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An increasingly important goal of psychiatry is the use of brain imaging
data to develop predictive models. Here we present two contributions to sta-
tistical methodology for this purpose. First, we propose and compare a set of
wavelet-domain procedures for fitting generalized linear models with scalar
responses and image predictors: sparse variants of principal component re-
gression and of partial least squares, and the elastic net. Second, we consider
assessing the contribution of image predictors over and above available scalar
predictors, in particular, via permutation tests and an extension of the idea of
confounding to the case of functional or image predictors. Using the proposed
methods, we assess whether maps of a spontaneous brain activity measure,
derived from functional magnetic resonance imaging, can meaningfully pre-
dict presence or absence of attention deficit/hyperactivity disorder (ADHD).
Our results shed light on the role of confounding in the surprising outcome
of the recent ADHD-200 Global Competition, which challenged researchers
to develop algorithms for automated image-based diagnosis of the disorder.

1. Introduction. A major goal of current psychiatric neuroimaging research
is to predict clinical outcomes on the basis of quantitative image data. Many stud-
ies have focused on “predicting” current disease states from brain images [e.g.,
Craddock et al. (2009), Sun et al. (2009)]. While seemingly less difficult than ac-
curate prediction of future outcomes, the goal of clinically useful imaging-based
diagnosis has proved highly challenging [Honorio et al. (2012), Kapur, Phillips
and Insel (2012)].

This paper addresses two important limitations of standard methods for using
brain images to predict psychiatric outcomes:
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(i) Ordinarily, the voxels (volume units) of the brain are treated as interchange-
able predictors or “features.” Accuracy might be improved by properly exploiting
the spatial arrangement of the brain.

(ii) In some cases brain images may prove successful for diagnostic classifica-
tion, but only because the images are related to one or more scalar covariates that
drive the association. This is a nonstandard form of confounding, and there seems
to be no existing methodology for detecting it. In other words, little is known about
how to assess whether image data offers “added value” for prediction, beyond what
is available from nonimage data—which will typically be much simpler to acquire.

To address limitation (i), we approach the general problem as one of regress-
ing scalar responses on image predictors, which are viewed, as in Reiss (2006)
and Reiss and Ogden (2010), as a challenging special case of functional predic-
tors [Ramsay and Silverman (2005)]. The responses y1, . . . , yn are assumed to be
generated independently by the model

yi ∼ EF(μi, φ),(1)

g(μi) = tTi δ +
∫
S

xi(s)β(s) ds.(2)

Here EF(μi, φ) denotes an exponential family distribution with mean μi and scale
parameter φ, along with a link function g; ti is an m-dimensional vector of (scalar)
covariates, of which the first is the constant 1; xi :S −→ R is a functional predictor
with domain S ⊂ R

2 or ⊂R
3; and the corresponding effect, the coefficient function

or coefficient image β :S −→ R, is the parameter of interest. The simplest special
case is the linear model

yi = tTi δ +
∫
S

xi(s)β(s) ds + εi,(3)

where the εi are independent and identically distributed errors with mean 0 and
variance σ 2(= φ). When ti ≡ 1 (i.e., no scalar covariates), model (3) is the ex-
tension, from one-dimensional to multidimensional predictors, of the functional
linear model that has been studied by Marx and Eilers (1999), Cardot, Ferraty and
Sarda (1999), Müller and Stadtmüller (2005), Ramsay and Silverman (2005), Hall
and Horowitz (2007), Reiss and Ogden (2007), Goldsmith et al. (2011) and many
others.

For the case of one-dimensional functional predictors, a popular way to take
spatial information into account is to restrict β(·) to the span of a spline basis [e.g.,
Marx and Eilers (1999)]. Spline methods for two-dimensional predictors have been
studied by Marx and Eilers (2005) and Guillas and Lai (2010), and by Reiss and
Ogden (2010), whose work was motivated by neuroimaging applications.

Some more recent work has considered neuroimaging applications with two-
and three-dimensional predictors [Goldsmith, Huang and Crainiceanu (2014),
Huang et al. (2013), Zhou, Li and Zhu (2013)]. In this paper, we propose a set
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of new approaches based on a wavelet representation of the coefficient image. The
idea of transforming the images to the wavelet domain has previously appeared in
the brain mapping literature, where it is customary to fit separate models at each
voxel, with the image-derived quantity regressed on demographic or clinical vari-
ables of interest [e.g., Ruttimann et al. (1998), Van De Ville et al. (2007)]. But for
our objective of using entire images in a single model to predict a scalar response,
working in the wavelet domain has been mentioned as a natural idea [Grosenick
et al. (2013)] but rarely if ever pursued, at least until the very recent work of Wang
et al. (2014). Unlike spline bases, wavelet bases are designed for sparse represen-
tation and yield estimates that adapt to the features of the coefficient image.

Limitation (ii) was highlighted by the results of the recent ADHD-200 Global
Competition for automated diagnosis of attention deficit/hyperactivity disorder
[ADHD-200 Consortium (2012)]. Teams were provided with functional magnetic
resonance images from ADHD subjects and controls on which to train diagnostic
algorithms, and then applied these algorithms to predict diagnosis in a separate set
of images. A team of biostatisticians from Johns Hopkins University, whose meth-
ods are described by Eloyan et al. (2012), achieved the highest score for correct
imaging-based classification and were declared the winners. But a team from the
University of Alberta, which discarded the images and used just four scalar pre-
dictors [age, sex, handedness and IQ; see Brown et al. (2012)], attained a slightly
higher classification score [see Caffo et al. (2012) for related discussion].

To address limitation (ii), we test the effect of image predictors via a permuta-
tion-based approach originally proposed in the neuroimaging literature [Golland
and Fischl (2003)], which we extend to allow for scalar covariates. We also con-
sider how to extend the traditional notion of confounding to settings with both
scalar and image predictors. These ideas are illustrated using our wavelet meth-
ods, but are not specific to them; rather, they are applicable with other approaches
to functional or high-dimensional regression.

