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NETWORK TOMOGRAPHY FOR INTEGER-VALUED TRAFFIC

BY MARTIN L. HAZELTON

Massey University

A classic network tomography problem is estimation of properties of the
distribution of route traffic volumes based on counts taken on the network
links. We consider inference for a general class of models for integer-valued
traffic. Model identifiability is examined. We investigate both maximum like-
lihood and Bayesian methods of estimation. In practice, these must be imple-
mented using stochastic EM and MCMC approaches. This requires a method-
ology for sampling latent route flows conditional on the observed link counts.
We show that existing algorithms for doing so can fail entirely, because in-
flexibility in the choice of sampling directions can leave the sampler trapped
at a vertex of the convex polytope that describes the feasible set of route flows.
We prove that so long as the network’s link-path incidence matrix is totally
unimodular, it is always possible to select a coordinate system representation
of the polytope for which sampling parallel to the axes is adequate. This mo-
tivates a modified sampler in which the representation of the polytope adapts
to provide good mixing behavior. This methodology is applied to three road
traffic data sets. We conclude with a discussion of the ramifications of the
unimodularity requirements for the routing matrix.

1. Introduction. Network-based transport models occur commonly in road
traffic engineering and in the analysis of electronic communications systems [e.g.,
Castro et al. (2004), Denby et al. (2007)]. Such models can also be found in bio-
logical settings, for example, in the study of fungal networks [e.g., Heaton et al.
(2012)]. The implementation of network models gives rise to a variety of interest-
ing and challenging statistical problems. In particular, it is frequently the case that
observed data provide only indirect information on many model parameters of in-
terest. We are then faced with network tomography, a term coined by Vardi (1996)
to characterize the resulting types of inverse problems. This area has received sig-
nificant attention over the past 20 years, with important contributions by Cao et al.
(2000), Lawrence, Michailidis and Nair (2006), Liang and Yu (2003), Tebaldi and
West (1998), Vardi (1996) and Airoldi and Blocker (2013), among others. Castro
et al. (2004) and Kolaczyk (2009) provide overviews.

A classical and heavily studied example of network tomography is the prob-
lem of estimating (mean) origin–destination (O–D) volumes from traffic counts
at fixed network locations, sometimes referred to as volume network tomogra-
phy. If there are multiple routes connecting some or all of the O–D pairs, then a
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more general version of the problem is to estimate the mean route flows. Inference
would be straightforward if we observed the actual route flows, but the link count
data determine them only up to a system of linear equations that is usually highly
underdetermined.

Much of the early work on this problem appeared in the transportation science
literature, focusing on road traffic networks. Underdetermination of the route flows
was addressed by either assuming the existence of serviceable prior information
[e.g., Bell (1991), Cascetta (1984), Maher (1983)] or by making very strong (and
in some cases seemingly arbitrary) modeling assumptions [Zuylen and Willum-
sen (1980)]. One of the things that characterized much of this work was a focus
on algorithms, with the underlying models often poorly specified. In particular,
the distinction between the realized route flows and the mean value thereof was
typically blurred.

Vardi (1996) introduced a more statistically principled approach to the estima-
tion of mean O–D flows. Working under the assumption of Poisson distributed
traffic, he demonstrated identifiability of these parameters from sequences of traf-
fic count data and expounded on the difficulties of likelihood-based inference. In
particular, he noted that the Poisson likelihood requires a sum over all feasible
route flow vectors: that is, route flows that are consistent with the traffic counts
and solve the aforementioned linear system. Vardi (1996) showed that this set will
be far too large to enumerate in anything other than toy problems. We note that
the inconvenient form of the likelihood is not restricted to Poisson models. The
likelihood function for general integer-valued traffic models can only be expressed
as a sum over the (typically huge) set of feasible route flows. See Section 3.1 for
details.

The inferential problem can become far simpler if one is willing to employ a
continuous approximation to discrete traffic flows. In that case the likelihood can
be expressed as an integral over all feasible route flows. For normally distributed
flows this integral can typically be evaluated analytically, a result that Vardi (1996)
used to develop a method-of-moments type estimator for normal approximations
to Poisson traffic models. Normal models have formed the basis of the majority
of work on O–D matrix estimation (and similar “passive” network tomography
problems) when applied to electronic communication networks. See, for example,
Cao et al. (2000), Castro et al. (2004). In more complicated continuous flow models
the likelihood and/or Bayesian posterior may not be available explicitly. However,
even then, working with continuous flows opens up MCMC sampling approaches
that are not available in the discrete case. See, for example, Airoldi and Blocker
(2013) on inference for their multilevel state-space models of time series of (large)
traffic flows in communications networks.

For road traffic examples (which provide the author’s motivating interest), con-
tinuous flow approximations are less attractive. In particular, even in large and busy
road networks there will typically be large numbers of plausible routes with very
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small (often zero) traffic counts. With this in mind, we focus on models for integer-
valued traffic flows. A natural approach to circumvent the impracticality of enu-
merating the feasible route flow set for such models is to sample therefrom. Tebaldi
and West (1998) were the first authors to describe a comprehensive methodology
of this type when they studied Bayesian inference for Poisson models using an
MCMC algorithm that involved conditional sampling of the latent route flows.
The crucial step in this work was the development of a componentwise method for
drawing feasible candidate route flows. While this algorithm can work adequately
in benign examples, Hazelton (2010) and Airoldi and Haas (2011) showed that
it can mix very slowly in more difficult problems, and even fail entirely in some
cases. Moreover, the poor practical performance that is sometimes observed high-
lighted critical gaps in our theoretical understanding of the route flow sampling
problem in general and errors in the mathematical analysis of the properties of the
proposed sampler in particular. Despite the pivotal importance of developing a re-
liable route flow sampler for implementing likelihood-based methods of inference,
subsequent progress on this sampling problem in the discrete flow case has been
limited. In particular, the only tangible advance has been restricted to networks
with particularly simple topologies, like transit networks and trees. See Hazelton
(2010).

In this paper we study network tomography for integer-valued traffic flows for
a rather general class of models. We examine model identifiability [generalizing
the results of Vardi (1996)] and consider both maximum likelihood and Bayesian
inference implemented through sampling-based methods. We build on recent work
by Airoldi and Haas (2011) and Airoldi and Blocker (2013) in the continuous flow
case to provide geometrical insight in the route flow sampling problem. These
methods help to provide a better understanding of both the practical and theoretical
aspects of Tebaldi and West’s (1998) sampler, and motivate a modified sampler
with much improved properties.

Our work is largely focused on inference for static network parameters, based
on either a single observed set of link counts or a sequence of such that can be
regarded as a random sample for modeling purposes. Such problems are of signifi-
cant interest in the context of road network planning, where, for example, static O–
D matrices are frequently employed when examining the effects of proposed net-
work changes. Nonetheless, the route flow sampler that we develop could equally
well be employed within algorithms for fitting time-varying models, such as those
developed by Airoldi and Blocker (2013) for computer networks.

The remainder of the paper is organized as follows. We introduce our general
class of traffic models in the next section and examine the foundations of infer-
ence for them in Section 3. In Section 4 we study the properties of Tebaldi and
West’s (1998) route flow sampler and introduce our modified version thereof. We
illustrate the application of our methodology on traffic data from sections of the
road network in Leicester in Section 5. We draw conclusions in Section 6, and dis-
cuss the practical and theoretical consequences of making convenient assumptions
about the pattern of permissible routes through the network
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2. Traffic models. We consider a (weakly) connected network with m nodes
and n0 links (numbered sequentially in both cases). Each traveler on the network
makes a journey between an origin and destination node. Not all node pairs need
be O–D pairs. We therefore introduce I to be the set of O–D node pairs, with
cardinality c ≤ m(m − 1)/2. The elements of I are ordered lexicographically and
so may be referenced by a one-dimensional index.

Each O–D pair is connected by at least one route. In a big network with rea-
sonable connectivity there will typically be a large number of possible routes.
However, many of these may be implausible in practice, for example, because
they contain cycles or are very circuitous. For the sake of parsimony we choose
to ignore such routes in our model, and hence assume that a set of permissible
routes has been determined a priori. We denote by Rk the set of (permissible)
routes for O–D pair k ∈ I , and let R = ⋃

k Rk be the set of all such routes with
cardinality r = |R|. We assume some convenient ordering of the routes to allow
one-dimensional indexing.

Let x = (x1, . . . , xr)
T denote the vector of (integer-valued) traffic flows on these

routes during some measurement period. These are not observed directly. Instead
our data comprise traffic counts on n ≤ n0 monitored links of the network. We
denote these link counts by y = (y1, . . . , yn)

T. They are related to the latent route
flows by

y = Ax,(1)

where A = (aij ) is the link-path incidence matrix defined by

aij =
{

1, if link i forms part of route j ,

0, otherwise.

