of k-step compliance (only 1.4% compared to 32%).
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FI1G. 14. Posterior summaries for four representative subjects. The gray shaded region reflects 95%
credible regions for the curve. The posterior mean strategy is shown in solid black. The posterior
probability of k-step compliance is (from left to right, top to bottom): 92%, 1.4%, 32% and 0%.
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FI1G. 15. Posterior point estimates of each player’s strategy for all 106 participants. Black curves
correspond to the 23 players whose posterior probability of k-step compliance is greater than 1/2.
Compare to Figure 9, top panel, which displays the equivalent plot for draws from the prior.

Figure 15 shows posterior point estimates of each player’s strategy. Twenty-
three players are classified as being k-step compliant, meaning that their posterior
probability of satisfying the k-step compatibility criteria is greater than 1/2. This
prevalence, 23 out of 106, is only a bit less than the point estimate for pgo of
26%. The discrepancy is appropriate for two reasons. First, note that in Figure 15
many of the curves are nearly linear, putting them right on the cusp of convexity. In
fact, nearly a quarter of the players have posterior probability of k-step compliance
between 0.4 and 0.6. This equivocal data, combined with a prior which favors the
k-step hypothesis [i.e., E(pgo) = 56%], leads to the somewhat higher posterior
estimate of pgq than the individual estimates would suggest.

5.3. Alternative strategy types. A promising avenue for future study would be
to explicitly include plausible strategies that are not necessarily representable in
the (1°, Q) structural model. For example, we observed that several participants
appear to use a “constant increment” strategy, increasing their response by a fixed
amount as p increased across the experimental values {0.3,0.4,0.5,0.6,0.7, 1}.
See, for example, the data in the upper right panel of Figure 5 (or Figure 14).
Because the difference between p = 0.7 and p = 1 is an increase of 0.3, whereas
all other consecutive values differ by 0.1, this strategy leads to a concave strategy
in p. On the one hand, our statistical model correctly classifies this as a non-k-step
strategy. On the other hand, the Beta noise specification entails that this strategy
is still given an 1.4% chance of being k-step compliant, whereas in light of the
alternative “constant increment” hypothesis this estimate seems much too lenient.
Enriching the model with such specific alternative hypotheses would refine the
conclusions of the analysis.

Some subjects’ responses strongly suggest the influence of priming effects
[Tversky and Kahneman (1981)], whereby game responses are systematically af-
fected by cues provided in the instruction set. Specifically, many players copied
the demonstrated game play at values p = 0.3 and p = 0.4 exactly. The “con-
stant increment” strategy described above seems to be a byproduct of naively ex-
trapolating from these two seed values. Because all players were given the same
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instructions, this effect should not interfere with our main conclusion about the
prevalence of k-step thinking, but does undermine the idea that such players are
using k-step thinking even if their responses happened to be convex, increasing
and through the origin. Future experimental designs could leverage the presence
of priming effects to better ascertain which players use k-step thinking, by intro-
ducing cues that, if attended to, could not possibly result in a k-step compatible
strategy. Modified instructions could, for example, include example strategies that
are nonmonotonic functions of p.

5.4. Covariate analysis. To investigate which player attributes are predictive
of playing a k-step compliant strategy, we regress the posterior probability of be-
ing a k-step thinker on the player attributes shown in Table 2. Only time taken
and the cognitive reflection task indicator appear predictive of k-step compliance.
A more sophisticated regression-tree analysis (not reported here) yielded similar
conclusions. Our findings match those of Burnham et al. (2009), who find that
lower responses in a p-beauty contest are positively associated with a cognitive
reflection task and negatively associated with age.

In future work, factors that might more strongly predict k-step compliance could
be included. For example, while not as fine grained as fMRI measurements, record-
ing the number of times a subject edits his web form may be an excellent proxy of
deliberative reasoning. Ideally, such external confirmatory evidence would be in-
corporated directly within the hierarchical model, rather than being regressed upon
ex post. In a model expanded to include proxies for deliberative thinking, subjects
would be grouped by these additional measurements, and pooling of data (via the
hierarchical structure of the model) would occur only between similar subjects.

In light of our finding that many people do not apply k-step reasoning, a future
line of research would be to conduct experiments to determine various ways that

TABLE 2
Regressing the posterior probability of k-step compliance against the
above attributes reveals that the cognitive reflection dummy
variable is the dominant predictor

Variable name Estimate (% points) p-value
Time taken on games (minutes) 3.9 0.005
Gender (male) 1.9 0.71
Education (bachelors) —4.1 0.69
Education (graduate degree) 11.4 0.34
Education (high school graduate) 3.2 0.81
Education (some college) 0.3 0.97
Education (some high school) 2.2 0.77
Age in years —0.23 0.38

Cognitive reflection task indicator 20.3 0.0006
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individuals might be induced to do so. An individual’s posterior probability of k-
step reasoning, as produced from our analysis, could serve as an outcome variable
in experiments that vary incentives, instructions and practice on similar games.

6. Discussion. Understanding how people reason about the reasoning of
others—how they think strategically in multiplayer games—is a fundamental ques-
tion of behavioral economics. Experimental evidence from simple multiplayer
games has revealed that real players do not adhere to the theoretically optimal
strategies defined by classical game theory. Alternative, nonequilibrium, theories
based on iterated reasoning have been shown to be better at predicting how play-
ers will actually respond in such games. However, the sheer diversity of behavior
observed in beauty contest data makes model estimation difficult. Models that are
sufficiently flexible are unidentified and unilluminating, while estimates from more
restricted models are liable to be distorted by data from subjects who violate the
assumptions of the given model.

In this paper, we analyzed data from a newly conducted beauty contest exper-
iment. First, we introduced a flexible k-step thinking model to describe player
responses in beauty contest experiments and deduced two compatibility criteria
that strategies generated according to this model must have. Second, we fit an
even more flexible, purely descriptive statistical model to the player response data.
We identified k-step compatible strategies by observing which players’ strategies
satisfy these compatibility criteria. This approach allowed (an upper bound on)
the prevalence of k-step strategies to be estimated without imposing assumptions
about the distribution of player types or on players’ beliefs about this distribution.

Using our approach, we estimated that approximately 25% of participants from
our study population (Amazon Turk users in the United States) play k-step com-
patible strategies. This figure is somewhat lower, but broadly consistent with, the
similar study of Coricelli and Nagel (2009) which was based on a smaller sample
size (n = 20). While this number is higher than the mere 10% of raw data that
satisfies the k-step compatibility criteria of being convex and increasing in p, it is
still remarkably low considering the popularity of k-step thinking models in the
previous literature.

Our analysis suggests that investigating k-step incompatible strategies could
prove fruitful. Many of the inferred strategies, while demonstrably not k-step com-
patible, appear far more structured than would be expected from a purely random
player. Careful examination of our individual-level strategy curve estimates sug-
gests that more elaborate error models—such as nonstrategic models based on
known cognitive biases, such as priming—could help refine future estimates of the
prevalence of true strategic thinkers. Individual-level estimates from hierarchical
Bayesian models, such as ours, can also be used as outcome variables in exper-
iments designed to investigate determinants of strategic sophistication. We hope
that our study will motivate additional work along these lines and prove a useful
tool for future empirical studies on strategic reasoning in games.
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SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian hierarchical model for inferring player strat-
egy types in a number guessing game” (DOI: 10.1214/15-A0OAS830SUPP; .pdf).
The supplement contains computational details and a sensitivity analysis based on
model residuals.
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