Our contributions can be summarized as follows: (i) We propose novel wavelet-
domain methodology for regression with image predictors. While Wang et al.
(2014) and Zhao, Chen and Ogden (2015) have studied the wavelet-domain lasso
for image predictors, we also propose and compare several other methods, and
consider the generalized linear case and the role of scalar covariates. (ii) We ex-
tend predictive performance-based hypothesis testing [Golland and Fischl (2003)]
to the case where scalar confounders are present, providing a new way to assess
the usefulness of image-based prediction.

In Section 2 we introduce wavelet bases, and motivate and outline a general
template for scalar-on-image regression in the wavelet domain. Section 3 describes
three specific algorithms, which are evaluated in simulations in Section 4. Section 5
considers hypothesis testing and confounding with image predictors. In Section 6
the proposed methods are applied to a portion of the ADHD-200 data set, and
the results point to a possible role of confounding in the competition’s surprising
result. Section 7 offers a concluding discussion.
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2. Wavelets and their use in regression on images.

2.1. A brief introduction to wavelet basis representations. Wavelet bases are
a popular way to obtain a sparse representation for functional data, in particular,
when the degree of smoothness exhibits local variation [see Nason (2008), Ogden
(1997), Vidakovic (1999) for statistically-oriented treatments]. A wavelet basis for
L2(R) is constructed from a scaling function (or “father wavelet”) φ and a wavelet
function (“mother wavelet”) ψ [see Figure 1(a)–(b)], with the following properties:

• For each j ∈ Z, the shifted and dilated functions {φj,k(x) = 2j/2φ(2j x −k) :k ∈
Z} form an orthonormal basis for Vj , where · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · is a
nested sequence of subspaces whose union is a dense subspace of L2(R).

• For each j ∈ Z, {ψj,k(x) = 2j/2ψ(2j x − k) :k ∈ Z} form an orthonormal basis
for a “detail space” Wj satisfying Vj+1 = Vj ⊕ Wj .

Hence, for any integer j0 ≥ 0, Vj0 ⊕ Wj0 ⊕ Wj0+1 ⊕ · · · is a dense subspace of
L2(R).

Given appropriate boundary handling, such as modifying the scaling and
wavelet functions to be periodic, one can likewise construct orthonormal wavelet
bases for L2[0,1], of the form

{φj0,0, . . . , φj0,2j0−1︸ ︷︷ ︸
∈Vj0

} ∪ {ψj0,0, . . . ,ψj0,2j0−1︸ ︷︷ ︸
∈Wj0

} ∪ {ψj0+1,0, . . . ,ψj0+1,2j0+1−1︸ ︷︷ ︸
∈Wj0+1

} ∪ · · ·

—that is, 2j0 scaling functions (corresponding to the large-scale features of the
data), 2j0 wavelet functions at level j0, 2j0+1 wavelet functions at level j0 + 1
and so on, with higher wavelet levels capturing finer-scale details. This multiscale
structure is what makes wavelet bases so useful for sparse representation of func-
tions with varying degrees of smoothness.

The wavelet decomposition level j0 acts as a tuning parameter. A small j0 im-
plies that a small number (2j0 ) of scaling functions are used to construct the macro

FIG. 1. (a) Scaling function φ and (b) wavelet function ψ for 1D Daubechies (1988) “least-asym-
metric” wavelets with 10 vanishing moments. 2D basis functions are formed from tensor products
such as (c) (x, y) �→ ψ(x)φ(y) and (d) (x, y) �→ ψ(x)ψ(y).
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features of the function, with most of the basis elements dedicated to providing
detail at a variety of scales. A large j0 allows for many more scaling functions,
each at higher resolution, and thus fewer basis elements corresponding to detail.

In practice, a function f ∈ L2[0,1] is observed at finitely many points, ordi-
narily taken to be the N = 2J (for some positive integer J ) equally spaced points
0, 1

N
, . . . , N−1

N
. (When the function is observed at a number of points that is not a

power of 2, one can insert zeroes before and after to attain the next highest power
of 2.) The observed values can then be interpolated by the N -dimensional trun-
cated basis

{φj0,0, . . . , φj0,2j0−1} ∪ {ψj0,0, . . . ,ψj0,2j0−1} ∪ · · · ∪ {ψJ−1,0, . . . ,ψJ−1,2J−1−1}.
The discrete wavelet transform (DWT), implemented by the O(N) pyramid al-
gorithm of Mallat (1989), expands f with respect to this basis. Given a judi-
cious choice of φ and ψ , signals of varying smoothness can be well represented
with a small number of coefficients. Throughout this paper we use the compactly
supported Daubechies (1988) “least-asymmetric” wavelets with 10 vanishing mo-
ments, displayed in Figure 1.

Wavelet bases for two dimensions can be constructed by taking tensor products
of the φ and ψ functions. The two-dimensional scaling function is φ(x)φ(y) and
there are three types of 2D wavelets: φ(x)ψ(y), ψ(x)φ(y) and ψ(x)ψ(y), roughly
corresponding to “horizontal,” “vertical” and “diagonal” detail, respectively [see
Figure 1(c)–(d)]. These functions are dilated and translated just as their 1D coun-
terparts are. Wavelet bases for 3D are constructed similarly. Morris et al. (2011)
discuss alternative wavelet transforms for images that are not constructed as tensor
products.

2.2. A meta-algorithm for scalar-on-image regression. Henceforth, the func-
tional predictor xi(·) of (2), (3) will be replaced by the ith discretized image ob-
servation xi = (x1, . . . , xN)T ≡ [xi(s1), . . . , xi(sN)]T , where s1, . . . , sN ∈ S are
distinct spatial locations at which the function xi is measured. Often, in practice,
each image is given as a matrix or 3D array; xi is then obtained by converting this
into a vector. From now until Section 3.5 we focus on the linear model (3), which
can now be written in matrix form as

y = Tδ + Xβ + ε.(4)

Here y = (y1, . . . , yn)
T ; ε = (ε1, . . . , εn)

