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Abstract. We consider a stable driven degenerate stochastic differential equation, whose coefficients satisfy a kind of weak Hör-
mander condition. Under mild smoothness assumptions we prove the uniqueness of the martingale problem for the associated
generator under some dimension constraints. Also, when the driving noise is scalar and tempered, we establish density bounds
reflecting the multi-scale behavior of the process.

Résumé. Pour une équation différentielle stochastique dégénérée dirigée par un processus stable et dont les coefficients vérifient
une condition de Hörmander faible, nous établissons sous de faibles hypothèses de régularité l’unicité au problème de martingale
sous des contraintes de dimensions. Par ailleurs, lorsque le bruit est scalaire et tempéré, nous obtenons des bornes de densité
reflétant le caractère multi-échelle du processus.
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1. Introduction

The aim of this paper is to study degenerate stable driven stochastic differential equations of the following form:
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where Z is an R
d valued symmetric α stable process (possibly tempered and with α ∈ (0,2)), σ : R+ × R

nd →
R

d ⊗ R
d , ai,j : R+ → R

d ⊗ R
d , i ∈ �1, n�, j ∈ �(i − 1) ∨ 1, n�. Observe that (Xt )t≥0 = (X1

t , . . . ,X
n
t )t≥0 is R

nd

valued. We will often use the shortened form:

dXt =AtXt dt +Bσ(t,Xt−) dZt , X0 = x, (1.2)
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where B = (Id×d 0(n−1) d×d)∗ denotes the injection matrix from R
d into R

nd , with ∗ standing for the transposition,
and At is the matrix:
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The previous system appears in many applicative fields. It is for instance related for n = 2 to the pricing of Asian
options in jump diffusions models (see e.g. Jeanblanc et al. [19] or Barucci et al. [3] in the Brownian case). The
Hamiltonian formulation in mechanics can lead to systems corresponding to the drift part of (1.1) (still with n= 2).
The associated Brownian perturbation has been thoroughly studied, see e.g. Talay [40] or Stuart et al. [29] for the
convergence of approximation schemes to equilibrium, but to the best of our knowledge other perturbations, like
the current stable one, have not yet been much considered. For a general n, equation (1.1) can be seen as the linear
dynamics of n coupled oscillators in dimension d perturbed by a stable anisotropic noise. Observe also that in the
diffusive case these oscillator chains naturally appear in statistical mechanics, see e.g. Eckmann et al. [12].

Equation (1.1) is degenerate in the sense that the noise only acts on the first component of the system. Additionally
to the non-degeneracy of the volatility σ , we will assume a kind of weak Hörmander condition on the drift component
in order to allow the noise propagation into the system.

A huge literature exists on degenerate Brownian diffusions under the strong Hörmander condition, i.e. when the
underlying space is spanned by the diffusive vector fields and their iterated Lie brackets. The major works in that
framework have been obtained in a series of papers by Kusuoka ans Stroock, [24–26], using a Malliavin calculus
approach.

For the weak Hörmander case, many questions are still open even in the Brownian setting. Let us mention in this
framework the papers [11,31] and [23] dealing respectively with density estimates, martingale problems and random
walk approximations for systems of type (1.1) or that can be linearized around such systems. In those works a global
multi-scale Gaussian regime holds. For highly non-linear first order vector fields, Franchi [13] and Cinti et al. [10]
address issues for which there is not a single regime anymore. A specificity of the weak Hörmander condition is the
unbounded first order term which does not lead to a time–space separation in the off-diagonal bounds for the density
estimates as in the sub-Riemannian setting, see e.g. [26], Ben Arous and Léandre [6] and references therein. The
energy of the associated deterministic control problem has to be considered instead, see e.g. [11]. We have a similar
feature in our current stable setting.

In this work we are first interested in proving the uniqueness of the martingale problem associated with the gener-
ator (Lt )t≥ of (1.1), i.e. for all ϕ ∈C2

0(Rnd,R) (twice continuously differentiable functions with compact support)

∀x ∈Rnd, Ltϕ(x) = 〈
Atx,∇ϕ(x)

〉
+

∫
Rd

(
ϕ
(
x +Bσ(t, x)z

)− ϕ(x)− 〈∇ϕ(x),Bσ(t, x)z〉
1+ |z|2

)
g
(|z|)ν(dz), (1.3)

under some mild assumptions on the volatility σ , the Lévy measure ν of a symmetric α stable process and the
tempering function g (which is set to 1 in the stable case). To this end, the key tool consists in exploiting some
properties of the joint densities of (possibly tempered) stable processes and their iterated integrals, corresponding to
the proxy model in a parametrix continuity technique (see e.g. Friedman [14] or McKean and Singer [30]). Following
the strategies developed in [5,31] we then derive uniqueness exploiting the smoothing properties of the parametrix
kernel. For this approach to work, we anyhow consider some restrictions on the dimensions n,d . Let us indeed
emphasize that the density of a d-dimensional α-stable process and its n− 1 iterated integrals behaves as the density
of an α stable process in dimension nd with a modified Lévy measure and different time-scales. The first point can
be checked through Fourier arguments (see Proposition 5.3 and Remark 5.2). Also, the typical time scale of the
initial stable process is t1/α and t (i−1)+1/α for the associated (i − 1)th integral. One of the difficulties is now that
the associated Lévy measures (on R

nd ) have spectral parts that are either not equivalent or singular with respect to
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the Lebesgue measure of Snd−1. The link between the behavior of the stable density and the corresponding spectral
measure is discussed intensively in Watanabe [41] and can lead to rather subtle phenomena. Roughly speaking, the
lower is the dimension of the support of the spectral measure, the heavier the tail. This is what leads us to consider some
restrictions on the dimensions. Also, using the resolvent1 associated with the ordinary differential equation obtained
from (1.1) setting σ = 0, i.e. d

dt
Rt = AtRt ,R0 = Ind×nd , the mean of the process is Rtx at time t (transport of the

initial condition by the resolvent). The process will deviate from its mean accordingly to the associated component
wise time scales.

When turning to density estimates, one of the dramatic differences with the Gaussian case is the lack of integrability
of the driving process. For non-degenerate stable driven SDEs, this difficulty can be bypassed to derive two-sided
pointwise bounds for the SDE that are homogeneous to the density of the driving process. Kolokoltsov [21] establishes
in the stable case the analogue of the Aronson bounds for diffusions, see e.g. Sheu [35] or [1]. For approximation
schemes of non-degenerate stable-driven SDEs we also mention [22]. In our current degenerate framework, working
under somehow minimal assumptions to derive pointwise density bounds, that is Hölder continuity of the coefficients,
we did not succeed to get rid of those integrability problems. We are also faced with a new difficulty due to the
degeneracy and the non-local character of L. Namely, we have a disturbing rediagonalization phenomenon: when the
density p̃(t, x, ·) of X̃t = x + ∫ t

0 AsX̃s ds + BZt is in a large deviation regime, estimating the non local part of Lt p̃

(which is the crucial quantity to control in a parametrix approach), the very large jumps can lead to integrate p̃ on a
set where it is in its typical regime. This phenomenon already appears in the non-degenerate case, but the difficulty
here is that there is a dimension mismatch between the tail behavior of p̃(t, x, ·), density of X̃t , multi-scale stable
process of dimension nd , and the one of the jump, stable process of dimension d .

This quite tricky phenomenon leads us to temper the driving noise in order to obtain density estimates through
a parametrix continuity technique. For technical reasons that will appear later on, we establish when d = 1, n = 2
(scalar non-degenerate diffusion and associated non-degenerate integral) the expected upper-bound up to an additional
logarithmic contribution, when the coefficient σ(t, x)= σ(t, x2) depends on the fast variable. This constraint appears
in order to compensate an additional time singularity deriving from the rediagonalization. Roughly speaking, the
dependence on the fast variable only gives a better smoothing effect for the parametrix kernel. Eventually, we derive
the expected diagonal lower bound, see Theorem 2.2. To this end we use a parametrix approach similar to the one
of McKean and Singer [30]. Working with smoother coefficients would have allowed to consider Malliavin calculus
type techniques. In the jump case, this approach has been investigated to establish existence/smoothness of the density
for SDEs by Bichteler et al. in the non-degenerate case [7], and Léandre in the degenerate one, see [27,28]. Also, we
mention the recent work of Zhang [42] who obtained existence and smoothness results for the density of equations
of type (1.1) in arbitrary dimension for smooth coefficients, and a possibly non linear drift, still satisfying a weak
Hörmander condition. His approach relies on the subordinated Malliavin calculus, which consists in applying the
usual Malliavin calculus techniques on a Brownian motion observed along the path of an α-stable subordinator.

Let us eventually mention some related works. Priola and Zabczyk establish in [33] existence of the density for
processes of type (1.1), under the same kind of weak Hörmander assumption and when σ is constant, for a general
driving Lévy process Z provided its Lévy measure is infinite and has itself a density on compact sets. Also, Picard,
[32] investigates similar problems for singular Lévy measures. Other results concerning the smoothness of the density
of Lévy driven SDEs have been obtained by Ishikawa and Kunita [16] in the non-degenerate case but with mild
conditions on the Lévy measure and by Cass [8] who gets smoothness in the weak Hörmander framework under
technical restrictions. Also, we refer to the work of Watanabe [41] for two-sided heat-kernel estimates for stable
processes with very general spectral measures. Those estimates have been extended to the tempered stable case by
Sztonyk [39].

The article is organized as follows. We state our main results in Section 2. In Section 3, we explain the procedure to
derive those results and also state the density estimates on the process in (1.1) when σ(t, x)= σ(t) (frozen process).
We then prove the uniqueness of the martingale problem in Section 4. Sections 5 and 6 are the technical core of the
paper. In particular, we prove there the existence of the density and the associated estimates for the frozen process and
establish the smoothing properties of the parametrix kernel. Appendices A and B are dedicated to the derivation of
stable density bounds and kernels combining the approaches of [21] and [39,41] in our current degenerate setting. We
emphasize that the tempering procedure allows to get rid of the integrability problems but does not prevent from the

1We carefully mention that we use the term resolvent in the sense of ordinary differential equations.
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rediagonalization phenomenon. This difficulty would occur even in the truncated case, thoroughly studied in the non-
degenerate case by Chen et al. [9]. The truncation would certainly relocalize the operator but the rediagonalization
would still perturb the parametrix iteration in the stable regime.

2. Assumptions, and main result

We will make the following assumptions.

About the coefficients

The coefficients are assumed to be bounded and measurable in time and also to satisfy the conditions below.

[H-1] (Hölder regularity in space). ∃H > 0, η ∈ (0,1],∀x, y ∈Rnd and ∀t ≥ 0,∥∥σ(t, x)− σ(t, y)
∥∥≤H |x − y|η.

[H-2] (Ellipticity). ∃κ ≥ 1, ∀ξ ∈Rd , ∀z ∈Rnd and ∀t ≥ 0,

κ−1|ξ |2 ≤ 〈
ξ, σσ ∗(t, z)ξ

〉≤ κ|ξ |2. (2.1)

[H-3] (Hörmander-like condition for (At )t≥0). ∃α,α ∈ R
+∗, ∀ξ ∈ R

nd and ∀t ≥ 0, α|ξ |2 ≤ 〈ai,i−1
t ξ, ξ 〉 ≤

α|ξ |2,∀i ∈ �2, n− 1�. Also, for all (i, j) ∈ �1, n�2,‖ai,j
t ‖ ≤ α.

About the driving noise

Stable case: Let us first consider (Zt )t≥0 to be an α stable symmetric process, defined on some filtered probability
space (	,F, (Ft )t≥0,P), that is a Lévy process with Fourier exponent:

Eei〈p,Zt 〉 = exp

(
−t

∫
Sd−1

∣∣〈p,ς〉∣∣αμ(dς)

)
, ∀p ∈Rd .

In the above expression, we denote by Sd−1 the unit sphere in R
d , and by μ the spectral measure of Z. This measure

is related to the Lévy measure of Z as follows. If ν is the Lévy measure of Z, its decomposition in polar coordinates
writes:

ν(dz)= dρ

ρ1+α
μ̃(dς), z= ρς, (ρ,ς) ∈R+ × Sd−1. (2.2)

Then, μ= Cα,dμ̃ (see Sato [34] for the exact value of Cα,d ). In that case we suppose

[H-4] (Non degeneracy of the spectral measure). We assume that μ is absolutely continuous w.r.t. to the Lebesgue
measure of Sd−1 with Lipschitz density h and that there exists λ≥ 1, s.t. for all u ∈Rd ,

λ−1|u|α ≤
∫

Sd−1

∣∣〈u,ς〉∣∣αμ(dς)≤ λ|u|α. (2.3)

Tempered case: In the tempered case we simply assume that (Zt )t≥0 has generator:

LZφ(x)=
∫
Rd

{
φ(x + z)− φ(x)− 〈∇φ(x), z〉

1+ |z|2
}
g
(|z|)ν(dz), φ ∈C2

0

(
R

d ,R
)
, (2.4)

where the measure ν is as in the stable case and the tempering function g :R+∗ →R
+∗ satisfies
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[T] (Smoothness, doubling property and decay associated with the tempering function g). We first assume that
g ∈ C1(R+,R+∗) and that there exists a > 0 s.t. g ∈ C2([0, a],R+∗) if α ∈ [1,2). We also suppose that there exists
c > 0 s.t. for all r > 0, g(r)+ r supu∈[κ−1,κ] g′(ur)≤ cθ(r) for κ as in [H-2] and where θ :R+∗ →R

+∗ is a bounded
non-increasing function satisfying:

∃D ≥ 1,∀r > 0, θ(r)≤Dθ(2r), (1+ r)θ(r) :=�(r) →
r→+∞0.

Typical examples of tempering functions satisfying [T] are for instance r → g(r) = exp(−cr), c > 0, g(r) =
(1+ r)−m, m≥ 2.

We say that [HS] (resp. [HT]) holds if conditions [H-1] to [H-4] are fulfilled and the driving noise Z is a symmetric
stable process (resp. a tempered stable process satisfying [T]). We say that [H] is satisfied if [HS] or [HT] holds, i.e.
the results under [H] hold for both the stable and the tempered stable driving process.

Our main results are the following.

Theorem 2.1 (Weak uniqueness). Under [H], i.e. in both the stable and the tempered stable case, the martingale
problem associated with the generator (Lt )t≥0, defined in (1.3), of the degenerate equation (1.1):

dXt =AtXt dt +Bσ(t,Xt−) dZt ,

admits a unique solution provided d(1− n)+ 1+ α > 0. That is, for every x ∈Rnd , there exists a unique probability
measure P on 	=D(R+,Rnd) the space of càdlàg functions, such that for all f ∈ C

1,2
0 (R+ ×R

nd,R), denoting by
(Xt )t≥0 the canonical process, we have:

P(X0 = x)= 1 and f (t,Xt )−
∫ t

0
(∂u +Lu)f (u,Xu)du is a P- martingale.

Hence, weak uniqueness holds for (1.1).

Remark 2.1. The dimension constraint comes from the worst asymptotic behavior of the stable densities in our current
case. Viewing the density of the stable process Z and its iterated integrals as the density of an nd-dimensional multi-
scale stable process yields to consider a Lévy measure on R

nd for which the support of the spectral measure has
dimension (d − 1) + 1 = d . Thus, from Theorem 1.1 in Watanabe [41] we have that, at time 1 (to get rid of the
multi-scale feature), the tails will behave at least as |x|−(d+1+α) for large values of |x|, x ∈Rnd . The condition in the
previous Theorem is imposed in order to have the integrability of the worst bound in R

nd . We refer to Section 5.2 for
details. In practice the condition is fulfilled for:

– d = 1, n= 2 for α ∈ (0,2).
– d = 1, n= 3 for α ∈ (1,2).
– d = 2, n= 2 for α ∈ (1,2).

Remark 2.2. We point out that the tempering function g does not play any role in the proof of the previous theorem.
Furthermore, it cannot be used to weaken the previous dimension constraints. Indeed, it can be seen from the estimates
in Proposition 3.4 that the additional multiplicative term in θ makes the worst bound integrable but also yields an
explosive contribution in small time.

Remark 2.3. We would also like to mention an extension to a non-linear dynamics. If d = 1, n= 2 and α > 1, the well-
posedness of the martingale problem extends to the case of a non-linear Lipschitz drift satisfying a Hörmander-like
non-degeneracy condition. Namely, weak uniqueness holds for:

X1
t = x1 +

∫ t

0
F1(s,Xs) ds +

∫ t

0
σ(s,Xs−) dZs,

X2
t = x2 +

∫ t

0
F2(s,Xs) ds, (2.5)
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provided F = (F1,F2)
∗ : R+ ×R

2→ R
2 is measurable and bounded in time, uniformly Lipschitz in space and such

that ∂x1F2 ∈ [c0, c
−1
0 ], c0 ∈ (0,1] and ∂x1F2 is η-Hölder continuous, η ∈ (0,1]. A complete proof of this statement,

following the linearization strategy of [11] can be found in [15].

Also, when d = 1 and n= 2 in (1.1) we are able to prove the following density estimates in the tempered case.

Theorem 2.2 (Density estimates). Assume that d = 1, n= 2. Under [HT] and for σ(t, x) := σ(t, x2), i.e. the diffu-
sion coefficient depends on the fast component, provided 1≥ η > 1

(1∧α)(1+α)
, the unique weak solution of (1.1) has for

every s > 0 a density with respect to the Lebesgue measure. Precisely, for all 0≤ t < s and x ∈R2,

P(Xs ∈ dy|Xt = x)= p(t, s, x, y) dy. (2.6)

Also, for a deterministic time horizon T > 0, and a fixed threshold K > 0, there exists C2.2 := C2.2([HT], T ,K)≥ 1,
s.t. ∀0≤ t < s ≤ T ,∀(x, y) ∈ (R2)2,

p(t, s, x, y)≤ C2.2pα,�(t, s, x, y)
(
1+ log

(
K ∨ ∣∣(Tα

s−t

)−1
(y −Rs,t x)

∣∣)), (2.7)

where for all u ∈R+, Tα
u :=Diag((u1/α, u1+1/α)), Mu :=Diag(1, u) and

pα,�(t, s, x, y)= Cα,�

det(Tα
s−t )

−1

{K ∨ |(Tα
s−t )

−1(y −Rs,tx)|}2+α
�
(∣∣M−1

s−t (y −Rs,tx)
∣∣).

Here, Rs,t stands for the resolvent associated with the deterministic part of (1.1), i.e. d
ds

Rs,t = AsRs,t ,Rt,t = I2×2,
and Cα,� is s.t.

∫
R2 pα,�(t, s, x, y) dy = 1.

Eventually for 0 < T ≤ T0 := T0([HT],K) small enough, the following diagonal lower bound holds:

∀0≤ t < s ≤ T ,∀(x, y) ∈ (
R

2)2
s.t.

∣∣(Tα
s−t

)−1
(y −Rs,tx)

∣∣≤K, p(t, s, x, y)≥ C−1
2.2 det

(
T

α
s−t

)−1
. (2.8)

Under the current assumptions, Theorem 2.1 is proved following the lines of [5] and [31]. In the Gaussian frame-
work, those assumptions are sufficient to derive homogeneous two-sided multi-scale Gaussian bounds, see [11]. How-
ever, in the current context, we only managed to obtain the expected upper bound up to a logarithmic factor and a
diagonal lower bound for d = 1 and n= 2 for a tempered driving noise and σ(t, x)= σ(t, x2). This is mainly due to
a lack of integrability of the stable process and the rediagonalization phenomenon which becomes really delicate to
handle in the degenerate case. Precisely, the parametrix technique consists in applying the difference of two non-local
generators of the form (1.3) to the density of some process which is meant to locally behave as (1.1) and for which
estimates are available. Such a process is known as the parametrix or proxy. The density of the stable nd-dimensional
process we will use in the degenerate setting as parametrix will have decays of order d + 1+ α in the large deviation
regime. It is indeed delicate to use other bounds than the worst one in a global approach like the parametrix. Let us
mention that this is not the decay of a rotationally invariant stable process in dimension nd (which would be nd + α)
except if n= 2, d = 1. Observe now from (1.3), (2.2) that we have a dimension mismatch between the decays of the
densities of the parametrix and those of the jump measure ν, which are in d + α. We recall that the large jumps can
lead to integrate the density on a set on which it is in its diagonal regime, when applying the non-local generator to
the density. This is what we actually call rediagonalization and leads in our degenerate framework to additional time-
singularities in the parametrix kernel. We manage to handle those singularities when σ depends on the fast component,
yielding a better smoothing property in time, see Section 6.

Observe that, in the non-degenerate context, the decays of the rotationally invariant stable densities and the jump
measure in (2.2) correspond. This allows Kolokoltsov [21] to successfully give two sided bounds for the density of the
SDE which are homogeneous to those of the rotationally stable case provided the density of the spectral measure is
positive. The technical reasons leading to the restriction of Theorem 2.2 will be discussed thoroughly in the dedicated
sections (see Sections 3.3 and 6). Let us mention that the above results could be extended to the case of a d-dimensional
non-degenerate SDE driven by a tempered stable process and the integral of one of its components. We emphasize as
well, that our estimates still hold if we had a non-linear bounded drift in the dynamics of X1 if α > 1 (see Remark 5.5).
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We conclude this paragraph saying that the uniqueness of the martingale problem and the estimates of Section 6 allow
to extend in the non-degenerate case, the stable two-sided Aronson like estimates of [21] for Hölder coefficients.

Constants and usual notations:

• The capital letter C will denote a constant whose value may change from line to line, and can depend on the
hypotheses [H]. Other dependencies (in particular in time), will be specified, using explicit under scripts.
• We will often use the notation � to express equivalence between functions. If f and g are two real valued

nonnegative functions, we denote f (x) � g(x), x ∈ I ⊂ R
p,p ∈ N, when there exists a constant C ≥ 1, possibly

depending on [H], I s.t. C−1f (x)≤ g(x)≤ Cf (x),∀x ∈ I .
• For x = (x1, . . . , xnd) ∈ R

nd and for all k ∈ �1, n�, we define xk := (x(k−1)d+1, . . . , xkd) ∈ R
d . Accordingly,

x = (x1, . . . , xn). Also x2:n := (x2, . . . , xn).

From now on, we assume [H] to be in force, specifying when needed, which results are valid under [HT] only.

3. Continuity techniques: The frozen equation and the parametrix series

For density estimates, a continuity technique consists in considering a simpler equation as proxy model for the initial
equation. The proxy will be significant if it achieves two properties:

– It admits an explicit density or a density that is well estimated.
– The difference between the density of the initial SDE and the one of the proxy can be well controlled.

For the last point a usual strategy consists in expressing the difference of the densities through the difference of the
generators of the two SDEs, using Kolmogorov’s equations. This approach is known as the parametrix method. In the
current work, we will use the procedure developed by McKean and Singer [30], which turns out to be well-suited to
handle coefficients with mild smoothness properties.

