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Statistical agencies and other institutions collect data under the promise
to protect the confidentiality of respondents. When releasing microdata sam-
ples, the risk that records can be identified must be assessed. To this aim,
a widely adopted approach is to isolate categorical variables key to the iden-
tification and analyze multi-way contingency tables of such variables. Com-
mon disclosure risk measures focus on sample unique cells in these tables
and adopt parametric log-linear models as the standard statistical tools for
the problem. Such models often have to deal with large and extremely sparse
tables that pose a number of challenges to risk estimation. This paper pro-
poses to overcome these problems by studying nonparametric alternatives
based on Dirichlet process random effects. The main finding is that the in-
clusion of such random effects allows us to reduce considerably the number
of fixed effects required to achieve reliable risk estimates. This is studied on
applications to real data, suggesting, in particular, that our mixed models with
main effects only produce roughly equivalent estimates compared to the all
two-way interactions models, and are effective in defusing potential short-
comings of traditional log-linear models. This paper adopts a fully Bayesian
approach that accounts for all sources of uncertainty, including that about the
population frequencies, and supplies unconditional (posterior) variances and
credible intervals.

1. Introduction. Statistical agencies and other institutions that release data
arising from sample surveys are obliged to protect the confidentiality of respon-
dent’s identities and sensitive attributes. In socio-demographic surveys the ob-
served variables are often categorical; some of these, called key variables, are iden-
tifying in that, being also available in external databases, allow potential intruders
to disclose confidential information on records in the sample by matching on such
keys. Assuming that there are no errors in the variables above, the problem of as-
sessing disclosure risks associated with any proposed data release is often tackled
by: (i) considering a contingency table representing the cross-classification of sub-
jects by the key variables (often this is a very large and sparse table); (ii) observing
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that a subject belonging to a cell with a sample frequency of 1 (sample unique) is
at a relatively high risk of identification if there are few subjects in the population
with that combination of the key variables.

Common disclosure risk measures are the number of sample uniques which are
also population uniques and the expected number of correct guesses when each
sample unique is matched with a subject randomly chosen from the corresponding
population cell. Further measures can be found in Forster and Webb (2007) along
with an extensive survey of the previous literature; in this paper we selectively
review only those references that are closely related to the focus of our work.

Disclosure risk is traditionally estimated by parametric models; in this context,
Skinner and Holmes (1998), Fienberg and Makov (1998), Carlson (2002), Elamir
and Skinner (2006), Forster and Webb (2007) and Skinner and Shlomo (2008) in-
troduce a log-linear model for the expected cell frequencies that overcomes the
assumption of exchangeability of cells of the contingency table, implying constant
risk estimates across cells having the same sample frequency. To learn about the
risk in a given cell from neighboring cells without relying on the association struc-
ture implied by a log-linear model, Rinott and Shlomo (2006, 2007a) propose a
local smoothing polynomial model, applicable to key variables for which a suit-
able definition of closeness is available. As far as estimation goes, the literature
presents a whole variety of strategies, including combinations of methods rang-
ing from maximum likelihood estimates to fully Bayesian estimates, and also a
method based on multiple imputation.

Drawing from the above-mentioned literature, we propose a Bayesian semi-
parametric version of log-linear models, which specifically is a mixed effects
log-linear model with a Dirichlet process (DP) prior [Ferguson (1973)] for mod-
eling the random effects. As in Fienberg and Makov (1998), Forster and Webb
(2007), and Manrique-Vallier and Reiter (2012, 2014), we adopt a fully Bayesian
approach. Unlike repeated sampling schemes, the Bayesian framework is particu-
larly appealing in a disclosure limitation context, where the sample to be released
is unique and fixed. It also allows us to account for uncertainty about population
frequencies, which thus represents an additional source of variability of risk esti-
mators. In this respect, our work is very different from previous works based on
log-linear models, including the one by Rinott and Shlomo (2007b), as we provide
unconditional variances and credible intervals for sample disclosure risk measures.

Emphasizing the random effects component of the model, we will refer to it
as a nonparametric log-linear model, its parametric counterpart being a log-linear
model with random effects modeled parametrically; fixed effects are always as-
signed a parametric prior, so no further distinctions are necessary.3 Our nonpara-
metric log-linear models are special cases of the family of hierarchical DPs [Teh

3The reason for such and related abuses of terminology is that often in the course of the paper we
think of random effects conditionally on fixed effects and vice versa. This is also why we refer to
independence in the sequel.
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et al. (2006)] which also include some elements of the class of mixed membership
models [which in turn include grade of membership models, Erosheva, Fienberg
and Joutard (2007)] such as latent Dirichlet allocation models [Blei, Ng and Jordan
(2003)].

The proposed nonparametric formulation has two major advantages. First, it
may be interpreted as the nonparametric extension of some of the parametric mod-
els proposed in the literature (see Section 2). Second, and most importantly, in
many applications to real data, two of which are presented in Section 4, we ob-
served roughly equivalent global risk estimates under nonparametric log-linear
models with main effects only (say, nonparametric independence models) com-
pared to all two-way interactions log-linear models with and without random ef-
fects. Quoting Manrique-Vallier and Reiter [(2012), page 1390], the latter “have
been found to produce reasonable results in many cases [Elamir and Skinner
(2006), Fienberg and Makov (1998), Skinner and Shlomo (2008)], and so represent
a default modeling position.” Consequently, our main finding is that our nonpara-
metric independence models can be used as default models, thereby avoiding the
severe difficulties associated with complex log-linear model estimation in the pres-
ence of sparse tables [see, e.g., Fienberg and Rinaldo (2012)]. These difficulties
arise from certain patterns of sampling zeroes which make the model nonidenti-
fiable and result in nonexistent maximum likelihood estimators (MLE). This fact
has long been known [Haberman (1974)], but recent research shows that nonex-
istent MLEs are likely to arise even in small tables, in the presence of positive
margins and in frequently used models such as the all two-way interactions model.
“Under a nonexistent MLE, the model is not identifiable, the asymptotic standard
errors are not well defined and the number of degrees of freedom becomes mean-
ingless” [Fienberg and Rinaldo (2012), page 997]. Moreover, common statistical
packages are inadequate to cope with this problem, as detailed in Fienberg and
Rinaldo (2007). The issue of nonexistence of MLE is also important in Bayesian
analysis of contingency tables, but in our nonparametric models it is defused in
two ways. First, the only fixed effects to be estimated are the main effects. This
is a substantial simplification of the log-linear model significantly reducing the
severity of the problem. Second, the vague prior we assign to fixed effects replaces
the information content lacking in the data with the information contained in the
prior about all cells. This obviates the need for ad hoc additions of small posi-
tive quantities to cells containing sampling zeroes [Fienberg and Rinaldo (2007),
page 3437; Fienberg and Rinaldo (2012), page 1012], which is potentially severely
misleading.