T ; T is the n × m matrix with ith row
tTi ; X is the n × N matrix with ith row xT

i ; and β = (β1, . . . , βN)T is a similarly
discretized version of the coefficient image β . More precisely, for j = 1, . . . ,N ,
βj = wjβ(sj ), where the wj ’s are quadrature weights such that xT

i β is a good
approximation to the integral in (3); but for image data, s1, . . . , sN typically form
an equally spaced grid, so these weights are taken as constant and hence ignored.
With these definitions, (3) is just the ith of the n equations that make up the vector
equation (4).
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To simplify the notation, we shall use a single subscript and denote the wavelet
basis functions for a given j0 as {ψ1,ψ2, . . . ,ψN }. The wavelet representation of
the ith observed image xi is xi(s) = ∑N

k=1 x̃ikψk(s), in which the wavelet coef-
ficients are given by x̃ik = 〈xi,ψk〉. The coefficient vector x̃i = (x̃i1, . . . , x̃iN )T

can be written as x̃i = Wxi , where W is an N × N orthonormal matrix (which is
not formed explicitly when x̃i is computed by the DWT). Similarly the discretized
coefficient function β can be represented in terms of its wavelet coefficients as
β̃ =Wβ , leading to the wavelet-domain version of model (4):

y = Tδ + XWT Wβ + ε
(5)

= Tδ + X̃β̃ + ε,

where X̃ is the n × N matrix with ith row x̃T
i .

The key point is that the wavelet-domain form (5) is better suited than the orig-
inal form (4) for applying sparse techniques for high-dimensional regression—
both because wavelet bases are designed for sparse representation of images
[Mallat (2009)] and because the DWT approximately decorrelates or “whitens”
data [Vidakovic (1999)]. We can thus formulate a “meta-algorithm” for scalar-on-
image regression in the wavelet domain:

1. Apply the DWT to the image predictors to transform model (4) into
model (5).

2. Use some high-dimensional regression methodology to derive a sparse esti-

mate ˆ̃
β .

3. Apply the inverse DWT to ˆ̃
β to obtain a coefficient image estimate β̂ for the

original model (4).

Different choices for step 2 lead to specific algorithms, as described in the next
section.

The above general scheme can be extended to multiple image predictors [cf.
Zhu, Vannucci and Cox (2010)]. We note that this meta-algorithm has been ap-
plied before for 1D functional predictors [Brown, Fearn and Vannucci (2001),
Malloy et al. (2010), Wang, Ray and Mallick (2007), Zhao, Ogden and Reiss
(2012)] and more for image predictors [Wang et al. (2014), Zhao, Chen and Og-
den (2015)]. Past work on wavelet-domain classification, as opposed to regression
[e.g., Berlinet, Biau and Rouvière (2008), Chang, Chen and Ogden (2014), Zhu,
Brown and Morris (2012)], may bear comparison to our proposed methods. Morris
et al. (2011) develop wavelet-domain functional mixed models with images as re-
sponses.

3. Three wavelet-domain algorithms.

3.1. Sparse wavelet-domain principal component regression. The functional
linear model (3) is often fitted by assuming the coefficient function has a trun-
cated functional principal component, or Karhunen–Loève, representation β(s) =
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∑m
j=1 cjρj (s), where m is a positive integer and ρ1, ρ2, . . . , ρm are the first m

eigenfunctions of the covariance operator associated with the predictor functions
xi [e.g., Cai and Hall (2006), Cardot, Ferraty and Sarda (1999), Müller and Stadt-
müller (2005)]. The eigenfunctions ρ1, ρ2, . . . , ρm can be estimated by viewing the
functional predictors as (highly) multivariate data, and applying ordinary principal
component analysis to the predictor matrix X.

Here and in Section 3.2, we assume that X has mean-centered columns, that
is, 1T X = 0. The approach of the previous paragraph then amounts to assuming
β = Vmγ for some γ ∈ R

m, where UDVT is the singular value decomposition
of X, and Vm comprises the leading m columns of V. Hence, estimation reduces
to choosing δ,γ to minimize the principal component regression [PCR; Massy
(1965)] criterion

‖y − Tδ − XVmγ ‖2.(6)

(This is a slightly nonstandard PCR criterion, in that principal component reduc-
tion is applied only to X but not to T. A similar remark applies to the other criteria
introduced below.)

As shown by Reiss and Ogden (2007), PCR can be implemented more effec-
tively by exploiting the functional character of the data. In the one-dimensional
functional predictor case, this has usually meant forming smooth estimates of the
eigenfunctions—as in the FPCRC method of Reiss and Ogden (2007), which ex-
pands the eigenfunctions with respect to a B-spline basis [cf. Cardot, Ferraty and
Sarda (2003)]. But for image predictors, local adaptivity—the ability to capture
sharp features in some areas vs. a high degree of smoothness elsewhere—becomes
particularly important. This motivates using a wavelet basis, rather than a spline
basis, to represent the eigenfunctions, or, in other words, developing a wavelet-
domain version of PCR as an instance of the meta-algorithm of Section 2.2.

A nonsparse wavelet-domain PCR estimate would minimize

‖y − Tδ − X̃Ṽmγ ‖2,(7)

which is analogous to (6) but based on the SVD of X̃ rather than of X. However,
the advantage of working in the wavelet domain is to obtain a sparse coefficient
estimate by replacing the PC weights Ṽm with weights from a sparse version of
PCA. Several penalty-based methods have been proposed for sparse PCA [e.g.,
Shen and Huang (2008), Witten, Tibshirani and Hastie (2009), Zou, Hastie and
Tibshirani (2006)], but we opted for the approach of Johnstone and Lu (2009),
which is simpler than the penalized methods and, unlike them, was developed with
a view toward sparse wavelet representations of signals. Johnstone and Lu (2009)
propose to select the features or coordinates with highest variance, and apply PCA
only to these. The resulting sparse PCR criterion is

∥∥y − Tδ − X̃∗Ṽ∗
mγ

∥∥2;(8)
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here X̃∗ consists of the c columns of X̃ having highest variance, and Ṽ∗
m consists of

the leading m columns of Ṽ∗, where Ũ∗D̃∗Ṽ∗T is the SVD of X̃∗. The minimizer
(δ̂, γ̂ ) of (8) can be obtained by simple least squares. The vector of wavelet coeffi-

cient estimates is then ˆ̃
β = Ṽ∗

mγ̂ , and the coefficient image estimate β̂ = WT ˆ̃
β is

derived by the inverse DWT.