We first introduce the proxy model in Section 3.1, and give some associated density bounds. We then analyze in
Sections 3.2, 3.3 how this choice can formally lead through a parametrix expansion to a density estimate, exploiting
some suitable regularization properties in time. These arguments can be made rigorous provided that the initial SDE
admits a Feller transition function. The uniqueness of the martingale problem will actually give this property.

3.1. The frozen process

In this section, we give results that hold in any dimension d , and for any fixed number of oscillators n. Let T > 0
(arbitrary deterministic time) and y ∈Rnd (final freezing point) be given. Heuristically, y is the point where we want
to estimate the density of (1.1) at time T provided it exists. We introduce the frozen process as follows:

dX̃
T ,y
s =AsX̃

T ,y
s ds +Bσ(s,Rs,T y) dZs. (3.1)

In this equation, Rs,T y is the resolvent of the associated deterministic equation, i.e. it satisfies d
ds

Rs,T =AsRs,T , with
RT,T = Ind×nd in R

nd ⊗ R
nd . Let us emphasize that the previous choice can seem awkward at first sight. Indeed, a

very natural approach for a proxy model would consist in freezing the diffusion coefficient at the terminal point, see
e.g. Kolokoltsov [21]. In our current weak Hörmander setting we need to take into account the backward transport of
the final point by the deterministic differential system. This particular choice is actually imposed by the natural metric
appearing in the density of the frozen process, see Proposition 3.3. This allows the comparison of the singular parts
of the generators of (1.1) and (3.1) applied to the frozen density, see Proposition 3.6 and Lemma 3.10.

Proposition 3.1. Fix (t, x) ∈ [0, T ] ×R
nd . The unique solution of (3.1) starting from x at time t writes:

X̃
t,x,T ,y
s = Rs,tx +

∫ s

t

Rs,uBσ(u,Ru,T y) dZu. (3.2)

Proof. Equation (3.1) is a linear SDE, with deterministic diffusion coefficient. As such, it admits a unique strong
solution. The representation (3.2) follows from Itô’s formula. �
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Introduce for all u ∈R+, the diagonal time scale matrix:

T
α
u =

⎛
⎜⎜⎝

u1/αId×d 0
0 u1+1/αId×d 0

. . .

0 un−1+1/αId×d

⎞
⎟⎟⎠ ,

(3.3)

Mu = u−1/α
T

α
u =

⎛
⎜⎜⎝

Id×d 0
0 uId×d 0

. . .

0 un−1Id×d

⎞
⎟⎟⎠ .

This extends the definitions of Theorem 2.2 for n= 2. The entries of the matrix T
α
u correspond to the intrinsic time

scales of the iterated integrals of a stable process with index α observed at time u. They reflect the multi-scale behavior
of our system. The matrix Mu appears in the tempered case. We first give an expression of the density of X̃

t,x,T ,y
s in

terms of its inverse Fourier transform. We refer to Section 5.2 for the proof of this result.

Proposition 3.2. The frozen process (X̃
t,x,T ,y
s )s≥t has for all s > t a density w.r.t. the Lebesgue measure, that is:

P
(
X̃

T ,y
s ∈ dz|X̃T ,y

t = x
)= p̃T ,y

α (t, s, x, z) dz.

For 0 < T − t ≤ T0 := T0([H])≤ 1 we have:

p̃T ,y
α (t, s, x, z) = det (Ms−t )

−1

(2π)nd

×
∫
Rnd

e−i〈q,(Ms−t )
−1(z−Rs,t x)〉 exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈q, ξ 〉)}νS(dξ)

)
dq, (3.4)

where νS := νS(t, T , s, y) is a symmetric measure on R
nd s.t. uniformly in s ∈ (t, t + T0] for all A⊂R

nd :

νS(A)≤
∫
R+

dρ

ρ1+α

∫
Snd−1

1A(sξ)g(cρ)μ(dξ),

with μ satisfying [H-4] and dim(supp(μ)) = d . In the stable case, i.e. g = 1, we have the equality in the above
equation, so that νS indeed corresponds to a stable Lévy measure.

Remark 3.1. The above proposition is important in that it shows in the stable case [HS] why the density of a d-
dimensional stable process with index α ∈ (0,2) and its n− 1 iterated integrals actually behaves as the density of an
nd-dimensional multi-scale stable process, where the various scales are read through the matrix T

α . Also, the fact
that the associated spectral measure is either non equivalent or singular w.r.t. the Lebesgue measure of Snd−1 leads
to consider delicate asymptotics for the tails of the density which yields the dimension constraints in Theorem 2.1 and
the restrictions of Theorem 2.2.

From the previous remark and the dimension of the support of μ in Proposition 3.2 we derive from points (i) and
(iii) in Theorem 1.1 in Watanabe [41] the following estimate in the stable case.

Proposition 3.3 (Density estimates for the frozen process under [HS]). Fix T > 0, a threshold K > 0 and y ∈Rnd .
For all (t, x) ∈ [0, T ) × R

nd , the density p̃
T ,y
α (t, s, x, z) of the frozen process (X̃

t,x,T ,y
s )s∈(t,T ] in (3.2) satisfies the

following estimates. There exists C3.3 := C3.3([H-2], [H-3], [H-4],K)≥ 1, s.t. for all 0≤ t < s ≤ T , (x, z) ∈ (Rnd)2:

C−1
3.3p

α
(t, s, x, z)≤ p̃T ,y

α (t, s, x, z)≤ C3.3pα(t, s, x, z), (3.5)
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where we write:

pα(t, s, x, z)= Cα

det(Tα
s−t )

−1

{K ∨ |(Tα
s−t )

−1(z−Rs,tx)|}d+1+α
, (3.6)

and also

p
α
(t, s, x, z)= C−1

α

det(Tα
s−t )

−1

{K ∨ |(Tα
s−t )

−1(z−Rs,t x)|}nd(1+α)
, Cα := Cα

(
[H]

)≥ 1.

We refer to Section 5.2 for the proof of this result. Observe that pα(t, s, x, ·) can be identified with a probability
density only under the condition d(1− n)+ 1+ α > 0 appearing in Theorem 2.1. Roughly speaking the upper-bound
in (3.5) is the worst possible considering the underlying dimension of the support of the spectral measure in Snd−1,
which is here d . On the other hand, the lower bound corresponds to the highest possible concentration of a spectral
measure on Snd−1 satisfying [H-4], see again Section 5.2. This control would for instance correspond to the product
at a given point of the one-dimensional stable asymptotics in each direction.

From Proposition 3.2 and Theorem 1 in Sztonyk [39] we also derive the following result in the tempered case.

Proposition 3.4 (Density estimates for the frozen process under [HT]). Fix T > 0, a threshold K > 0 and y ∈Rnd .
For all (t, x) ∈ [0, T ) × R

nd , the density p̃
T ,y
α (t, s, x, z) of the frozen process (X̃

t,x,T ,y
s )s∈(t,T ] in (3.2) satisfies the

following estimates. There exists C3.4 := C3.4([H-2], [H-3], [H-4],K)≥ 1, s.t. for all 0≤ t < s ≤ T , (x, z) ∈ (Rnd)2:

p̃T ,y
α (t, s, x, z)≤ C3.4pα(t, s, x, z), (3.7)

where:

pα(t, s, x, y)= Cα

det(Tα
s−t )

−1

{K ∨ |(Tα
s−t )

−1(y −Rs,tx)|}d+1+α
θ
(∣∣(Ms−t )

−1(y −Rs,t x)
∣∣). (3.8)

As a corollary, we have the following important property.

Corollary 3.5 (“Semigroup” property). Under [H], when d = 1, n= 2, which is the only case for which nd + α =
d+1+α so that pα can be identified with the density of a, possibly tempered, multi-scale stable process in dimension
nd whose spectral measure is absolutely continuous with respect to the Lebesgue measure of Snd−1, there exists
C3.5 := C3.5([H-2], [H-3], [H-4],K)≥ 1 s.t. for all 0≤ t < τ < s, (x, y) ∈ (Rnd)2:∫

Rnd

pα(t, τ, x, z)pα(τ, s, z, y) dz≤ C3.5pα(t, s, x, y).

The above control is important since it allows to give estimates on the convolution of the frozen densities with
possible different freezing points. Namely, for all T1, T2 > 0, y1, y2 ∈Rnd , for all t < τ < s and x, y ∈Rnd :∫

Rnd

p̃T1,y1
α (t, τ, x, z)p̃T2,y2

α (τ, s, z, y) dz≤ C3.5pα(t, s, x, y). (3.9)

3.2. The parametrix series

We assume here that the generator (Lt )t≥0 of (1.1) generates a two-parameter Feller semigroup (Pt,s)0≤t≤s . Using
the Chapman–Kolmogorov equations satisfied by the semigroup and the pointwise Kolmogorov equations for the
proxy model, we derive a formal representation of the semigroup in terms of a series, involving the difference of the
generators of the initial and frozen processes. Let Lt (already defined in (1.3)) and L̃

T ,y
t denote the generators of Xt,x

and X̃t,x,T ,y at time t respectively. For ϕ ∈ C2
0(Rnd,R), from (2.4) (setting g = 1 in the stable case), we have for
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all x ∈Rnd :

Ltϕ(x)= 〈∇ϕ(x),Atx
〉+ ∫

Rd

(
ϕ
(
x +Bσ(t, x)z

)− ϕ(x)− 〈∇ϕ(x),Bσ(t, x)z〉
1+ |z|2

)
g
(|z|)ν(dz),

L̃
T ,y
t ϕ(x)= 〈∇ϕ(x),Atx

〉
(3.10)

+
∫
Rd

(
ϕ
(
x +Bσ(t,Rt,T y)z

)− ϕ(x)− 〈∇ϕ(x),Bσ(t,Rt,T y)z〉
1+ |z|2

)
g
(|z|)ν(dz).

Observe that for X̃
t,x,T ,y
s defined in (3.2), its density p̃

T ,y
α (t, s, x, ·) exists and is smooth under [H] for s > t (see

Proposition 3.2 above).

Proposition 3.6. Suppose that there exists a unique weak solution (X
t,x
s )0≤t≤s to (1.1) which has a two-parameter

Feller semigroup (Pt,s)0≤t≤s . We have the following formal representation. For all 0≤ t < T , (x, y) ∈ (Rnd)2 and any
bounded measurable f :Rnd→R:

Pt,T f (x)= E
[
f (XT )|Xt = x

]= ∫
Rnd

(+∞∑
r=0

(
p̃α ⊗H(r)

)
(t, T , x, y)

)
f (y)dy, (3.11)

where H is the parametrix kernel:

∀0≤ t < T , (x, y) ∈ (
R

nd
)2

, H(t, T , x, y) := (
Lt − L̃

T ,y
t

)
p̃α(t, T , x, y). (3.12)

In equations (3.11), (3.12), we denote for all 0≤ t < u ≤ T , (x, z) ∈ (Rnd)2, p̃α(t, u, x, z) := p̃u,z
α (t, u, x, z), i.e. we

omit the superscript when the freezing terminal time and point are those where the density is considered. Also, the
notation ⊗ stands for the time space convolution:

f ⊗ h(t, T , x, y)=
∫ T

t

du

∫
Rnd

dzf (t, u, x, z)h(u,T , z, y).

Besides, H(0) = I and ∀r ∈N,H (r)(t, T , x, y)=H(r−1) ⊗H(t, T , x, y).
Furthermore, when the above representation can be justified, it yields the existence as well as a representation for

the density of the initial process. Namely P[XT ∈ dy|Xt = x] = p(t, T , x, y) dy where:

∀0≤ t < T , (x, y) ∈ (
R

nd
)2

, p(t, T , x, y)=
+∞∑
r=0

(
p̃α ⊗H(r)

)
(t, T , x, y). (3.13)

Proof. Let us first emphasize that the density p̃
T ,y
α (t, s, x, z) of X̃

t,x,T ,y
s at point z solves the Kolmogorov backward

equation:

∂p̃
T ,y
α

∂t
(t, s, x, z)=−L̃

T ,y
t p̃T ,y

α (t, s, x, z), for all t < s, (x, z) ∈Rnd ×R
nd, lim

t↑s p̃T ,y
α (t, s, ·, z)= δz(·). (3.14)

Here, L̃
T ,y
t acts on the variable x. Let us now introduce the family of operators (P̃t,s)0≤t≤s . For 0 ≤ t ≤ s and any

bounded measurable function f :Rnd→R:

P̃t,sf (x) :=
∫
Rnd

p̃α(t, T , x, y)f (y) dy :=
∫
Rnd

p̃T ,y
α (t, T , x, y)f (y) dy. (3.15)

Observe that the family (P̃t,s)0≤t≤s is not a two-parameter semigroup. Anyhow, we can still establish, see Lemma 4.1,
that for a continuous f :

lim
s→t

P̃s,t f (x)= f (x). (3.16)



A Parametrix approach for some degenerate stable driven SDEs 1935

This convergence is not a direct consequence of the bounded convergence theorem since the freezing parameter is
also the integration variable.

The boundary condition (3.16) and the Feller property yield:

(Pt,T − P̃t,T )f (x)=
∫ T

t

du
∂

∂u

{
Pt,u

(
P̃u,T f (x)

)}
.

Computing the derivative under the integral leads to:

(Pt,T − P̃t,T )f (x)=
∫ T

t

du
{
∂uPt,u

(
P̃u,T f (x)

)+ Pt,u

(
∂u

(
P̃u,T f (x)

))}
.

Using the Kolmogorov equation (3.14) and the Chapman–Kolmogorov relation ∂uPt,uϕ(x) = Pt,u(Luϕ(x)),
∀ϕ ∈ C2

b(Rnd,R) we get:

(Pt,T − P̃t,T )f (x)=
∫ T

t

duPt,u(LuP̃u,T f )(x)− Pt,u

(∫
Rnd

f (y)L̃
T ,y
u p̃α(u,T , ·, y) dy

)
(x).

Define now the operator:

Hu,T ϕ(z) :=
∫
Rnd

ϕ(y)
(
Lu − L̃

T ,y
u

)
p̃α(u,T , z, y) dy =

∫
Rnd

ϕ(y)H(u,T , z, y) dy. (3.17)

We can thus rewrite:

Pt,T f (x)= P̃t,T f (x)+
∫ T

t

Pt,u

(
Hu,T (f )

)
(x) du.

The idea is now to reproduce this procedure for Pt,u applied to Hu,T (f ). This recursively yields the formal represen-
tation:

Pt,T f (x)= P̃t,T f (x)+
∑
r≥1

∫ T

t

du1

∫ u1

t

du2 · · ·
∫ ur−1

t

dur P̃t,ur (Hur ,ur−1 ◦ · · · ◦Hu1,T )(f )(x).

Equation (3.11) then formally follows from the following identification. For all r ∈N∗:
∫ T

t

du1

∫ u1

t

du2 · · ·
∫ ur−1

t

dur P̃t,ur (Hur ,ur−1 ◦ · · · ◦Hu1,T )(f )(x) du=
∫
Rnd

f (y)p̃α ⊗H(r)(t, T , x, y) dy.

We can proceed by immediate induction:

∫ T

t

du1

∫ u1

t

du2 · · ·
∫ ur−1

t

dur P̃t,ur (Hur ,ur−1 ◦ · · · ◦Hu1,T )(f )(x) du

=
∫ T

t

du1

∫ u1

t

du2 · · ·
∫ ur−1

t

dur

∫
Rnd

dzHur ,ur−1 ◦ · · · ◦Hu1,T (f )(z)p̃α(t, ur , x, z)

(3.17)=
∫ T

t

du1

∫ u1

t

du2 · · ·
∫ ur−1

t

dur

∫
Rnd

dz

∫
Rnd

dyHur−1,ur−2 ◦ · · ·

◦Hu1,T (f )(y)H(ur , ur−1, z, y)p̃α(t, ur , x, z)

=
∫ T

t

du1

∫ u1

t

du2 · · ·
∫ ur−2

t

dur−1

∫
Rnd

dyHur−1,ur−2 ◦ · · · ◦Hu1,T (f )(y)p̃α ⊗H(t,ur−1, x, y). (3.18)

Thus, we can iterate the procedure from (3.18) with p̃α ⊗H instead of p̃α . �
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Observe that in order to make the identification above, we have exchanged various integrals. Hence, so far the
representation (3.13) is formal. It will become rigorous provided that we manage to show the convergence of the
series and get integrable bounds on its sum.To achieve these points, one needs to give precise bounds on the iterated
time–space convolutions appearing in the series. Such controls are stated in Section 3.3 and proved in Section 6 below.

3.3. Controls on the iterated kernels

From now on, we assume w.l.o.g. that 0 < T ≤ T0 := T0([H]) ≤ 1. The choice of T0 depends on the constants ap-
pearing in [H] and will be clear from the proof of Lemma 5.1. Theorems 2.1 and 2.2 can anyhow be obtained for an
arbitrary fixed finite T > 0, from the results for T sufficiently small. Indeed, the uniqueness of the martingale problem
simply follows from the Markov property whereas the upper density estimate stems from the semigroup property of
pα (see Corollary 3.5 and Lemma 3.12 for the convolutions involving the logarithmic correction). From now on, we
consider that the threshold K > 0 appearing in Proposition 3.3 is fixed.

We first give pointwise results on the convolution kernel, that hold in any dimension d , and for any number of
oscillators n.

Lemma 3.7 (Control of the kernel). Fix K,δ > 0. There exists C3.7 := C3.7([H],K, δ) > 0 s.t. for all T ∈ (0, T0]
and (t, x, y) ∈ [0, T )× (Rnd)2:

∣∣H(t, T , x, y)
∣∣≤ C3.7

δ ∧ |x −Rt,T y|η(α∧1)

T − t

{
pα(t, T , x, y)+ p̆α(t, T , x, y)

}
, (3.19)

where pα is as in (3.6) in the stable case [HS] and as in (3.8) in the tempered case [HT]. Also,

p̆α(t, T , x, y) =
1|(x−Rt,T y)1|/(T−t)1/α�|(Tα

T−t )
−1(x−Rt,T y)|≥K

(T − t)d/α(1+ |(x −Rt,T y)1|/(T − t)1/α)d+α

× 1

(T − t)(n−1)d/α+n(n−1)d/2(1+ |((Tα
T−t )

−1(x −Rt,T y))2:n|)1+α
θ
(∣∣M−1

T−t (x −Rt,T y)
∣∣),

taking under [HS], θ(r)= 1, r > 0.

The contribution in p̆α comes from the rediagonalization phenomenon which is specific to the degenerate, non-
local case and only appears when the rescaled first (slow) component is equivalent to the energy |(Tα

T−t )
−1×

(x − Rt,T y)|. Observe that if |(Tα
T−t )

−1(x − Rt,T y)| ≤ K , diagonal regime, both contributions p and p̆ can be
upper-bounded by (T − t)−nd/α+n(n−1)d/2. In the off-diagonal case, we also have that if there exists i ∈ �2, n� s.t.
|((Tα

T−t )
−1(x −Rt,T y))i | � |((Tα

T−t )
−1(x −Rt,T y))1| then p̆α(t, T , x, y)≤ pα(t, T , x, y).

Once integrated in space, under the dimension constraints of Theorem 2.1, this pointwise estimate yields the fol-
lowing smoothing property in time.

Lemma 3.8. Assume that d(1− n)+ 1+ α > 0. Then, there exists C3.8 := C3.8([H],K) and ω := ω(d,n,α) > 0 s.t.
for all T ∈ (0, T0], (x, y) ∈ (Rnd)2, τ ∈ [t, T ), we have the estimate∫

Rnd

δ ∧ |z−Rτ,T y|η(α∧1)(pα + p̆α)(τ, T , z, y) dz≤C3.8(T − τ)ω, (3.20)

∫
Rnd

δ ∧ |z−Rτ,tx|η(α∧1)pα(t, τ, x, z) dz≤ C3.8(τ − t)ω. (3.21)

Also, when d = 1, n= 2 one has the following better smoothing property for the fast variable:∫
Rnd

δ ∧ ∣∣(z−Rτ,T y)2
∣∣η(α∧1)

(pα + p̆α)(τ, T , z, y) dz≤C3.8(T − τ)ω̃, (3.22)

∫
Rnd

δ ∧ {
(τ − t)

∣∣(z−Rτ,tx)1
∣∣+ ∣∣(z−Rτ,tx)2

∣∣}η(α∧1)
pα(t, τ, x, z) dz≤ C3.8(τ − t)ω̃, (3.23)

with ω̃= (1+ 1/α)η(α ∧ 1).
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The proof of these results will be given in Section 5.3 and Appendix B.

Remark 3.2. We can now justify from this Lemma our previous choice for the proxy model. Indeed, the contributions
|z−Rτ,T y|η(α∧1), |z− Rτ,tx|η(α∧1) come from the difference of the generators and turn out to be compatible, up to
using the Lipschitz property of the flow, with the bounds appearing in Proposition 3.3 for the frozen density. This is
what gives this smoothing property and thus allows to get rid of the diagonal singularities coming from the bound
(3.19).

Remark 3.3. The l.h.s. of equations (3.22), (3.23) naturally appear in the case σ(t, x) = σ(t, x2) which is the one
considered for the density estimates in Theorem 2.2. Intuitively, the higher smoothing effect in this case permits to
compensate the difficulties arising from the rediagonalization in the degenerate case.

When dealing with convolutions of the kernel and the frozen density we restrict to the case d = 1, n = 2 for
which we have the semigroup property, which is important to handle the off-diagonal regimes. In this framework, the
technical computations in Section 6, based on the previous controls on the kernel H , yield the following bound for
the first step of the parametrix procedure.

Lemma 3.9. There exist C3.9 := C3.9([H],K),ω := ω([H]) ∈ (0,1] s.t. for all T ∈ (0, T0] and (t, x, y) ∈ [0, T ) ×
(Rnd)2:

∣∣p̃α ⊗H(t, T , x, y)
∣∣ ≤ C3.9

(
pα(t, T , x, y)

(
(T − t)ω

+ δ ∧ |x −Rt,T y|η(α∧1)
{
1+ log

(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣)})
+ δ ∧ |x −Rt,T y|η(α∧1)p̌α(t, T , x, y)

)
,

where

p̌(t, T , x, y) := inf
τ∈[t,T ]

1(Rτ,t x−Rτ,T y)1/(T−t)1/α�|(Tα
T−t )

−1(Rτ,t x−Rτ,T y)|
(T − t)1/α(1+ |(Tα

T−t )
−1(Rτ,t x −Rτ,T y)|)1+α

θ
(∣∣M−1

T−t (Rτ,t x −Rτ,T y)
∣∣)

× 1

(T − t)1+1/α(1+ |(Rτ,t x −Rτ,T y)2|/(T − t)1+1/α)1+α
. (3.24)

The contribution in p̌, comes from the bad rediagonalization which is intrinsic to the degenerate case. It first
generates a loss of concentration in the estimate, which leads us to temper the driving noise. It also turns out to be
very difficult to handle in the iterated convolutions of the kernel. Up to the end of section we thus restrict under [HT]
to the case d = 1, n= 2 and σ(t, x) := σ(t, x2), for which we have been able to refine the above results and to derive
the convergence of (3.13). This restriction will be discussed thoroughly in Section 6.