Typically n � r so that (1) is a highly underdetermined linear system. We denote
the set of nonnegative solutions of (1) (i.e., the set of feasible route flows given link
counts y) by X|y = {x : y = Ax,x ≥ 0}, where the inequality is to be interpreted
elementwise.

For many problems it is natural to develop a statistical model of the traffic sys-
tem for which the parameters relate directly to the route flows. We focus on such
models and denote by fX(·|θ) the joint probability mass function for x. We assume
that the support of fX is X = Z

r≥0.

EXAMPLE 1. For estimation of mean O–D traffic flows θ = (θ1, . . . , θc) in
networks with fixed routing (so that r = c and route flows are identical to O–D
flows), Vardi (1996) and Tebaldi and West (1998) both assumed that x1, . . . , xr

are independent with xj ∼ Pois(θj ). Traffic flows on real road systems are often
overdispersed in comparison to a Poisson model [e.g., Hazelton (2001)], so use of
a negative binomial model is a plausible alternative.
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For a network with multiple routes per O–D pair, let z = (z1, . . . , zc)
T be the

vector of O–D flows so that zk = ∑
j∈Ik

xj . For estimation of μ = E[z] we could
proceed by aggregating results from a model where each route flow is separately
parameterized. For example, if we employ the Poisson model xj ∼ Pois(θj ) for in-
dependent route flows x1, . . . , xr , then μk = ∑

j∈Ik
θj . We also obtain route choice

probabilities as a by-product. Specifically, the probability that a traveler for O–D
pair k selects route j ∈ Ik is simply pj = θj /μk(j), where we use the notation k(j)

to emphasize that route j connects O–D pair k.
An objection to this modeling approach is that it greatly exacerbates the under-

determination of the fundamental linear system (1), rendering statistical inference
all the more difficult. An alternative is to employ a model for the route choice
probabilities p = (p1, . . . , pr)

T that is either partially or completely specified ex-
ogenously. The Markov routing model examined by Vardi (1996) and Tebaldi and
West (1998) does this in essence by defining the route choice probabilities as the
product of “turning probabilities” at each node encountered en route. However, the
suitability of the underlying Markov assumption for real road systems is highly
questionable, not least because it permits routes with (multiple) cycles. If we have
travel costs for the possible routes, then an alternative is to employ random utility
models [e.g., Ben-Akiva and Lerman (1985)]. Examples from the transport re-
search literature include various forms of logit route choice model [e.g., Cascetta
et al. (1996), Daganzo and Sheffi (1977), Koppelman and Wen (2000)] and probit
methods [e.g., Yai, Iwakura and Morichi (1997)].

Even if a lightly parameterized route choice model is used, the number of O–D
pairs c will typically exceed the number of monitored links n by a large mar-
gin. It follows that if we observed just a single link count vector y, then we will
require additional information in order to obtain unique point estimates. In princi-
ple, more can be learned from link count data {y(t); t = 1,2, . . . ,N} collected over
a sequence of observation periods. The subsequent analysis is most straightfor-
ward if y(1), . . . ,y(N) are assumed to be independent and identically distributed.
An alternative is to model the inter-period dynamics of the traffic flow as a Markov
process [e.g., Cascetta (1989)]. However, for most commonly used traffic models
of this type, the nature of the inferential problems remains essentially the same
[see Parry and Hazelton (2013)].

3. Tools for statistical inference.

3.1. Model likelihood and identifiability. Consider modeling a single link
count vector y. We can derive the likelihood function, L, by conditioning on the
latent trip vector:

L(θ) = fY (y|θ)
(2)

= ∑
x

fY |X(y|x, θ)fX(x|θ) = ∑
x∈X|y

fX(x|θ).
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The third equality follows from the fact that fY |X(y|x, θ) is the indicator function
for the constraint y = Ax,x ≥ 0. Notice that this is independent of θ . For general
integer-valued traffic models it is not possible to simplify (2). This means that exact
computation of the likelihood requires enumeration of the feasible route flow set
X|y = {x : y = Ax,x ≥ 0}. For even moderately sized networks this will typically
be computationally infeasible.

EXAMPLE 2. Consider a sequence of 52 consecutively numbered nodes con-
nected in series, with the first two being the origins and the last 50 being the desti-
nations of travel. Suppose that 25 vehicles originate at each of the first two nodes,
and that each of the remaining 50 nodes is the destination for a single vehicle,
so that the link count vector is given by y = (25,50,49,48, . . . ,2,1). Despite the
simplicity of the network and the presence of fixed routing, there are nonetheless(50
25

)
> 1014 elements in the set X|y.

The likelihood from a random sample of N traffic count vectors is

L(θ) =
N∏

t=1

∑
x(t)∈X|y(t)

fX

(
x(t)|θ)

.(3)

Again, we cannot usually expect any simplification of his function. This has ram-
ifications for the existence of nontrivial sufficient statistics. For example, suppose
that we employ the Poisson model from Example 1. If we were to observe the route
flows directly, then x̄ = N−1 ∑N

t=1 x(t) would be a sufficient statistic. However,
with just link count data, the only sufficient statistic is the set of raw observations
{y(t); t = 1,2, . . . ,N}. In particular, the mean link count vector ȳ is certainly not
sufficient for θ .

It is intuitively obvious that the full sequence of link counts contains more infor-
mation than the mean vector. In particular, the pattern of dependence between link
counts is illuminating in untangling the indeterminacy problem. As an illustration
based on Example 2, note that independence of y1 (the number of travelers leaving
node 1) with all of y27, . . . , y51 (the numbers of travelers arriving at nodes 28 to 52,
resp.) occurs if and only if all travelers originating at node 1 are destined for nodes
numbered in the range 3 to 27. What is less immediately apparent is whether the
information contained in the link counts is generally sufficient to make the model
parameters identifiable.

Vardi (1996) addressed this issue in a particular case. Specifically, he examined
the identifiability of θ from link count data in networks with fixed routing when
the route flows are independent with xj ∼ Pois(θj ) for j = 1, . . . , r . He showed
that if the columns of A are distinct and each has at least one nonzero entry, then θ
is identifiable. Subsequent work on identifiability has focused primarily on models
for computer networks, where the large traffic counts justify the use of continu-
ous flow distributions with support that is not explicitly bounded at zero. The most
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comprehensive contribution is due to Singhal and Michailidis (2007). They derived
results that can be applied to models with certain types of spatio-temporal depen-
dence between route flows, but placed restrictions on the traffic routing schemes
and network structure.

We seek to extend Vardi’s (1996) result to general routing schemes and discrete
traffic distributions while maintaining the generality of permissible network struc-
tures (in terms of topology and placement of traffic counters). As the following
theorem shows, the assumptions of Poisson route flows and fixed routing can be
relaxed while maintaining identifiability of the model parameters.

PROPOSITION 1. Let the columns of A be distinct, with each containing at
least one nonzero element. Assume that the route flows are independent and that
the marginal distribution of each has support equal to the nonnegative integers.
Then if the model parameter vector is identifiable from independent observations
on x, it is also identifiable from independent observations on y.

The proof is given in the Appendix.
In principle, this is a reassuring result, indicating that if we observe an inde-

pendent sequence of link counts over our network, then we can eventually hope to
obtain unique parameter estimates despite the underlying structural ambiguities.
However, the nature of our constructive proof suggests that it could require an ex-
cessively long sequence of observations on y to do so. In practice, we may have
limited ability to untangle the elements of θ from even quite lengthy sequences of
link counts.

3.2. Sampling-based inference. Exact inference based on the model likeli-
hood is typically not possible because enumeration of the set X|y is computation-
ally infeasible. A natural alternative is to use an approximation to the likelihood
where the summation over all elements of X|y in (2) is replaced by a sum over some
suitable sample therefrom. The essence of this idea can be implemented using the
stochastic EM algorithm for purely likelihood-based inference, and via MCMC
methods in a Bayesian setting.

We consider first the EM algorithm when a random sample y(1), . . . ,y(N) of
link counts is available. Regarding the route flows as missing data, the complete
data likelihood is

N∏
t=1

fX,Y

(
y(t),x(t)|θ) =

N∏
t=1

fX

(
x(t)|θ)

since y(t) is a deterministic function of x(t). The expectation of the complete data
log-likelihood computed with respect to the distribution of the route flows condi-
tional on the link counts is given by

Q
(
θ |θ ′) =

N∑
t=1

∑
x(t)∈X|y(t)

log
{
fX

(
x(t)|θ)}

fX|Y
(
x(t)|y(t), θ ′)(4)
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for any given θ ′. The algorithm proceeds by iterating between finding the maxi-
mizer θ̃ of Q and computation of Q(θ |θ ′) with θ ′ reset to equal θ̃ . It converges to
the maximum likelihood estimate θ̂ .