3.2. Sparse wavelet-domain partial least squares. Whereas PCR reduces di-
mension by regressing on the leading PCs of the predictors, partial least squares
[PLS; Wold (1966)] works by regressing on a set of components that are relevant to
predicting the responses. A (nonsparse) wavelet-domain PLS estimate [cf. Nadler
and Coifman (2005)] is derived by minimizing

‖y − Tδ − X̃R̃mγ ‖2(9)

[cf. (7)], where the columns of R̃m are defined iteratively as follows [Stone and
Brooks (1990)]:

• r̃1 = arg min‖r‖=1 Cov(y, X̃r);
• for j = 2, . . . , c,

r̃j = arg min
‖r‖=1, rT X̃T X̃rm=0 ∀m=1,...,j−1

Cov(y, X̃r).

Once again, however, the point of working in the wavelet domain is to obtain
a sparse estimate. To define sparse wavelet-domain PLS, as with PCR, we could
have used penalization to derive sparse PLS components [Chun and Keleş (2010)],
but we instead opted to build on the aforementioned approach of Johnstone and Lu
(2009) to sparse PCA. A natural PLS analogue of that approach is to select those
features x̃j whose covariance with y has the greatest magnitude. This results in the
sparse PLS criterion

∥∥y − Tδ − X̃†R̃†
mγ

∥∥2;(10)

here X̃† consists of the c columns of X̃ having highest covariance with y, and the
columns of R̃†

m are defined analogously to those of R̃m in (9). As for PCR, the
least-squares minimizer (δ̂, γ̂ ) of (10) leads directly to estimates of the wavelet
coefficients β̃ and of the resulting coefficient image β .

Our PLS algorithm is a wavelet-domain counterpart of the spline-based func-
tional PLS procedure denoted by FPLSC in Reiss and Ogden (2007). We note that
Preda and Saporta (2005) and Delaigle and Hall (2012b) have proposed more ex-
plicitly functional formulations of PLS, based on covariance operators on function
spaces.



1084 P. T. REISS ET AL.

3.3. Wavelet-domain elastic net. Since wavelet bases are well suited for
sparse representation of functions, recent work has considered combining them
with sparsity-inducing penalties, both for semiparametric regression [Wand and
Ormerod (2011)] and for regression with functional or image predictors [Wang
et al. (2014), Zhao, Chen and Ogden (2015), Zhao, Ogden and Reiss (2012)].
The latter papers focused on �1 penalization, also known as the lasso [Tibshirani
(1996)], in the wavelet domain. Alternatives to the lasso include the SCAD penalty
[Fan and Li (2001)] and the adaptive lasso [Zou (2006)]. Here we consider the
elastic net (EN) estimator for wavelet-domain model (5), which minimizes

‖y − Tδ − X̃β̃‖2 + λ
[
α‖β̃‖1 + (1 − α)‖β̃‖2

2
]

(11)

over (δ, β̃), for a regularization parameter λ > 0 and a mixing parameter α ∈ [0,1]
which controls the relative strength of the �1 and �2 penalties on the coefficients
[Zou and Hastie (2005)].

In the original nomenclature of Zou and Hastie (2005), the minimizer of (11)
is the “naïve” EN, whereas EN is a rescaled version. Since we shall make use of
the generalized linear extension of EN as implemented by Friedman, Hastie and
Tibshirani (2010), we follow these authors in omitting the rescaling step. When
α > 0, the �1 penalty shrinks small coefficients to zero, leading to a sparse wavelet
representation. The wavelet-domain lasso is obtained when α = 1. As explained by
Zou and Hastie (2005), given a group of important features that are highly corre-
lated, the lasso tends to select just one, whereas EN selects the entire group, which
is often preferable—even in the wavelet domain, notwithstanding the “whitening”
property of the discrete wavelet transform.

3.4. Summary: Alternative routes to sparsity. All three of the above methods
seek to represent the coefficient image β(·) sparsely, as a linear combination of
a subset of the wavelet basis functions, but they deploy very different strategies
to choose that subset. The �1 penalty in the elastic net criterion (11) has the ef-
fect of shrinking small coefficients to zero. This can be interpreted as imposing a
prior that favors a sparse estimate. The PCR criterion (8) eliminates basis elements
before performing regression, based on an implicit assumption that those basis el-
ements with low variance in the data have little to contribute to the coefficient im-
age. This assumption is broadly consistent, on the one hand, with the assumption
of Johnstone and Lu (2009) that such basis elements are merely capturing noise;
and, on the other hand, with the underlying assumption of PCR, namely, that the
highest-variance principal components are most relevant in regression [see Cook
(2007) for some relevant discussion]. The PLS criterion (10) likewise lets the data
determine which basis elements to include; but here, instead of considering only
the wavelet-transformed image data X̃ as in PCR, we define relevant components
by iteratively maximizing covariance with the responses y.
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3.5. Extension to the generalized linear case. The above three wavelet-
domain algorithms can be straightforwardly extended from linear to generalized
linear models (GLMs) of the form

g
[
E(y)

] = Tδ + X̃β̃,(12)

for a link function g, generalizing (5). For PCR, one simply fits a GLM, as opposed
to a linear model, to the sparse PCs. For the elastic net, the glmnet algorithm of
Friedman, Hastie and Tibshirani (2010) is available for the generalized linear case.

PLS is sometimes performed in an iteratively reweighted manner for GLMs
[Marx (1996)], but in high-dimensional settings, such algorithms may require
nontrivial modification [e.g., Ding and Gentleman (2005)] to avoid convergence
problems. Here we view PLS as a generic approach to constructing relevant
components, which may be employed beyond the linear regression setting [e.g.,
Delaigle and Hall (2012a), Nguyen and Rocke (2002)]. Thus, we construct PLS
components exactly as we would for a linear model, but then use these compo-
nents to fit a GLM.