Lemma 3.10 (Control of the iterated kernels). Assume under [HT] that d = 1, n = 2, σ (t, x) = σ(t, x2) and 1 ≥
η > ((α ∧ 1)(1 + α))−1. Then there exist C3.10 := C3.10([HT],K), ω := ω([HT]) ∈ (0,1] s.t. for all T ≤ T0 and
(t, x, y) ∈ [0, T )× (R2)2:∣∣p̃α ⊗H(t, T , x, y)

∣∣≤ C3.10
(
(T − t)ωpα,�(t, T , x, y)+ qα,�(t, T , x, y)

)
,∣∣qα,� ⊗H(t, T , x, y)

∣∣≤ C3.10(T − t)ω
(
pα,�(t, T , x, y)+ qα,�(t, T , x, y)

)
,

where we denoted

qα,�(t, T , x, y) = δ ∧ {
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}η(α∧1)

× {
pα,�(t, T , x, y)

(
1+ log

(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣))}.
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Now for all k ≥ 1,∣∣p̃α ⊗H(2k)(t, T , x, y)
∣∣

≤ (4C3.10)
2k(T − t)kω

(
(T − t)kωpα,�(t, T , x, y)+ (pα,� + qα,�)(t, T , x, y)

)
,∣∣p̃α ⊗H(2k+1)(t, T , x, y)

∣∣
≤ (4C3.10)

2k+1(T − t)kω
(
(T − t)(k+1)ωpα,� + (T − t)ω(pα,� + qα,�)+ qα,�

)
(t, T , x, y).

The above controls allow to derive under the sole assumption [HT] an upper bound for the sum of the parametrix
series (3.13) in small time.

Proposition 3.11 (Sum of the parametrix series). Under the assumptions of Lemma 3.10, for T0 small enough, there
exists C3.11 := C3.11([HT],K,T0) s.t. for all T ∈ (0, T0] and (t, x, y) ∈ [0, T )× (R2)2:∑

r≥0

∣∣p̃α ⊗H(r)(t, T , x, y)
∣∣≤ C3.11

(
pα,�(t, T , x, y)+ qα,�(t, T , x, y)

)
,

C3.11 det
(
T

α
T−t

)−1 ≤
∑
r≥0

p̃α ⊗H(r)(t, T , x, y), for
∣∣(Tα

T−t

)−1
(RT,t x − y)

∣∣≤K.

The proofs of Lemmas 3.7 and 3.10 are postponed to Section 6.4. Using those controls on the iterated convolutions,
we can prove Proposition 3.11.

Proof of Proposition 3.11. The upper-bound can be readily derived from Lemma 3.10 for T0 small enough (sum of
a geometric series). To get the diagonal lower bound, we first write:

∑
k≥0

p̃α ⊗H(k)(t, T , x, y)= p̃α(t, T , x, y)+
(∑

k≥0

p̃α ⊗H(k)

)
⊗H(t, T , x, y).

Now, since∑
k≥0

∣∣p̃α ⊗H(k)(t, T , x, y)
∣∣≤ C(pα,� + qα,�)(t, T , x, y),

we derive:∣∣∣∣
(∑

k≥0

p̃α ⊗H(k)

)
⊗H(t, T , x, y)

∣∣∣∣≤C(pα,� + qα,�)⊗ |H |(t, T , x, y).

Using once again the first part of Lemma 3.10, we thus get that∣∣∣∣
(∑

k≥0

pα ⊗H(k)

)
⊗H(t, T , x, y)

∣∣∣∣ ≤ C
{
(T − t)ωpα,�(t, T , x, y)+ qα,�(t, T , x, y)

+ (T − t)ω(pα,� + qα,�)(t, T , x, y)
}
.

Now, if the global regime is diagonal, i.e. |(Tα
T−t )

−1(y − RT,tx)| ≤K , the logarithm contribution vanishes in qα,�.
Observe also that

δ ∧ |x −Rt,T y|η(α∧1) ≤ Cη(α∧1)|RT,tx − y|η(α∧1)

≤ Cη(α∧1)(T − t)η(1/α∧1)
∣∣(Tα

T−t

)−1
(RT,t x − y)

∣∣η(α∧1)

≤ (CK)η(α∧1)(T − t)η(1/α∧1).
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Hence |(∑k≥0 p̃α ⊗ H(k)) ⊗ H(t, T , x, y)| ≤ C(T − t)ω det(Tα
T−t )

−1. Taking T − t small enough yields the an-
nounced bound. �

We conclude anyhow the section stating a Lemma that allows to extend the upper bound in Theorem 2.2 to an
arbitrary given fixed time. The arguments for its proof would be similar to those of Lemma 6.3.

Lemma 3.12 (Semigroup property for qα,�). With the notations of Proposition 3.11, for any T ∈ [0, T 0), we have
that there exists C3.12 := C3.12([HT], T 0)≥ 1 s.t.:

∀(x, y) ∈Rnd,∀n ∈N,

∫
Rnd

qα,�(0, nT , x, z)qα,�

(
nT , (n+ 1)T , z, y

)
dz≤ Cn+2

3.12 qα,�

(
0, (n+ 1)T , x, y

)
.

Observe now that Theorem 2.1 yields that (Xt )t≥0, the canonical process of P, admits a Feller transition function.
On the other hand, when d = 1, n= 2 we have from Proposition 3.11 that the series appearing in equation (3.11) of
Proposition 3.6 is absolutely convergent. This allows to derive that the Feller transition is absolutely continuous, which
in particular means that the process (Xt )t≥0 admits for all t > 0 a density, satisfying the bounds of Proposition 3.11.

4. Proof of the uniqueness of the martingale problem associated with (1.1)

In this section, d and n satisfy the conditions d(1 − n) + 1 + α > 0. As a corollary to the bounds of Section 3.3,
specifically Lemmas 3.7 and 3.8 (controls on the kernel and associated smoothing effect), we prove here Theorem 2.1.
The existence of a solution to the martingale problem can be derived by compactness arguments adapting the proof of
Theorem 2.2 from [37], even though our coefficients are not bounded.

Uniqueness of the martingale problem associated with (1.3). Suppose we are given two solutions P 1 and P 2 of the
martingale problem associated with (Ls)s∈[t,T ], starting in x at time t . We can assume w.l.o.g. that T ≤ T0 := T0([H]).
Define for a bounded Borel function f : [0, T ] ×R

nd→R,

Sif = E
i

(∫ T

t

f (s,Xs) ds

)
, i ∈ {1,2},

where (Xs)s∈[t,T ] stands for the canonical process associated with (Pi )i∈{1,2}. Let us specify that Sif is a priori only
a linear functional and not a function since P

i does not need to come from a Markov process. We denote:

S�f = S1f − S2f.

If f ∈C
1,2
0 ([0, T )×R

nd,R), since (Pi )i∈{1,2} both solve the martingale problem, we have:

f (t, x)+E
i

(∫ T

t

(∂s +Ls)f (s,Xs) ds

)
= 0, i ∈ {1,2}. (4.1)

For a fixed point y ∈Rnd and a given ε ≥ 0, introduce now for all f ∈C
1,2
0 ([0, T )×R

nd,R) the Green function:

∀(t, x) ∈ [0, T )×R
nd, Gε,yf (t, x)=

∫ T

t

ds

∫
Rnd

dzp̃s+ε,y
α (t, s, x, z)f (s, z).

We recall here that p̃
s+ε,y
α (t, s, x, z) stands for the density at time s and point z of the process X̃s+ε,y defined in (3.2)

starting from x at time t . In particular, ε can be equal to zero in the previous definition. One now easily checks that:

∀(t, x, z) ∈ [0, s)× (
R

nd
)2

,
(
∂t + L̃

s+ε,y
t

)
p̃s+ε,y

α (t, s, x, z)= 0, lim
s↓t p̃s+ε,y

α (t, s, x, ·)= δx(·). (4.2)

Introducing for all f ∈ C
1,2
0 ([0, T )×R

nd,R) the quantity:

M
ε,y
t,x f (t, x)=

∫ T

t

ds

∫
Rnd

dzL̃
s+ε,y
t p̃s+ε,y

α (t, s, x, z)f (s, z), (4.3)
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we derive from (4.2) and the definition of Gε,y that the following equality holds:

∂tG
ε,yf (t, x)+M

ε,y
t,x f (t, x)=−f (t, x), ∀(t, x) ∈ [0, T )×R

nd . (4.4)

Now, let h ∈ C
1,2
0 ([0, T )×R

nd,R) be an arbitrary function and define for all (t, x) ∈ [0, T )×R
nd :

φε,y(t, x) := p̃t+ε,y
α (t, t + ε, x, y)h(s, y), �ε(t, x) :=

∫
Rnd

dyGε,y
(
φε,y

)
(t, x).

Then, by semigroup property, we have:

�ε(t, x) =
∫
Rnd

dy

∫ T

t

ds

∫
Rnd

dzp̃s+ε,y
α (t, s, x, z)p̃s+ε,y

α (s, s + ε, z, y)h(s, y)

=
∫
Rnd

dy

∫ T

t

dsp̃s+ε,y
α (t, s + ε, x, y)h(s, y).

Hence,

(∂t +Lt)�ε(t, x) =
∫
Rnd

dy(∂t +Lt)
(
Gε,yφε,y

)
(t, x)

=
∫
Rnd

dy
{
∂tG

ε,yφε,y(t, x)+M
ε,y
t,x φε,y(t, x)

}

+
∫
Rnd

dy
{
LtG

ε,yφε,y(t, x)−M
ε,y
t,x φε,y(t, x)

}
(4.4)= −

∫
Rnd

dyφε,y(t, x)+
∫
Rnd

dy
{
LtG

ε,yφε,y(t, x)−M
ε,y
t,x φε,y(t, x)

}
= I ε

1 + I ε
2 .

We now need the following lemma whose proof is postponed to the end of Section 5.2.

Lemma 4.1. For all bounded continuous function f :Rnd→R, x ∈Rnd :∣∣∣∣
∫
Rnd

f (y)p̃T ,y
α (t, T , x, y) dy − f (x)

∣∣∣∣−→T ↓t 0. (4.5)

We emphasize that the above lemma is not a direct consequence of the convergence of the law of the frozen
process towards the Dirac mass when T ↓ t . Indeed, the integration parameter is also the freezing parameter which
makes things more subtle. Lemma 4.1 yields I ε

1 −→
ε→0
−h(t, x). On the other hand, we have the following identity:

I ε
2 =

∫ T

t

ds

∫
Rnd

dy
(
Lt − L̃s+ε

t

)
p̃s+ε,y

α (t, s + ε, x, y)h(s, y)

=
∫ T

t

ds

∫
Rnd

dyH(t, s + ε, x, y)h(s, y).

The bound of Lemmas 3.7 and 3.8 now yield:

∣∣I ε
2

∣∣ ≤ C

∫ T

t

ds

∫
Rnd

dy
δ ∧ |x −Rt,s+εy|η(α∧1)

s + ε− t
(pα + p̆α)(t, s + ε, x, y)

∣∣h(s, y)
∣∣

≤ C|h|∞
∫ T

t

(s + ε− t)η(1/α∧1)−1 ds ≤C|h|∞
[
(T − t)∨ ε

]η(1/α∧1)
.
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Hence, we may choose T and ε small enough to obtain∣∣I ε
2

∣∣≤ 1/2|h|∞. (4.6)

Observe now that (4.1) gives S�((∂· +L·)�ε)= 0 so that |S�(I ε
1 )| = |S�(I ε

2 )|. From Lemma 4.1 and (4.6) we derive:∣∣S�h
∣∣= lim

ε→0

∣∣S�Iε
1

∣∣= lim
ε→0

∣∣S�Iε
2

∣∣≤ ∥∥S�
∥∥ lim sup

ε→0

∣∣I ε
2

∣∣≤ 1/2
∥∥S�

∥∥|h|∞,
∥∥S�

∥∥ := sup
|f |∞≤1

∣∣S�f
∣∣.

By a monotone class argument, the previous inequality still holds for bounded Borel functions h compactly supported
in [0, T )×R

nd . Taking the supremum over |h|∞ ≤ 1 leads to ‖S�‖ ≤ 1/2‖S�‖. Since ‖S�‖ ≤ T − t , we deduce that
‖S�‖ = 0 which proves the result on [0, T ]. Regular conditional probabilities allow to extend the result on R

+, see
e.g. Theorem 4, Chapter II, §7, in [36], see also Chapter 6 in [38] and [37]. �

5. Proof of the results involving the frozen process

Introduce for a given t > 0 and all s ≥ t the process:

�s :=
∫ s

t

Rs,uBσu dZu, (5.1)

solving d�s =As�s ds+Bσs dZs,Zt = 0, i.e. �s can be viewed as the process of the iterated integrals of Z weighted
by the entries of the resolvent. In (5.1), (σu)u≥t is a deterministic R

d ⊗ R
d -valued function s.t. (σuσ

∗
u )u≥t satisfies

[H-2] (uniform ellipticity). It can be seen from Proposition 3.1 that the frozen process will have a density if and only
if � does for s > t . This is what we establish through Fourier inversion. The structure of the resolvent is crucial: it
gives the multi-scale behaviour of the frozen process and allows to prove in Proposition 5.3 that the Fourier transform
is integrable. Recalling as well that B stands for the embedding matrix from R

d into R
nd , we observe that only the

first d columns of the resolvent are taken into account in (5.1). Reasoning by blocks we rewrite:

Rs,t =
⎛
⎜⎝

R
1,1
s,t · · · R

1,n
s,t

...
. . .

...

R
n,1
s,t · · · R

n,n
s,t

⎞
⎟⎠ ,

where the entries (R
i,j
s,t )(i,j)∈�1,n�2 belong to R

d ⊗R
d .

5.1. Analysis of the resolvent

Lemma 5.1 (Form of the resolvent). Let 0 ≤ t ≤ s ≤ T ≤ T0 := T0([H]) ≤ 1. We can write the first column of the
resolvent in the following way:

R
·,1
s,t =

⎛
⎜⎜⎜⎜⎝

R
1
s,t

(s − t)R
2
s,t

...

(s−t)n−1

(n−1)! R
n

s,t

⎞
⎟⎟⎟⎟⎠ , (5.2)

where the (R
i

s,t )i∈�1,n� are non-degenerate and bounded matrices in R
d ⊗ R

d , i.e. ∃C := C([H], T0) s.t. for all

ξ ∈ Sd−1, C−1 ≤ |Ri

s,t ξ | ≤ C.

Proof. We are going to prove the result by induction. Let us first consider the case n= 2. We have, for i ∈ {1,2}:
d

ds
R

1,1
s,t = a1,1

s R
1,1
s,t + a1,2

s R
2,1
s,t ,

d

ds
R

2,1
s,t = a2,1

s R
1,1
s,t + a2,2

s R
2,1
s,t .
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In order to obtain, for i ∈ {1,2}, a semi-integrated representation of the entry R
i,1
s,t , we use the resolvent �i

u,v satisfying
d
du

�i
u,v = a

i,i
u �i

u,v,�
i
v,v = Id×d . This yields:

R
1,1
s,t = �1

s,t +
∫ s

t

�1
s,ua

1,2
u R

2,1
u,t du, R

2,1
s,t =

∫ s

t

�2
s,u

{
a2,1
u R

1,1
u,t

}
du.

Hence for all 0≤ t ≤ s ≤ T :

R
1,1
s,t = �1

s,t +
∫ s

t

�1
s,ua

1,2
u

{∫ u

t

�2
u,v

{
a2,1
v R

1,1
v,t

}
dv

}
du,

∣∣R1,1
s,t

∣∣≤ CT

(
1+

∫ s

t

∣∣R1,1
v,t

∣∣(s − t) dv

)
≤ CT ,

∣∣R2,1
s,t

∣∣≤ CT (s − t),

using Gronwall’s lemma for the last but one inequality. This in particular yields

R
2,1
s,t =

∫ s

t

�2
s,ua

2,1
u

(
�1

u,t +O
(
(u− t)2))du.

From the non-degeneracy of a2,1 (Hörmander like assumption [H-3]) and the resolvents on a compact set

we derive that for T small enough R
2,1
s,t = (t − s)R

2
s,t where R

2
s,t is non-degenerate and bounded. Rewriting

R
1,1
s,t = �1

s,t +O((s − t)2) we derive similarly that R
1,1
s,t = R

1
s,t , R

1
s,t being non-degenerate and bounded. This proves

(5.2) for n= 2. Let us now assume that (5.2) holds for a given n≥ 2 and let us prove it for n+ 1.
We first need to introduce some notations to keep track of the induction hypothesis. To this end, we denote by

An+1
t := At and Rn+1

s,t := Rs,t the matrices in R
(n+1)d ⊗R

(n+1)d associated with the linear system d
ds

Rs,t = AtRs,t ,
Rt,t = I(n+1) d×(n+1)d . Observe now that:

An+1
t =

⎛
⎜⎜⎜⎜⎜⎜⎝

a
1,1
t · · · · · · a

1,n+1
t

a
2,1
t

0 An
t

...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where An
t is an R

nd ⊗ R
nd matrix satisfying [H-3]. Hence, denoting by Rn

s,t the associated resolvent, i.e. d
ds

Rn
s,t =

An
s R

n
s,t ,R

n
t,t = Ind×nd , Rn

s,t satisfies (5.2) from the induction hypothesis, so that

∀i ∈ �1, n�,∀0≤ t ≤ s ≤ T ,
(
Rn

s,t

)i,1 = (s − t)i−1

(i − 1)! R
i,n

s,t ,

where the (R
i,n

s,t )i∈�1,n� are non-degenerate and bounded. Let us now observe that the differential dynamics of

(Rn+1
s,t )2:n+1,1 := ((Rn+1

s,t )2,1, . . . , (Rn+1
s,t )n+1,1)∗ writes:

d

ds

(
Rn+1

s,t

)2:n+1,1 =An
s

(
Rn+1

s,t

)2:n+1,1 +Gn+1
s,t , Gn+1

s,t :=
(
a

2,1
s (Rn+1

s,t )1,1 0n×n · · · 0n×n

)∗
,

where

(
Rn+1

s,t

)1,1 = �
n+1,1
s,t +

∫ s

t

�n+1,1
s,u

{
n+1∑
j=2

a
1,j
u

(
Rn+1

u,t

)j,1}
du, (5.3)
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�n+1,1 standing for the resolvent associated with a1,1. Using now the resolvent Rn
s,t , the above equation can be

integrated. We get:

(
Rn+1

s,t

)2:n+1,1 =
∫ s

t

Rn
s,uG

n+1
u,t du. (5.4)

From the above representation, using the induction assumption, (5.3) and Gronwall’s lemma we derive:

∣∣(Rn+1
s,t

)n+1,1∣∣≤ CT

∫ s

t

(s − u)n−1

(n− 1)!

{
1+

∫ u

t

n∑
j=2

∣∣(Rn+1
v,t

)j,1∣∣dv

}
du.

By induction one also derives for all i ∈ �2, n+ 1�:

∣∣(Rn+1
s,t

)i,1∣∣≤ CT

∫ s

t

(s − u)i−2

(i − 2)!

{
1+

∫ u

t

i−1∑
j=2

∣∣(Rn+1
v,t

)j,1∣∣dv

}
du,

up to modifications of CT at each step. These controls yield that for all i ∈ �2, n�, 0≤ t ≤ s ≤ T :

∣∣(Rn+1
s,t

)i,1∣∣=O
(
(s − t)i−1). (5.5)

Now from (5.4), (5.3) and the induction assumption, we obtain, for all i ∈ �2, n�, 0≤ t ≤ s ≤ T :

(
Rn+1

s,t

)i,1 = ∫ s

t

(s − u)i−2

(i − 2)! R
i−1,n

s,u a2,1
u

{
�

n+1,1
u,t +

∫ u

t

�n+1,1
u,v

{
n+1∑
j=2

a1,j
v

(
Rn+1

v,t

)j,1
dv

}}
du.

From the non degeneracy of R
i−1,n

, a2,1,�n+1,1 and (5.5), we can conclude as for the case n= 2. �

We can also mention some related analysis, emphasizing various specific time-scales, in Chaleyat-Maurel and Elie,
pp. 255–279 in [2], Kolokoltsov [20] and [11]. These procedures were performed to derive small time asymptotics of
the covariance matrix of, possibly perturbed, Gaussian hypoelliptic diffusions.

To conclude our analysis of the resolvent Rs,t , we give here a technical lemma that will be useful for the controls
of Section 6.

Lemma 5.2 (Scaling lemma). Under [H-3], the resolvent (Rs,T )s∈[t,T ], for 0 ≤ t < T associated with the linear
system d

ds
Rs,T =AsRs,T ,RT,T = Ind×nd can be written as

Rs,T = T
α
T−t R̂

t,T
(s−t)/(T−t)

(
T

α
T−t

)−1
,

where R̂
t,T
(s−t)/(T−t) is non-degenerate and bounded uniformly on s ∈ [t, T ] with constants depending on T .

Proof. The proof of the above statement follows from the structure of the matrix At (assumption [H-3]), setting for
all u ∈ [0,1], R̂t,T

u := (Tα
T−t )

−1Rt+u(T−t),T T
α
T−t and differentiating:

∂uR̂
t,T
u = (T − t)

(
T

α
T−t

)−1
At+u(T−t)Rt+u(T−t),T T

α
T−t

= (
(T − t)

(
T

α
T−t

)−1
At+u(T−t)T

α
T−t

)
R̂t,T

u :=At,T
u R̂t,T

u . �

Remark 5.1. Let us observe that the scaling Lemma already gives the right orders for the entries (R
i,1
t,s )i∈�1,n� of the

resolvent. However for the analysis of the Fourier transform of �, we explicitly need that those entries write in the
form of equation (5.2).
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5.2. Estimates on the frozen density

5.2.1. Existence and first estimates
The main result of this section is the following.

Proposition 5.3 (Existence of the density). Let T0 := T0([H]) be as in Lemma 5.1. The process (�s)s∈[t,t+T0], t ≥ 0,
defined in (5.1) has for all s ∈ (t, t + T0] a density p�s given for all z ∈Rnd by:

p�s (z) =
det(Ms−t )

−1

(2π)nd

∫
Rnd

e−i〈q,(Ms−t )
−1z〉 exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈q, ξ 〉)}νS(dξ)

)
dq,

where νS := νS(t, T , s, σ ) is a symmetric measure on Snd−1 s.t. uniformly in s ∈ (t, t + T0] for all A⊂R
nd :

νS(A)≤
∫
R+

dρ

ρ1+α

∫
Snd−1

1A(ρη)g(cρ)μ(dη), (5.6)

where μ satisfies [H-4] and dim(supp(μ))= d . As a consequence of this representation, we get the following global
(diagonal) estimate:

∃C := C
(
[H], T0

)
,∀s ∈ (t, t + T0],∀z ∈Rnd, p�s (z)≤ C det

(
T

α
s−t

)−1
. (5.7)

Remark 5.2. The previous result emphasizes that the process (�s)s∈[t,t+T0] can actually be seen as a possibly tem-
pered α-stable symmetric process in dimension nd , with non-degenerate spectral measure, (left) multiplied by the
intrinsic scale factor (Ms−t )s∈[t,t+T0].