Evaluation of the conditional expectation Q(θ |θ ′) is difficult because of the
summation over feasible route flow sets in (4), although for Poisson models the
problem can be simplified in certain special cases as noted by Vanderbei and Ian-
none (1994) and Li (2005). As an alternative, one could consider using a normal
approximation if the flows are not too small [e.g., Li (2005), Vardi (1996)]. A more
generally applicable approach is to approximate Q(θ |θ ′) by computing the mean
of each term log{fX(x(t)|θ)} over M simulations drawn from fX|Y (x(t)|y(t), θ ′).
Accordingly, the stochastic EM algorithm works by replacing Q(θ |θ ′) by

Q̂
(
θ |θ ′) = M−1

M∑
i=1

N∑
t=1

log
{
fX

(
x∗(t)
i |θ)}

,(5)

where x∗(t)
1 , . . . ,x∗(t)

M is a random sample from fX|Y (·|y(t), θ ′). Importantly, when
implementing the stochastic EM algorithm in practice, the number of simulations
M should adapt as the algorithm progresses in order to ensure convergence. See
Caffo, Jank and Jones (2005). This is illustrated in the application studied in Sec-
tion 5.1.

Standard errors for θ̂ can be obtained via the missing information principle in
the usual way [e.g., Louis (1982), Tanner (1996)]. The observed information ma-
trix is estimated by

Iobs ≡ Iobs
(
θ̂;y(1), . . . ,y(N))

= 1

M

M∑
i=1

(
I
(
θ̂;x∗(1)

i , . . . ,x∗(N)
i

)
(6)

− u
(
θ̂;x∗(1)

i , . . . ,x∗(N)
i

)
u
(
θ̂;x∗(1)

i , . . . ,x∗(N)
i

)T)
,

where u(θ;x∗(1)
i , . . . ,x∗(N)

i ) = ∑N
t=1 ∂ log{fX(x∗(t)

i |θ)}/∂θ is the complete data

score vector and I (θ;x∗(1)
i , . . . ,x∗(N)

i ) = −∂u(θ;x∗(1)
i , . . . ,x∗(N)

i )/∂θT the com-
plete data information matrix. The (approximate) variance–covariance matrix of θ̂
is given by I−1

obs .
Turning to Bayesian inference, suppose that we have available a prior π(θ)

for the model parameters. Exact computation of the posterior p(θ |y) ∝ π(θ)L(θ)

will generally be infeasible because of the difficulties in computing the likelihood.
Computation of the normalizing constant for p(θ |y) is an additional problem. We
therefore resort to MCMC methods to generate posterior samples.

Following the lead of Tebaldi and West (1998), we avoid the need to enumerate
all feasible route flows by sampling from the joint posterior of θ and x(1), . . . ,x(N).
Working in the case of origin–destination matrix estimation with N = 1, Tebaldi
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and West (1998) proposed a Gibbs sampler, iterating between draws of θ and x
from their respective conditional distributions. The former conditional simplifies:
p(θ |x,y) = p(θ |x) because y is determined by x. It follows that conditional sam-
pling of θ will typically be straightforward. For instance, for the Poisson traffic
model in Example 1 we get a gamma conditional for θ when using conjugate
gamma priors for the components of θ . We may employ Metropolis–Hastings sam-
pling for nonconjugate models. At the second stage of each iteration, conditional
sampling of x requires draws from fX|Y (·|y, θ).

Applying the same methodology to alternatively parameterized traffic models
and to sample sizes N > 1 presents no further problems in principle, although there
is flexibility as to the order in which variables are updated. For example, one can
choose to intersperse updates of θ between draws of each of x(1), . . . ,x(N). Indeed,
there is considerable flexibility in the overall design of the sampler that may lead to
improved convergence properties. For instance, in the context of origin–destination
matrix estimation, Airoldi and Blocker (2013) recommend modifying Tebaldi and
West’s (1998) scheme to use a Metropolis–Hastings algorithm where candidate
pairs (θi, xi) are sampled.

4. Conditional sampling of route flows.

4.1. Overview of the problem. The methods of sampling-based inference dis-
cussed in the previous section all share a common problem: the need to sample
efficiently the latent route flow vector x given observed link counts y. The devel-
opment of an effective method of doing so has proved challenging. The only pub-
lished methodology for integer-valued flows on general networks is due to Tebaldi
and West (1998). More recently, Airoldi and Haas (2011) and Airoldi and Blocker
(2013) made progress on the continuous flow version of the problem. In this sec-
tion we review these methods and give examples where Tebaldi and West’s (1998)
sampler fails. By examining the geometry of the feasible set X|y we are able to
explain this behavior and also prove results characterizing the conditions under
which convergence is guaranteed. This in turn leads us to propose a modified ver-
sion of Tebaldi and West’s (1998) methodology with far better properties.

We frame the problem in terms of a Metropolis–Hastings sampler for the con-
ditional distribution fX|Y (·|y, θ), the current state of which is x ∈ X|y. The general
approach is to generate a candidate vector x† from a proposal distribution q with
support X|y which is then accepted with probability min(α,1), where

α = fX|Y (x†|y, θ)q(x)

fX|Y (x|y, θ)q(x†)

= fX,Y (x†,y|θ)q(x)

fX,Y (x,y|θ)q(x†)
(7)

= fX(x†|θ)q(x)

fX(x|θ)q(x†)
.
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Note that the final equality in (7) holds only if x† is feasible, which will always be
the case if q has support X|y. It is possible to employ q with support that extends
beyond X|y on the understanding that any infeasible vectors x† are automatically
rejected. Nonetheless, this will be a practical option only if the effective support
of q is a reasonable approximation to X|y, otherwise the acceptance rate is liable
to be unacceptably low.

Such a sampler can be initialized at a feasible route flow vector in a number of
ways. For example, we may use standard integer programming methods to obtain
the optimal element of X|y against some prespecified criterion.

4.2. Tebaldi and West’s sampler. Assume that the rows of A are linearly inde-
pendent. (If this is not the case, then it indicates that one or more of the link counts
is redundant and can be omitted from the analysis without any loss of informa-
tion.) Then the observed link counts place n linear constraints on the route flow
vector x. As Tebaldi and West (1998) note, if we reorder the routes (and hence
columns of A) in a suitable manner, then we can write (1) as

y = [A1|A2]
[x1

x2

]
= A1x1 + A2x2,(8)

where A1 is an n × n invertible matrix. It follows that

x1 = A−1
1 (y − A2x2),(9)

indicating that we need sample only elements of the (r − n)-dimensional vector
x2.

The conditional distribution of x2 given y has support

X2|y = {x2 : y = Ax,x ≥ 0} = {
x2 :A−1

1 (y − A2x2) ≥ 0,x2 ≥ 0
}
,

where the vector inequalities are to be interpreted elementwise. Attempting to sam-
ple x2 en bloc would require a convenient characterization of X2|y, which we do
not have. Tebaldi and West (1998) therefore suggested componentwise sampling
of x2. In describing this technique we employ the route ordering implied in (8) so
that x1 = (x1, . . . , xn)

T and xn+j is the j th element of x2 for j = 1, . . . , (r − n).
We let x2,−j denote the vector x2 with its j th element omitted.

Let us then consider updating x2 by sampling x
†
n+j conditional on x2,−j and y.

As Tebaldi and West (1998) showed, the conditional support of x
†
n+j is a fi-

nite sequence of contiguous integers. They did not compute the endpoints of this
sequence explicitly, relying instead on an acceptance–rejection methodology to
generate a feasible candidate. However, computation of the endpoints is straight-
forward, as we discuss later. We may therefore sample x

†
n+j from a distribu-

tion q2,j with appropriate support. Defining x†
2 to be x2 with just the j th compo-

nent updated in this manner, we then compute x†
1 according to (9) to give the full



484 M. L. HAZELTON

FIG. 1. An example four link network.

candidate vector of route flows x†. This is accepted with probability min(αj ,1),
where

αj = fX|Y (x†|y, θ)qj (xn+j )

fX|Y (x|y, θ)qj (x
†
n+j )

= fX(x†|θ)qj (xn+j )

fX(x|θ)qj (x
†
n+j )

.(10)

For models with a priori independent route flows, the contributions to fX on the
top and bottom will cancel for all routes except 1,2, . . . , n, n + j .