3.6. Tuning parameter selection. For wavelet-domain PCR and PLS, three
tuning parameters must be selected: the resolution-level parameter j0; the num-
ber c of wavelet coefficients to retain [i.e., the number of columns of X̃∗ in (8) or
of X̃† in (10)]; and the number m of PCs or PLS components. We generally fix
j0 = 4, since we have found that resolution level to be generally either optimal
or near-optimal as measured by cross-validation (CV). For wavelet-domain elastic
net, one must choose j0 and the two penalty parameters α and λ in (11), but we
again prefer to fix j0 = 4.

These tuning parameters are chosen by repeated K-fold CV. In the r th of R

repetitions we divide the data points (yi, ti ,xi) (i = 1, . . . , n) into K equal-sized
validation sets indexed by Ir,1, . . . , Ir,K . We can then choose the tuning parameters
to minimize the CV score

1

RK

R∑
r=1

K∑
k=1

∑
i∈Ir,k

L(yi; δ̂−r,k,
ˆ̃
β−r,k),(13)

where δ̂−r,k,
ˆ̃
β−r,k are the estimates that result when model (12) is fitted (by PCR,

PLS or EN) with the observations indexed by Ir,k excluded, and L is an appro-
priate loss function. For linear regression the standard loss function is the squared
error L(yi; δ, β̃) = (yi − tTi δ − x̃T

i β̃)2. For the generalized linear case, follow-
ing Zhu and Hastie (2004), we use the deviance D(yi; δ, β̃) as the loss function.
Specifically for logistic regression, unusually large summands can dominate cri-
terion (13). Therefore, similarly to Chi and Scott (2014), we instead choose the
tuning parameters by a robust CV score that takes the median rather than the mean
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over each set of K validation sets:

1

R

R∑
r=1

median
k∈{1,...,K}

∑
i∈Ir,k

D(yi; δ̂−r,k,
ˆ̃
β−r,k).(14)

4. Comparative simulation study. To test the performance of our methods
with realistic image predictors, we created a data set based on the positron emission
tomography (PET) data previously studied by Reiss and Ogden (2010). That data
set included axial slices from 33 amyloid beta maps, from which we extracted a
square region of 64×64 voxels. To generate a larger sample of n = 500 images, we
applied a procedure similar to that of Goldsmith, Huang and Crainiceanu (2014):

1. We estimated the (vectorized) principal components (eigenimages)

ρ̂1, . . . , ρ̂32 ∈ R
642

,

with corresponding eigenvalues λ1, . . . , λ32.
2. For i = 1, . . . ,500, we generated the ith simulated predictor image as xi =∑32
j=1 cij ρ̂j , with the cij ’s simulated independently from the N(0, λj ) distribution.

In step 1 above we used the sparse PCA method of Johnstone and Lu (2009),
including the 492 wavelet coefficients having the highest variance. This number of
wavelet coefficients was sufficient to capture 99.5% of the “excess” variance, in
the sense of Section 4.2 of Johnstone and Lu (2009).

We used two different true coefficient images β ∈ R
642

, which are shown in
Figure 2. The first image β(1) is similar to that used by Goldsmith, Huang and
Crainiceanu (2014). Taking its domain to be [1,64]2, this coefficient image is
given by β(1) = g1 − g2, where g1, g2 are the densities of the bivariate normal
distributions

N

[(
30
20

)
,10I2

]
and N

[(
20
55

)
,10I2

]
,

FIG. 2. Coefficient images β(1) (left) and β(2) (right) used in the simulation study.
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respectively. The second image β(2) is a two-dimensional analogue of the “bumps”
function used by Donoho and Johnstone (1994), and many subsequent authors, to
illustrate the properties of wavelets.

We then simulated continuous or binary outcomes y1, . . . , yn with specified
approximate values of the coefficient of determination R2, in the sense detailed
in Supplementary Appendix A.1 [Reiss et al. (2015)]. We generated 100 sets of
n = 500 continuous outcomes and 100 sets of 500 binary outcomes, for each of
the R2 values 0.1,0.5.

We compared the performance of the three wavelet-domain methods described
in Section 3 with three analogous “voxel-domain” methods, that is, sparse PCR,
sparse PLS and elastic net without transformation to the wavelet domain. The
wavelet- and voxel-domain methods are denoted by WPCR, WPLS and WNet
and by VPCR, VPLS and VNet, respectively. We also included the B-spline-
based functional PCR method (“FPCRR ,” or simply FPCR) of Reiss and Ogden
(2007, 2010). Tuning parameter selection was as described in Supplementary Ap-
pendix A.1 [Reiss et al. (2015)].

Performance was evaluated in terms of estimation error and prediction error. Es-
timation error is defined by the scaled mean squared error (MSE) ‖β̂ −β‖2/‖β‖2,
where β, β̂ are the true and estimated coefficient images. Prediction error is de-
fined using a separate set of outcomes y∗

1 , . . . , y∗
n , generated from the same condi-

tional distribution as y1, . . . , yn. We use the scaled mean squared prediction error
1

nσ 2

∑n
i=1(y

∗
i − ŷi)

2 as our criterion for linear regression and the mean of the de-
viances of y∗

1 , . . . , y∗
n for logistic regression.

Figure 3 presents boxplots of the results. In general, all seven methods differ
only slightly in prediction error. Much greater differences are seen for estimation
error. Compared with the corresponding voxel-domain methods, the estimation
MSE for wavelet methods is either roughly equal or clearly lower on average,
and the variability of the MSE is often much lower. The wavelet methods also
markedly outperform B-spline-based FPCR. Somewhat contrary to expectation,
the superior performance of wavelet methods is not clearly more pronounced for
β(2) than for β(1).

While the wavelet-domain methods do not clearly attain lower estimation error
than voxel-domain methods for logistic regression with R2 = 0.5, they do appear
superior for the R2 = 0.1 setting (which seems more realistic) and for linear regres-
sion. Moreover, qualitatively, wavelet-domain modeling helps to capture the main
features of the coefficient image. Figure 4 displays an example of the training-set
estimates derived by wavelet-domain lasso versus ordinary lasso. The wavelet-
domain estimates are clearly more similar to each other and to the true coefficient
image than are the ordinary lasso estimates.

The wavelet-domain EN appears to have a slight edge overall compared with
PCR and PLS. For this reason, and because wavelet EN (or at least its special
case, the lasso) are now somewhat established in the literature [Wang et al. (2014),
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FIG. 3. Estimation error, displayed as log(scaled MSE) (left subfigure), and prediction error (right
subfigure) in the simulation study.