Proof. The proof is divided into two steps:

– The first step is to compute the Fourier transform.

Starting from the representation (5.1), we write the integral as a limit of its increments. Let τn := {(ti)i∈�0,n�; t = t0 <

t1 < · · ·< tn = s} be a subdivision of [t, s], whose mesh |τn| :=maxi∈�0,n−1� |ti+1 − ti | tends to zero when n→∞.
Write now for all p ∈Rnd :

〈p,�s〉 = lim|τn|→0

n−1∑
i=0

〈
p,Rs,ti Bσti (Zti+1 −Zti )

〉= lim|τn|→0

n−1∑
i=0

〈
σ ∗ti B

∗R∗s,ti p, (Zti+1 −Zti )
〉
.

Since Z has independent increments, we get from (2.4) and the bounded convergence theorem that:

∀p ∈Rnd, ϕ�s (p) := E
(
ei〈p,�s 〉)= exp

(∫ s

t

∫
Rd

{
cos

(〈p,Rs,uBσuz〉
)− 1

}
g
(|z|)ν(dz) du

)
. (5.8)

– The second one is to prove its integrability.

Setting v = (s − u)/(s − t) and denoting u(v) := s − v(s − t), the exponent in (5.8) writes:∫ s

t

∫
Rd

{
cos

(〈p,Rs,uBσuz〉
)− 1

}
g
(|z|)ν(dz) du

= (s − t)

∫ 1

0

∫
Rd

{
cos

(〈
p,R

·,1
s,u(v)

σu(v)z
〉)− 1

}
g
(|z|)ν(dz) dv.

Now, from Lemma 5.1, we have the identity

R
·,1
s,u(v)

=Ms−tRv,
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setting with a slight abuse of notation

Rv =

⎛
⎜⎜⎜⎜⎝

R
1
v

vR
2
v

...

vn−1

(n−1)!R
n

v

⎞
⎟⎟⎟⎟⎠ ,

where the (R
k

v)k∈�1,n� ∈Rd ⊗R
d are non-degenerate and bounded. The exponent in (5.8) thus rewrites:

∫ s

t

∫
Rd

{
cos

(〈p,Rs,uBσuz〉
)− 1

}
g
(|z|)ν(dz) du

= (s − t)

∫ 1

0

∫
Rd

{
cos

(〈Ms−tp,Rvσu(v)z〉
)− 1

}
g
(|z|)ν(dz) dv

= (s − t)

∫ 1

0

∫
Rd

{
cos

(〈
σ ∗u(v)R

∗
vMs−tp, z

〉)− 1
}
g
(|z|)ν(dz) dv. (5.9)

Observe now from [H-4] and [T] (recall that g is C1 for α ∈ (0,1) or C2 for α ∈ [1,2), in a neighborhood of 0) that:

∫ s

t

∫
Rd

{
cos

(〈p,Rs,uBσuz〉
)− 1

}
g
(|z|)ν(dz) du

= (s − t)

∫ 1

0

∫
Rd

{
cos

(〈
σ ∗u(v)R

∗
vMs−tp, z

〉)− 1
}
g(0)ν(dz) dv

+ (s − t)

∫ 1

0

∫
Rd

{
cos

(〈
σ ∗u(v)R

∗
vMs−tp, z

〉)− 1
}(

g
(|z|)− g(0)

)
ν(dz) dv

≤ c(s − t)

{
−

∫ 1

0

∣∣σ ∗u(v)R
∗
vMs−tp

∣∣α dv+ 1

}
(5.10)

≤ c(s − t)

{
−

∫ 1

0

∣∣R∗vMs−tp
∣∣α dv+ 1

}
, c := c

(
[H]

)
, (5.11)

using the uniform ellipticity of σ in assumptions [H] for the last inequality. In the above computations, introducing
g(0) allows to exploit the explicit expression for the integral of the Fourier exponent of the stable Lévy measure ν

and to do Taylor expansions in a neighborhood of 0 for the term g(|z|)− g(0) thanks to the smoothness of g. Now,
the lower bound of the following lemma, whose proof is postponed to Section 5.2.3, gives that ϕ�s ∈ L1(Rnd) and
therefore yields the existence of the density.

Lemma 5.4. There exists a constant C5.4 := C5.4([H], T0) > 0, such that for all s ∈ [t, t + T0]:
∫ 1

0

∣∣R∗vMs−tp
∣∣α dv ≥ C5.4|Ms−tp|α. (5.12)

Since ϕ�s is integrable, we can write by (5.9) and Fourier inversion that for all z ∈Rnd :

p�s (z) =
1

(2π)nd

∫
Rnd

dpe−i〈p,z〉 exp

(
−(s − t)

∫ 1

0

∫
Rd

{
1− cos

(〈Ms−tp,Rvσu(v)z〉
)}

g
(|z|)ν(dz) dv

)

≤ 1

(2π)nd

∫
Rnd

dp exp
(−c(s − t)

{
C5.12|Ms−tp|α − 1

})
,
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using (5.10) and (5.12) for the last inequality. This readily gives the global (diagonal) upper bound for the density.
Now, let us also write from (2.2) and (2.4)

p�s (z) =
1

(2π)nd

∫
Rnd

dpe−i〈p,z〉

× exp

(
−(s − t)

∫
R+

dρ

ρ1+α

∫ 1

0

∫
Sd−1

{
1− cos

(〈Ms−tp,Rvσu(v)ρς〉)}g(ρ)μ̃(dς)dv

)

= 1

(2π)nd

∫
Rnd

dpe−i〈p,z〉 exp

(
−(s − t)

∫
R+

dρ̃

ρ̃1+α

∫ 1

0

∫
Sd−1

{
1− cos

(〈
Ms−tp,

Rvσu(v)ς

|Rvσu(v)ς |
ρ̃

〉)}

× g

(
ρ̃

|Rvσu(v)ς |
)
|Rvσu(v)ς |αμ̃(dς)dv

)
. (5.13)

We now define the function

f : [0,1] × Sd−1→ Snd−1,

(v, ς) �→ Rvσu(v)ς

|Rvσu(v)ς |
,

and on [0,1] × Sd−1 the measure:

mα,ρ̃(dv, dς)= g

(
ρ̃

|Rvσu(v)ς |
)
|Rvσu(v)ς |αμ̃(dς)dv.

The exponent in (5.13) thus rewrites:∫ 1

0

∫
Rd

{
1− cos

(〈Ms−tp,Rvσu(v)z〉
)}

g
(|z|)ν(dz) dv

=
∫
R+

dρ̃

ρ̃1+α

∫ 1

0

∫
Sd−1

{
1− cos

(〈
Ms−tp, f (v, ς)ρ̃

〉)}
mα,ρ̃(dv, dς)

=
∫
R+

dρ̃

ρ̃1+α

∫
Snd−1

{
1− cos

(〈Ms−tp, ηρ̃〉)}μ∗ρ̃ (dη),

denoting by μ∗
ρ̃

the image measure of mα,ρ̃ by f (which is a measure on Snd−1). Symmetrizing μ∗
ρ̃

introducing

μ∗
S,ρ̃

(A)= μ∗
ρ̃
(A)+μ∗

ρ̃
(−A)

2 , by parity of the cosine, we can write the exponent as:

∫ 1

0

∫
Rd

{
1− cos

(〈Ms−tp,Rvσu(v)z〉
)}

g
(|z|)ν(dz) dv =

∫
R+

dρ̃

ρ̃1+α

∫
Snd−1

{
1− cos

(〈Ms−tp, ηρ̃〉)}μ∗S,ρ̃(dη).

We eventually derive:

p�s (z) =
1

(2π)nd

∫
Rnd

dpe−i〈p,z〉 exp

(
−(s − t)

∫
R+

dρ̃

ρ̃1+α

∫
Snd−1

{
1− cos

(〈Ms−tp, ηρ̃〉)}μ∗S,ρ̃ (dη)

)

= 1

(2π)nd det(Ms−t )

∫
Rnd

dpe−i〈p,M−1
s−t z〉 exp

(
(s − t)

∫
Rnd

{
cos

(〈p, ξ 〉)− 1
}
νS(dξ)

)
, (5.14)

where νS is a symmetric measure on R
nd . Also, from (5.13) and Lemma 5.4 we get that there exists a symmetric

bounded measure μ on Snd−1 and a constant c > 0 s.t. for all A⊂R
nd :

νS(A)≤
∫
R+

dρ

ρ1+α

∫
Snd−1

1A(sξ)g(cρ)μ(dξ), (5.15)
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where μ satisfies [H-4] and dim(supp(μ)) = d , recalling for this last property that μ̃ is absolutely continuous w.r.t.
the Lebesgue measure of Sd−1. In the stable case, corresponding to g = 1 the equality holds in (5.15), and μ is the
spherical part of νS . In that case μ= μ∗

S,ρ̃
:= μS since the measure μ∗

S,ρ̃
introduced above would not depend on ρ.

In the general case, the domination in (5.15) can be simply derived from the fact that in (5.13) one has g(
ρ̃

|Rvσu(v)ς | )≥
g(cρ̃),∀(v, ς) ∈ [0,1] × Sd−1. �

5.2.2. Final derivation of the density bounds
Diagonal controls. We first consider the case |(Tα

s−t )
−1(Rs,t x − y)| ≤K . The upper-bound in (3.5) has already been

proven. To obtain the lower-bound we perform computations rather similar to the ones in [21] which are recalled in
Appendix A.

Off-diagonal controls. We now consider the case |(Tα
s−t )

−1(Rs,t x − y)| > K . We begin this paragraph recalling
some results of Watanabe [41]. The striking and subtle thing with multi-dimensional stable processes is that their large
scale asymptotics highly depend on the spectral measure. Namely, for a given symmetric spectral measure μ on Snd−1

satisfying [H-4], implying that the associated symmetric stable process (St )t≥0 has a density on R
nd for t > 0, the tail

asymptotics of S1 can behave, when |x| →+∞, as pS(1, x)� |x|−b for b ∈ [(1+α),nd(1+α)]. Indeed, the behavior
in |x|−(1+α) would correspond to the decay of a scalar stable process and can appear if μ=∑nd

i=1 ci(δei
+δ−ei

), where
the (ci)i∈�1,nd� are positive and (ei)i∈�1,nd� stand for the vectors of the canonical basis of Rnd , when considering the
asymptotics along one direction. On the other hand, the fastest possible decay of |x|−nd(1+α) is also associated with
this kind of spectral measure when investigating the large asymptotics for all the directions. Generally speaking, in
the current framework, if μ has support of dimension k ∈ �0, nd − 1� the asymptotics of S1 satisfy that there exists
C ≥ 1 s.t.:

C
−1

|x|nd(1+α)
≤ pS(1, x)≤ C

|x|k+1+α
. (5.16)

We refer to Theorem 1.1 points (i) and (iii) in [41] for the proof of these results. The strategy to derive those bounds
consists in carefully splitting the small and large jumps. This approach turns out to be very useful for us to investigate
the kernel H and is thoroughly exploited in Appendix B.

From the representation (3.4) of the density of X̃
t,T ,x,y
s and (5.16) we readily get the indicated controls in the stable

case. We refer to Appendix B for a thorough discussion on the general case.

5.2.3. Proof of Lemma 5.4
It is enough to show that there exists C5.4 := C5.4([H], T0), s.t. for any θ ∈ Snd−1,

∫ 1
0 |R

∗
vθ |α dv ≥ C5.4. We define

C := inf
θ∈Snd−1

∫ 1

0

∣∣R∗vθ ∣∣α dv.

By continuity of the involved functions and compactness of Snd−1, the infimum is actually a minimum. We need to
show that this quantity is not zero. We proceed by contradiction. Assume that C = 0. Then, there exists θ0 ∈ Snd−1

such that for almost all v ∈ [0,1], |R∗vθ0| = 0. But since R
∗
v is a continuous function in v, the previous statement holds

for all v ∈ [0,1], i.e. ∃θ0 ∈ Snd−1,∀v ∈ [0,1], |R∗vθ0| = 0, or equivalently, that ∃θ0 ∈ Snd−1,∀v ∈ [0,1], θ0 ∈Ker(R
∗
v).

Take now arbitrary (vi)i∈�1,n� in [0,1]. We have for each i ∈ �1, n�:

(
(R

1
vi

)∗ vi(R
2
vi

)∗ · · · vn
i

(n−1)! (R
n

vi
)∗

)⎛⎜⎝
θ1

0
...

θn
0

⎞
⎟⎠= 0Rd .

This equivalently writes in matrix form:⎛
⎜⎝

(R
1
v1

)∗ v1(R
2
v1

)∗ · · · vn
1

(n−1)! (R
n

v1
)∗

...
...

...

(R
1
vn

)∗ vn(R
2
vn

)∗ · · · vn
n

(n−1)! (R
n

vn
)∗

⎞
⎟⎠

⎛
⎜⎝

θ1
0
...

θn
0

⎞
⎟⎠= 0Rnd .
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Now, taking v1→ 0 in the first line yields (R
1
v1

)∗θ1
0 = 0Rd . Since the (R

i

v)i∈�1,n� are from Lemma 5.1 non degenerate,
we have that θ1

0 = 0Rd . Hence, the second line becomes:

v2
(
R

2
v2

)∗
θ2

0 + · · · +
vn

2

(n− 1)!
(
R

n

v2

)∗
θn

0 = 0Rd .

Dividing by v2, and taking v2→ 0, we get (R
2
v2

)∗θ2
0 = 0Rd . Hence, θ2

0 = 0Rd . By induction, we have that all compo-

nents θi
0 = 0Rd , but this contradicts θ0 ∈ Snd−1. This yields C := C5.4 > 0, which concludes the proof.

Remark 5.3. In the previous argument, the fact that the powers are increasing plays a key-role. Indeed, we rely on the
multi-scale property reflected by the scale matrix T

α .

5.2.4. Proof of Lemma 4.1
Let us write:∫

Rnd

f (y)p̃T ,y
α (t, T , x, y) dy − f (x) =

∫
Rnd

f (y)
(
p̃T ,y

α (t, T , x, y)− p̃
T ,RT,t x
α (t, T , x, y)

)
dy

+
∫
Rnd

f (y)
(
p̃

T ,RT,t x
α (t, T , x, y)

)
dy − f (x).

From Proposition 3.2, the second term tends to zero as T tends to t . Let us discuss the first term. Define:

�=
∫
Rnd

f (y)
(
p̃T ,y

α (t, T , x, y)− p̃
T ,RT,t x
α (t, T , x, y)

)
dy. (5.17)

For a given threshold K > 0 and a certain β > 0 to be specified, we split Rnd into D1 ∪D2 where:

D1 =
{
y ∈Rnd; ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣≤K(T − t)−β
}
,

D2 =
{
y ∈Rnd; ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣ > K(T − t)−β
}
.

From Propositions 3.3, 3.4, the two densities in (5.17) are upper-bounded by
C det(Tα

T−t )
−1

K∨|(Tα
T−t )

−1(y−RT,t x)|d+1+α . The idea

is that on D2 they are both in the off-diagonal regime so that tail estimates can be used. On the other hand, we
will explicitly exploit the compatibility between the spectral measures and the Fourier transform on D1. Set for

i ∈ {1,2},�Di
:= ∫

Di
f (y)(p̃

T ,y
α (t, T , x, y)− p̃

T ,RT,t x
α (t, T , x, y)) dy. We derive:

|�D2 | ≤ C|f |∞
∫

D2

det(Tα
T−t )

−1

K ∨ |(Tα
T−t )

−1(y −RT,tx)|d+1+α
dy

= C|f |∞
∫ +∞

K(T−t)−β

dr
rnd−1

K ∨ rd+1+α

≤ C(T − t)β((1−n)d+1+α).

Thus, for β > 0, �D2 −→
T ↓t 0. On D1, we will start from the inverse Fourier representation of p̃T ,w

α deriving from

(5.13), for w = y or RT,tx. Namely,

p̃T ,w
α (t, T , x, y)= 1

det(MT−t )(2π)nd

∫
Rnd

dpe−i〈p,M−1
T−t (y−RT,t x)〉 exp

(
FT−t (p,w)

)
,

where the Fourier exponent writes:

∀(p,w) ∈ (
R

nd
)2

, FT−t (p,w)=−(T − t)

∫ 1

0

∫
Rd

{
1− cos

(〈
p,Rvσ

(
u(v),Ru(v),T w

)
z
〉)

g
(|z|)ν(dz)

}
.
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We thus rewrite:

(
p̃T ,y

α − p̃
T ,RT,t x
α

)
(t, T , x, y) = 1

det(MT−t )(2π)nd

∫
Rnd

dpe−i〈p,M−1
T−t (y−RT,t x)〉

×
∫ 1

0
dλ

(
FT−t (p, y)− FT−t (p,RT,t x)

)
e(λFT−t (p,y)+(1−λ)FT−t (p,RT,t x)).

The key point is now to observe that from [H-2] the proof of Proposition 5.3 and the bound of Lemma 5.4, we have:

∀(p,w) ∈ (
R

nd
)2

, FT−t (p,w)≤C5.4(T − t)
(−|p|α + 1

)
.

Hence, exp(λFT−t (p, y)+(1−λ)FT−t (p,RT,t x))≤ exp(C5.4(T − t){−|p|α+1}), independently on λ ∈ [0,1]. Now,
the smoothness of the tempering function g in [T] yields:∣∣FT−t (p, y)− FT−t (p,RT,tx)

∣∣
≤ (T − t)

∫ 1

0

∣∣∣∣
∫
Rd

cos
(〈
σ
(
u(v),Ru(v),T y

)∗
R
∗
vp, z

〉)− cos
(〈
σ
(
u(v),Ru(v),t x

)∗
R
∗
vp, z

〉)
g
(|z|)ν(dz)

∣∣∣∣dv

≤ c(T − t)

{∫ 1

0

∫
Sd−1

∣∣∣∣〈p,Rvσ
(
u(v),Ru(v),T y

)
ς
〉∣∣α − ∣∣〈p,Rvσ

(
u(v),Ru(v),t x

)
ς
〉∣∣α∣∣μ(dς)dv+ 1

}
,

using the notations of the proof of Proposition 5.3. On the other hand, since σ is η-Hölder continuous in its second
variable (see [H-1]), we have:∣∣F(p,y)− F(p,RT,t x)

∣∣
≤ c(T − t)

{∫ 1

0
|p|α|Ru(v),T y −Ru(v),t x|η(α∧1) dv+ 1

}

≤ C(T − t)
{|p|α|y −RT,tx|η(α∧1) + 1

}
,

using the Lipschitz property of the flow for the last inequality.
To summarize, we get in all cases:

|�D1 | ≤ |f |∞
∫

D1

dy
∣∣p̃T ,y

α (t, T , x, y)− p̃T ,x
α (t, T , x, y)

∣∣
≤ C|f |∞ 1

det(MT−t )

∫
D1

dy

∫
Rnd

dp(T − t)
{|p|α|y −RT,tx|η(α∧1) + 1

}
e−C5.4(T−t)|p|α .

Changing variables, and integrating over p yields

|�D1 | ≤
C

det(Tα
T−t )

∫
{|(Tα

T−t )
−1(y−RT,t x)|≤K(T−t)−β }

dy
{|y −RT,tx|η(α∧1) + (T − t)

}

≤ C

∫
{|Y |≤K(T−t)−β }

dY
{∣∣Tα

T−t Y
∣∣η(α∧1) + (T − t)

}
≤ C(T − t)η(1/α∧1)−β(nd+η(α∧1)).

Choosing now η(1/α∧1)
nd+η(α∧1)

> β > 0 gives that |�D1 |−→
T ↓t 0, which concludes the proof.

5.3. Estimates on the convolution kernel H

In order to derive pointwise bounds on the kernel H(t, T , x, y) := (Lt − L̃
T ,y
t )p̃

T ,y
α (t, T , x, y), it is convenient, since

p̃
T ,y
α is given in terms of Fourier inversion, to compute the symbols of the operators Lt , L̃

T ,y
t . Precisely, we denote by
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lt (p, x) (resp. l̃
T ,y
t (p, x)) the functions of (p, x) ∈ (Rnd)2 s.t.

∀ϕ ∈ C2
0

(
R

nd
)
,∀x ∈Rnd, Ltϕ(x)= 1

(2π)nd

∫
Rnd

dp exp
(−i〈p,x〉)lt (p, x)ϕ̂(p),

L̃
T ,y
t ϕ(x)= 1

(2π)nd

∫
Rnd

dp exp
(−i〈p,x〉)l̃T ,y

t (p, x)ϕ̂(p).

We refer to Jacob [17] for further properties of the symbols associated with an integro-differential operator. From
usual properties of the (inverse) Fourier transform, we derive the following expressions.

Lemma 5.5. Let (p, x) ∈ (Rnd)2 be given. Recalling that B stands for the injection matrix of Rd into R
nd , we have:

lt (p, x)= 〈p,Atx〉 +
∫
Rd

{
cos

(〈
p,Bσ(t, x)z

〉)− 1
}
g
(|z|)ν(dz),

l̃
T ,y
t (p, x)= 〈p,Atx〉 +

∫
Rd

{
cos

(〈
p,Bσ(t,Rt,T y)z

〉)− 1
}
g
(|z|)ν(dz).

From Lemma 5.5 we rewrite:

H(t, T , x, y)

= 1

(2π)nd

∫
Rnd

dpe−i〈p,y−RT,t x〉
{∫

Rd

{
cos

(〈
p,Bσ(t, x)z

〉)− cos
(〈
p,Bσ(t,Rt,T y)z

〉)}
g
(|z|)ν(dz)

}

× exp

(
−

∫ T

t

du

∫
Rd

{
1− cos

(〈
p,R

1,·
T ,uσ

(
u,Ru,T y

)
z̃
〉)}

g
(|z̃|)ν(dz̃)

)
.

Remark 5.4. Observe the interesting fact that since the drift is linear, it disappears in the difference of the generators.