Recently, under the assumption that there are no structural zeroes in the con-
tingency table, Manrique-Vallier and Reiter (2012) employ a Bayesian version
of the grade of membership model for disclosure risk estimation, also discussing
the model choice. This is a very challenging problem in complex log-linear mod-
els only addressed in Skinner and Shlomo (2008); another approach is Bayesian
model averaging, pursued by Forster and Webb (2007) on decomposable graphical
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models. In a subsequent paper, Manrique-Vallier and Reiter (2014) propose a trun-
cated latent class model (LCM) for managing structural zeroes, thereby removing
a traditional limitation of Bayesian latent structure models.

The paper is organized as follows: in Section 2 we define our model and in-
terpret it in light of the existing literature; in Section 3 we describe in detail our
estimation method. In Section 4 we compare parametric and nonparametric mod-
els based on a sample extracted from the population defined by the Italian National
Social Security Administration (WHIP-Work Histories Italian Panel, Laboratorio
Revelli, Centre for Employment Studies, http://www.laboratoriorevelli.it/whip),
benchmarking risk estimates against the true values of global risks. The same
comparison is also provided through a random sample from public use microdata
from the state of California [IPUMS, Ruggles et al. (2010)]. In Section 5 we dis-
cuss comparisons between our nonparametric models and the LCMs of Manrique-
Vallier and Reiter (2014), showing that both rely on the same basic assumptions,
although implemented in different ways, which leads to different models with rel-
ative merits over each other. We also discuss some computational aspects, sug-
gesting use of the Empirical Bayesian version of our model to reduce the compu-
tational burden for very large tables. Finally, in Section 6 we provide some final
comments.

2. Log-linear models for disclosure risk estimation. Let fk and Fk denote
the sample and population frequencies in the kth cell, respectively, and let K be
the total number of cells in the contingency table of the key variables. Our goal is
to estimate global risks of re-identification, or disclosure risks, defined as

τ1 =
K∑

k=1

I (fk = 1,Fk = 1) =
K∑

k=1

I (fk = 1)τ1,k,(1)

that is, the number of sample uniques which are also population uniques, and

τ2 =
K∑

k=1

I (fk = 1)
1

Fk

=
K∑

k=1

I (fk = 1)τ2,k,(2)

that is, the expected number of correct guesses if each sample unique is matched
with an individual randomly chosen from the corresponding population cell [see,
e.g., Rinott and Shlomo (2006)]. Usually these measures are approximated by their
expectations E(τi |f1, . . . , fK), i = 1,2, namely, under the assumption of cell in-
dependence,

τ ∗
1 =

K∑
k=1

I (fk = 1)Pr{Fk = 1|fk = 1} =
K∑

k=1

I (fk = 1)τ ∗
1,k,(3)

τ ∗
2 =

K∑
k=1

I (fk = 1)E(1/Fk|fk = 1) =
K∑

k=1

I (fk = 1)τ ∗
2,k,(4)

http://www.laboratoriorevelli.it/whip
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and estimated by using parametric models, which are often elaborations of the
Poisson model. Assuming

Fk ∼ Poisson(λk) and fk ∼ Poisson(πλk)(5)

independently for k = 1, . . . ,K , with π being the (known) sampling fraction, the
terms in (3) and (4) can be expressed in closed form,

τ ∗
1,k = e−(1−π)λk , τ ∗

2,k = (
1 − e−(1−π)λk

)
/
(
(1 − π)λk

)
.(6)

In a relevant part of the literature the Poisson assumption is integrated by log-
linear modeling of cell means and, as mentioned in Section 1, the all two-way
interactions model without random effects has been recognized as a useful de-
fault model by many authors [Elamir and Skinner (2006), Fienberg and Makov
(1998), Skinner and Shlomo (2008)]; recent articles, however, show that inference
in this model is not trivial with sparse tables. Even if the parameters of interest
are the cell means λk , and the Iterative Proportional Fitting (IPF) is guaranteed to
converge to the extended MLE by construction, the rate of convergence, with the
noticeable exception of decomposable graphical models, can be very slow when
the MLE is not defined. In conclusion, “The behavior of IPF when the MLE does
not exist has not been carefully studied to date” [Fienberg and Rinaldo (2007),
page 3438]. The previous facts, along with the nature of the problem, motivate our
attempt to address it in a Bayesian nonparametric framework by introducing DP
random effects. The assumption of a DP prior gives the modeling flexibility of ac-
commodating any possible clustering of cells in the contingency table of the key
variables, and implies that all possible clusters of cells are considered, with cells in
the same cluster receiving the same random effect. A practical consequence is that
the huge number of patterns of dependence among cells automatically created by
the DP prior may reduce the number of high-order terms required in the log-linear
model to achieve a satisfactory performance of risk estimators [see, e.g., Dorazio
et al. (2008)]. Aiming at exploring this idea in real data applications, we build on
work by Skinner and Holmes (1998) and related papers, such as Elamir and Skin-
ner (2006) and Carlson (2002). Before describing our proposal, we briefly review
the above references. Assuming (5), Skinner and Holmes model the parameters λk

through a log-linear model with mixed effects:

λk = eμk , μk = w′
kβ + φk,(7)

where wk is a q × 1 design vector depending on the values of the key vari-
ables in cell k, β is a q × 1 parameter vector (typically main effects and low-
order interactions of the key variables), and φk is a random effect accounting
for cell-specific deviations. Finally, φk i.i.d. ∼ N (0, σ 2). Formula (7) can be re-
expressed using multiplicative random effects as λk = ew′

kβeφk = ξkωk , hence
λk|(β, σ 2) ∼ Lognormal(w′

kβ, σ 2), independently for k = 1, . . . ,K .
Skinner and Holmes (1998) estimate τ ∗