Sequentially sampling the elements {xn+j , j = 1, . . . , n− r} in this manner will
guarantee eventual sampling from fX|Y (·|y, θ) so long as X2|y is connected, in the
sense that it is possible to move between any two elements of this space by a
sequence of moves parallel to the coordinate axes. Unfortunately this is not always
the case.

EXAMPLE 3. Figure 1 depicts a shortened version of the series network exam-
ined in Example 2. We assume that nodes 1 and 2 are the only origins of flow, and
nodes 3, 4, 5 are the only travel destinations. If we order the routes lexicograph-
ically by origin then destination, the (partitioned) link-route incidence matrix is
given by

A = [A1|A2] =

⎡
⎢⎢⎣

1 1 1 0 0 0
1 1 1 1 1 1
0 1 1 0 1 1
0 0 1 0 0 1

⎤
⎥⎥⎦ .(11)

Note that the matrix A1 in this partition is invertible, as required for application of
Tebaldi and West’s (1998) sampler.

Suppose that we observe link counts y = (10,20,20,10)T. Given that node 3
is not a source of travel, we can immediately infer that the route flows destined
for this node are both zero, that is, x1 = x4 = 0. It is then straightforward to show
that the feasible route set is defined by X2|y = {x5 + x6 = 10}, as displayed in the
left-hand panel of Figure 2. In this situation, Tebaldi and West’s (1998) sampler
will fail entirely, since there are no feasible steps in the coordinate directions of x5
and x6.

Such an extreme situation could be avoided by pre-checking whether any route
flows are uniquely determined by the observed link counts. However, even if we
discount such cases, it is simple to construct examples where the sampler mixes
extremely slowly. For instance, suppose that y = (10,20,19,9)T, implying that a
single traveler is destined for node 3. The corresponding set of feasible route flows
is defined by X2|y as displayed in the right-hand panel of Figure 2. Generation
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FIG. 2. Feasible route sets in terms of flows for routes 5 (from node 2 to node 4) and 6 (from
node 2 to node 5) for the network in Figure 1. The left-hand panel corresponds to the case
y = (10,20,20,10)T; the right-hand panel to y = (10,20,19,9)T. The interior of the convex hull
of each feasible set is shaded as an embellishment to help emphasize shape.

of candidates in the coordinate directions of x5 and x6 will allow route flows to
change by no more than one unit, so that exploration of the entirety of X|y will
be a laborious business. Moreover, we can design cases where mixing becomes
arbitrarily slow by increasing flows for all routes except those destined for node 3.
For instance, if y = (1000,2000,1999,999)T, then the feasible set will appear as
a much thinner version of the right-hand panel of Figure 2.

Working in the context of continuous traffic flow modeling, Airoldi and Blocker
(2013) addressed these problems by selecting a random search direction in X2|y.
A candidate x is then sampled from along the correspondingly oriented line seg-
ment. However, adapting this approach to integer-valued flows is not straightfor-
ward, since appropriate discretization of the sampling probabilities requires com-
putationally expensive information on the local geometry of X|y. Furthermore, this
random directions algorithm will mix poorly in cases like Example 3 because “long
moves” will be achieved only infrequently when a fortuitous orientation is pro-
posed.

4.3. A modified route flow sampler. Intuitively, we can think about the route
flows corresponding to the columns of A1 as providing a “swap space” in Tebaldi
and West’s (1998) algorithm, in the sense that if we wish to transfer travelers be-
tween routes, then this can only occur by swapping the travelers in and out of this
space. When seeking to update xn+j (for j ≥ 1), the value of this flow can only
increase or decrease to the extent that we can obtain travelers from, or donate trav-
elers to, the route flows in the swap space. Looking back at Example 3, the problem
is that x1 and x4 can take only a very small range of values. It is the resultant lack
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of slack in the swap space that prevents the sampler from taking large steps and
mixing well.

This discussion motivates a simple modification to Tebaldi and West’s (1998)
algorithm. The decomposition of A will typically be far from unique, even given
that A1 must be invertible. We should then seek to reorder the routes, and hence
adjust the partition of A, so as to increase the slack available in the swap space. We
can demonstrate formally that this will work, in the sense that it is always possible,
and moreover practicable, to find a partition of A with sufficient slack to allow the
sampler to mix adequately. Our developments make use of some results in integer
geometry, building on the work of Airoldi and Haas (2011).

In what follows, we make the assumption that the matrix A is totally unimodu-
lar. That is, each invertible square submatrix (and hence any A1 that we consider)
is integer valued. The requirement that A−1

1 be an integer matrix is implicit in the
work of Tebaldi and West (1998), since otherwise there is no certainty that all the
sampled route flows will be integers. This assumption is explicitly stated in the
theoretical work of Airoldi and Haas (2011) and Airoldi and Blocker (2013). As
the last mentioned authors note, total unimodularity appears to be a very common
property of link-route incidence matrices; it holds for all examples that they found
in the literature. Nonetheless, it is not assured, a matter that we discuss in more
detail in Section 6.

Consider any partition A = [A1|A2] for which A1 is invertible, and define

U =
[−A−1

1 A2

Ir−n

]
,(12)

where Ir−n is the (r −n)-dimensional identity matrix. As Airoldi and Haas (2011)
note, AU = 0, so that the columns of U generate the null space of A. Moreover,
because A is totally unimodular, U is integer valued. Now, the j th column uj

of U (for j = 1, . . . , r − n) is zero in all components below the nth, apart from
un+j,j = 1. It follows that if x ∈ X|y, then x ∓ uj is potentially the vector of flows
resulting from transferring a single traveler to or from the swap space to route
n+ j . We say potentially because there is no certainty that x ∓ uj will be feasible.

Tebaldi and West’s (1998) algorithm works by iteratively sampling in the direc-
tions u1, . . . ,ur−n. For a given partition of A this will work so long as movement
from x ∈ X|y is possible in at least one of those directions. If movement is possible
parallel to uj , then, as noted before, the (conditional) support of a candidate x

†
n+j

is a contiguous integer sequence {χlo, χlo + 1, . . . , χhi}, where the endpoints are
given by

χlo = max
(−max

{−x∗
j :uj = 1

}
,0

)
and

χhi = max
(
min

{
x∗
j :uj = −1

}
,0

)
,
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in which (x∗
1 , . . . , x∗

n)T = x∗ = A−1
1 (y − A2,−j x2,−j ) with A2,−j being the matrix

A2 with the j th column deleted.
Nevertheless, as we saw in Example 3, there is no guarantee that movement

is possible in any of the aforementioned directions. We note that this contradicts
the irreducibility result given in the Appendix of Tebaldi and West (1998), but the
proof therein is flawed since it relies on the fallacious premise that if all the el-
ements of a sum of vectors are nonnegative, then at least one of the summands
must have no negative elements. What we will show is that when the algorithm
is stuck at x for a given ordering of the columns of A, there is always an alterna-
tive partition [A1|A2] such that movement is possible parallel to a column of the
adjusted U .

Let us temporarily relax the requirement that the route flows be integer val-
ued. Then geometrically, the feasible set X|y for real-valued flows is formed by
the intersection of the linear manifold {x : x = Ay} with the nonnegative orthant
{x : x ≥ 0}. The resulting set forms a convex polytope [see Ziegler (1995), e.g.].
This is an (r − n)-dimensional object embedded within r dimensional space. It
can be characterized by the convex hull of its vertices, where x ∈ X|y is a vertex of
the polytope if it has r − n zero coordinates. Furthermore, we have the following:

LEMMA 1 [Airoldi and Haas (2011)]. The vertices of X|y are integer valued
even when the route flows are continuous.

We note in passing that while this result is stated and proved in Airoldi and
Haas (2011), it has been known for some time. Equivalent results can be found in
Hoffman and Kruskal (1956) and Veinott and Dantzig (1968).

Suppose x is a vertex. We can reorder the columns of A so that the last r − n

entries of x are zero. (The matrix A1 under this reordering must be invertible,
otherwise x would be infeasible and hence not a vertex.) Therefore, x+uj (for any
j = 1, . . . , r − n) has r − n − 1 zero elements, is integer valued and, if feasible,
lies on an edge of the polytope. Now, for any general point x ∈ X|y that is not a
vertex, convexity of the polytope ensures that movement must be possible parallel
to some edge. In order to prove that the sampler will mix, it remains to show that
the sampler cannot get stuck at a vertex. There are two possibilities. If movement
is not possible along any edge leading from x, then this vertex must be the sole
element of X|y, in which case the route flows are uniquely determined by the link
counts. If movement is possible parallel to the j th column of U , then x+uj ∈ X|y.
That we can take an integer-valued step in that direction is assured by Lemma 1.