Let us now derive the diagonal bounds on the kernel, i.e. when |(Tα
T−t )

−1(y−RT,tx)| ≤K . Observe first from the
proof of Proposition 5.3 that we can write:∣∣H(t, T , x, y)

∣∣
≤ C

∫
Rnd

dp

∣∣∣∣
∫
Rd

{
cos

(〈
p,Bσ(t, x)z

〉)− cos
(〈
p,Bσ(t,Rt,T y)z

〉)}
g
(|z|)ν(dz)

∣∣∣∣ exp
(−c

∣∣Tα
T−tp

∣∣α).
Assume first that α ∈ (0,1). We then perform a first order Taylor expansion in the variable z = ρς associated with
a radial cut-off at threshold 1/{|p1|�σ(t, x,Rt,T y)},�σ(t, x,Rt,T y) := |σ(t, x)− σ(t,Rt,T y)|. Recalling that σ is
η-Hölder continuous, we obtain:

∣∣H(t, T , x, y)
∣∣ ≤ C

∫
Rnd

dp

{∫
ρ≤1/{|p1|�σ(t,x,Rt,T y)}

∣∣p1
∣∣�σ(t, x,Rt,T y)ρμ̃(dς)

dρ

ρ1+α

+ 2
∫

ρ>1/{|p1|�σ(t,x,Rt,T y)}
dρ

ρ1+α

}
exp

(−c
∣∣Tα

T−tp
∣∣α)

≤ C

∫
Rnd

dp
∣∣p1

∣∣α{�σ(t, x,Rt,T y)
}α exp

(−c
∣∣Tα

T−tp
∣∣α)

≤ C
δ ∧ |x −Rt,T y|αη

T − t

∫
Rnd

dp(T − t)
∣∣p1

∣∣α exp
(−c

∣∣Tα
T−tp

∣∣α)

≤ C
δ ∧ |x −Rt,T y|αη

T − t
det

(
T

α
T−t

)−1

= C
δ ∧ |x −Rt,T y|αη

T − t
pα(t, T , x, y).
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The case α ∈ (1,2) can be handled as above performing a Taylor expansion at order 2 for the small jumps and 1 for
the large ones for the threshold 1/|p1|. The case α = 1 is direct in the stable case and can be extended to the tempered
one performing a first order Taylor expansion for the small jumps using the smoothness of g around the origin.

This gives the claim of Lemma 3.7 in the diagonal regime. The off-diagonal case is much more involved and leads
to consider a quite tricky phenomenon of rediagonalization. These aspects are considered in Appendix B.

Remark 5.5. We emphasize here that we could also consider an additional bounded drift term in the first d compo-
nents when α > 1. Denoting this term by b :R+ ×R

nd→R
d , we could still use the previous frozen process as proxy.

Exploiting the above symbol representation, the additional term coming from the difference of the generators would
write

〈
b(t, x),∇x1 p̃α(t, T , x, y)

〉 = 1

(2π)nd

∫
Rnd

dpe−i〈p,y−RT,t x〉〈b(t, x),p1〉

× exp

(
−

∫ T

t

du

∫
Rnd

{
1− cos

(〈
p,R

1,·
T ,uσ (u,Ru,T y)z

〉)}
g
(|z|)ν(dz)

)
,

where ∇x1 stands for the derivative w.r.t. to the first d components. Observe that |p1|(T − t)1/α is homogeneous to
the contributions associated with p1 in the exponential. This actually yields:

∣∣〈b(t, x),∇x1 p̃α(t, T , x, y)
〉∣∣≤ |b|∞

(T − t)1/α
pα(t, T , x, y),

on the diagonal which for α > 1 gives an integrable singularity in time. The off-diagonal case can be handled as in
Appendix B.

6. Controls of the convolutions

In this section we assume w.l.o.g. that T ≤ T0 = T0([H]) ≤ 1, as in Lemma 5.1. We first prove Lemma 3.8 that
emphasizes how the spatial contribution in the r.h.s. of (3.19) yields, once integrated, a regularizing effect in time.

6.1. Proof of Lemma 3.8

We prove the first estimate only, the other one is obtained similarly. Let us naturally split the space according to the
regimes of pα and p̆α . With the notations of Proposition 3.3 we introduce the partition:

D1 =
{
z ∈Rnd; ∣∣(Tα

T−τ

)−1
(y −RT,τ z)

∣∣≤K
}
,

D2 =
{
z ∈Rnd; ∣∣(Tα

T−τ

)−1
(y −RT,τ z)

∣∣ > K
}
.

On D1, the diagonal control holds for pα+ p̆α , that is, for z ∈D1 and recalling the definition of Tα
T−τ in Theorem 2.2:

(pα + p̆α)(τ, T , z, y)≤ C3.3 det
(
T

α
T−τ

)−1 = C3.3(T − τ)−d(n/α+n(n−1)/2).

On the other hand, denoting by ‖ · ‖ the matricial norm, we have from the scaling Lemma 5.2:

|z−Rτ,T y|η(α∧1) ≤ ‖Rτ,T ‖η(α∧1)
∥∥Tα

T−τ

∥∥η(α∧1)∣∣(Tα
T−τ

)−1
(y −RT,τ z)

∣∣η(α∧1) ≤C(T − τ)η(1/α∧1),

where the last inequality follows from the boundedness of the resolvent on compact sets and the definition of Tα
T−τ .

Besides, the Lebesgue measure of the set D1 is bounded by C det(Tα
T−τ ), compensating exactly the time singularity

appearing in the bound of p̃α + p̆α . In conclusion, we obtained on D1:∫
D1

δ ∧ |z−Rτ,T y|η(α∧1)(pα + p̆α)(τ, T , z, y) dz≤C(T − τ)η(1/α∧1).
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Similarly, for z ∈D2, the off-diagonal bound holds for pα and p̆α , i.e.:

(pα + p̆α)(τ, T , z, y) ≤ C

{
det(Tα

T−τ )
−1

|(Tα
T−τ )

−1(y −RT,τ z)|d+1+α

+
1|(z−Rτ,T y)1|/(T−τ)1/α |�|T−α

(T−τ )
(z−Rτ,T y)|

(T − τ)d/α(1+ |(z−Rτ,T y)1|/(T − τ)1/α)d+α

× 1

(T − τ)(n−1)d/α+n(n−1)d/2(1+ |(T−α
T−τ (z−Rτ,T y))2:n|)1+α

}
.

From the scaling Lemma 5.2 we derive |z−Rτ,T y|η(α∧1) ≤ C|y −RT,τ z|η(α∧1) ≤C(T − τ)η(1/α∧1)|(Tα
T−τ )

−1×
(y −RT,τ z)|η(α∧1). Hence setting ξ := |(Tα

T−τ )
−1(y −RT,τ z)| we first derive

∫
D2

δ ∧ |z−Rτ,T y|η(α∧1)pα(τ, T , z, y) dz≤ C

∫
ξ>K

(
δ ∧ [

(T − τ)η(1/α∧1)ξη(α∧1)
])

ξnd−1 dξ

ξd+1+α
. (6.1)

Now if β := (1 − n)d + 2 + α − η(α ∧ 1) > 1, we directly get
∫
ξ>K

(δ ∧ [(T − τ)η(1/α∧1)ξη(α∧1)]) dξ

ξ(1−n)d+2+α ≤
(T − τ)η(1/α∧1)

∫
ξ>K

dξ

ξβ ≤ C(T − τ)η(1/α∧1). When β ≤ 1 we have to be more subtle. We refine the partition intro-
ducing:

D2,1 =
{
ξ ∈R;K ≤ ξ ≤K(T − τ)−1/α

}
, D2,2 =

{
ξ ∈R; ξ > K(T − τ)−1/α

}
.

On D2,1, writing δ ∧ [(T − τ)η(1/α∧1)ξη(α∧1)] ≤ [(T − τ)η(1/α∧1)ξη(α∧1)] we get: (T − τ)η(1/α∧1)
∫
ξ∈D2,1

dξξ−β ≤
C{(T − τ)((1−n)d+1+α)/α1β<1+ (T − t)η(1/α∧1)| log(T − τ)|1β=1}. On D2,2, using δ ∧ [(T − τ)η(1/α∧1)ξη(α∧1)] ≤ δ

we derive
∫
ξ∈D2,2

dξ

ξ(1−n)d+2+α ≤Cδ(T −τ)((1−n)d+1+α)/α . Plugging the above controls in (6.1) yields the stated control.
Let us now turn to:∫

D2

δ ∧ |z−Rτ,T y|η(α∧1)p̆α(τ, T , z, y) dz

≤ C

∫
|ζ |>K

(
δ ∧ [

(T − τ)η(1/α∧1)|ζ |η(α∧1)
]) 1|ζ 1|�|ζ |

(1+ |ζ 1|)d+α

dζ

(1+ |ζ 2:n|)1+α
,

where we have set ζ := (Tα
T−τ )

−1(y −RT,τ z). We can now somehow tensorize the two contributions. We obtain on
the considered events:∫

D2

δ ∧ |z−Rτ,T y|η(α∧1)p̆α(τ, T , z, y) dz

≤ C

{∫
|ζ 1|>cK

(
δ ∧ [

(T − τ)η(1/α∧1)
∣∣ζ 1

∣∣η(α∧1)]) dζ 1

|ζ 1|d+α

+
∫
|ζ |>K

(
δ ∧ [

(T − τ)η(1/α∧1)
∣∣ζ 2:n∣∣η(α∧1)]) 1|ζ 1|�|ζ |

(1+ |ζ 1|)d+α

dζ

(1+ |ζ 2:n|)1+α

}

:= T̆1 + T̆2.

For the term T̆1, we directly have T̆1 ≤ C(T − τ)η(1/α∧1) provided α > η(α ∧ 1). Otherwise, i.e. the only possible
case is α = η(α ∧ 1), considering the partition |ζ 1| ∈D2,1 ∪D2,2 as above replacing K by cK , one can reproduce the
previous arguments. Namely, on D2,1, (T − τ)η(1/α∧1)

∫
D2,1

r−(1+α)+η(α∧1) dr ≤C{(T − τ)η(1/α∧1)| log(T − τ)|}. On

the other hand, on D2,2,
∫
D2,2

(δ ∧ [(T − τ)η(1/α∧1)|ζ 1|η(α∧1)]) dζ 1

|ζ 1|d+α ≤ δ
∫
r>(T−τ)−1/αKc

dr

r1+α ≤ Cδ(T − τ). For T̆2,
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on {|ζ 2:n| ≤K} we directly get the estimate. Now, for {|ζ |2:n > K} we get:∫
|ζ 2:n|>K∩|ζ |>K

(
δ ∧ [

(T − τ)η(1/α∧1)
∣∣ζ 2:n∣∣η(α∧1)]) 1|ζ 1|�|ζ |

(1+ |ζ 1|)d+α

dζ

(1+ |ζ 2:n|)1+α

≤ (T − τ)η(1/α∧1)

∫
|ζ 1|>cK

dζ 1

(1+ |ζ 1|)d+α

∫
c|ζ 1|≥|ζ 2:n|≥K

∣∣ζ 2:n∣∣η(α∧1) dζ 2:n

(1+ |ζ 2:n|)1+α

≤ C(T − τ)η(1/α∧1)

∫
|ζ 1|>cK

dζ 1

(1+ |ζ 1|)d+α

{∣∣ζ 1
∣∣η(α∧1)+(n−1)d−1−α1β<1 + log

(∣∣ζ 1
∣∣)1β=1

}
,

for β as above. Thus

T̆2 ≤ C(T − τ)η(1/α∧1)

{
1+

∫
r>cK

dr
{
r−(d(1−n)+2+2α−η(α∧1))1β<1 + r−(1+α) log(r)1β=1

}}

≤ C(T − τ)η(1/α∧1),

using again the condition d(1− n)+ 1 + α > 0 for the last inequality. The smoothing bounds of equations (3.22),
(3.23) for d = 1, n= 2 when the fast component is considered can be derived similarly. �

A useful extension of the previous result is the following lemma involving an additional logarithmic contribution
which is explosive in the off-diagonal regime. This anyhow does not affect much the smoothing effect.

Lemma 6.1. There exists C6.1 := C6.1([H], T0) > 0 s.t. for all T ∈ (0, T0], (x, y) ∈ (Rnd)2, τ ∈ (t, T ):∫
Rnd

log
(
K ∨ ∣∣(Tα

T−τ

)−1
(y −RT,τ z)

∣∣){δ ∧ ∣∣(z−Rτ,T y)2
∣∣η(α∧1)}

(pα + p̆α)(τ, T , z, y) dz

≤ C6.1(T − τ)(1+1/α)η(α∧1),∫
Rnd

log
(
K ∨ ∣∣(Tα

τ−t

)−1
(z−Rτ,tx)

∣∣){δ ∧ [
(τ − t)

∣∣(z−Rτ,tx)1
∣∣+ ∣∣(z−Rτ,tx)2

∣∣]η(α∧1)}
pα,�(t, τ, x, z) dz

≤ C6.1(τ − t)(1+1/α)η(α∧1).

Proof. The proof does not change much from the previous one. Observe first that, from the supremum in the loga-
rithm, the only difference arises for off-diagonal regimes, that is, for z ∈D2 referring to the partition in the previous
proof. The argument in the logarithm is however the same as the denominator of the off-diagonal estimate. After
changing variables to ξ or ζ with the notations of the previous proof, it suffices to observe that for any ε ∈ (0, α),
there exists Cε > 0 s.t. for all r > K : log(K ∨ r)≤ Cεr

ε . Taking ε > 0 s.t. d(1−n)+1+α− ε > 0 allows to proceed
as in the proof of Lemma 3.8. �

We now state a key lemma for our analysis. It gives a control for the first convolution between the frozen density
p̃α and the parametrix kernel H . The result differs here from the expected one: we get an additional logarithmic
factor, w.r.t. the bounds established for this quantity in [11] for the Gaussian degenerate case, or [21] for the stable
non-degenerate case, as well as another contribution coming from the rediagonalization phenomenon.

Lemma 6.2 (First step convolution). Assume d = 1, n= 2. There exist C6.2 := C6.2([H]) > 0,ω := ω([H]) ∈ (0,1]
s.t. for all T ∈ (0, T0], T0 := T0([H])≤ 1, (x, y) ∈ (Rnd)2, t ∈ [0, T ),

|p̃α ⊗H |(t, T , x, y) ≤ C6.2
(
pα(t, T , x, y)

(
(T − t)ω

+ δ ∧ |x −Rt,T y|η(α∧1)
(
1+ log

(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣)))
+ [

δ ∧ |x −Rt,T y|η(α∧1)
]
p̌α(t, T , x, y)

)
,
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with p̌ as in (3.24). Suppose now that [HT] holds, that σ(t, x)= σ(t, x2) and η > 1/[(α ∧ 1)(1+ α)]. We can then
improve the previous bound and derive:

|p̃α ⊗H |(t, T , x, y) ≤ C6.2
(
(T − t)ωpα,�(t, T , x, y)+ qα,�(t, T , x, y)

)
, (6.2)

where we denote:

qα,�(t, T , x, y) = δ ∧ {
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}η(α∧1)

× [
pα,�(t, T , x, y)

(
1+ log

[
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣])].
Remark 6.1. The first part of the Lemma gives the bound of Lemma 3.9. Let us emphasize that this bound is not
sufficient to derive the convergence of the parametrix series (3.13). The difficulty comes from the term in p̌ deriving
from the rediagonalization phenomenon that induces a possible loss of concentration in the stable case and also
prevents from a regularizing property in the tempered one if σ depends on both variables. Namely, the additional time
singularity in p̌ can be compensated if σ only depends on the fast variable, which gives a higher order smoothing
effect, but does not seem to be easily handleable in the general setting. The control (6.2) is actually sufficient to imply
the convergence of the parametrix series when d = 1, n= 2, σ (t, x)= σ(t, x2) under the indicated condition on η. It
gives the first statement in Lemma 3.10.

Proof. To perform the analysis, we first bound H using (3.19). We thus obtain:

|p̃α ⊗H |(t, T , x, y)≤ C

∫ T

t

dτ

∫
Rnd

pα(t, τ, x, z)
δ ∧ |z−Rτ,T y|η(α∧1)

T − τ
(pα + p̆α)(τ, T , z, y) dz. (6.3)

For the proof it will be convenient to split the time interval [t, T ] into two subintervals I1 := [t, t+T
2 ], I2 := [ t+T

2 , T ].
We observe that for τ ∈ I1, T − τ � T − t whereas for τ ∈ I2, τ − t � T − t .

The leading idea for the proof is to partition the space in order to say that one of the densities involved in (6.3)
is homogeneous to the global one pα(t, T , x, y), and to get some regularization from the other contribution, using
thoroughly Lemma 3.8.

Diagonal estimates. When the global diagonal regime holds, i.e. |(Tα
T−t )

−1(RT,t x − y)| ≤ K , we will prove the
following global diagonal estimate:

|p̃α ⊗H |(t, T , x, y)≤ C
(
(T − t)ω + δ ∧ |x −Rt,T y|η(α∧1)

)
pα(t, T , x, y). (6.4)

Indeed, on I1, if |(Tα
T−τ )

−1(y − RT,τ z)| ≤ K , from Proposition 3.3 the diagonal estimate holds for pα(τ,T , z, y).
Since T − τ � T − t , we have:

pα(τ,T , z, y)≤ C det
(
T

α
T−τ

)−1 ≤ C det
(
T

α
T−t

)−1 ≤ Cpα(t, T , x, y).

On the other hand, if |(Tα
T−τ )

−1(y − RT,τ z)| > K , the off-diagonal expansion holds for pα(τ,T , z, y) and from
Proposition 3.3:

pα(τ,T , z, y)≤ C
det(Tα

T−τ )
−1

|(Tα
T−τ )

−1(y −RT,τ z)|d+1+α
≤ C det

(
T

α
T−τ

)−1 ≤ C det
(
T

α
T−t

)−1 ≤ Cpα(t, T , x, y).2

Additionally, the boundedness of the resolvent yields:

|z−Rτ,T y| ≤ |z−Rτ,tx| + |Rτ,tx −Rτ,T y| ≤ C
(|z−Rτ,tx| + |x −Rt,T y|). (6.5)

2Observe that we could have used here that the diagonal control is a global bound. We introduced the dichotomy on the regime to emphasize that
it is a crucial argument in this section.
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On the other hand, on I1:

p̆(τ, T , z, y)≤C det
(
T

α
T−t

)−1 ≤ Cpα(t, T , x, y). (6.6)

Denoting by ⊗|I1 the time–space convolution, where the time parameter is restricted to the interval I1, we have from
(6.3), (6.5), (6.6) and Lemma 3.8:

|p̃α ⊗|I1 H |(t, T , x, y) ≤ Cpα(t, T , x, y)

∫
I1

dτ

×
∫
Rnd

pα(t, τ, x, z)

(
δ ∧ |z−Rτ,tx|η(α∧1)

τ − t
+ δ ∧ |x −Rt,T y|η(α∧1)

T − t
+ 1

)
dz

≤ Cpα(t, T , x, y)

∫
I1

dτ

(
(τ − t)ω−1 + δ ∧ |x −Rt,T y|η(α∧1)

T − t
+ 1

)

≤ Cpα(t, T , x, y)
(
(T − t)ω + δ ∧ |x −Rt,T y|η(α∧1)

)
. (6.7)

Now, when τ ∈ I2, we have pα(t, τ, x, z)≤ pα(t, T , x, y), so that from Lemma 3.8:

|p̃α ⊗|I2 H |(t, T , x, y) ≤ Cpα(t, T , x, y)

∫
I2

dτ

∫
Rnd

δ ∧ |z−Rτ,T y|η(α∧1)

T − τ
(pα + p̆α)(τ, T , z, y) dz

≤ Cpα(t, T , x, y)

∫
I2

dτ(T − τ)ω−1

≤ C(T − t)ωpα(t, T , x, y).

Off-diagonal estimates. We consider here the case |(Tα
T−t )

−1(y −RT,tx)| ≥K . Since we will need in the proof to
exploit the semigroup property of Corollary 3.5 we restrict for the off-diagonal estimates to the case d = 1, n= 2.

Contributions involving pα(t, T , x, y). We first consider the contributions involving pα(t, T , x, y) which is in the
off-diagonal regime. In our current degenerate setting, several scales are involved in the term |(Tα

T−t )
−1(y −RT,tx)|.

The slow time scale, associated with the first component of the process, induces in the off-diagonal regime additional
time singularities in the density w.r.t. to the non-degenerate case. We thus need to be very careful when comparing the
two contributions in pα appearing in the convolution p̃α ⊗H . Observe anyhow from the scaling Lemma 5.2 that:

∣∣(Tα
T−t

)−1
(y −RT,tx)

∣∣ ≤ ∣∣(Tα
T−t

)−1
(y −RT,τ z)

∣∣+ ∣∣(Tα
T−t

)−1(
T

α
T−t R̂

t,T
(τ−t)/(T−t)

(
T

α
T−t

)−1{z−Rτ,t x}
)∣∣

≤ ∣∣(Tα
T−t

)−1
(y −RT,τ z)

∣∣+C
∣∣(Tα

T−t

)−1
(z−Rτ,t x)

∣∣
≤ ∣∣(Tα

T−τ

)−1
(y −RT,τ z)

∣∣+C
∣∣(Tα

τ−t

)−1
(z−Rτ,tx)

∣∣, C := C
(
[H], T0

)
. (6.8)

Hence, at least one of the two densities involved in the convolution is off-diagonal. As emphasized below, the main dif-
ficulty w.r.t. the non degenerate case consists in suitably controlling the multi-scale effects that prevent from handling
directly the time singularity of H in the convolution p̃α ⊗H , see e.g. Proposition 3.2 in Kolokoltsov [21]. Assume
now that the component number k ∈ {1,2} dominates in pα(t, T , x, y) when considering the flow at the current time
τ of the convolution, the off-diagonal estimate becomes:

pα(t, T , x, y)≤ C
(det(Tα

T−t ))
−1

|(Tα
T−t )

−1(Rτ,t x −Rτ,T y)|2+α
θ
(∣∣M−1

T−t (Rτ,t x −Rτ,T y)
∣∣)

≤ C
(T − t)−ζ(k)

|Rk
τ,t x −Rk

τ,T y|2+α
θ
(∣∣M−1

T−t (Rτ,t x −Rτ,T y)
∣∣),

ζ(k)=
(

2

α
+ 1

)
−

(
(k − 1)+ 1

α

)
(2+ α).
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According to the sign of the power of T − t , two cases arise. Set for k ∈ {1,2}, γ (k) := −ζ(k)− 1. For the second, or
fast, component, the exponent γ (2)=−ζ(2)− 1= 1+ α is non negative. For the first, slow component γ (1)=−1.
This is the aforementioned slow/fast dichotomy.

– When the fast component dominates, as the off-diagonal estimates are not singular in time anymore, no major
problem arises. We refine (6.8) in the following sense:

K(T − t)1+1/α ≤ ∣∣R2
τ,T y −R2

τ,t x
∣∣≤ ∣∣R2

τ,T y − z2
∣∣+ ∣∣z2 −R2

τ,t x
∣∣.