1 of formula (3) by a two-stage proce-
dure: in the first stage, the association among cells is exploited to estimate the
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hyperparameters β and σ 2 of the Lognormal prior; in the second (and completely
separate) stage, estimates of τ ∗

1,k are obtained cell by cell, independently. When
the preliminary estimate of σ 2 is positive, this procedure leads to empirical Bayes
estimates of the τ ∗

1,k’s in (6), otherwise the random effects φk’s are removed, and

plug-in estimates of the τ ∗
1,k’s are derived by using ML estimates ξ̂k = ew′

k β̂ . In
the same framework, but focusing on estimation of τ ∗

2,k in (6), Elamir and Skin-
ner (2006) assume independent Gamma priors in place of Lognormals on λk’s, and
find that the addition of parametric random effects does not improve risk estimates;
as a consequence, they suggest to adopt plug-in estimates. Conjugate Gamma pri-
ors guarantee computational advantages, as do the Inverse Gaussian distributions
(IG) described in Carlson (2002).

Our proposal is as follows: we keep the mixed effects log-linear structure (7),
but remove the assumption of normality. We model the distribution function G of
the random effects as unknown and a priori distributed according to a DP D with
base probability measure G0 and total mass parameter m [Ferguson (1973)],

φk|G ∼ i.i.d. G, G ∼ D(m,G0).(8)

Since E(G) = G0 and m controls the variance of the process, in practice, G0
specifies one’s “best guess” about an underlying model of the variation in φ,
and m specifies the extent to which G0 holds. Within the class of models just
defined, we consider three specifications of G0 that lead to three different di-
rect generalizations of the existing literature, namely, Skinner and Holmes (1998),
when G0 = N(α,σ 2); Carlson (2002), when G0 = IG(α,σ 2); Elamir and Skinner
(2006), when G0 = LG(a, b), where LG denotes the distribution of a log transfor-
mation of a Gamma(a, b) variate ω, with f (ω;a, b) = ba/
(a)ωa−1e−bω. The
hyperparameters in the base measure G0 can be fixed, which is how we proceed,
or be given a prior distribution. While in the corresponding parametric approaches
a fixed distribution G = G0 is selected and its hyperparameters are estimated, we
take the opposite perspective, that is, we assume a random G while holding the
hyperparameters of its mean distribution G0 fixed, and chosen so as to obtain a
vague specification.

The estimation of risk measures under the proposed model is discussed in Sec-
tion 3. Here we analyze the implications of our nonparametric specification of
random effects and the advantages over the parametric counterparts of our model.
The clustering induced by the DP prior on the random effects can be seen from
a Polya-urn scheme representation of the joint distribution of realizations from
D(m,G0). Blackwell and MacQueen (1973) provide this as the product of succes-
sive conditional distributions:

φi |φ1, . . . , φi−1, M ∼ m

m + i − 1
G0(φi) + 1

m + i − 1

i−1∑
k=1

δ(φk = φi),(9)
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with δ(·) denoting the Dirac delta function. The above representation shows that
clusters in the K cells of the population contingency table are induced by the exis-
tence of a positive probability that a newly generated φi coincides with a previous
one. It also shows that m, the mass or precision parameter of the DP, affects the
expected number of clusters.

Therefore, under the previous assumptions, the likelihood function turns out to
be a sum of terms where all possible partitions (clusterings) C of the K cells into
c nonempty clusters are considered [see, e.g., Liu (1996), Lo (1984)],

K∑
c=1

∑
C:|C|=c


(m)


(m + K)
mc

c∏
j=1


(nj )

∫
p(f(j)|β, φj ) dG0(φj ),(10)

where f = f1, . . . , fK and nj (1 ≤ nj ≤ K) denotes the number of cells in the j th
cluster,


(m)


(m + K)
mc

c∏
j=1


(nj ) = Pr{n1, . . . , nc|C,c},(11)

and finally

p(f(j)|β, φj ) = ∏
k∈clusterj

1

fk!e
πfk(w′

kβ+φj )e−e
π(w′

k
β+φj )

.(12)

In the likelihood, starting from the latter formula, we notice that the same ran-
dom effect is assigned to all cells belonging to the same cluster, that is, to f(j),
that Pr{n1, . . . , nc|C,c} is the multivariate Ewens distribution (MED) of K distin-
guishable objects, or cells {1, . . . ,K} [see Takemura (1999); Johnson, Kotz and
Balakrishnan (1997), Chapter 41], and that the number of clusters in each partition
ranges from 1 to K . We stress that the total number of terms in the likelihood (10)
is the Bell number, BK , which is a combinatorial quantity assuming large values
even for moderate K ; just to fix ideas, when K = 10, BK = 115,975. The para-
metric counterparts of our nonparametric random effects models correspond to just
one term (namely, c = K) in the likelihood and, consequently, even for moderate
values of K , our model implies a huge number of additional patterns of depen-
dence among cells.

The above considerations show that the intrinsic characteristics of DP random
effects set them apart from parametric random effects for their potential to improve
upon the fixed effects component of the log-linear model. Indeed, the fixed ef-
fects included in the log-linear model imply specific patterns of dependence among
cells. For instance, an independence model implies that inference on a given cell
depends on all cells sharing a value of a key variable with it, since the sufficient
statistics are given by the marginal counts. The addition of independent parametric
random effects, N(α,σ 2), IG(α,σ 2) or LG(a, b), allows for departures from the
Poisson log-linear model such as overdispersion, but does not significantly affect
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the way one can learn about a given cell from other cells. In contrast, the inclu-
sion of DP random effects implies that, in addition to the above-mentioned fixed
effects patterns, the model encompasses all other nonempty subsets of the K cells.
For each given partition, a possible relation of dependence among cells in the same
subset is explicitly evaluated. In other words, to learn about a given cell, additional
information is borrowed from cells belonging to the same subset, for each subset to
which the cell can be assigned in the context of all possible partitions in nonempty
subsets of the K cells. This suggests both the potential for the proposed model to
improve the risk estimates and the associated computational complexity. Further-
more, the results under our nonparametric models can be interpreted as averages
over mixed effects log-linear models with different clusterizations of parametric
random effects.