We have proved the following:

PROPOSITION 2. Given any feasible integer-valued flow vector x, either

(i) x is the sole element of X|y; or
(ii) there exists a matrix partition A = [A1,A2] and corresponding matrix U

from (12) such that x + uj ∈ X|y for some 1 ≤ j ≤ r − n.



488 M. L. HAZELTON

This result ensures that the sampler will always have a feasible integer-valued
move in at least one coordinate direction, but provides no guidance as to whether
movement is possible in any given direction. The next proposition provides a suffi-
cient condition that tallies with our earlier intuition about the need for slack in the
swap space. Specifically, if there is flow on all the routes corresponding to the first
n columns of A, then the sample has feasible moves parallel to all the coordinate
axes defined by U .

PROPOSITION 3. Let x ∈ X|y with xi > 0 for i = 1, . . . , n. Then for each j =
1, . . . , r − n, x + uj is a feasible route flow vector.

The proof is given in the Appendix.
Altering the partition of A corresponds to a change in the (r − n)-dimensional

coordinate system representation of X|y. In particular, we can choose a represen-
tation in which one of the axes is parallel to any given edge. This immediately
explains how we can hope to avoid the difficulties encountered in Example 3. The
problem in Figure 2 is the orientation of the polytope, rather than the fact that it is
long and thin. Let us switch columns 4 and 5 of A to give

A = [A1|A2] =

⎡
⎢⎢⎣

1 1 1 0 0 0
1 1 1 1 1 1
0 1 1 1 0 1
0 0 1 0 0 1

⎤
⎥⎥⎦ .(13)

The polytope X|y is now represented in terms of the route flows from node 2 to
node 3 (column 5) and from node 2 to node 5 (column 6). The resulting fea-
sible regions in this coordinate system are displayed in Figure 3 for the cases
y = (10,20,20,10)T and y = (10,20,19,9)T. Clearly, sampling parallel to the
coordinate axes will be efficient.

The preceding theory implies that convergence of the sampler can be guaranteed
if we update the partition of A from iteration to iteration in a suitable manner. In
particular, a sufficient condition for irreducibility will be that every possible parti-
tion A = [A1|A2] (with A1 invertible) is employed infinitely often in the long run.
This could be achieved by systematically cycling through all possible partitions
or by sampling the partition at each iteration. Such sampling would need to place
nonzero probability on each partition, but would work best if there is a bias toward
selecting partitions in which the first n routes tend to carry high flows.

A direct implementation of this methodology would be feasible in examples
with modest numbers of routes. However, in large examples the need to repeatedly
find acceptable partitions of A would be computationally impractical. Nonetheless,
in such cases Proposition 3 will generally come to the rescue, since it implies that
we need only find a single good partition that can then be used unchanged there-
after. Specifically, if we can find n linearly independent columns of A for which
the corresponding route flows have negligible posterior weight at (and preferably
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FIG. 3. Feasible route sets in terms of flows for revised routes 5 (from node 2 to node 3) and 6
(from node 2 to node 5) for the network in Figure 1. The left-hand panel corresponds to the case
y = (10,20,20,10)T; the right-hand panel to y = (10,20,19,9)T. The interior of the convex hull of
each feasible set is shaded as an embellishment to help emphasize shape.

near to) zero, then the sampler will work adequately if these columns are selected
to form A1.

With these comments in mind, we recommend a phased approach. We start with
some initial partition of A and run the sampler for a fixed number of iterations. At
the end of this first pilot phase we compute pilot estimates from the sampled route
flows and use these to determine a suitable permutation of the columns of A. In
the next pilot phase we run the sampler for another fixed number of iterations,
refine our estimates of the route flows and update the partition of A accordingly.
This process can be continued until we have discovered a suitable route ordering,
although in practice we have found that two pilot phases are typically sufficient.
Once the pilot phases are completed, the sampler can run with no further changes
to A.

During this process, each update of the partition of A should be chosen so that
the routes corresponding to the columns of A1 carry relatively high flow. There are
two issues to consider. First, what statistic should we compute as a summary of the
magnitude of the sampled flows for these routes? An obvious answer (and the one
that we employ in later examples) is to use the mean flows from the pilot samples.
Employing an estimate of a very low percentile is an alternative that relates directly
to the desire to avoid very small flows on these routes. The second issue concerns
optimization of the partition of A based on the pilot estimates. In principle, we
could search through all possible partitions of A to find the one for which the sum
of the pilot estimates is largest, subject to the requirement that A1 is invertible.
A cheap alternative (used in subsequent numerical work) is to employ a greedy
sequential algorithm, where the set of columns of A1 is built up one route at a
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time, at each step choosing the highest flow route that is not in the span of the
columns already selected.

Using this cheap version of the phased approach results in an algorithm with
almost exactly the same computational expense per iteration as the original
methodology of Tebaldi and West (1998). The additional computing time required
to generate a few additional matrix partitions is negligible. Of course, we expect
our algorithm to have far better mixing properties in many applications, and when
this is so, it will be far cheaper in terms of the computational cost per effective
independent sample.

A comparison with the computational cost of Airoldi and Blocker’s (2013) al-
gorithm is a little more involved. This algorithm shares the same computational
complexity as that of Tebaldi and West (1998) and the cheap (phased) version of
our refinement thereof, in the sense that the problem of generating a new candidate
route flow is fundamentally O(r − n) in all cases. However, we expect the actual
computing time per candidate route flow for Airoldi and Blocker’s (2013) algo-
rithm to be more than twice that of ours because of the extra calculations required
to sample along random search directions. Nonetheless, it is important to recognize
that a proposed update of all components of the route flow vector (which we refer
to as a single iteration in the numerical studies in the following section) requires
generation of (r − n) candidates using our algorithm (one for each column of A2),
while a single candidate from Airoldi and Blocker’s (2013) algorithm can update
all components of x simultaneously. The issue of which is more computationally
efficient in practice will depend upon acceptance rates. We consider this matter a
little further in the numerical example in Section 5.3, although it should be kept in
mind that our algorithm and that of Airoldi and Blocker (2013) are only approxi-
mately comparable, in the sense that they are designed for discrete and continuous
flows, respectively.

5. Applications. Traffic models of the type that we have studied are used in
practice to model networks of various scales, ranging from inter-urban motorway
systems to individual urban road intersections. In this section we start by con-
sidering two applications of the latter type, which provide convenient examples to
assess and illustrate our methods. We then go on to examine a larger section of road
network. The first of the applications includes link count data from multiple days,
but no prior information, so estimates are computed using maximum likelihood
estimation through the stochastic EM algorithm. In the other examples we have
data only from a single day, but informative priors are available, making Bayesian
inference (via the MCMC algorithm) natural. All the applications are taken from
the road system in the English city of Leicester.

We consider three algorithms for route flow sampling at various points dur-
ing this section. These are Tebaldi and West’s (1998) algorithm, our modifica-
tion thereof (with at most two partition updates for A), and Airoldi and Blocker’s
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FIG. 4. An abstraction of the intersection of London Road (running left to right) and University
Road in the English city of Leicester.

(2013) algorithm with output rounded to integer values. Additional numerical re-
sults detailing trace plots, effective sample size and mean slack for these sam-
plers are available as part of the supplementary material for this article [Hazelton
(2015)].

5.1. Application 1: Maximum likelihood estimation for flows at an intersection.
The first application concerns the intersection of London Road with University
Road in Leicester. An abstracted form of the physical network is displayed in Fig-
ure 4. All nodes are both origins and destinations of travel, except for node 2
which is neither. All links except for 2 are equipped with inductive loop counters.
We have available traffic flows on all other links for the period 16:00–16:15 on five
nonconsecutive weekdays in May. The data are displayed as line plots in Figure 5.