FIG. 4. True coefficient function β(1) from the comparative simulation study (top left) com-
pared with five training-set coefficient function estimates (for data simulated under R2 = 1 set-
ting) based on wavelet-domain lasso (other top panels) and voxel-domain lasso (bottom panels).
The wavelet-based estimates are reasonably accurate, while each of the voxel-domain estimates has
about 20–25 scattered voxels with nonzero values. Note the unequal scales.
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Zhao, Chen and Ogden (2015), Zhao, Ogden and Reiss (2012)], the simulations
and real-data analyses in the next two sections consider only wavelet-domain EN.

5. Inferential issues. We now turn to what the Introduction referred to as
limitation (ii) of predictive analyses in neuroimaging: the need for methodology to
assess the predictive value of image data, in particular, when scalar covariates are
present.

5.1. Permutation testing. Consider testing the null hypothesis β(s) ≡ 0 in the
general model (1), (2), that is, testing the null parametric model g(μi) = tTi δ versus
the alternative (2). Informally, we are asking whether the images have predictive
value beyond the information contained in the scalar predictors. We propose a
permutation test procedure in which the CV criterion (13) or (14) serves as the test
statistic. If the true-data CV falls in the left tail of the distribution of permuted-
data CV values, significance is declared. Permutation techniques of this kind have
previously appeared in the neuroimaging and machine learning literature [Golland
and Fischl (2003), Ojala and Garriga (2010)].

The way the permutation distribution is constructed depends on the null model
under consideration. When ti ≡ 1 in (2) (no scalar covariates), one can simply per-
mute the responses: that is, we repeatedly reorder the responses as yπ(1), . . . , yπ(n)

for some permutation π , refit the model, and record the CV value. For the linear
model (3) with scalar covariates, a common approach is to permute the residuals
from the null parametric model: that is, model (3) is refitted repeatedly with the ith
response of the form ŷi + ε̂π(i), where the hats refer to fitted values and residuals
from the model yi = tTi δ + εi . For some GLMs, however, such pseudo-responses
based on permuted residuals are not of the correct form (e.g., for logistic regres-
sion, they are not binary). One can instead form pseudo-predictors, by regressing
the predictor of interest on the nuisance covariates and permuting the residuals
from this fit. In other words, we replace the design matrix (T|X) with[

T|PT X + �(I − PT )X
]
,(15)

where PT = T(TT T)−1TT and � is a permutation matrix. Although a similar idea
was proposed by Potter (2005) for (ordinary) logistic regression, we have adopted
it as our preferred permutation approach even for the linear case; see Supplemen-
tary Appendix B [Reiss et al. (2015)] for further discussion.

We conducted a simulation study, using the ADHD-200 image data analyzed
in Section 6, to assess the type-I error rate and power of the permutation test
procedure. Here we focus on logistic regression (see Supplementary Appendix C
[Reiss et al. (2015)], for linear regression results) and the wavelet-domain lasso.
We first considered the case without scalar covariates and generated binary re-
sponses yi ∼ Bernoulli(pi), i = 1, . . . , n = 333, where

log
pi

1 − pi

= δ0 + xT
i β,(16)
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FIG. 5. (a) True coefficient image β used in the power study: gray denotes 0, black denotes 1.
(b) Estimated probability of rejecting the null hypothesis β = 0 as a function of R2, with 95% confi-
dence intervals, for model (16). (c) Same, for model (17).

where δ0 is a constant used to adjust the base rate (probability of event); xi ∈ R
642

is the ith image (expressed as a mean-zero vector); β is the true coefficient image
shown in Figure 5(a) (similarly vectorized), multiplied by an appropriate constant
to attain a specified value of R2 (see Supplementary Appendix A [Reiss et al.
(2015)], regarding the definition of R2). For each of the base rates 0.25, 0.5, 0.75
and each of the R2 values 0.04, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3, we simulated 200
response vectors to assess power to reject H0 :β = 0 at the p = 0.05 level, as well
as 1000 response vectors with β = 0 (R2 = 0) to assess the type-I error rate. Next
we considered testing the same null hypothesis for the model

log
pi

1 − pi

= δ0 + tiδ1 + xT
i β,(17)

with a scalar covariate ti such that R2 for the submodel E(yi |ti) = tiδ is approxi-
mately 0.2. We generated the same number of response vectors as above for each
of the above R2 values, but here R2 refers to the partial R2 adjusting for ti (see
Supplementary Appendix A.2 [Reiss et al. (2015)]).

The results, displayed in Figure 5(b) and (c), indicate that the nominal type-I
error rate is approximately attained for both models. For a given R2 > 0, the power
is somewhat higher for model (16) than for model (17), and highest for either
model when the base rate is 0.5. Evidently, for base rates closer to 0 or 1, the CV
deviance under the null hypothesis tends to be lower, and thus a stronger signal is
needed to reject the null.

Basing a test of the hypothesis β(·) ≡ 0 on the prediction performance of an
estimation algorithm, rather than on an estimate of β , is admittedly somewhat un-
conventional. In neuroimaging specifically, inference typically proceeds by fitting
separate models at each voxel, and then applying some form of multiple testing
correction [Nichols (2012)]. In the present setting of a single model that uses the
entire image to predict a scalar response, it might be possible to assign p-values
to individual voxels as in Meinshausen, Meier and Bühlmann (2009). In practice,
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however, predictive algorithms tend to produce rather unstable estimates, as a num-
ber of authors have acknowledged [e.g., Craddock et al. (2009), Honorio et al.
(2012), Sabuncu, Van Leemput and Alzheimer’s Disease Neuroimaging Initiative
(2012)]. Our hypothesis testing approach thus sets the more modest inferential
goal of verifying that the coefficient image as a whole yields better-than-chance
prediction.

5.2. Confounding. For ordinary, as opposed to functional, regression, con-
founding is said to occur when (i) x appears predictive of y, but this relationship
can be attributed to a third variable t such that (ii) t is predictive of y and (iii) t is
correlated with x. For example, birth order (x) is associated with the occurrence
of Down syndrome (y), but this is due to the effect of the confounding variable
maternal age (t) [Rothman (2012)].