Thus, at least one of the two densities in (6.3) is off-diagonal through a fast component. On the one hand, if
1/2|R2

τ,T y −R2
τ,t x| ≤ |z2 −R2

τ,t x|,

pα(t, τ, x, z) ≤ C
det(Tα

τ−t )
−1

|(Tα
τ−t )

−1(z−Rτ,tx)|2+α
θ
(∣∣M−1

τ−t (z−Rτ,tx)
∣∣)

≤ C
(τ − t)γ (2)+1

|z2 −R2
τ,t x|2+α

θ
(∣∣M−1

τ−t (z−Rτ,tx)
∣∣)

≤ C
(T − t)γ (2)+1

|R2
τ,t x −R2

τ,T y|2+α
θ
(∣∣M−1

T−t (Rτ,t x)−Rτ,T y
∣∣).

On the other hand, if 1/2|R2
τ,T y −R2

τ,t x| ≤ |z2 −R2
τ,T y|,

1

T − τ
pα(τ, T , z, y) ≤ C

(T − τ)γ (2)

|z2 −R2
τ,T y|2+α

θ
(∣∣M−1

T−τ (z−Rτ,T y)
∣∣)

≤ C

T − t

(T − t)γ (2)+1

|R2
τ,T y −R2

τ,t x|2+α
θ
(∣∣M−1

T−t (Rτ,T y −Rτ,tx)
∣∣).

In both cases, we are in position to apply Lemma 3.8, directly in the first case, similarly to (6.7) in the second one. The
proof is then the same as in Kolokoltsov [21]. Observe that in the second case, we have compensated the singularity
associated with the contribution pα in the kernel H , independently of the position of the time parameter τ .

– We now focus on the second case, that is when the slow component dominates so that γ (1) is negative. We
consider the partition [t, T ] = I1 ∪ I2 and start with τ ∈ I2. In this case, we have T − t � τ − t . In other words, this
is the case where the singularity induced by the kernel H is the worst.

We split R2 into

D1 :=
{
z ∈R2; (T − τ)β

∣∣(Tα
T−t

)−1
(y −RT,tx)

∣∣≤ ∣∣(Tα
τ−t

)−1
(z−Rτ,tx)

∣∣},
(6.9)

D2 :=
{
z ∈R2; (T − τ)β

∣∣(Tα
T−t

)−1
(y −RT,tx)

∣∣ >
∣∣(Tα

τ−t

)−1
(z−Rτ,tx)

∣∣},
for a parameter β > 0 to be specified later on. We define accordingly, for i ∈ {1,2}:

Aα,I2,Di
(t, T , x, y) :=

∫
I2

dτ

∫
Di

pα(t, τ, x, z)
δ ∧ |z−Rτ,T y|η(α∧1)

T − τ
pα(τ, T , z, y) dz. (6.10)

Observe first that since:∣∣R1
τ,t x −R1

τ,T y
∣∣≤ ∣∣R1

τ,t x − z1
∣∣+ ∣∣z1 −R1

τ,T y
∣∣,

and since the first and slow component dominates, we have that the tempering term for the convolution can be obtained
taking out of the integral one of the tempering functions appearing in the densities. Precisely, we have either

θ
(∣∣M−1

τ−t (Rτ,t x − z)
∣∣)≤ Cθ

(∣∣M−1
T−t (Rτ,t x −Rτ,ty)

∣∣), or

θ
(∣∣M−1

T−τ (Rτ,T y − z)
∣∣)≤Cθ

(∣∣M−1
T−t (Rτ,t x −Rτ,t y)

∣∣).
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Let us first deal with z ∈D1 assuming w.l.o.g. that the first above condition holds, since otherwise the other tempering
function in the bound of pα(τ,T , z, y) can be taken out of the integral without altering the smoothing effect of the
kernel. Since τ ∈ I2, we have:

pα(t, τ, x, z) ≤ C
det(Tα

τ−t )
−1

|(Tα
τ−t )

−1(z−Rτ,tx)|2+α
θ
(∣∣M−1

τ−t (Rτ,t x − z)
∣∣)

≤ C
det(Tα

T−t )
−1

(T − τ)β(2+α)|(Tα
T−t )

−1(y −RT,tx)|2+α
θ
(∣∣M−1

T−t (y −RT,tx)
∣∣).

Hence, as we did in the first part of the proof, we take out pα(t, τ, x, z) off the integral (6.10). This is done here up to
the additional singular coefficient (T − τ)−β(2+α). Still from Lemma 3.8, we get:

Aα,I2,D1(t, T , x, y)≤Cpα(t, T , x, y)

∫
I2

dτ(T − τ)ω−β(2+α)−1.

Then, in order to get an integrable bound, we must take:

0 < β <
ω

2+ α
. (6.11)

On D2, we have to be more subtle. From the previous partition, the idea is to say that if τ ∈ [τ0, T ] for τ0 close
enough to T , then the diagonal bound holds for the first density on D2. In such cases we manage to get the global
expected bound in the convolution. However, the previous τ0 will highly depend on the global off-diagonal estimate
|(Tα

T−t )
−1(RT,t x − y)|, and for τ ∈ I2, τ ≤ τ0, we did not succeed to do better than integrating the singularity in

(T − τ)−1 yielding the logarithmic contribution.

• Let us fix δ0 ∈ (0,K). Observe that for fixed (t, T , x, y), if τ ≥ τ0 := T − (
δ0

|(Tα
T−t )

−1(y−RT,t x)| )
1/β then δ0 ≥

(T − τ)β |(Tα
T−t )

−1(y −RT,tx)|. Then, since z ∈D2, we have δ0 ≥ |(Tα
τ−t )

−1(z−Rτ,tx)|, and the diagonal estimate
holds for pα(t, τ, x, z). We write:

Aα,I2∩{τ≥τ0},D2(t, T , x, y) ≤ C

∫
I2∩{τ≥τ0}

dτ det
(
T

α
τ−t

)−1
∫

D2

δ ∧ |z−Rτ,T y|η(α∧1)

T − τ
pα(τ, T , z, y) dz

Lemma 3.8≤ Cθ
(∣∣M−1

T−t (y −RT,tx)
∣∣) ∫

I2∩{τ≥τ0}
dτ det

(
T

α
τ−t

)−1
(T − τ)ω−1.

Now δ2+α
0 ≥ (T − τ)β(2+α)|(Tα

T−t )
−1(y −RT,tx)|2+α , so that:

Aα,I2∩{τ≥τ0},D2(t, T , x, y)≤
∫

I2

dτ det
(
T

α
T−t

)−1
(T − τ)ω−β(2+α)−1 δ2+α

0 θ(|M−1
T−t (y −RT,tx)|)

|(Tα
T−t )

−1(y −RT,tx)|2+α
.

Thus, as long as β satisfies (6.11), Aα,I2∩{τ≥τ0},D2(t, T , x, y)≤ (T − t)ωpα(t, T , x, y),ω := ω− β(2+ α).
• Assume now that τ < τ0 = T − (

δ0
|(Tα

T−t )
−1(y−RT,t x)| )

1/β . The singularity induced by H is then integrable, and

yields the logarithmic contribution. Specifically:

Aα,I2∩{τ<τ0},D2(t, T , x, y) ≤ C

∫
I2

dτ1τ≤τ0

∫
D2

pα(t, τ, x, z)
δ ∧ |z−Rτ,T (y)|η(α∧1)

T − τ
pα(τ, T , z, y) dz.

Now, the key-point to get a smoothing effect is to keep the δ ∧ |x −Rt,T y|η(α∧1) part in the control of the convo-
lution. In order to keep track of this term, we need to determine which component dominates in |x −Rt,T y|. This can
be rather intricate in the multi-scale setting. In the case n= 2, the only slow component is the first one. Saying that it
dominates at a given integration time τ is asking:∣∣R2

τ,T y −R2
τ,t x

∣∣≤ (T − t)
∣∣R1

τ,T y −R1
τ,t x

∣∣. (6.12)
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Furthermore, we can write:∣∣R1
T ,t x − y1

∣∣ ≥ ∣∣R1
τ,t x −R1

τ,T y
∣∣− ‖RT,τ − I‖|Rτ,tx −Rτ,T y|.

From Lemma 5.1, and observing from its proof that we could also establish that
∑2

j=1 ‖(RT,τ − I )j,2‖ +
‖(RT,τ − I )1,1‖ ≤ C(T − τ),C := C([H], T0), T0 ≤ 1 we get using (6.12):∣∣R1

T ,t x − y1
∣∣ ≥ ∣∣R1

τ,t x −R1
τ,T y

∣∣(1−C(T − τ)
)
.

Thus, for T small enough we get: (T − t)|R1
T ,t x − y1| ≥ T−t

2 |R1
τ,t x −R1

τ,T y| (6.12)≥ 1
2 |R2

τ,t x −R2
τ,T y|. We then derive

similarly that:∣∣R2
τ,t x −R2

τ,T y
∣∣ ≥ ∣∣R2

T ,t x − y2
∣∣− ‖Rτ,T − I‖|RT,tx − y|

≥ |R
2
T ,t x − y2|

2
−C(T − τ)

∣∣R1
T ,t x − y1

∣∣.
This finally yields that

(T − t)
∣∣R1

T ,t x − y1
∣∣≥ |R2

T ,t x − y2|
4(1+C)

, (6.13)

that is, the first component dominates in the contribution |(Tα
T−t )

−1(RT,t x − y)| appearing in D2. Write now:

|z−Rτ,T y| ≤ ∣∣z1 −R1
τ,t x

∣∣+ ∣∣z2 −R2
τ,t x

∣∣+ |Rτ,t x −Rτ,T y|. (6.14)

� Suppose first that (τ − t)|z1 −R1
τ,t x| ≤ |z2 −R2

τ,t x|. Since z ∈D2, we have from (6.13):

∣∣z2 −R2
τ,t x

∣∣≤ C(τ − t)(T − τ)β
∣∣R1

T ,t x − y1
∣∣.

Consequently, plugging the last two inequalities into (6.14), we get:

|z−Rτ,T y| ≤
(

1

τ − t
+ 1

)∣∣z2 −R2
τ,t x

∣∣+ |Rτ,t x −Rτ,T y|

≤ (
1+ (τ − t)

)
(T − τ)β

∣∣R1
T ,t x − y1

∣∣+ |Rτ,t x −Rτ,T y|
≤ C|x −Rt,T y|,

using the Lipschitz property of the flow for the last inequality.
� Assume now that |z2 −R2

τ,t x| ≤ (τ − t)|z1 −R1
τ,t x| ≤ |z1 −R1

τ,t x|. We exploit that z ∈D2 and (6.13) to write:

∣∣z1 −R1
τ,t x

∣∣≤ C(T − τ)β
∣∣R1

T ,t x − y1
∣∣.

Plugging the last two inequalities into (6.14) yields:

|z−Rτ,T y| ≤ 2
∣∣z1 −R1

τ,t x
∣∣+ |Rτ,tx −Rτ,T y|

≤ 2C(T − τ)β
∣∣R1

T ,t x − y1
∣∣+ |Rτ,tx −Rτ,T y| ≤ C|x −Rt,T y|,

using again the Lipschitz property of the flow for the last inequality.

Thus, in both cases,

|z−Rτ,T y| ≤C|x −Rt,T y| ⇒ δ ∧ |z−Rτ,T y|η(α∧1) ≤ Cδ ∧ |x −Rt,T y|η(α∧1). (6.15)
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It could similarly be shown that when σ(t, x) := σ(t, x2):

δ ∧ ∣∣(z−Rτ,T y)2
∣∣η(α∧1) ≤ Cδ ∧ {

(T − t)
∣∣(x −Rt,T y)1

∣∣+ ∣∣(x −Rt,T y)2
∣∣}η(α∧1)

≤ Cδ ∧ {
(T − t)

∣∣(RT,t x − y)1
∣∣+ ∣∣(RT,t x − y)2

∣∣}η(α∧1)
, (6.16)

using a direct modification of Lemma 5.2 for the last inequality. Taking out this contribution from the spatial integral
we get:

Aα,I2∩{τ≤τ0},D2(t, T , x, y) ≤ C

∫
I2

dτ
δ ∧ |x −Rt,T y|η(α∧1)

T − τ
1τ≤τ0

∫
pα(t, τ, x, z)pα(τ, T , z, y) dz

≤ Cδ ∧ |x −Rt,T y|η(α∧1) log
(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣)pα(t, T , x, y),

using the semigroup property of Corollary 3.5 for the last inequality.
To complete the analysis for this contribution, it remains to consider the case τ ∈ I1. In this case, T − t � T − τ ,

and we have by triangle inequality:

δ ∧ |z−Rτ,T y|η(α∧1) ≤C
(
δ ∧ |z−Rτ,t x|η(α∧1) + δ ∧ |x −Rt,T y|η(α∧1)

)
.

Recalling that T − τ is not singular and splitting the integrals accordingly yields:

Aα,I1(t, T , x, y) ≤ C

∫
I1

dτ

∫
Rnd

dzpα(t, τ, x, z)
δ ∧ |x −Rt,τ z|η(α∧1)

τ − t
pα(τ, T , z, y)

+Cδ ∧ |x −Rt,T y|η(α∧1)pα(t, T , x, y),

where we used the semigroup property of Corollary 3.5 for the last term in the r.h.s. Now, for the first term in
the above r.h.s., the previous arguments apply. Similarly to (6.8) one of the two terms |(Tα

τ−t )
−1(Rτ,t x − z)|,

|(Tα
T−τ )

−1(RT,τ z − y)| is in the off-diagonal regime. If it is the second one, then pα(τ,T , z, y) ≤ Cpα(t, T , x, y)

and we conclude using Lemma 3.8. If it is the first term, then we can still perform the previous dichotomy along the
dominating component in |(Tα

τ−t )
−1(Rτ,t x − z)|. If the fast component dominates, the density is not singular. When

the first component dominates, we modify the previous partition (Di)i∈{1,2}, considering:

D1 =
{
z ∈Rnd; (τ − t)β

∣∣(Tα
T−t

)−1
(y −RT,tx)

∣∣≤ ∣∣(Tα
T−τ

)−1
(z−Rτ,T y)

∣∣},
D2 =

{
z ∈Rnd; (τ − t)β

∣∣(Tα
T−t

)−1
(y −RT,tx)

∣∣ >
∣∣(Tα

T−τ

)−1
(z−Rτ,T y)

∣∣}.
From this point on, the proof is similar: on D1, we compensate the singularity, as long as β is like in (6.11). When
z ∈D2, we subdivide along δ0 ≤ or > (τ − t)β |(Tα

T−t )
−1(y −RT,tx)|. The first case is dealt as above. In the second

case, we can integrate the time singularity.
Contributions involving p̆α(t, T , x, y). We first focus on the contribution

Ăα,I2 :=
∫

I2

dτ

∫
pα(t, τ, x, z)

δ ∧ |z−Rτ,T y|η(α∧1)

T − τ
p̆α(τ, T , z, y) dz

≤
∫

I2

dτ

∫
pα(t, τ, x, z)δ ∧ |z−Rτ,T y|η(α∧1)1|(z−Rτ,T y)1|/(T−τ)1/α�|(Tα

T−τ )−1(z−Rτ,T y)|≥K

× 1

|(z−Rτ,T y)1|1+α
θ
(∣∣M−1

T−t (z−Rτ,T y)
∣∣) dz

(T − τ)1+1/α(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)1+α
.

Using again the partition in equation (6.9), we readily get from Lemma 3.8, similarly to the previous paragraph, that:

Ăα,I2,D1 :=
∫

I2

dτ

∫
D1

pα(t, τ, x, z)
δ ∧ |z−Rτ,T y|η(α∧1)

T − τ
p̆α(τ, T , z, y) dz

≤ C(T − τ)ωpα(t, T , x, y).
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On D2 the previous arguments also apply for {τ ≥ τ0}, with the same definition of τ0. Hence:

Ăα,I2∩{τ>τ0},D2 ≤ C(T − τ)ωpα(t, T , x, y).

The only remaining case to handle is when the slow component dominates at the current time τ , i.e. |(Rτ,t x −
Rτ,T y)1| ≥ c0(T − t)|(Rτ,t x −Rτ,T y)2|.

On the considered set, it has previously been proven on D2 (see (6.15)) that δ ∧ |z − Rτ,T y|η(α∧1) ≤
Cδ ∧ |x − Rt,T y|η(α∧1) which can be taken out of the integral. Thus on the considered set, recalling that
|(z−Rτ,T y)1| ≥ c|(Rτ,t x −Rτ,T y)1|:

Ăα,I2∩{τ≤τ0},D2

≤ Cδ ∧ |x −Rt,T y|η(α∧1)

∫
I2

dτ1τ≤τ0

∫
D2

pα(t, τ, x, z)× 1|(z−Rτ,T y)1|/(T−τ)1/α�|(Tα
T−τ )−1(z−Rτ,T y)|≥K

× 1

|(z−Rτ,T y)1|1+α

dz

(T − τ)1+1/α(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)1+α
θ
(∣∣M−1

T−τ (Rτ,T y − z)
∣∣)

≤ Cδ ∧ |x −Rt,T y|η(α∧1)θ
(∣∣M−1

T−t (Rt,T y − x)
∣∣) ∫

I2

dτ
1τ≤τ0

|(Rτ,t x −Rτ,T y)1|1+α

×
∫

D2

dz

(τ − t)2/α+1(1+ |(Rτ,t x − z)1|/(τ − t)1/α + |(Rτ,t x − z)2|/(τ − t)1+1/α)2+α

×
1|(z−Rτ,T y)1|/(T−τ)1/α�|(Tα

T−τ )−1(z−Rτ,T y)|≥K

(T − τ)1+1/α(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)1+α

≤ Cδ ∧ |x −Rt,T y|η(α∧1)
θ(|M−1

T−t (Rt,T y − x)|)
(T − t)1/α(1+ |(Tα

T−t )
−1(RT,t x − y)|)1+α

∫
I2

dτ
1τ≤τ0

T − t

×
∫

dz2

(τ − t)1/α+1(1+ |(Rτ,t x − z)2|/(τ − t)1+1/α)1+α

× 1

(T − τ)1+1/α(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)1+α

≤ Cδ ∧ |x −Rt,T y|η(α∧1)
θ(|M−1

T−t (Rt,T y − x)|)
(T − t)1/α(1+ |(Tα

T−t )
−1(RT,t x − y)|)1+α

×
∫

I2

dτ
1τ≤τ0

T − t

1

(T − t)1/α+1(1+ |(Rτ,t x −Rτ,T y)2|/(T − t)1+1/α)1+α
.

From this last inequality we deduce that if |(Rτ,t x−Rτ,T y)2| ≥ c1(T − t)|(Rτ,t x−Rτ,T y)1|, i.e. the components are
equivalent, we get the expected control, which could have already been deduced from the fact that the fast component
is equivalent to the global energy. If such an equivalence does not hold, the natural control is:

Ăα,I2∩{τ≤τ0},D2 ≤ Cδ ∧ |x −Rt,T y|η(α∧1)
θ(|M−1

T−t (Rt,T y − x)|)
(T − t)1/α(1+ |(Tα

T−t )
−1(RT,t x − y)|)1+α

× 1

(T − t)1/α+1(1+ infτ∈[t,T ](|(Rτ,t x −Rτ,T y)2|/(T − t)1+1/α))1+α
.

Now in the stable case [HS], we obtain:

Ăα,I2∩{τ≤τ0},D2 ≤ Cδ ∧ |Rτ∗,t x −Rτ∗,T y|η(α∧1) 1

(T − t)1/α(1+ |(Tα
T−t )

−1(Rτ∗,t x −Rτ∗,T y)|)1+α

× 1

(T − t)1/α+1(1+ |(Rτ∗,t x −Rτ∗,T y)2|/(T − t)1+1/α)1+α
,
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where τ ∗ achieves the minimum. In the tempered case [HT], the control reads:

Ăα,I2∩{τ≤τ0},D2 ≤ Cδ ∧ |x −Rt,T y|η(α∧1)pα,�(t, T , x, y)

× 1

(T − t)1/α(1+ |(Rτ∗,t x −Rτ∗,T y)2|/(T − t)1+1/α)1+α
.

Similar controls could be established by symmetry for Ăα,I1 . These bounds thus yield in both cases an additional
time-singularity in (T − t)−1/α if |(Rτ∗,t x −Rτ∗,T y)2| ≤K(T − t)1+1/α and a possible loss of concentration in the
stable case. They also turn out to be difficult to exploit in order to iterate in the series to establish the existence of the
density and related bounds.

Now if σ(t, x) := σ(t, x2) we can get rid of the additional singularity in the tempered case, writing:

Ăα,{τ≤τ0},D2 ≤ C

∫ T−τ0

t

dτ

∫
D2

pα(t, τ, x, z)
δ ∧ |(z−Rτ,T y)2|η(α∧1)

|(z−Rτ,T y)1|1+α
θ
(∣∣M−1

T−τ (z−Rτ,T y)
∣∣)

× 1

(T − τ)1+1/α

dz

(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)1+α

≤ C
θ(|M−1

T−t (RT,t x − y)|)
|(RT,t x − y)1|1+α

×C

∫ T−τ0

t

dτ

∫
1

(τ − t)1+1/α(1+ |(Rτ,t x − z)2|/(τ − t)1+1/α)1+α

× δ ∧ ∣∣(z−Rτ,T y)2
∣∣η(α∧1) 1

(T − τ)1+1/α

dz2

(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)1+α
.

Observe now from [HT] that we have the control:

θ(|M−1
T−t (RT,t x − y)|)
|RT,tx − y|1+α

≤ |(RT,t x − y)1|θ(|M−1
T−t (RT,t x − y)|)

|(RT,t x − y)1|2+α
≤ �(|M−1

T−t (RT,t x − y)|)
|(RT,t x − y)1|2+α

≤ pα,�(t, T , x, y),

on the considered case (i.e. the first component dominates in the off-diagonal regime). Hence:

Ăα,{τ≤τ0},D2

≤ Cpα,�(t, T , x, y)

×
∫ T−τ0

t

dτ

{
(τ − t)−(1+1/α)(q−1)

∫
dz2 1

(τ − t)1+1/α

1

(1+ |(z−Rτ,tx)2|/(τ − t)1+1/α)(1+α)q

}1/q

×
{
(T − τ)−{(1+1/α)(p−1)}

×
∫ [

δ ∧ ∣∣(z−Rτ,T y)2
∣∣η(α∧1)]p 1

(T − τ)1+1/α

dz2

(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)(1+α)p

}1/p

≤ Cpα,�(t, T , x, y)

∫ T−τ0

t

dτ (τ − t)−(1+1/α)(1/p) × (T − τ)−{(1+1/α)(1/q)}{(T − t)(1+1/α)η(α∧1)
}
, (6.17)

where p,q > 1,p−1 + q−1 = 1 and s.t. p > 1 + 1
α

for τ ∈ [t, t+T
2 ] and q > 1 + 1

α
for τ ∈ [ t+T

2 , T ]. Also, the
regularizing term (T − t)(1+1/α)η(α∧1) in the last control can be derived following the proof of Lemma 3.8. We thus
derive:

Ăα,{τ≤τ0},D2 ≤ Cpα,�(t, T , x, y)(T − t)(1+1/α)η(α∧1)(T − t)1−(1+1/α)

≤ Cpα,�(t, T , x, y)(T − t)1+(1+1/α)(η(α∧1)−1).
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Therefore, the last contribution gives a smoothing effect provided:(
1+ 1

α

)(
η(α ∧ 1)− 1

)
>−1 ⇐⇒ η >

1

(α ∧ 1)(1+ α)
.