We consider the problem of estimating the mean origin–destination flows. With
only 6 routes [one for each of the O–D pairs {(i, j); i, j = 1,3,4, i �= j}] and 5
monitored links, the linear system (1) is only slightly under-determined. Moreover,

FIG. 5. Traffic counts for five (nonconsecutive) days for the network in Figure 4.
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TABLE 1
Estimates of mean route flows for Application 1. Maximum likelihood estimates (MLEs) were

calculated using the stochastic EM algorithm. MoM denotes Vardi’s (1996) method of moment
estimator. For the negative binomial model, the maximum likelihood estimate

(and standard error) of the dispersion parameter α was 1.92 (0.87)

Poisson model

Route O–D MLE (std err) MoM
Negative binomial model

MLE (std err)

1 1–3 175.5 (7.0) 420.2 176.4 (12.9)
2 1–4 41.5 (4.7) 37.5 41.0 (9.7)
3 3–1 183.9 (7.1) 155.4 183.5 (13.1)
4 3–4 10.1 (3.9) 39.8 10.6 (8.1)
5 4–1 61.9 (5.1) 49.7 63.1 (10.4)
6 4–3 14.5 (4.0) 0.0 12.8 (8.2)

the ordering of the columns of A is irrelevant, since the feasible route flow polytope
is one-dimensional. The interest lies in whether a sample of size N = 5 is sufficient
to allow useful inferences to be made about the mean route flows based on the
likelihood alone (i.e., in the absence of prior information) and to what extent model
misspecification may effect the results.

We consider two models. The first is the Poisson model introduced in Ex-
ample 1, while the second is a negative binomial model, parameterized so that
E[xj ] = θj and Var[xj ] = (1 + α)θj for j = 1, . . . ,6. For both models we com-
pute maximum likelihood estimates using the stochastic EM algorithm. The initial
simulation size was set to M = 2000 (following a burn-in period of 2000 itera-
tions). We then followed the strategy of Caffo, Jank and Jones (2005) to control
increases in simulation size and provide the stopping rule. Standard errors were
computed using (6). For comparison, we also calculate parameter estimates using
Vardi’s (1996) method of moments approach applied only to the Poisson model.
(This methodology cannot be employed for the negative binomial model because
of the presence of the additional dispersion parameter.) The results are displayed
in Table 1.

The raw link counts suggest overdispersion with respect to a Poisson model,
and this is borne out by the estimate of α̂ = 1.92 (SE = 0.87) for the dispersion
parameter in the negative binomial model. Nonetheless, the maximum likelihood
estimates of θ̂ are very similar for the two models.

We note that there is a marked difference in the nominal standard errors obtained
between the estimates from the Poisson and negative binomial models. In part this
reflects the relative capabilities of the models to account for the aforementioned
overdispersion. However, we also note that inaccuracy in the standard errors can
be expected given that they rely on asymptotic likelihood theory being applied to
data from just N = 5 time points.
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To examine the properties of maximum likelihood estimation in this applica-
tion, we simulated 100 sets of route flows from a negative binomial model with
parameters matching those estimated from the real data. We then computed the
corresponding link count data sets and found the maximum likelihood estimates
for each using the stochastic EM algorithm using both a (correctly specified) neg-
ative binomial model and an (incorrectly specified) Poisson model. From these
results we calculated the (approximate) biases of the estimates. These were low in
all cases. The estimated bias in θ̂i was less than 1% for routes i = 1,3,5, which
carry the heaviest traffic, rising to a maximum (absolute) value of 3.7% for route
i = 4, which carries the lightest flow. The differences in bias between the negative
binomial and Poisson models were negligible.

These results suggest not only that maximum likelihood can provide useful
estimates in this application, but also that the estimates are quite robust to mis-
specification between negative binomial and Poisson models. Loosely speaking,
maximum likelihood estimation based on the Poisson model privileges first or-
der information over higher order information, in part evidenced by the fact that
Aθ̂pois = ȳ, where θ̂pois denotes the vector Poisson maximum likelihood esti-

mates and ȳ = N−1 ∑N
t=1 y(t). The same comment does not apply to Vardi’s (1996)

method of moments approach based on a Poisson model, which produces highly
implausible estimates θ̃mom. For the results of the real data analysis reported in Ta-
ble 1, the method of moments estimated vector of mean link counts Aθ̃mom differs
from ȳ by more than a factor of two in some components.

5.2. Application 2: Bayesian inference at an intersection. The second network
that we consider describes an area around the junction of University Road and Re-
gent Road. See Figure 6. All nodes are both origins and destinations of travel,
except for node 4 which is neither. All links except for 5 are equipped with in-
ductive loop vehicle detectors. In this case we have available only a single set of
traffic counts, y = (72,56,217,120,119,127,178,117,181)T, again collected on
a weekday in May. We aim to estimate the mean route flows θ via the Poisson
model from Example 1. Prior information is essential in this case and is available

FIG. 6. An abstraction of the network around the intersection of Regent Road (running left to right)
and University Road.
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from an outdated traffic survey. We incorporate this in the form of pseudo route
traffic counts x̆ through independent Gamma priors with θj ∼ Gamma(x̆j /2,1/2).

We initialized the MCMC algorithm from the previous section with the column
order in A randomized, subject to the requirement the A1 be invertible in the usual
partition. This gave

A = [A1|A2]
(14)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The initial flow pattern x was generated through integer programming as the solu-
tion to (1) with maximum L1 norm.

The two pilot phases of the MCMC algorithm ran for 10,000 iterations each. At
the end of the second phase the partition of A was updated so that the final column
permutation was σ = (17,7,13,1,20,6,11,10,9,2,14,12,19,16,8,18,3,15,

4,5) in comparison to the initial ordering. The algorithm then ran for a further
burn-in period of 10,000, followed by a further 10,000 iterations from which pos-
terior estimates were computed. The computing time for this complete simulation
was 37 seconds, with the algorithm coded in R [R Core Team (2013)] running on
a 32-bit Windows desktop computer with a dual core 3.6 GHz processor and 4 GB
of memory. Trace plots for all iterations for θj and xj appear in Figures 7 and 8
for an illustrative selection of routes, specifically, those numbered j = 1,2,9,13,
based on ordering of the columns in (14). We see that while the algorithm is not

FIG. 7. Trace plots for mean route flows {θj , j = 1,2,9,13}. Routes are numbered according to
the columns of A in (14), with the matrix of plots filled by row. Trace plots for all 20 routes are
available as supplementary material.
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FIG. 8. Trace plots for sampled route flows {xj , j = 1,2,9,13}. Routes are numbered according
to the columns of A in (14), with the matrix of plots filled by row. Trace plots for all 20 routes are
available as supplementary material.

entirely stuck during the first pilot phase, nonetheless only some route flows are
successfully updated. It follows that the unmodified version of Tebaldi and West’s
(1998) sampler would fail to converge to the correct posterior distribution in this
application.

The posterior means with corresponding 95% credible intervals appear in Ta-
ble 2 alongside the prior values. Comparing the prior and posterior means, the

TABLE 2
Prior and posterior means, 95% posterior credible intervals, for mean route flows for Application 2

using a Poisson model

Route O–D Prior mean Posterior mean 95% CI

1 3–6 65.0 39.5 (27.9,52.3)

2 1–3 33.0 20.2 (12.1,30.2)

3 5–2 67.0 59.5 (42.7,78.7)

4 6–1 38.0 26.4 (16.3,38.4)

5 3–1 28.0 21.9 (12.4,33.1)

6 2–6 30.0 38.3 (25.2,53.1)

7 6–2 37.0 59.8 (41.8,78.9)

8 1–5 9.0 5.5 (1.7,11.4)

9 1–6 30.0 20.5 (11.8,31.3)

10 2–5 37.0 33.8 (22.2,47.5)

11 2–3 37.0 36.7 (26.2,48.9)

12 3–5 20.0 10.7 (5.1,18.2)

13 3–2 20.0 51.6 (37.8,67.0)

14 1–2 2.0 15.7 (6.3,26.3)

15 5–6 20.0 28.0 (16.5,41.5)

16 2–1 2.0 6.4 (0.3,15.4)

17 6–5 31.0 66.7 (49.0,86.2)

18 5–3 10.0 4.7 (1.5,9.5)

19 6–3 15.0 8.0 (3.4,14.3)

20 5–1 69.0 38.9 (27.7,52.1)
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FIG. 9. A section of the road network in Leicester, just to the southeast of the city center.

overall level of traffic is very similar, but there are some marked differences in the
pattern of flows.

5.3. Application 3: Inference for a larger network. We now turn to a larger
application based on a section of the city road network just to the southeast of the
center of Leicester. See Figure 9. This network has 21 nodes and 50 links. A total
of 85 O–D pairs with an aggregate of 127 routes were considered, based on earlier
analyses of this network [e.g., Hazelton (2001)]. A single set of traffic counts y
is available on 27 of the network links. See Table 3 for details. As before, prior
information is essential and is available in the form of pseudo route traffic counts
x̆ based on an outdated survey. These are used to define independent Gamma pri-

TABLE 3
Available link count data for the network in Figure 9

Link 1 2 5 6 7 11 13 14 16
Count 1279 740 1112 826 1221 1147 1066 764 835

Link 18 21 22 25 27 29 31 32 34
Count 462 137 193 746 685 466 538 499 453

Link 35 36 37 38 39 40 42 46 47
Count 610 503 667 483 545 500 57 194 111
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FIG. 10. Trace plots for sampled route flows for the network in Figure 9. The top panel displays the
mean flow for routes corresponding to partition A1, and hence is a measure of slack. The remaining
three panels display sampled flows for three selected routes.

ors with θj ∼ Gamma(x̆j /5,1/5). We note that this type of O–D matrix updating
problem is very common in transport planning and modeling.