3. Inference. In this section we describe how to estimate not only τ ∗
1 and τ ∗

2
in (3) and (4), as most of the literature based on log-linear models does, but also τ1
and τ2 and their terms τ1k and τ2k in (1) and (2), in a fully Bayesian way. This ap-
proach is inspired by Manrique-Vallier and Reiter (2012, 2014); see also Fienberg
and Makov (1998). In order to keep the notation uncluttered, let θ denote the set of
all model parameters conditioning λ1, . . . , λK for each of the models analyzed in
this article. The posterior distribution over θ is not available in closed form for any
of the models considered here. We employ Markov Chain Monte Carlo (MCMC)
techniques [Neal (1993)] to obtain samples from p(θ |f1, . . . , fK); in particular,
we propose to use a Gibbs sampler where we sample one group of parameters at
a time, namely, β|rest, φ|rest and m|rest. The proposed Gibbs sampler steps are
briefly discussed next.

Sampling β . Given the form of the Poisson likelihood, it is not possible to sam-
ple β using an exact Gibbs step, and so-called Metropolis within Gibbs samplers
need to be employed, whereby a proposal is accepted or rejected according to a
Metropolis ratio [Roberts and Rosenthal (2009)]. Recent work shows that it is pos-
sible to efficiently sample from the posterior distribution of parameters of linear
models using so-called manifold MCMC methods. Briefly, such samplers exploit
the curvature of the log-likelihood log[p(f1, . . . , fK |β, rest)] by constructing a
proposal mechanism on the basis of the Fisher Information matrix [see Girolami
and Calderhead (2011) for further details]. In this work we adopt a Simplified
Manifold Metropolis Adjusted Langevin Algorithm (SMMALA) to sample β as
previously done in Filippone, Mira and Girolami (2011), which simulates a dif-
fusion on the statistical manifold characterizing p(f1, . . . , fK |β, rest). Define M

to be the metric tensor obtained as the Fisher Information of the model plus the
negative Hessian of the prior, and ε to be a discretization parameter. SMMALA
is essentially a Metropolis–Hastings sampler, with a position-dependent proposal
akin to the Newton method in optimization, p(β ′|β) = N(β ′|μ, ε2M−1), with

μ = β + ε2

2 M−1∇β log[p(f1, . . . , fK |β, rest)]. Gradient and metric tensor can be
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computed in linear time in the number of cells K and in cubic time in the size of β;
therefore, the method scales well to large data sets, but it may be computationally
intensive for highly parameterized models.

Sampling φ. An extensive treatment of MCMC for DP models can be found in
Neal (2000), where we refer the reader for full details. Drawing samples from the
posterior distribution over the random effects entails allocating cells to an unknown
number of clusters and drawing a value for the random effect for each cluster. The
way in which these steps are carried out depends on whether it is possible to exploit
conjugacy of the base measure, that is, whether the integral

∫
p(fk|β, φ) dG0(φ)

can be evaluated analytically.4

In the applications presented in Section 4, we choose a LG distribution for G0
so that ω = eφ is given a Gamma base measure. In this case we can exploit conju-
gacy with the Poisson likelihood; a similar argument applies when φ is given the
IG distribution, for which the integral above is analytically tractable. When con-
jugacy holds, a simple and efficient algorithm can be constructed to draw samples
from the full conditional distribution over the random effects, which is referred to
as Algorithm 3 in Neal (2000). First, the allocation of cells to clusters is updated
for one cell at a time, integrating out analytically the dependency from the actual
value that the random effects can take, and allowing the total number of clusters
to vary across iterations. Second, the value of the random effect pertaining to each
cluster can be drawn directly from a known distribution [which is a Gamma in
the extension of Elamir and Skinner (2006)], again due to the fact that the like-
lihood and the DP base measure form a conjugate pair. The sampling of φ has a
computational cost that scales linearly with the number of cells.

Instead, when we extend the model proposed by Skinner and Holmes (1998),
the normal distribution does not enjoy the above-mentioned conjugacy property;
for this reason, sampling schemes for nonconjugate base measures described, for
example, in Neal (2000), must be employed, and these usually lead to less efficient
MCMC sampling schemes.

Sampling m. In the literature, it has often been reported that inference in mod-
els involving DPs is heavily affected by the mass parameter m, and that setting it
by means of Maximum Likelihood is bound to yield poor results [see, e.g., Liu
(1996)]. Rather than fixing this parameter, we propose to draw samples from its
posterior distribution and to account for uncertainty about it when inferring risk
measures. By selecting a Gamma prior over m, it is possible to employ the ap-
proach of Escobar and West (1995) to draw samples from the posterior distribution
over m|rest directly.

MCMC estimates. Once H samples from the posterior distribution over θ are
available, it is possible to obtain Monte Carlo estimates of per-cell risks by refer-

4Note that here p(fk |β, φ) represents the likelihood based on a single datum, that is, one of the
terms in the product (12).
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ring to (6):

τ̂ ∗
1,k = 1

H

H∑
h=1

Pr
{
Fk = 1|fk = 1, θ (h)};

τ̂ ∗
2,k = 1

H

H∑
h=1

E

(
1

Fk

∣∣∣fk = 1, θ (h)

)
,

which in turn lead to global risk estimates τ̂ ∗
i = ∑K

k=1 τ̂ ∗
i,k , i = 1,2.