The controls associated with pα , when σ(t, x)= σ(t, x2), yielding the contribution in qα,� in the Lemma, could be
easily deduced in the current case from the previous analysis, exploiting (6.16) instead of (6.15). �

The convergence of the parametrix series (3.13) will now follow from controls involving the convolutions of H

with the last term qα,�(t, T , x, y). The following lemma completes the proof of Lemma 3.10.

Lemma 6.3. Assume d = 1, n = 2, σ (t, x) = σ(t, x2) and η > 1
(α∧1)(1+α)

. There exist C6.3 := C6.3([H]) > 0,

ω := ω([H]) ∈ (0,1] s.t. for all T ∈ (0, T0], T0 := T0([H])≤ 1, (x, y) ∈ (Rnd)2, t ∈ [0, T ),

|qα,� ⊗H |(t, T , x, y) ≤ C(T − t)ω
(
pα,�(t, T , x, y)

+ δ ∧ {
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}η(α∧1)

× log
(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣)pα,�(t, T , x, y)
)
.

Proof. Recall that qα,�(t, T , x, y) writes as the sum of

qα,�(t, T , x, y) := δ ∧ {
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}η(α∧1)
pα,�(t, T , x, y)

and

ρα,�(t, T , x, y) := δ ∧ {
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}η(α∧1)

× log
(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣)pα,�(t, T , x, y).

Though the lines of the proof are similar to those of Lemma 6.2, we treat the two convolutions separately, to
emphasize the difficulties induced by the rediagonalization and the logarithmic factor. First, for |qα,�⊗H |(t, T , x, y),
we bound |H | using Lemma 3.7, to get:

|qα,� ⊗H |(t, T , x, y) ≤ C

∫ T

t

dτ

∫
Rnd

δ ∧ {
(τ − t)

∣∣(z−Rτ,t x)1
∣∣+ ∣∣(z−Rτ,tx)2

∣∣}η(α∧1)
pα,�(t, τ, x, z)

× δ ∧ |(z−Rτ,T y)2|η(α∧1)

T − τ
(pα + p̆α)(τ, T , z, y).

The above contribution can be handled as in Lemma 6.2, in the diagonal case |(Tα
T−t )

−1(y − RT,tx)| ≤ K , or
in the off-diagonal case |(Tα

T−t )
−1(y − RT,tx)| > K when for a given integration time τ ∈ [t, T ] the fast com-

ponent dominates, i.e. |R2
τ,T y − R2

τ,t x| ≥ (T − t)|R1
τ,T y − R1

τ,t x|. The only difference is that we do not need

to use the triangle inequality in order to apply Lemma 3.8. Indeed, regularizing terms δ ∧ |(z − Rτ,T y)2|η(α∧1),
δ ∧ {(τ − t)|(z−Rτ,tx)1| + |(z−Rτ,tx)2|}η(α∧1) already appear for both densities.

When |(Tα
T−t )

−1(y−RT,tx)|> K and |R2
τ,T y−R2

τ,t x| ≤ (T − t)|R1
τ,T y−R1

τ,t x|, we split as in the previous proof

the time interval into I1 ∪ I2 := [t, T+t
2 ] ∪ [T+t

2 , T ]. Suppose τ ∈ I2. We consider the spatial partition introduced
in (6.9).

For z ∈D1, we have pα,�(t, τ, x, z)≤ C(T −τ)−β(2+α)pα,�(t, T , x, y). This yields a regularization property from
Lemma 3.8 when β satisfies (6.11). For z ∈D2 and a given δ0 > 0, we use again the partition (T − τ)β |(Tα

T−t )
−1×

(y−RT,tx)| ≥ or < δ0. The case (T − τ)β |(Tα
T−t )

−1(y−RT,tx)| ≤ δ0 yields a regularization in time similarly to the
previous proof.
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In order for (T − τ)β |(Tα
T−t )

−1(y − RT,tx)| to exceed δ0, we see that τ must be lower than τ0 := T −
(

δ0
|(Tα

T−t )
−1(y−RT,t x)| )

1/β . In that case, the time singularity is still logarithmically explosive but integrable. We are led to

consider:

� :=
∫

I2

dτ
1

T − τ
1τ≤τ0

∫
D2

δ ∧ {
(τ − t)

∣∣(z−Rτ,tx)1
∣∣+ ∣∣(z−Rτ,tx)2

∣∣}η(α∧1)
pα,�(t, τ, x, z)

× δ ∧ ∣∣(z−Rτ,T y)2
∣∣η(α∧1)

(pα + p̆α)(τ, T , z, y) dz. (6.18)

Using iteratively the scaling Lemma 5.2 we derive:

|y1 −R1
T ,τ z|

(T − t)1/α
+ |y

2 −R2
T ,τ z|

(T − t)1+1/α

≥ c2
∣∣(Tα

T−t

)−1
(y −RT,τ z)

∣∣
≥ c2C

−1{∣∣(Tα
T−t

)−1
(Rτ,t x −Rτ,T y)

∣∣− ∣∣(Tα
T−t

)−1
(z−Rτ,t x)

∣∣}
≥ c2

{
C−1

∣∣(Tα
T−t

)−1
(Rτ,t x −Rτ,T y)

∣∣−C−1(T − τ)β
∣∣(Tα

T−t

)−1
(RT,t x − y)

∣∣}
≥ c2

{
C−1 − (T − τ)β

}∣∣(Tα
T−t

)−1
(Rτ,t x −Rτ,T y)

∣∣, c2 > 0,C := C(T )≥ 1,

recalling that z ∈D2 for the last but one inequality. Thus, for T small enough and up to a modification of C, we have
either |y1 −R1

T ,τ z| ≥ C|R1
τ,t x −R1

τ,T y|, or |y2 −R2
T ,τ z| ≥ C(T − t)|R1

τ,t x −R1
τ,T y|. In both cases, pα(τ,T , z, y)≤

C

|R1
τ,t x−R1

τ,T y|2+α
θ(|M−1

T−t (R
1
τ,t x −R1

τ,T y)|). This yields from Proposition 3.3 pα(τ,T , z, y)≤ Cpα(t, T , x, y). In our

current case, we then derive from (6.16) that:

δ ∧ ∣∣(z−Rτ,T y)2
∣∣η(α∧1)

pα(τ, T , z, y)≤ δ ∧ {
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}η(α∧1)
pα(t, T , x, y).

Consequently, we can bound (6.18) by:

� ≤ C(T − t)ωpα(t, T , x, y)

+
∫

I2

dτ
1

T − τ
1τ≤τ0

∫
D2

δ ∧ {
(τ − t)

∣∣(z−Rτ,tx)1
∣∣+ ∣∣(z−Rτ,tx)2

∣∣}η(α∧1)
pα,�(t, τ, x, z)

× δ ∧ ∣∣(z−Rτ,T y)2
∣∣η(α∧1)

p̆α(τ, T , z, y) dz

:= �1 + �2.

It thus remains to handle �2 which derives from the rediagonalization. We write:

�2 ≤ Cpα,�(t, T , x, y)

∫ T

t

dτ

×
∫
R2

pα,�(t, τ, x, z)
{
δ ∧ {

(τ − t)
∣∣(z−Rτ,tx)1

∣∣}η(α∧1) + δ ∧ ∣∣(z−Rτ,tx)2
∣∣η(α∧1)}

× 1

(T − τ)1+1/α

δ ∧ |(z−Rτ,T y)2|η(α∧1)

(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)1+1/α
dz

≤ Cpα,�(t, T , x, y)

∫ T

t

dτ

∫
dz2

1

(T − τ)1+1/α

δ ∧ |(z−Rτ,T y)2|η(α∧1)

(1+ |(z−Rτ,T y)2|/(T − τ)1+1/α)1+1/α

×
{
(τ − t)(1+1/α)[η(α∧1)−1] + δ ∧ |(Rτ,t x − z)2|η(α∧1)

(τ − t)1+1/α(1+ |(z−Rτ,tx)2|/(τ − t)1+1/α)1+α

}
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≤ Cpα,�(t, T , x, y)

∫ T

t

dτ
{
(T − τ)(1+1/α)η(α∧1)(τ − t)(1+1/α)[η(α∧1)−1]

+ (τ − t)(1+1/α){η(α∧1)−1/2}(T − τ)(1+1/α){η(α∧1)−1/2}}
≤ Cpα,�(t, T , x, y)(T − t)2(1+1/α)η(α∧1)−1/α,

proceeding as in (6.17) and using Lemma 3.8 for the last but one inequality. This indeed gives a regularizing effect re-
calling that we have assumed 1≥ η > 1

(α∧1)(1+α)
. Note that the case τ ∈ I1 could be handled similarly, see Lemma 6.2.

The controls become:

qα,� ⊗ |H |(t, T , x, y)

≤ C(T − t)ω
(
pα,�(t, T , x, y)+ log

(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣)qα,�(t, T , x, y)
)
. (6.19)

We point out that the important contribution in the above equation is the factor (T − t)ω, whose power will grow at
each iteration. This key feature gives the convergence of the series (3.13).

Now, for ρα,� ⊗ |H |(t, T , x, y), we still bound |H | using Lemma 3.7:

ρα,� ⊗ |H |(t, T , x, y) ≤ C

∫ T

t

dτ

∫
R2

dz log
(
K ∨ ∣∣(Tα

τ−t

)−1
(z−Rτ,tx)

∣∣)
× δ ∧ {

(τ − t)
∣∣(z−Rτ,tx)1

∣∣+ ∣∣(z−Rτ,t x)2
∣∣}η(α∧1)

pα,�(t, τ, x, z)

× δ ∧ |(z−Rτ,T y)2|η(α∧1)

T − τ
(pα + p̆α)(τ, T , z, y). (6.20)

W.r.t. the previous contribution, the main difference comes from the logarithm. However, the lines of the proof remain
the same. Suppose first that |(Tα

T−t )
−1(y − RT,tx)| ≤K . Depending on the time parameter τ , we can show that we

always have either pα,�(t, τ, x, z) ≤ Cpα,�(t, T , x, y) or pα(τ,T , z, y) ≤ Cpα(t, T , x, y) ≤ Cpα,�(t, T , x, y). The
second case occurs when τ ∈ I1. Using the notations of the previous proof, this yields:

ρα,� ⊗|I1 |H |(t, T , x, y) ≤ Cpα,�(t, T , x, y)

∫
I1

dτ

∫
R2

log
(
K ∨ ∣∣(Tα

τ−t

)−1
(z−Rτ,t x)

∣∣)

× δ ∧ {(τ − t)|(z−Rτ,t x)1| + |(z−Rτ,tx)2|}η(α∧1)

τ − t
pα,�(t, τ, x, z) dz,

and we conclude by Lemma 6.1. In the case when pα,�(t, τ, x, z)≤ Cpα,�(t, T , x, y), which happens for τ ∈ I2, we
have: ∣∣(Tα

τ−t

)−1
(z−Rτ,tx)

∣∣ ≤ C
(∣∣(Tα

τ−t

)−1
(y −RT,tx)

∣∣+ ∣∣(Tα
τ−t

)−1
(y −RT,τ z)

∣∣)
≤ C

(
K + ∣∣(Tα

T−τ

)−1
(y −RT,τ z)

∣∣).
Plugging this inequality into the logarithm and taking out the first density, we can bound:

ρα,� ⊗|I2 |H |(t, T , x, y) ≤ Cpα,�(t, T , x, y)

∫
I2

dτ

∫
R2

log
(
K ∨ ∣∣(Tα

T−τ

)−1
(y −RT,τ z)

∣∣)

× δ ∧ {(T − τ)|(z−Rτ,T y)1| + |(z−Rτ,T y)2|}η(α∧1)

T − τ
(pα,� + p̆α)(τ, T , z, y) dz,

and once again, we conclude by Lemma 6.1. Thus, we have so far managed to show that in the global diagonal regime,
ρα,� ⊗ |H |(t, T , x, y)≤ C(T − t)ωpα,�(t, T , x, y).

It remains to deal with the case when |(Tα
T−t )

−1(y − RT,tx)| ≥ K . Suppose first that τ ∈ I2, and that the first

component dominates in the global action |(Tα
T−t )

−1(y − RT,tx)|, i.e. |(Tα
T−t )

−1(y − RT,tx)| � |y
1−R1

T ,t x|
(T−t)1/α . We still

consider the partition in (6.9).
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When z ∈D1, we can bound

pα,�(t, τ, x, z)≤C(T − τ)−β(2+α)pα,�(t, T , x, y). (6.21)

On the other hand, the triangle inequality and the scaling Lemma 5.2 yield:

∣∣(Tα
τ−t

)−1
(z−Rτ,tx)

∣∣≤C
(∣∣(Tα

τ−t

)−1
(y −RT,τ z)

∣∣+ ∣∣(Tα
τ−t

)−1
(y −RT,tx)

∣∣).
Consequently, up to a modification of C, we have either:

∣∣(Tα
τ−t

)−1
(z−Rτ,tx)

∣∣≤C
∣∣(Tα

τ−t

)−1
(y −RT,tx)

∣∣ or
∣∣(Tα

τ−t

)−1
(z−Rτ,tx)

∣∣≤ C
∣∣(Tα

τ−t

)−1
(y −RT,τ z)

∣∣.
Define accordingly,

D1,1 =
{
z ∈D1;

∣∣(Tα
τ−t

)−1
(z−Rτ,tx)

∣∣≤C
∣∣(Tα

τ−t

)−1
(y −RT,tx)

∣∣},
D1,2 =

{
z ∈D1;

∣∣(Tα
τ−t

)−1
(z−Rτ,tx)

∣∣≤C
∣∣(Tα

τ−t

)−1
(y −RT,τ z)

∣∣}.
Observe that with this definition, D1,1 and D1,2 is not a partition of D1. However, D1 ⊂D1,1 ∪D1,2.

When z ∈D1,1, we can bound

log
(
K ∨ ∣∣(Tα

τ−t

)−1
(z−Rτ,tx)

∣∣)≤ log
(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣)+C.

On the other hand, for τ ∈ I2, we get from the definition of D1,1:

δ ∧ {
(τ − t)

∣∣(z−Rτ,t x)1
∣∣+ ∣∣(z−Rτ,tx)2

∣∣}η(α∧1)

≤ C
(
δ ∧ {

(T − t)
∣∣(x −Rt,T y)1

∣∣+ ∣∣(x −Rt,T y)2
∣∣}η(α∧1))

.

From (6.21), we thus have:

ρα,� ⊗|I2,D1,1 |H |(t, T , x, y)

≤ C
(
log

(
K ∨ ∣∣(Tα

T−t

)−1
(y −RT,tx)

∣∣)+ 1
)
δ ∧ {

(T − t)
∣∣(x −Rt,T y)1

∣∣+ ∣∣(x −Rt,T y)2
∣∣}η(α∧1)

×
∫

I2

dτ

∫
D1,1

pα,�(t, τ, x, z)
δ ∧ |(z−Rτ,T y)2|η(α∧1)

T − τ
(pα + p̆α)(τ, T , z, y) dz

≤ (T − t)ω(ρα,� + qα,�)(t, T , x, y),

choosing β satisfying (6.11).
When z ∈D1,2, we can bound:

log
(
K ∨ ∣∣(Tα

τ−t

)−1
(z−Rτ,tx)

∣∣)≤ log
(
K ∨ ∣∣(Tα

τ−t

)−1
(y −RT,τ z)

∣∣)+C.

Bounding also roughly δ ∧ {(τ − t)|(z − Rτ,tx)1| + |(z − Rτ,t x)2|}η(α∧1) ≤ δ, and using the bound (6.21), we can
write:

ρα,� ⊗|I2,D1,2 |H |(t, T , x, y)

≤ C

∫
I2

dτ

∫
D1,2

pα,�(t, τ, x, z)
(
log

(
K ∨ ∣∣(Tα

τ−t

)−1
(y −RT,τ z)

∣∣)+ 1
)

× δ ∧ |(z−Rτ,T y)2|η(α∧1)

T − τ
(pα + p̆α)(τ, T , z, y) dz
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≤ Cpα,�(t, T , x, y)

∫
I2

dτ(T − τ)−β(2+α)

∫
D1,2

(
log

(
K ∨ ∣∣(Tα

τ−t

)−1
(y −RT,τ z)

∣∣)+ 1
)

× δ ∧ |z−Rτ,T y|η(α∧1)

T − τ
(pα + p̆α)(τ, T , z, y) dz.

Thus, using Lemma 6.1, we have ρα,� ⊗|I2,D1,2 |H |(t, T , x, y)≤ (T − t)ωpα,�(t, T , x, y).
We have to deal with z ∈ D2. In this case, and because d = 1, pα(τ,T , z, y) ≤ Cpα(t, T , x, y). As above, we

split for a given δ0 > 0, the time interval I2 in (T − τ)β |(Tα
T−t )

−1(y − RT,tx)| ≥ δ0 and (T − τ)β |(Tα
T−t )

−1×
(y −RT,tx)|< δ0.

Assume first that (T − τ)β |(Tα
T−t )

−1(y−RT,tx)| ≤ δ0. Then, taking δ0 ≤K gives that the first density is diagonal.
Hence, the logarithm part disappears, and we have to deal with:

ρα,� ⊗I2,D2 |H |(t, T , x, y)

≤C

∫ T

τ0

dτ

∫
D2

1

(T − t)2/α+1

δ ∧ |(z−Rτ,T y)2|η(α∧1)

T − τ
(pα + p̆α)(τ, T , z, y) dz

Lemma 3.8≤ δ2+α
0

(T − t)2/α+1|(Tα
T−t )

−1(y −RT,tx)|2+α

∫ T

τ0

dτ(T − τ)(1+1/α)η(α∧1)−1−β(2+α)

≤ (T − t)ωpα(t, T , x, y).

Finally, we have to deal with the case (T − τ)β |(Tα
T−t )

−1(y −RT,tx)| ≥ δ0. Observe that, on I2, this imposes that

τ ∈ [T+t
2 , τ0], with τ0 defined above. In the considered set, we have from (6.15):∣∣(z−Rτ,T y)2

∣∣ ≤ ∣∣(z−Rτ,t x)2
∣∣+C

{
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}
≤ C

(
1+ (T − τ)β

){
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}.
Plugging this estimate into the convolution and recalling for z ∈D2, pα(τ,T , z, y)≤ Cpα(t, T , x, y), we obtain from
Lemma 6.1 and the previous controls for the contribution in p̆α :

ρα,� ⊗I2,D2 |H |(t, T , x, y)

≤ Cpα,�(t, T , x, y)

×
((

δ ∧ {
(T − t)

∣∣(x −Rt,T y)1
∣∣+ ∣∣(x −Rt,T y)2

∣∣}η(α∧1))∫ τ0

(T+t)/2
dτ

1

T − τ
(τ − t)ω + (T − t)ω

)
.

Hence, integrating over τ yields the logarithmic contribution:

ρα,� ⊗I2,D2 |H |(t, T , x, y)≤ C(T − t)ωρα,�(t, T , x, y).

In order to complete the proof, we have to specify how to proceed in the remaining cases, that is when τ ∈ I2 and
the second component dominates or when τ ∈ I1. When a fast component dominates, as we have seen in the previous
proof, we can compensate the singularities brought by the kernel H , and conclude directly with Lemmas 3.8 and 6.1.
When τ ∈ I1, we can adapt the previous strategy following the procedure described in Lemma 6.2. �

Using the previous lemmas, we get the following result.

Corollary 6.4. Under the assumptions of Lemma 6.3, there exists C6.4 := 4C3.10 > 0, s.t. for all T ∈ (0, T0],
T0 = T0([H])≤ 1, (x, y) ∈ (R2)2, t ∈ [0, T ), ∀k ∈N:∣∣p̃α ⊗H(2k)(t, T , x, y)

∣∣≤ C2k
6.4(T − t)kω

(
(T − t)kωpα,�(t, T , x, y)+ (pα,� + qα,�)(t, T , x, y)

)
,∣∣p̃α ⊗H(2k+1)(t, T , x, y)

∣∣≤ C2k+1
6.4 (T − t)kω

(
(T − t)(k+1)ωpα,� + (T − t)ω(pα,� + qα,�)+ qα,�

)
× (t, T , x, y).
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Proof. We prove the estimate by induction. The idea is to use the controls of Lemmas 6.2 and 6.3 gathered in
Lemma 3.10 to get from an estimate to the following one. The bounds may not be very precise, as we will some-
times bound (T − t)kω ≤ 1, but they are sufficient to prove the convergence of the Parametrix series (3.13).

Initialization. Since (T − t)ω(pα,� + qα,�)≥ 0, we clearly have:

∣∣p̃α ⊗H(t, T , x, y)
∣∣≤ C3.10

(
(T − t)ωpα,� + qα,� + (T − t)ω(pα,� + qα,�)

)
(t, T , x, y).

Now, using Lemmas 6.2 and 6.3, we have:

∣∣p̃α ⊗H(2)(t, T , x, y)
∣∣

≤ C3.10
(
(T − t)ω|pα,� ⊗H | + |qα,� ⊗H |)(t, T , x, y)

≤ C3.10
(
C3.10(T − t)2ωpα,� +C3.10(T − t)ωqα,� +C3.10(T − t)ω(pα,� + qα,�)

)
(t, T , x, y)

≤ (2C3.10)
2(T − t)ω

(
(T − t)ωpα,� + (pα,� + qα,�)

)
(t, T , x, y).

Induction. Suppose that the estimate for 2k holds. Let us prove the estimate for 2k+ 1.

∣∣p̃α ⊗H(2k+1)
∣∣(t, T , x, y)

≤ (4C3.10)
2k(T − t)kω

(
(T − t)kω|pα,� ⊗H |(t, T , x, y)+ ∣∣(pα,� + qα,�)⊗H

∣∣(t, T , x, y)
)

≤ (4C3.10)
2k(T − t)kω

(
C3.10(T − t)kω

(
(T − t)ωpα,� + qα,�

)
(t, T , x, y)

+C3.10
(
(T − t)ωpα,� + qα,�

)
(t, T , x, y)+C3.10(T − t)ω(pα,� + qα,�)(t, T , x, y)

)
.