To extend the above definition to the case of a functional predictor x(·), suppose
that (i) x(·) is ostensibly related to y, in the sense that β(·) is not identically zero
when model (2) includes no scalar covariates, but (ii) the scalar variable t is also
predictive of y. A functional-predictor analogue of point (iii) is to suppose that t is
correlated with

∫
x(s)β̂(s) ds, where β̂(·) is an estimate obtained with t excluded

from model (2). Aside from this “global” analogue of (iii), it may be useful to
consider a “local” analogue which holds if t is correlated with x(s), specifically
for s such that β(s) �= 0; but this is somewhat less straightforward to assess.

6. Application: fALFF and ADHD.

6.1. ADHD-200 data set and candidate models. We now apply the wavelet-
domain elastic net to “predicting” ADHD diagnosis using maps of fractional am-
plitude of low-frequency fluctuations (fALFF) [Zou et al. (2008)] from a portion of
the ADHD-200 sample referred to in the Introduction (http://fcon_1000.projects.
nitrc.org/indi/adhd200/). fALFF is defined as the ratio of BOLD signal power spec-
trum within the 0.01–0.08 Hz range to total over the entire range. Yang et al. (2011)
reported altered levels of fALFF in a sample of children with ADHD relative to
controls, specifically in frontal regions. That study relied on the traditional ana-
lytic approach in neuroimaging, which regresses the imaged quantity (in this case
fALFF) on diagnostic group, separately at each voxel. Here we employed scalar-
on-image logistic regression, which reverses the roles of response and predictor,
to regress diagnostic group on fALFF images. Our sample consisted of 333 in-
dividuals: 257 typically developing controls and 76 with combined-type ADHD.
The sample included 198 males and 135 females, with age range 7–20 (see Sup-
plementary Appendix D [Reiss et al. (2015)], for further details). We chose the
2D slice for which the mean across voxels of the SD of fALFF was highest. This
was the axial slice located at z = 26 (just dorsal to the corpus callosum) in the co-
ordinate space of the Montreal Neurological Institute’s MNI152 template (4 mm

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
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FIG. 6. Coefficient image estimates for model (18) applied to the ADHD-200 data, using wavelet–
domain elastic net with four different values of the mixing parameter α.

resolution). We fitted two models. The first was

logit Pr(ith subject has ADHD) = δ +
∫
S

xi(s)β(s) ds,(18)

where xi(s) denotes the ith subject’s fALFF image. The second model was

logit Pr(ith subject has ADHD) = tTi δ +
∫
S

xi(s)β(s) ds,(19)

where the vector ti includes the ith subject’s age, sex, IQ and mean FD, as well as
a leading 1 for the intercept.

Figure 6 shows the coefficient images attained for model (18) with each value of
the mixing parameter α. As expected, increasing values of α lead to more-sparse
estimates in the wavelet domain, and hence in the voxel domain. Figure 7 shows
the CV deviance as a function of λ for α = 0.1, which had the lowest CV deviance
overall, as well as for α = 1.

The left subfigure of Figure 8 shows that the CV deviance lies in the left tail
of the permutation distribution for model (18), indicating a significant effect of
the fALFF image predictors (p = 0.015). However, with the scalar covariate ad-
justment of model (19), this effect disappears. The next subsection examines more
closely how the scalar covariates may be acting as confounders.

Our test of model (18) entailed 999 permuted-data fits with four candidate val-
ues of α and 100 of λ, requiring 14.25 hours on an Intel Xeon E5-2670 processor

FIG. 7. Cross-validated deviance +/− one approximate standard error, for the wavelet-domain
elastic net models with α = 0.1,1.
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FIG. 8. Permutation test results. For the full sample (left), a significant effect of the fALFF images
is seen in model (18), but not in model (19), which adjusts for scalar covariates. When only younger
individuals are included (right), neither model shows a significant fALFF effect.

running at 2.6 GHz. In practice, we recommend parallelizing the permutations via
cluster computing to make the computation time more manageable. In addition,
truncated sequential probability ratio tests [Fay, Kim and Hachey (2007)] could
in some cases reduce computation time via early stopping. We also explored fit-
ting model (18) with the full 3D fALFF images as predictors; see Supplementary
Appendix E [Reiss et al. (2015)].

6.2. Assessing and remedying confounding. As discussed in Section 5.2, the
notion of confounding entails three elements (see Figure 9). Point (i), an apparent
effect of the image predictor fALFF on diagnosis, was established by the above
permutation test result for model (18). To check point (ii) of the definition for
each of the four scalar covariates under consideration, we performed an ordinary
logistic regression with diagnosis (1 = ADHD, 0 = control) as response and the
above four scalar predictors. In Table 1 (at left), sex, age and IQ are all seen to
be significantly related to diagnosis. See also Figure 10, which compares the fitted
probabilities from this ordinary logistic regression with those resulting from mod-
els (18) and (19). The scalar-covariates model is seen to separate the two groups
(black vs. gray dots) quite well; the image predictors increase the spread of the pre-
dicted probabilities without clearly improving the two groups’ separation. Based
on these results, each of these three variables may be acting as a confounder.