Fully Bayesian estimates of τi, i = 1,2, instead require taking into ac-
count a further source of variability induced by the randomness of the unob-
served F1, . . . ,FK . In particular, observing that the terms τi,k in τi , are τi,k =
τi,k(fk, λk,Fk) (i = 1,2) where F1, . . . ,FK are unknown random quantities, with
Fk|λk ∼ Poisson(λk), k = 1, . . . ,K , we consider values of λk’s drawn from their
joint posterior distribution and then values of F1, . . . ,FK drawn from the corre-
sponding Poisson distributions. This allows us to derive a sample of τi,k , i = 1,2,
from which it is possible to characterize the posterior distribution of global and
cell-specific risk values by standard Monte Carlo techniques. Accounting for
randomness of both groups of unobserved parameters (λk’s and Fk’s) has two
important implications. First, since a posteriori the λk’s are dependent on each
other, we avoid the unrealistic assumption underlying the second stage of the
estimation procedure of Skinner and Holmes (1998), where the cell risks are
treated as if they were independent. Second, since the uncertainty on the Fk’s
is also explicitly considered, we obtain risk estimates whose variability depends
on the variability of the Fk’s as well as the variability of the λk’s and the asso-
ciation between λk’s. This means, for instance, that our posterior variance of τ1,
Var(τ1|f1, . . . , fK) = Var(

∑K
k I (fk = 1)I (Fk = 1|fk = 1)|f1, . . . , fK), cannot be

expressed in the form [Rinott and Shlomo (2007b)]

K∑
k

I (fk = 1)Pr{Fk = 1|fk = 1}(1 − Pr{Fk = 1|fk = 1})(13)

because of the covariances of the λk’s. Moreover, our variances, and the corre-
sponding standard deviations (s.d.), provided in Table 1, are derived from the pos-
terior distributions of τi , i = 1,2, rather than by plug-in.

As mentioned in Section 1, the issue of nonexistence of MLE (due to data being
not fully informative about model parameters) is also important in Bayesian anal-
ysis of log-linear models. The vague prior we specify in Section 4 for the fixed
effects replaces the information content lacking in the data with the information
contained in the prior. This prior is especially useful to estimate the all two-way
interactions model that we consider for comparison, as it makes the posterior in-
formation matrix of β not rank deficient. This is the way we can avoid ad hoc
additions of small positive quantities to cells containing sampling zeroes.
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TABLE 1
Estimated values of τ1 and τ2 by means of τ̂1 and τ̂2 (top panel) and τ̂∗

1 and τ̂∗
2 (bottom panel) for

the California and WHIP tables. Posterior standard deviations in parentheses

California WHIP

Model τ1 = 211 τ2 = 499.8 τ1 = 915 τ2 = 1948.1

τ̂1 τ̂2 τ̂1 τ̂2
(P+O) 0.0 (0.1) 170.5 (1.4) 1180.7 (33.2) 3322.2 (24.8)
(P+I) 255.4 (10.4) 518.8 (7.6) 1184.9 (23.7) 2289.9 (17.1)
(P+II) 253.9 (11.1) 537.5 (8.6) 958.4 (22.4) 1996.2 (17.5)
(NP+O) 700.0 (232.1) 910.0 (198.8) 2397.8 (459.5) 3042.6 (405.1)
(NP+I) 217.0 (12.2) 503.7 (10.9) 1010.4 (29.8) 2083.4 (28.3)
(NP+I) Emp 241.8 (12.3) 528.8 (10.8) 970.2 (32.7) 2046.0 (32.4)

τ̂∗
1 τ̂∗

2 τ̂∗
1 τ̂∗

2
(P+O) 0.0 (0.0) 170.6 (0.7) 1180.6 (10.8) 3322.1 (10.8)
(P+I) 255.3 (3.3) 518.8 (4.0) 1184.9 (9.4) 2290.0 (9.7)
(P+II) 254.0 (4.7) 537.6 (5.5) 958.5 (10.7) 1996.3 (11.9)
(NP+O) 700.1 (231.8) 910.1 (198.7) 2397.8 (458.8) 3042.6 (404.9)
(NP+I) 217.0 (7.5) 503.7 (8.7) 1010.3 (21.9) 2083.4 (24.9)
(NP+I) Emp 241.7 (7.4) 528.7 (8.5) 970.2 (26.0) 2046.0 (29.6)

II 250.4 (–) 536.7 (–) 946.8 (–) 1992.4 (–)

4. Applications. To evaluate the performance of the proposed approach in
practical settings, we apply our nonparametric risk estimators to two tables with
different sizes and degrees of sparsity. We consider data from the 5% Public Use
Microdata Sample of the U.S. 2000 Census for the state of California [IPUMS,
Ruggles et al. (2010)], treating the set of individuals aged 21 and older as the pop-
ulation. We also use data from the 7% microdata sample of the Italian National
Social Security Administration (WHIP-Work Histories Italian Panel, Laboratorio
Revelli, Centre for Employment Studies, http://www.laboratoriorevelli.it/whip),
treated here as the population. In both cases we draw random samples with fraction
π = 0.05. The key variables considered for the WHIP data are sex (2), age (12),
area of origin (11), region of work (20), economic sector (4), wages guarantee
fund (2), working position (4) and firm size (5), leading to a table of 844,800 cells,
of which 5017 (0.59%) are nonempty. The California table comprises the follow-
ing key variables: number of children (10), age (10), sex (2), marital status (6),
race (5), employment status (3) and education (5), for a total of 90,000 cells, of
which 4707 (5.2%) are nonempty. These variables are a subset of those specified
in Manrique-Vallier and Reiter (2012) that we follow for categorization of the key
variables and selection of the reference population; the latter excludes the pres-
ence of impossible, or otherwise predetermined, combinations, that is, structural
zeroes. The expected cell probabilities (λk) in cells containing structural zeroes
are assigned a degenerate prior; loosely speaking, this has to be interpreted as a

http://www.laboratoriorevelli.it/whip
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“conventional” way to state that all such cells have to be ignored in the fitting of
the model so that they cannot bias estimates in the remaining “nonstructural zero”
cells.

In the applications we focus on one of the nonparametric models presented in
Section 2, namely, the extension of the model proposed by Elamir and Skinner
(2006). We examine several choices of the log-linear component describing the
fixed effects; in particular, we investigate a model with no fixed effects, referred to
as the overall mean model (O), the main effects or independence model (I) and the
all two-way interactions model (II). For comparison we fit both the parametric (P)
and nonparametric (NP) random effects versions of the above-mentioned models.
For simplicity, hereafter, the above models will be identified by labels denoting
the selected modeling options, so, for instance, (NP+I) is the nonparametric model
with main effects only, and (P+II) and (II) are the all two-ways interactions models
with and without parametric random effects, respectively.