We conducted Bayesian inference for the mean route flows θ using a Poisson
route flow model, xj ∼ Pois(θj ) independently for j = 1, . . . , r . As in the previous
application, the two pilot phases of our MCMC sampler ran for 10,000 iterations
each. The algorithm then ran for a further 20,000 iterations. The total computing
time was slightly less than 10 minutes using the same computing environment as
described in the previous application.

In Figure 10 we display the trace plots for xj for three selected routes. We also
display the mean flow on the routes corresponding to partition A1 as a measure of
slack in the linear system (1). The sampler is almost completely stuck during the
first pilot phase, with only 16 of the 127 routes updated (in the sense of a change
of value) at any stage in the first 10,000 iterations. The situation is much improved
in the second pilot phase, with all route flows updating. Nonetheless, the mixing
of the sampler during this phase is relatively poor. A second optimization of the
route ordering leads to better mixing throughout the final 20,000 iterations of the
algorithm.

As expected, the performance of the sampler at the various phases is mirrored
by the mean slack in the swap space. To provide further insight into this effect,
consider breaking down the first 30,000 iterations into equally sized blocks of
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10,000 iterations. These correspond to the three partitions of A that are employed.
Over the first block the mean slack is 35.9, over the second block the mean slack
is 46.4, and over the third block the mean slack is 163.2. Using the final block as
a benchmark, the sampling efficiencies in the first two blocks (measured in terms
of mean effective sample size for the traffic flows on the three selected routes) are
0% and 13.5%, respectively.

These results show that implementation of Tebaldi and West’s (1998) algorithm
without modification of the route order fails completely to converge based on the
initial partition of A. Moreover, even using the route ordering during the second
pilot phase (which is partially optimized) gives a sampler with quite poor mixing
properties.

In order to check that these problems were not a consequence of a pathological
data set or initial route ordering, we ran a small simulation study in which link
counts were generated from a Poisson model fitted using the posterior mean route
flows and where the columns of A were ordered at random (subject to the con-
straint that A1 is invertible). In 100 replications, the unmodified version of Tebaldi
and West’s (1998) algorithm failed to mix on every occasion, in the sense that there
was at least one route flow that was not updated. In contrast, use of our algorithm
with two updates of the partition of A led to acceptable mixing in every replica-
tion. This indicates that while there are a very large number of possible partitions
for A, it is necessary to search carefully for ones that produce a sampler with good
properties.

We also tried applying the random search direction sampler of Airoldi and
Blocker (2013) to this application, based on code harvested from the R library
networkTomography [Blocker, Koullick and Airoldi (2012)]. This methodology is
intended for continuous flows, and so we employed an approximation in which the
likelihoods in the acceptance probability were computed using rounded versions of
the sampled route flows. We implemented this sampler using two route orderings.
The first (“ordering A”) matches that used for the first pilot phase in our algorithm,
while the second (“ordering B”) is the final (optimized) route ordering found by
our algorithm. We thin the output, retaining only every (r − n)th (i.e., 77th) iter-
ation, to create a fair comparison with the results from our algorithm (where one
iteration involves updating the flows on routes corresponding to all 77 columns
of A2). Thinned trace places for flows on selected routes (corresponding to those
in Figure 10) are given in Figure 11. The computing time was approximately 2.5
times slower than that for our algorithm.

It is evident from these results that Airoldi and Blocker’s (2013) algorithm
works far better than the Tebaldi and West (1998) algorithm for the initial partition
of A. However, the trace plots also indicate that while the properties of Airoldi
and Blocker’s sampler are improved through a refined route ordering, the sampler
mixes somewhat less well than our algorithm with the optimized partition of A.
This result ties in with our examination of Example 3 in Section 4. Component-
wise sampling fails entirely, or mixes extremely slowly, when the partition of A
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FIG. 11. Trace plots for sampled route flows for the network in Figure 9 using the random search
direction algorithm of Airoldi and Blocker (2013). The left-hand panels show results obtained using
route ordering A; those on the right-hand side show results obtained using the route ordering B.

gives rise to a polytope with awkward geometry. However, when the partition is
updated to maximize the slack, then “long moves” are possible in the coordinate
directions, and sampling in those directions can be preferable to random search
directions. Further insight is provided by a comparison of the slack for all the sam-
pling algorithms considered. See the supplementary material for details [Hazelton
(2015)].

6. Discussion. The availability of a dependable method for sampling route
flows conditional on an observed pattern of link counts is pivotal to estimation of
origin–destination traffic volumes and associated statistical network tomography
problems. As we have shown, implementation of Tebaldi and West’s (1998) pro-
posed sampler with a fixed partition of the routing matrix is unreliable because
the polytope of feasible route flows may be oriented at an awkward angle to the
sampling directions. Nonetheless, the difficulties are resolved by a change of co-
ordinate representation of the polytope through a reordering of the columns of A.
Indeed, given that there is always a good route ordering available (if A is totally
unimodular), componentwise sampling of the elements of x2 is adequate. This
is fortunate, since we speculate that it would be very difficult to develop an exact
sampler [as opposed to a continuous approximation like that of Airoldi and Blocker
(2013)] to draw candidate route flows from higher dimensional spaces when the
traffic is integer valued.

The unimodularity requirements on A place a caveat on the preceding remarks,
although not a serious one. In practice, we require only that a good route ordering
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FIG. 12. A potentially problematic network. If traffic counts are available for only links 1, 2 and 3,
and if travel is possible only between the ordered node pairs (1,3), (2,1), (3,2) and (3,4), then the
link-path incidence matrix is not totally unimodular.

is available for which A1 is unimodular (and hence invertible as an integer-valued
matrix). This is guaranteed if A is totally unimodular, but may well occur even
when this is not the case: most of the A1 submatrices can be unimodular even if
A is not totally unimodular. It follows that total unimodularity is a sufficient, but
by no means necessary, condition for the proposed sampling algorithm to work
effectively.

The previous comments notwithstanding, it is still of interest to explore further
the issue of total unimodularity. As Airoldi and Blocker (2013) indicate, the rout-
ing matrices that are encountered in practice seem to be totally unimodular almost
without exception. Nonetheless, one does not have to work too hard to find a net-
work tomography problem for which this is not the case. Consider the network
displayed in Figure 12. Suppose that traffic counts are observed on links 1, 2 and
3 only, and that travel is possible for O–D pairs (1,3), (2,1), (3,2) and (3,4) via
the obvious acyclic routes.

Based on that route ordering, the link-path incidence matrix is given by

A = [A1|A2] =
⎡
⎣1 0 1 0

1 1 0 0
0 1 1 1

⎤
⎦ .(15)

The submatrix A is not unimodular [det(A1) = 2], and thus admits a noninteger-
valued inverse matrix,

A−1
1 =

⎡
⎢⎢⎣

1
2

1
2 −1

2

−1
2

1
2 −1

2
1
2 −1

2
1
2

⎤
⎥⎥⎦ .

An immediate consequence is that if we attempt to implement the conditional
route sampler using A from (15), then the resultant traffic flows need not be in-
teger valued. However, by switching any of the first three columns with the fourth,
we obtain new partitions A = [A1|A2] where the elements of A−1

1 lie in the set
{−1,0,1}. Our route flow sampler works successfully when only these partitions
of A are considered.
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It is interesting to reflect on the characteristics of this problem that led to the
lack of total unimodularity in (15). The routing scheme is unusual (and rather
artificial) because travel is only possible over paths comprising exactly two links.
Since traffic counts are available for links 1, 2 and 3, the result is a submatrix
A1 in (15) where all the column sums equal two. No routing submatrix with this
property can be unimodular, a result that can be generalized as follows.

PROPOSITION 4. If A1 is unimodular, then its column sums are coprime.

The proof is given in the Appendix.
When we reverse the final two columns of A, the column sums of the resulting

submatrix A1 are coprime and A1 is unimodular. Nonetheless, this coprime prop-
erty is insufficient to ensure unimodularity in general. For example, suppose that
we connect the networks in Figures 1 and 8 by inserting a link joining node 4 of
the former to node 3 of the latter. If we leave the pattern of permissible O–D pairs
and routes unchanged, then we may order the routes so that the submatrix A1 for
the composite network is block diagonal, with the A1 matrices from the original
matrices forming the blocks. The combined matrix A1 will have coprime column
totals, but will obviously not be unimodular.