Next we consider point (iii), that is, the correlations of each scalar covariate
with

∫
S xi(s)β̂(s) ds, where β̂ is the coefficient image estimate from the fALFF-

FIG. 9. Relationships among a putative predictor X, outcome Y and confounder T (see Sec-
tion 5.2), illustrated with respect to the ADHD-200 data.
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TABLE 1
To examine element (ii) of confounding, an ordinary logistic regression was fitted with the four

scalar predictors and with ADHD diagnosis as response; the resulting estimates are shown with
95% confidence intervals. For element (iii), we display the correlations of each predictor

with the logit probabilities estimated by fitting model (18)

(ii) (iii)

Log odds ratio p-value Correlation p-value

Intercept 3.90 (1.11,6.78) 0.007
Sex (M–F) 1.26 (0.65,1.91) 0.00008 0.14 (0.03,0.24) 0.011
Age −0.20 (−0.32,−0.09) 0.0005 −0.35 (−0.44,−0.25) 6 × 10−11

IQ −0.03 (−0.05,−0.01) 0.003 −0.09 (−0.19,0.02) 0.10
Mean FD −2.51 (−8.80,3.56) 0.42 −0.04 (−0.15,0.07) 0.47

only model (18) or, equivalently, with the predicted logit probability of ADHD
from that model. The results, shown at right in Table 1, point to age and sex as
the principal confounders. (Here sex was treated as a binary variable, with 1 for
male and 0 for female; a t-test and a Mann–Whitney test yielded similar results.)
“Local” examination in the sense of Section 5.2 reveals that the fALFF x(s) tends
to be higher in males and in younger individuals for many voxels s; and such
regions overlap considerably with those in which β̂(s) > 0. In other words, the
ostensible association between fALFF and ADHD likely reflects the dependence
of fALFF on age and sex, which in turn are related to ADHD in our sample.

Further inspection revealed that, of the 67 individuals with age above 14.0, only
8 had ADHD, with maximum age 17.43—whereas the controls had ages as high

FIG. 10. Predicted probabilities of ADHD diagnosis, according to the images-only model (18); an
ordinary logistic regression with the four scalar covariates; and model (19), which includes both.
Also shown are the R2 values, as defined in Supplementary Appendix A.1, for the three models.
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as 20.45. This led us to suspect that these older individuals might be driving the
confounding with age that results in a spurious effect of fALFF on diagnosis. To
investigate this possibility, we repeated the analysis using only the 266 individuals
of age 14.0 or lower. Figure 8 shows that in this subsample, the fALFF effect is
no longer significant, even without adjusting for the scalar covariates. Moreover,
given how far the test statistic is from the left tail of the permutation distribution, it
seems unlikely that the loss of significance is due merely to the lower sample size.

In general, absent careful matching at the design stage, it would be advisable
to match the two diagnostic groups optimally on a complete set of clearly relevant
variables, via algorithms such as those described in Rosenbaum (2010). Our aim
here, however, was to show how a straightforward new notion of confounding for
functional predictors can be used to identify a principal scalar confounder, whose
impact can be removed by the crude device of simply truncating the age range.

7. Discussion. Our analysis in Section 6 included only one imaging modal-
ity and only a subset of the individuals from the ADHD-200 Global Competition
database. At any rate, our essentially negative result is consistent with the finding
[Brown et al. (2012)] that diagnostic accuracy was optimized by basing predic-
tion on scalar predictors, while ignoring the image data. In a blog comment on
that outcome, cited both by ADHD-200 Consortium (2012) and by Brown et al.
(2012), the neuroscientist Russ Poldrack suggested that “any successful imaging-
based decoding could have been relying upon correlates of those variables rather
than truly decoding a correlate of the disease.” Stated a bit differently, the compet-
ing teams’ successes in using the image data to predict diagnosis may have been
brought about by confounding. But there appear to have been few attempts, if any,
to study systematically how confounding may give rise to spurious relationships
between quantitative image data and clinical variables. Similarly, analyses of the
ADHD-200 data, and related work on brain “decoding,” have devoted little atten-
tion to formally testing the contribution of imaging data to prediction of scalar
responses [but see Reiss (2015)].

As we have shown, these two interrelated issues—testing the effect of image
predictors and investigating possible confounders—can be handled straightfor-
wardly within our scalar-on-image regression framework. The permutation test
procedure of Section 5.1 found a statistically significant relationship between
fALFF images and ADHD diagnosis, but this disappeared when four scalar co-
variates were adjusted for. Further examination, in light of our extension of the
notion of confounding to functional/image predictors in Section 5.2, pointed to
age and sex as the key confounders.

The ADHD-200 project is one of a number of recent initiatives to make large
samples of neuroimaging data publicly available [Milham (2012)]. These initia-
tives have been a boon for statistical methodology development, but it must be
borne in mind that even as neuroimaging sample sizes increase rapidly, they remain
much smaller than the data dimension. No approach to scalar-on-image regression
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can completely escape the ensuing nonidentifiability of the coefficient image. We
can, however, (i) put forth assumptions, likely to hold approximately in practice,
that reduce the effective dimension of the coefficient image; and (ii) employ mul-
tiple methods in the hope that these will converge upon similar coefficient image
estimates, at least when the signal is sufficiently strong.

With these considerations in mind, we have introduced three methods for scalar-
on-image regression, each relying on a different set of assumptions to achieve
dimension reduction in the wavelet domain. Implementations of these three meth-
ods, for 2D and 3D image data, are provided in the refund.wave package [Huo,
Reiss and Zhao (2014)] for R [R Development Core Team (2012)], available at
http://cran.r-project.org/web/packages/refund.wave. This new package, a spinoff
of the refund package [Crainiceanu et al. (2014)], relies on the wavethresh
package [Nason (2013)] for wavelet decomposition and reconstruction.

As discussed in Section 2.2, the three methods described here are merely three
instances of a meta-algorithm for scalar-on-image regression. The refund.wave
package allows for straightforward incorporation of alternative penalties, and
other extensions may allow for more refined wavelet-domain algorithms, which
may improve the stability and reproducibility of the coefficient image estimates
[Rasmussen et al. (2012)]. For instance, in wavelet-based nonparametric regres-
sion, thresholding is often performed in a level-specific manner. Analogously, it
might be appropriate to modify criterion (11) so as to differentially penalize co-
efficients at different levels. One might also employ resampling techniques [cf.
Meinshausen and Bühlmann (2010)] to select those wavelet basis elements that are
consistently predictive of the outcome. Finally, wavelets whose domain is anatom-
ically customized, such as the wavelets defined on the cortex by Özkaya and Van
De Ville (2011), offer a promising new way to confine the analysis to relevant
portions of the brain.
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SUPPLEMENTARY MATERIAL

Supplementary appendices (DOI: 10.1214/15-AOAS829SUPP; .pdf). De-
scription of simulation details, permutation of residuals for the proposed test pro-
cedure, a power study, selection of a subsample from the ADHD-200 data set, and
results with 3D predictors.
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