Under the parametric specification P, the random effects φ are modeled by a
LG(a, b) prior, whereas under the nonparametric specification NP, the random ef-
fects are assumed to follow a distribution drawn from a DP whose base measure is
LG(a, b). In both cases, the hyperparameters (a, b) are fixed so that this is a vague
prior: a = 1, b = 0.1 (b is the rate parameter). Since we drop from β the overall
effect β0 to overcome identifiability issues, β0 is incorporated into the mean of the
random effects. Therefore, the assumption of Elamir and Skinner (2006), who take
the mean of the Gamma distribution of the multiplicative random effects ω to be 1,
is compatible with ours: by fixing a �= b, that is, a prior mean that differs from 1, we
simply allow for an overall effect. For the components of β we assume independent
and reasonably vague Gaussian priors N(0,10). Finally, we take a Gamma(1,0.1)

prior on m. All models are estimated by the fully Bayesian method5 described in
Section 3, with the exception of one nonparametric independence model where the
prior on the fixed effects is taken to be degenerate at the MLE of ξ , ξ̂ML. We label
the corresponding approach by (NP+I) Emp to indicate that we rely on empirical
Bayes estimation in the presence of DP random effects. Note that the California
table is free of structural zeroes, so that the log-linear model with main effects only
is in fact an independence, that is, decomposable, model, and ξ̂ML exists since all
observed unidimensional margins are positive. This is not the case for the large
WHIP table where the main effects model represents a quasi-independence model.
Here we simply use the ξ̂ obtained by IPF (for which the R routine converged
within 15 iterations with a tolerance of 10−8), assuming it is the extended MLE.

In the implementation of the MCMC sampling, convergence of the chains was
checked using Gelman and Rubin’s potential scale reduction factor [R̂; Gelman
and Rubin (1992)] by running 10 parallel chains and assessing that chains had

5Suitably modified when estimating the models (P+I) and (P+II).
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converged when R̂ < 1.1 for all the parameters. According to this criterion, all
chains converged within five thousands iterations that were then discarded before
running the chains for a further 10,000 iterations that were used to evaluate the
risk scores.

We note here that, for the (P+II) model, the K × q design matrix associated
with the log-linear model component is very large (q > 103 and K ∼ 106), which
caused some difficulties when running the adopted sampling scheme. Indeed, each
update of β requires evaluating and factorizing a q × q matrix, leading to running
times that are beyond usability (weeks). This is the main reason why we consid-
ered a subset of the variables in the California table analyzed in Manrique-Vallier
and Reiter (2012). For the parametric models that are introduced for comparison
we therefore tested an alternative where we approximated the posterior distribu-
tion over β by a Gaussian. In particular, we carried out a Laplace Approximation,
where the approximating Gaussian has a mean equal to the mode of the poste-
rior distribution and the inverse covariance is equal to the negative Hessian of the
logarithm of the posterior density at the mode [Tierney and Kadane (1986)]. Com-
putationally, this procedure has the following advantages. First, the mode-finding
procedure can be implemented in a way that it does not require factorization or
storage of large matrices, for example, by feeding log-posterior and its gradient to
standard optimization routines. Second, once the mode is located, drawing samples
from the approximate posterior over β requires that the q × q covariance matrix
is computed and factorized only once. Interestingly, in cases where we could run
the sampling from the posterior over β , we noticed that the risks obtained by the
approximate method were strikingly close to one another. For this reason, the re-
sults that we report for the (P+I) and the (P+II) models refer to the approximate
method.

Table 1 reports true and estimated values of τ1 and τ2 (s.d. in parentheses) for
six models formed by combining different modeling options as described above.
In addition, risks obtained under the default log-linear model (II) without random
effects and fitted by the IPF are included for reference. First of all, the very small
difference in the results under the (II) and (P+II) models confirms the findings in
Elamir and Skinner (2006). Moreover, similar to what Manrique-Vallier and Reiter
[(2012), page 1389] have observed under their GoM models, point estimates τ̂ ∗

1
and τ̂ ∗

2 are nearly identical to τ̂1 and τ̂2 with smaller posterior standard deviations,
since the former do not take into account the variability of Fk’s. The 2.5th, 5th,
50th, 95th and 97.5th percentiles of the posterior distribution of τi , i = 1,2, under
a subset of the models reported in Table 1, are presented in Figure 1 where models
appear in order of complexity of the log-linear specification and the solid vertical
lines represent the true risk values.

Inspection of Table 1, and related Figure 1, confirms that the parametric all two-
way interactions model (P+II) outperforms the (P+I) model in the large table,
which is in line with what was reported in the literature. If, however, we include
nonparametric models in the analysis, new and interesting findings are as follows:
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FIG. 1. Quantiles of the posterior distributions of τ1 (first column) and τ2 (second column) under
a subset of parametric and nonparametric models considered. First (second) row refers to the Cal-
ifornia (WHIP) table. Gray squares: 5th, 95th percentiles; black squares: 2.5th, 97.5th percentiles;
stars: median of the posterior distributions. Vertical segments represent the true risks.

1. The potential of the DP prior for capturing association not modeled by
the fixed effects can be noticed by comparing the results under the two models
that, conditionally on the random effects, rely on the exchangeability assumption,
namely, the parametric no fixed effects log-linear model (P+O) and its nonpara-
metric counterpart (NP+O). The latter is the model used in Dorazio et al. (2008).

2. When risks are estimated by nonparametric models, the tendency of risk
estimates to decrease as the complexity of the model increases, shown in Skinner
and Shlomo [(2008), Table 1, going, in particular, from I to II], can be observed in
both California and WHIP tables at a lower level, that is, going from the (NP+O)
model to the (NP+I) and (NP+I) Emp models.

3. The performance of the nonparametric independence model, (NP+I) Emp,
is roughly comparable to that of the parametric all two-way interactions model,
(P+II). This means that the DP prior is able to capture the essential features of
heterogeneity without the need for additional terms (interactions) in the vector of
fixed effects. Considering, moreover, the good performance of the (NP+I) model
in the California table, we are induced to conclude that, in the presence of DP
random effects, the number of fixed effects required to obtain reasonable global
risk estimates is lower than in the parametric case and less sensitive to the size of
the table K . This is in line with finding 2.

4. Although we do not specifically address the challenging problem of model
choice, our approach may contribute to lessen its scale and complexity. Indeed, the
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FIG. 2. Posterior distribution of the number of clusters for the California and WHIP tables when
using the (NP+I) and (NP+I) Emp models.