This example is somewhat extreme, however. While the composite network is
physically connected, it operates as two independent (sub)networks since there are
no routes requiring travel from one to the other. Whether unimodularity of A1 can
be guaranteed by imposing some natural assumptions on the routes of the network
remains unclear.

APPENDIX

Proof of Proposition 1. Let Y denote the (unconditional) support of y. It suf-
fices to show that fY (y|θ) = fY (y|θ̃) for all y ∈ Y implies that fX(x|θ) = fX(x|θ̃)

for all x ∈ X . By the independence assumption on the route flows, it is sufficient
to show that fXj

(h|θ) = fXj
(h|θ̃) for all h ∈ Z≥0 and j ∈ R.

Assume henceforth that fY (y|θ) = fY (y|θ̃) for all y ∈ Y . Then using the fact
that all columns of A contain at least one nonzero element, we obtain

fX(0|θ) = fY (0|θ) = fY (0|θ̃) = fX(0|θ̃),(16)

where 0 denotes an appropriately dimensioned vector of zeroes.
The proof now proceeds by induction on route length. To this end, we define

sj to be the number of constituent monitored links for route j ∈ R, that is, sj =
‖aj‖1 = ∑c

i=1 aij , where aj denotes the j th column of A. Let s(1) < s(2) < · · · <

s(ρ) denote the unique values of sj in increasing order. Now partition the routes into
(disjoint) sets J1, J2, . . . , Jρ , where Ji contains all routes comprising s(i) links.
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Consider now x = hej for j ∈ J1, where ej is the j th coordinate vector (i.e.,
a vector of zeros except for a one in the j th position) and h ∈ Z≥1. This is a route
flow pattern with h vehicles on route j and none on any other route. Then

fXj
(h|θ)

fXj
(0|θ)

fX(0|θ) = fX(hej |θ)

= fY (haj |θ)

= fY (haj |θ̃)

= fX(hej |θ̃)

= fXi
(h|θ̃)

fXi
(0|θ̃)

fX(0|θ̃),

where the penultimate equality holds because x = hej is the unique solution of
Ax = haj . To see this, note that there can be no solution involving shorter routes
(there are none) or longer routes (since this would be incompatible with a link
flow pattern involving just s(1) links), and there can be no solution involving a
route j ′ �= j ∈ J1 because the columns of A are distinct. Applying equation (16),
it follows that

fXj
(h|θ)fXj

(0|θ̃) = fXj
(h|θ̃)fXj

(0|θ)(17)

for h = 1,2,3 . . . . Equation (17) also holds trivially when h = 0. We may therefore
sum (17) over h ∈ Z≥0 to give

fXj
(0|θ̃) = fXj

(0|θ).

It follows immediately from (17) that for j ∈ J1, fXj
(h|θ̃) = fXj

(h|θ) for all h ∈
Z≥0.

For the purposes of induction, assume now that fXj
(h|θ̃) = fXj

(h|θ) for all
h ∈ Z≥0 for all j ∈ J1 ∪ J2 ∪ · · · ∪ Jk . Consider x = hej for j ∈ Jk+1.

Starting with h = 1, we have

fY (aj |θ) = fX(ej |θ) + ∑
x�=ej

Ax=aj

fX(x|θ).

Now, if x �= ej satisfies Ax = aj , then xj = 0 for all j ∈ Ji for i ≥ k [using exactly
the same kind of argument as preceded equation (17)]. It follows that, for any
such x,

fX(x|θ) = fX(0|θ)
∏
i∈J †

fXi
(1|θ)

fXi
(0|θ)

(18)
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for some indexing set J † ⊆ J1 ∪ · · · ∪ Jk . There is no need to specify this set
precisely: it is sufficient to know that for j ∈ J †, fXj

(h|θ) = fXj
(h|θ̃) for all h by

our inductive hypothesis.
Hence, from equation (18),

fY (aj |θ) = fX(ej |θ) + ∑
x�=ej

Ax=aj

fX(x|θ)

= fX(ej |θ) + ∑
x�=ej

Ax=aj

fX(x|θ̃)

= fX(ej |θ) + fY (aj |θ̃) − fX(ej |θ̃).

Since fY (aj |θ) = fY (aj |θ̃), it follows that fX(ej |θ) = fX(ej |θ̃) and, therefore,

fXj
(1|θ)

fXj
(0|θ)

fX(0|θ) = fXj
(1|θ̃)

fXj
(0|θ̃)

fX(0|θ̃)

and so

fXj
(1|θ)

fXj
(0|θ)

= fXj
(1|θ̃)

fXj
(0|θ̃)

,(19)

courtesy of equation (16).
We continue by applying another “inner” mathematical induction, to demon-

strate that equation (19) applies for flows h > 1. For the purposes of induction,
assume that

fXj
(h∗|θ)

fXj
(0|θ)

= fXj
(h∗|θ̃)

fXj
(0|θ̃)

for all h∗ = 1,2, . . . , (h − 1).
Now,

fY (haj |θ) = fX(hej |θ) + ∑
x�=hej

Ax=haj

fX(x|θ).(20)

For every x �= hej such that Ax = haj ,

fX(x|θ) = fX(0|θ)

h−1∏
h∗

0=0

fXj
(h∗

0|θ)

fXj
(0|θ)

∏
i∈J †

fXi
(h∗

i |θ)

fXi
(0|θ)

,(21)

where {h∗
j } is a set of positive integers no greater than h−h∗

0, and J † ⊆ J1 ∪· · ·∪Jk

(again requiring no explicit specification). Intuitively, this equation relies on the
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fact that the link flow pattern haj can be generated by placing h∗
0 vehicles on

route j and then splicing together flows on compatible shorter routes to account
for the remaining h − h∗

0 vehicles.
The inductive hypotheses imply that equality is maintained in equation (21) if

θ is replaced by θ̃ everywhere on the right-hand side. It follows that fX(x|θ) =
fX(x|θ̃), when from (20) we obtain

fY (haj |θ) = fX(hej |θ) + ∑
x�=hej

Ax=haj

fX(x|θ)

= fX(hej |θ) + ∑
x�=hej

Ax=haj

fX(x|θ̃)

= fX(hej |θ) + fY (haj |θ̃) − fX(hej |θ̃)

= fX(hej |θ) + fY (haj |θ) − fX(hej |θ̃).

It follows that fX(hej |θ) = fX(hej |θ̃) and so

fXj
(h|θ)

fXj
(0|θ)

= fXj
(h|θ̃)

fXj
(0|θ̃)

,

completing the inner inductive step.
We have proved that fXj

(h|θ)fXj
(0|θ̃) = fXj

(h|θ̃)fXj
(0|θ) for all h ∈ Z≥0.

Summing over h gives fXj
(0|θ̃) = fXj

(0|θ) when it follows that fXj
(h|θ) =

fXj
(h|θ̃) for all j ∈ Jk+1. This completes the outer mathematical induction.

We conclude that fXj
(h|θ) = fXj

(h|θ̃) for all j ∈ R and h ∈ Z≥0, completing
the proof of Proposition 1.

Proof of Proposition 3. By Lemma 2.2 of Airoldi and Haas (2011), the matrix
U is totally unimodular, and therefore all its entries lie in {−1,0,1}. Hence, if
u1,j is the vector formed from the first n elements of uj , we have x1 + u1,j ≥ 0
(interpreted componentwise), and hence x + uj ∈X|y as required.

Proof of Proposition 4. Let A1 be unimodular, and let a∗ be the vector of
column sums of this matrix. Suppose that the elements of a∗ are not coprime
and so have a greatest common divisor of d > 1. Then the elements of the vec-
tor d−1aT∗A−1

1 are integers because A−1
1 is an integer-valued matrix. However,

d−1aT∗A−1
1 = d−11TA1A

−1
1 = d−11T,

providing a contradiction, and hence proving the result.
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SUPPLEMENTARY MATERIAL

Supplement to “Network tomography for integer-valued traffic” (DOI:
10.1214/15-AOAS805SUPP; .pdf). The supplementary materials, stored as a zip
archive, include data and additional numerical results for the applications in Sec-
tion 5. The data comprise link-path incidence matrices, observed traffic counts and
prior pseudo counts for Bayesian analyses. The additional results include effective
sample sizes for MCMC output, computing times and summaries of the slack for
the route flow samplers considered.
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