(NP+I) Emp model can be taken as the initial model in a forward model selection
procedure. The significant reduction of the space of adjacent models that need to
be examined at each step would mitigate the difficulties associated with model
choice. This point will be explored in future work.

By comparing parametric and nonparametric independence models, (P+I),
(NP+I) and (NP+I) Emp, Figure 1 allows us to see how strongly DP random
effects integrate into a log-linear model with main effects only and contribute to
improving global risk estimates even for the large WHIP table for which the fit of
the parametric independence model is particularly poor.

To appreciate the role played by the clustering mechanism induced by the DP,
Figure 2 provides a representation of the posterior distribution of the number of
clusters under the proposed (NP+I) and (NP+I) Emp models. There is a striking
difference between the distribution of the number of clusters for the California
and WHIP tables. The fact that in the California table the number of clusters is
large seems to reflect the ability of the (NP+I) model to perform extremely well
in the estimation of risk. In the case of the WHIP table, the introduction of the DP
distributed random effects, although significantly improving on the estimation of
risk with respect to the (P+I) model, does not completely account for the lack of
fit.

For the California table we also explored the frequentist properties of our ap-
proach through a simulation study comprising 100 samples, where we evaluated
the frequentist coverage of the credible intervals based on the 2.5th and 97.5th
percentiles of the posterior distribution of τi, i = 1,2. We observed that, under the
(NP+I) model, all of them include the true value of τ1 and 76 include the true
value of τ2.

In the rest of this section we explore the behavior of per-cell risk estimates
by using, for simplicity, τ̂ ∗

1,k and τ̂ ∗
2,k . In Figure 3, for a subset of the models

presented in Table 1, and proceeding as in Figure 4 of Forster and Webb (2007),
we plot the proportion of population uniques against the average value of τ̂ ∗

1,k ,
for cells categorized into 10 equal-width intervals according to the values of τ̂ ∗

1,k .
Visual assessment of the relative proximity to the diagonal gives an idea of how
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FIG. 3. Proportion of population uniques plotted against the average estimated risk τ̂∗
1,k , for cells

categorized into 10 equal-width intervals according to the values of τ̂∗
1,k . The size of the plotting

points depends on the number of cells in each interval. First line: California table; second line:
WHIP table.

accurately each model can predict population unique cells. Similarly, in Figure 4,
as in Elamir and Skinner (2006), we plot the mean of 1/Fk against the mean of the
estimated risk τ̂ ∗

2,k after grouping cells into 10 intervals according to the values of
τ̂ ∗

2,k .
In Figure 5 we compare per-cell risk estimates τ̂ ∗

i,k and true risks (bold lines) for
i = 1,2, respectively. We consider estimates from the California table for which
the (NP+I) model outperforms the parametric model (P+II) and the parametric
independence model (P+I). Cells containing sample uniques are arranged in in-
creasing order of the true per-cell risk; in turn, for each level of the true per-cell
risk, estimates are arranged in decreasing order of population cell size and increas-
ing order of estimated risk. This allows us to observe overestimates and underes-
timates in all cells under the two models under examination. By drawing cutoff
points (not included) in the first two plots of the figure, we can also visualize the
corresponding false positive and false negative cells. We can conclude that the
(NP+I) model improves risk estimates τ̂1,k in cells with intermediate population
frequencies, while in cells with extreme (very large or 1) population frequencies,
the (P+II) model tends to produce better results at the cell level; however, this is
not sufficient for the (P+II) model to outperform the (NP+I) model in the estima-
tion of the global risk. This fact is even more apparent when inspecting the last
two plots in Figure 5. The results just analyzed indicate that, compared to the all
two-way parametric random effects log-linear model, the proposed approach does
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FIG. 4. Mean of 1/Fk against the mean of the estimated risk τ̂∗
2,k , for cells categorized into 10

equal-width intervals according to the values of τ̂∗
2,k . The size of the plotting points depends on the

number of cells in each interval. First line: California table; second line: WHIP table.

not produce uniformly better per-cell risk estimates. While in this paper we have
mainly focused on measures of global risk, the specific problem of per-cell risk
estimation could be tackled in a different way, that we plan to explore in future
work.

5. Computational aspects and comparison with other approaches. In this
section we discuss computational costs and applicability to large tables of our pro-
posal, in comparison with other approaches in the recent literature related to our
problem.

FIG. 5. Comparison of risk estimates τ̂∗
1,k (first two plots) and τ̂∗

2,k (last two plots) for sample
unique cells under the (P+II) and (NP+I) models for the California table. Bold lines represent the
true risks.
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As already discussed, in large and sparse tables maximum likelihood estimation
of standard log-linear models—in particular the all two way interaction model (II)
in our application—and model search become highly challenging, as the parameter
space quickly explodes and a number of parameters may result in being uniden-
tifiable due to sparsity. Assigning a prior to these parameters and carrying out
Maximum-A-Posteriori (MAP) estimation instead of Maximum Likelihood, al-
lowed us to somewhat work around this problem. However, locating the mode of
the posterior distribution of the parameters requires employing iterative search al-
gorithms that are computationally intensive and potentially slow to converge.

Vice versa, the computational performance of our nonparametric independence
models depends on the interplay of two different elements, namely, (i) estimation
of the parametric fixed effects β; and (ii) estimation of the nonparametric random
effects. As to (i), it is the number of main effects that determines the computational
scale of the problem, that, albeit cubic in the size of β , remains much smaller than
the table size. Nonetheless, when the size of β is very large, storing of informa-
tion matrices might be challenging; in that case we suggest use of the Empirical
Bayesian version of the nonparametric independence model. This approach, akin
to the estimation strategy of Skinner and Holmes (1998), is an appealing alterna-
tive, since it relies on IPF that converges in at most two steps in decomposable
models.

(ii) is related to the allocation of random effects; the proposed nonparametric
methods scale linearly with the number of cells, which makes our proposal suit-
able for applications to large tables. Although it is not possible to provide any
guarantees on convergence speed of the MCMC approach to the posterior distribu-
tion over the parameters, in all tables that we studied in this work, we found that
convergence of the chains was reached after a few thousand iterations.

By using a log-linear representation of the latent class model (LCM), our
(NP+I) model and the LCM recently applied by Manrique-Vallier and Reiter
(2014) can be shown to rely on the same basic assumptions, that is, independence
of the key variables conditionally on an unobserved variable S and a prior for such
unobserved variable S somewhat related to the Dirichlet process [see also Si and
Reiter (2013)]. The latter assumption, however, is applied at the level of individ-
uals (through an individual latent class Z whose prior is a finite stick breaking
process) in the LCM, while it is applied at the level of cells (via the cell-specific
DP random effect φ) in the (NP+I) model. This implies different allocations to
clusters and different sampling schemes in the two cases. Practical consequences
are that as the sample size increases, the (NP+I) model does not require any ad-
ditional computational costs, while it scales as discussed above with the number
of cells. Vice versa, the LCM scales easily with the number of cells, as empha-
sized in Manrique-Vallier and Reiter (2014), but has to sustain a nonnegligible
computational cost as the sample size increases. This may be an advantage of our
method, as in the practice of Statistical Institutes the sample sizes are often much
larger than those considered in the literature based on LCMs. Note that while in
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our applications the sampling fraction is higher than what could commonly be
used in practice, the absolute size (n = 57,547; n = 40,122 for the California and
WHIP data, resp.) is the same order of magnitude of many surveys on individu-
als conducted, for instance, by the Italian National Statistical Institute. A second
practical issue relates to structural zeroes, which, at the level of cells, are very
simply managed in our nonparametric approach (by a degenerate prior on those
cells), while they require a specific technique in the LCM, that is, the one intro-
duced by Manrique-Vallier and Reiter (2014). This also means that our approach
has the same advantages mentioned by Manrique-Vallier and Reiter (2014), such
as applicability to variables with skip patterns or when certain combinations have
been effectively eliminated from the sample by design.

In conclusion, (NP+I) and LC models are built on the same basic ingredients
though implemented in different ways, thereby producing the different advantages
and disadvantages—in terms of scalability, structural zeroes and applicability—
just summarized.

The actual computational times associated with our proposal clearly depend on
the size of the table to be analyzed. Recent developments on Bayesian LCMs show
that they can deal with extremely large tables, in the order of 1040 as illustrated
by Si and Reiter (2013) for a multiple imputation problem. Being able to treat
extremely large tables in short computational times is undoubtedly important. Al-
though “Big Data” issues are likely to have an impact in the context of disclosure
risk estimation (in terms of disclosure scenario and type and number of key vari-
ables), we deem that tables of the above size may be less common than in other
related fields. Indeed, when the number of cells is much higher than the population
size, the average population cell size N/K , whatever the sample, is very low. Un-
der such circumstances Statistical Institutes may judge releasing information on
the key variables at that level of detail too risky and may prefer to recode/merge
the key variables and/or decrease their detail before proceeding to assess the risk
formally through a suitable statistical model.

6. Final comments. In this article we investigated the role of random effects
in log-linear models for disclosure risk estimation. We show in theory and through
real data applications that modeling the random effects nonparametrically does
improve upon the log-linear model, because it allows to simplify to a large extent
the structure of fixed effects required to achieve good risk estimates. Therefore,
the utility of our nonparametric approach increases with the size and the degree of
sparsity of the table, since problems with nonestimable parameters in fixed effects
log-linear models increase disproportionately with the number of terms included.
Quoting Fienberg and Rinaldo (2007), “the number of possible patterns of zero
counts invalidating the MLE exhibits an exploding behavior as the number of clas-
sifying variables or categories grows.”

Unlike parametric random effects models, for each cell our nonparametric mod-
els combine learning from two types of neighborhoods, one driven by the fixed ef-



544 CAROTA, FILIPPONE, LEOMBRUNI AND POLETTINI

fects, and the other driven by the data and implied by the clustering of the random
effects.

Interestingly, in the applications the empirical Bayesian version of our (NP+I)
model emerges as the nonparametric equivalent of the parametric model (P+II),
indicated in the literature as the default approach in risk estimation. This evidence
is found in tables with rather different structures and dimensions. Moreover, in the
analysis of the California data set the (NP+I) model greatly improves the perfor-
mance of the parametric model in terms of global risk estimation.

The striking impact of the inclusion of DP random effects in the (P+I) model
indicates that enlarging the simple (NP+I) Emp model by adding a few interaction
terms can be expected to produce satisfactory results. Even if we do not address
the issue of model selection, the previous remark opens the door to a model search
approach that takes our (NP+I) Emp model as the starting point, thus lessening
the scale and complexity of the problem, since the space of adjacent models to be
examined is significantly reduced.

We emphasize that the previous ones are general results, that is, a reduction
in the number of fixed effects in the presence of DP random effects—with the
mentioned benefits in terms of estimability in sparse tables and simplification of
model search—can be expected in different applications of log-linear models, not
only in disclosure risk estimation.

Having adopted a fully Bayesian approach allowed us to account for all sources
of uncertainty (about λk’s, Fk’s) in the estimation of risk. In (P+I) and (P+II) mod-
els, this is an advantage compared to the empirical Bayes procedure by Elamir and
Skinner [(2006), Section 3.3], even though we can expect numerical agreement be-
tween their estimates because of the vague priors adopted for the fixed effects. As
to our (NP+I) Emp model, which replicates in a nonparametric context the esti-
mation strategy of Skinner and Holmes (1998), although it neglects the variability
of the fixed effects, it incorporates other sources of uncertainty, such as the popu-
lation frequencies. Although our approach generalizes existing models mentioned
in Section 2, there are important differences from the previous literature, including
Rinott and Shlomo (2007b), as our risk estimates are endowed with unconditional
(posterior) variances and we can also produce credible intervals, that is, posterior
probability intervals.

As regards the assumptions underlying our Bayesian models, all of them are
explicit and more flexible than the ones underlying a log-linear model without
random effects. Indeed, we have selected vague priors and modeled the random
effects nonparametrically, which is a further relaxation of the hypotheses.

While in this paper we have mainly focused on measures of global risk, the
applications indicate that, compared to the all two-way parametric random effects
log-linear model, the proposed approach does not produce uniformly better per-
cell risk estimates even when the global risk estimates under the (NP+I) model
outperform those obtained under the (P+II) model. The specific problem of per-
cell risk estimation could be tackled in a different way, that we plan to explore in
future work.
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