Recalling that T − t ≤ 1, we have (T − t)kωqα,� ≤ (T − t)ωqα,�. Thus:

∣∣p̃α ⊗H(2k+1)
∣∣(t, T , x, y)

≤ (4C3.10)
2k(T − t)kω

(
C3.10(T − t)(k+1)ωpα,� + 2C3.10(T − t)ω(pα,� + qα,�)+C3.10qα,�

)
(t, T , x, y)

≤ (4C3.10)
2k(2C3.10)(T − t)kω

(
(T − t)(k+1)ωpα,� + (T − t)ω(pα,� + qα,�)+ qα,�

)
(t, T , x, y),

which gives the announced estimate.
Suppose now that the estimate for 2k+ 1 holds. Let us prove the estimate for 2k+ 2.

∣∣p̃α ⊗H(2k+2)(t, T , x, y)
∣∣

≤ (4C3.10)
2k+1(T − t)kω

(
(T − t)(k+1)ω|pα,� ⊗H | + (T − t)ω

∣∣(pα,� + qα,�)⊗H
∣∣+ |qα,� ⊗H |)

× (t, T , x, y)

≤ (4C3.10)
2k+1(T − t)kω

(
C3.10(T − t)(k+1)ω

[
(T − t)ωpα,� + qα,�

]
+C3.10(T − t)ω

[{
(T − t)ωpα,� + qα,�

}+C3.10(T − t)ω(pα,� + qα,�)
]

+C3.10(T − t)ω(pα,� + qα,�)
)
(t, T , x, y)

≤ (4C3.10)
2k+2(T − t)(k+1)ω

(
(T − t)(k+1)ωpα,� + (pα,� + qα,�)

)
(t, T , x, y),

where to get to the last equation, we used the fact that (T − t)ωpα,� ≤ pα,�, and (T − t)kωqα,� ≤ qα,�. �
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Appendix A: Proof of the diagonal lower bound for the frozen density

In this section we prove the diagonal lower bound for the frozen density. Recall from Proposition 5.3, that the frozen
density p�s writes for all z ∈Rnd as:

p�s (z) =
det(Ms−t )

−1

(2π)nd

∫
Rnd

e−i〈q,(Ms−t )
−1z〉 exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈q, ξ 〉)}νS(dξ)

)
dq

= det(Tα
s−t )

−1

(2π)nd

∫
Rnd

e−i〈q,(Tα
s−t )

−1z〉 exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈
q

(s − t)1/α
, ξ

〉)}
νS(dξ)

)
dq.

The complex exponential can be written as a cosine. Denoting x the projection of x ∈ Rnd on the sphere, we change
variable to the polar coordinates by setting q = |q|q , where (|q|, q) ∈ R+ × Snd−1. Also, we take a parametrization
of the sphere by setting q = (θ,φ) ∈ [0,π] × Snd−2, along the axis defined by (Tα

s−t )
−1z. Set finally τ = cos(θ), the

density writes:

p�s (z) =
det(Tα

s−t )
−1

(2π)nd

∫ +∞
0

d|q||q|nd−1
∫ 1

−1
dτ

(
1− τ 2)(nd−3)/2

×
∫

Snd−2
dφ cos

(|q|∣∣(Tα
s−t

)−1
z
∣∣τ) exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈
q|q|

(s − t)1/α
, ξ

〉)}
νS(dξ)

)
. (A.1)

The idea is the following: since |(Tα
s−t )

−1z| is small, we can expand the cosine and show that the first term is positive,
giving the two-sided diagonal estimate. We focus on the diagonal lower bound.

Proposition A.1 (Diagonal lower bound). For K sufficiently small, there exists CK s.t. for all z ∈ R
nd ,

|(Tα
s−t )

−1z| ≤K :

p�s (z)≥CK det
(
T

α
s−t

)−1
.

Proof. There is no difference with the non degenerate case for the diagonal expansion, see [21]. For small |(Tα
s−t )

−1z|,
we use Taylor’s formula to expand cos(|q||(Tα

s−t )
−1z|τ) in equation (A.1):

p�s (z) =
det (Tα

s−t )
−1

(2π)nd

∫ +∞
0

d|q||q|nd−1
∫ 1

−1
dτ

(
1− τ 2)(nd−3)/2

×
(

N∑
k=0

(−1)k

(2k)! |q|
2k
∣∣(Tα

s−t

)−1
z
∣∣2k

τ 2k + R̃N

(∣∣(Tα
s−t

)−1
z
∣∣))

×
∫

Snd−2
dφ exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈
q|q|

(s − t)1/α
, ξ

〉)}
νS(dξ)

)

= det(Tα
s−t )

−1

(2π)nd

N∑
k=0

(−1)k

(2k)!
∣∣(Tα

s−t

)−1
z
∣∣2k

∫ +∞
0

d|q||q|2k+nd−1
∫ 1

−1
dτ

(
1− τ 2)(nd−3)/2

τ 2k

×
∫

Snd−2
dφ exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈
q|q|

(s − t)1/α
, ξ

〉)}
νS(dξ)

)

+RN

(∣∣(Tα
s−t

)−1
z
∣∣). (A.2)
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The estimate on the coefficient also serves to estimate the remainder RN(|(Tα
s−t )

−1z|). To bound the coefficient,
we use the domination condition in (5.6) and the property that g is non-increasing:

exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈
q|q|

(s − t)1/α
, ξ

〉)}
νS(dξ)

)

≥ exp

(
−(s − t)g(0)

∫
R+

dρ

ρ1+α

∫
Snd−1

{
1− cos

(〈
q|q|

(s − t)1/α
, ρη

〉)}
μ(dη)

)

= exp

(
−g(0)

∫
R+

dρ

ρ1+α

∫
Snd−1

{
1− cos

(〈
q|q|, ρη

〉)}
μ(dη)

)

= exp

(
−cαg(0)|q|α

∫
Snd−1

∣∣〈q,η〉∣∣αμ(dη)

)

≥ exp
(−c|q|α), c := c

(
α, [H]

)≥ 1,

using that μ satisfies [H-4] for the last inequality. The above control can be used to give a lower bound for the even
terms in the previous expansion (A.2). On the other hand, similarly to the proof of Proposition 5.3, we get

exp

(
−(s − t)

∫
Rnd

{
1− cos

(〈
q|q|

(s − t)1/α
, ξ

〉)}
νS(dξ)

)
≤ exp

(−c−1|q|α),
for |q|> 1, which can be used to derive lower bound for the odd terms of the expansion (A.2). Note that the coefficients

in the previous expansion depend on (Tα
s−t )

−1z because of the choice of the parametrization of the sphere Snd−2. �

Appendix B: Off-diagonal estimates on the kernel H

We thoroughly exploit the decomposition of the density used by Watanabe [41] in the stable case followed by Sztonyk
[39] in the tempered one. From identity (5.14), we have:

∀z ∈Rnd, p�T
(z)= det(MT−t )

−1pS

(
T − t, (Ms−t )

−1z
)
, (B.1)

where (Su)u≥0 has Lévy measure νS .
For a fixed T − t we can write ST−t =MT−t +NT−t where (Mu)u≥0 and (Nu)u≥0 are two independent processes

with respective generators:

LMϕ(z)=
∫
Rnd

(
ϕ(z+ ξ)− ϕ(z)− 〈∇ϕ(z), ξ 〉

1+ |ξ |2
)

1|ξ |≤(T−t)1/α νS(dξ),

LNϕ(z)=
∫
Rnd

(
ϕ(z+ ξ)− ϕ(z)− 〈∇ϕ(z), ξ 〉

1+ |ξ |2
)

1|ξ |>(T−t)1/α νS(dξ),

for all z ∈ Rnd and ϕ ∈ C2
0(Rnd,R). We have separated the jumps that are at the typical scales, i.e. (T − t)1/α , from

the big ones which induce a compound Poisson process. It can be proved similarly to Proposition 5.3 that MT−t has a
density, intuitively the small jumps generate the density. We therefore disintegrate pS(T − t, ·) in the following way:

∀z ∈Rnd, pS(T − t, z)=
∫
Rnd

pM(T − t, z− z)PNT−t
(dz), (B.2)

where PNT−t
stands for the law of NT−t . Now, the following properties hold for the Lévy–Itô decomposition.

Lemma B.1 (Density estimate on the martingale part and associated derivatives). For all m ≥ 1, there exists
Cm ≥ 1 s.t. for all T − t > 0, z ∈Rnd ,

pM(T − t, z)≤Cm(T − t)−nd/α

(
1+ |z|

(T − t)1/α

)−m

.
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Also, for all m≥ 1 and all multi-index β, |β| ≤ 2,

∣∣∂β
z pM(T − t, z)

∣∣≤Cm(T − t)−(nd+|β|)/α
(

1+ |z|
(T − t)1/α

)−m

.

Proof. Similarly to the proof of Proposition 5.3 we write:

pM(T − t, z)= 1

(2π)nd

∫
Rnd

dpe−i〈p,z〉 exp

(
−(T − t)

∫
Rnd

{
1− cos

(〈p, ξ 〉)}1{|ξ |≤(T−t)1/α}νS(dξ)

)
.

Changing variables in (T − t)1/αp = q yields:

pM(T − t, z) = 1

(2π)nd
(T − t)−nd/α

∫
Rnd

dqe−i〈q,z/(T−t)1/α〉

× exp

(
−(T − t)

∫
Rnd

{
1− cos

(〈
q,

ξ

(T − t)1/α

〉)}
1{|ξ |≤(T−t)1/α}νS(dξ)

)
. (B.3)

Let us now denote

f̂T−t (q) := exp

(
(T − t)

∫
Rnd

{
cos

(〈
q,

ξ

(T − t)1/α

〉)
− 1

}
1|ξ |≤(T−t)1/α νS(dξ)

)
.

Since the Lévy measure in the above expression has finite support, we get from Theorem 3.7.13 in Jacob [18] that
f̂T−t is infinitely differentiable as a function of q . Moreover,

∣∣∂q f̂T−t (q)
∣∣ ≤ (T − t)

∫
Rnd

|ξ |
(T − t)1/α

∣∣∣∣sin

(〈
q,

ξ

(T − t)1/α

〉)∣∣∣∣1|ξ |≤(T−t)1/α νS(dξ)

× exp

(
(T − t)

∫
Rnd

{
cos

(〈
q,

ξ

(T − t)1/α

〉)
− 1

}
1|ξ |≤(T−t)1/α νS(dξ)

)
.

Write now:

(T − t)

∫
Rnd

|ξ |
(T − t)1/α

∣∣∣∣sin

(〈
q,

ξ

(T − t)1/α

〉)∣∣∣∣1|ξ |≤(T−t)1/α νS(dξ)

≤ C(T − t)

∫
r≤(T−t)1/α

dr
rnd−1

rd+1+α

r

(T − t)1/α

(
1α<1 + 1α≥1|q| r

(T − t)1/α

)

≤ C(T − t)

∫
r≤(T−t)1/α

dr
r−α

(T − t)1/α

(
1α<1 + 1α≥1|q| r

(T − t)1/α

)

≤ C
(
1+ |q|).

Thus:

∣∣∂q f̂T−t (q)
∣∣ ≤ C

(
1+ |q|) exp

(
(T − t)

∫
Rnd

{
cos

(〈
q,

ξ

(T − t)1/α

〉)
− 1

}
νS(dξ)

)

× exp
(
2(T − t)νS

(
B
(
0, (T − t)1/α

)c))
≤ C

(
1+ |q|) exp

(−C−1|q|α), C ≥ 1,

since from (5.6), νS(B(0, (T − t)1/α)c)≤ C/(T − t) and that the proof of Proposition 5.3 also yields that

exp

(
(T − t)

∫
Rnd

{
cos

(〈
q,

ξ

(T − t)1/α

〉)
− 1

}
νS(dξ)

)
≤ C exp

(−C−1|q|α).
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Similarly, for all l ∈N:∣∣∂l
q f̂T−t (q)

∣∣ ≤ Cl

(
1+ |q|l) exp

(−C−1|q|α), Cl ≥ 1.

Thus, f̂T−t belongs the Schwartz space. Denoting by fT−t its Fourier transform, we have:

∀m≥ 0,∀z ∈Rnd,∃Cm ≥ 1 s.t.:
∣∣fT−t (z)

∣∣≤ Cm

(
1+ |z|)−m

.

Now since pM(T − t, z)= (T − t)−nd/αfT−t (z/(T − t)1/α), the announced bound follows. The control concerning
the derivatives is derived similarly. �

Besides, the following control holds for the Poisson measure.

Lemma B.2 (Controls for the Poisson measure). For all T − t > 0, PNT−t
is a Poisson measure. Since

dim(supp(μ))= d we have the following estimates. There exists a constant C > 0 s.t. for all z ∈Rnd, r > 0:

PNT−t

(
B(z, r)

)≤ C

θ((T − t)1/α)
(T − t)rd+1

(
1+ rα

T − t

θ((T − t)1/α)

θ(r)

)
|z|−(d+1+α)θ

(|z|). (B.4)

Proof. In the stable case, i.e. θ = 1, this result is a consequence of Lemma 3.1 in [41] and the intrinsic stable scaling.
In the tempered case, it follows from Corollary 6 in Sztonyk [39]. �

Let us observe that the above control also yields the upper-bound estimate for the density in Propositions 3.3, 3.4
in the off-diagonal regime. Precisely from (B.1), (B.2), Lemma B.1 and (B.4) one gets:

p̃α(t, T , x, y) ≤ Cm det(MT−t )
−1(T − t)−nd/α

∫
Rnd

(
1+ ∣∣M−1

T−t (RT,t x − y)− z
∣∣/(T − t)1/α

)−m
PNT−t

(dz)

≤ Cm det
(
T

α
T−t

)−1
∫ 1

0
PNT−t

({
z ∈Rnd : (1+ (T − t)−1/α

∣∣M−1
T−t (RT,t x − y)− z

∣∣)−m
> s

})
ds

≤ Cm det
(
T

α
T−t

)−1
∫ 1

0
PNT−t

(
B
(
M
−1
T−t (RT,t x − y), s−1/m(T − t)1/α

))
ds

≤ CmC det
(
T

α
T−t

)−1 (T − t)1+(d+1)/α

θ((T − t)1/α)

∫ 1

0
s−(d+1)/m

(
1+ s−α/m θ((T − t)1/α)

θ((T − t)1/αs−1/m)

)
ds

× ∣∣M−1
T−t (RT,t x − y)

∣∣−(d+1+α)
θ
(∣∣M−1

T−t (RT,t x − y)
∣∣)

≤ Cm

θ(1)
C det

(
T

α
T−t

)−1(1+ ∣∣(Tα
T−t

)−1
(RT,t x − y)

∣∣)−(d+1+α)
θ
(∣∣M−1

T−t (RT,t x − y)
∣∣)

×
∫ 1

0

[
s−(d+1)/m + s−(d+1+α+η̃)/m ds

]
,

using for the last inequality that θ is non-increasing and exploiting that the doubling condition in [T] is equivalent to
the fact that there exists c > 0, η̃ ≥ 0 s.t. θ(r)

θ(R)
≤ c( r

R
)−η̃,0 < r ≤ R, see e.g. [4]. Choosing m > d + 1+ α + η̃ then

gives the result, i.e. there exists C ≥ 1 s.t. for all 0≤ t < T , (x, y) ∈ (Rnd)2, p̃α(t, T , x, y)≤ Cpα(t, T , x, y).
Moreover, the previous procedure, associated with Lemma B.1, allows to handle the small jumps in the estima-

tion of (Lt − L̃
T ,y
t )p̃α(t, T , x, y)= (LM

t − L̃
T ,y,M
t )p̃α(t, T , x, y)+ (LN

t − L̃N
t )p̃α(t, T , x, y). Introducing ν(x,A) :=

ν({z ∈Rd : σ(x)z ∈A}), we write for a given parameter a ∈ (0,1∧K) and x ∈Rnd :

(
LM

t − L̃
T ,y,M
t

)
ϕ(x)=

∫
Rd

(
ϕ(x +Bz)− ϕ(x)− 〈∇z1ϕ(x), z

〉)
1|z|≤a(T−t)1/α

(
ν(x, dz)− ν(Rt,T y, dz)

)
,

(
LN

t − L̃
T ,y,N
t

)
ϕ(x)=

∫
Rd

(
ϕ(x +Bz)− ϕ(x)

)
1|z|>a(T−t)1/α

(
ν(x, dz)− ν(Rt,T y, dz)

)
.
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The Lipschitz property of the density of the spectral measure μ in [H-4], the non-degeneracy and Hölder conti-
nuity of σ and the properties concerning the tempering function in [HT] yield that ν(·, dz) is η(α ∧ 1) Hölder
continuous w.r.t. its first parameter and there exists C ≥ 1 s.t. uniformly in z ∈ R

d , |(ν(x, dz) − ν(Rt,T y, dz))| ≤
C(δ ∧ |x −Rt,T y|η(α∧1))θ(|z|)|z|−(d+α) dz. The condition that for all r > 0, r supu∈[κ−1,κ] g′(ur)≤ cθ(r) appearing
in [HT] is needed here to control the difference on the tempering functions. We now get:

∣∣(LM
t − L̃

T ,y,M
t

)
p̃α(t, T , x, y)

∣∣
=

∣∣∣∣
∫
Rd

(
p̃α(t, T , x +Bz,y)− p̃α(t, T , x, y)− 〈∇x1pα(t, T , x, y), z

〉)

× (
1|z|≤a(T−t)1/α

(
ν(x, dz)− ν(Rt,T y, dz)

))∣∣∣∣
≤ C det(MT−t )

−1[δ ∧ |x −Rt,T y|η(α∧1)
]

×
∫
Rd

∣∣∣∣
∫
Rnd

{
pM

(
T − t,M−1

T−t (RT,t x +Bz− y)− z
)− pM

(
T − t,M−1

T−t (RT,t x − y)− z
)

− 〈∇x1pM

(
T − t,M−1

T−t (RT,t x − y)− z
)
, z

〉
1α≥1

}
PNT−t

(dz)

∣∣∣∣1|z|≤a(T−t)1/α θ
(|z|) dz

|z|d+α
.

The idea is now to perform a Taylor expansion on pM to compensate the singularities in z. We assume for simplicity
that α ∈ (0,1) which allows to perform the Taylor expansion at order 1 only. It suffices to expand at order 2 to handle
the case α ∈ [1,2). We get from Lemma B.1:

∣∣(LM
t − L̃

T ,y,M
t

)
p̃α(t, T , x, y)

∣∣
≤ C det(MT−t )

−1[δ ∧ |x −Rt,T y|η(α∧1)
]

×
∫
Rd

∫
Rnd

{
sup

|z̃|∈(0,a(T−t)1/α]

∣∣∇x1pM

(
T − t,M−1

T−t (RT,t x +Bz̃− y)− z
)∣∣|z|}

× PNT−t
(dz)1|z|≤a(T−t)1/α

dz

|z|d+α

≤ CCm det(Tα
T−t )

−1

(T − t)1/α

[
δ ∧ |x −Rt,T y|η(α∧1)

]

×
∫
Rd

∫
Rnd

sup
|z̃|∈(0,a(T−t)1/α]

(
1+ |M

−1
T−t (RT,t x +Bz̃− y)− z)|

(T − t)1/α

)−m

PNT−t
(dz)1|z|≤a(T−t)1/α |z| dz

|z|d+α

≤ CCm det(Tα
T−t )

−1

(T − t)1/α

[
δ ∧ |x −Rt,T y|η(α∧1)

]

×
∫ a(T−t)1/α

0
drr−α

∫
Rnd

(
(1− a)+ |M

−1
T−t (RT,t x − y)− z)|

(T − t)1/α

)−m

PNT−t
(dz)

≤ C[δ ∧ |x −Rt,T y|η(α∧1)]
T − t

pα(t, T , x, y). (B.5)

This therefore gives the expected control for the small jumps in the kernel, i.e. the operator LM
t − L̃

T ,y,M
t acting

on p̃α(t, T , x, y) yields a bound homogeneous to the upper-bound pα(t, T , x, y) up to an additional multiplicative

singularity of the form C[δ∧|x−Rt,T y|η(α∧1)]
T−t

.
The delicate part, yielding the rediagonalization phenomenon which might deteriorate the estimates in the

degenerate framework, comes from the large jumps. We now specify how in the off-diagonal regime, when
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|(x − Rt,T y)1|/(T − t)1/α � |(Tα
T−t )

−1(x − Rt,T y)| Lemma 5.2� |(Tα
T−t )

−1(RT,t x − y)|, that is when the slow com-
ponent dominates, a bad rediagonalization phenomenon can occur. Let us now discuss the various possible cases. Fix
ε > 0.

– If z /∈ B((Rt,T y − x)1, ε|(x − Rt,T y)1|) := Bε,t,T ,x,y then |(Tα
T−t )

−1(x + Bz − Rt,T y)| ≥ (|z −
(Rt,T y− x)1|)/(T − t)1/α ≥ ε|(x−Rt,T y)1|/(T − t)1/α . Hence p̃α(t, T , x+Bz,y) is off-diagonal and p̃α(t, T , x+
Bz,y)≤ Cpα(t, T , x, y). Thus:∫

z "∈Bε,t,T ,x,y

∣∣{p̃α(t, T , x +Bz,y)− p̃α(t, T , x, y)
}∣∣1|z|>a(T−t)1/α

∣∣ν(x, dz)− ν(Rt,T y, dz)
∣∣

≤ C
[
δ ∧ |x −Rt,T y|η(α∧1)

]
pα(t, T , x, y)

∫
Rd

1|z|>a(T−t)1/α

dz

|z|d+α

≤ C[δ ∧ |x −Rt,T y|η(α∧1)]
T − t

pα(t, T , x, y). (B.6)

– If z ∈ Bε,t,T ,x,y we can write:∫
z∈Bε,t,T ,x,y

∣∣p̃α(t, T , x +Bz,y)− p̃α(t, T , x, y)
∣∣1|z|>a(T−t)1/α

∣∣ν(x, dz)− ν(Rt,T y, dz)
∣∣

≤ C
[
δ ∧ |x −Rt,T y|η(α∧1)

]{ θ(|(x −Rt,T y)1|)
|(x −Rt,T y)1|d+α

∫
z∈Bε,t,T ,x,y

p̃α(t, T , x +Bz,y)dz+ pα(t, T , x, y)

T − t

}

≤ C
[
δ ∧ |x −Rt,T y|η(α∧1)

]{pα(t, T , x, y)

T − t

+ θ(|(x −Rt,T y)1|)
|(x −Rt,T y)1|d+α

∫
z∈Bε,t,T ,x,y

det
(
T

α
T−t

)−1(1+ ∣∣(Tα
T−t

)−1
(x +Bz−Rt,T y)

∣∣)−(d+1+α)
dz

}
(B.7)

≤ C
[
δ ∧ |x −Rt,T y|η(α∧1)

]{pα(t, T , x, y)

T − t

+ θ(|(x −Rt,T y)1|)
|(x −Rt,T y)1|d+α

1

(T − t)(n−1)d/α+n(n−1)d/2(1+ |{(Tα
T−t )

−1(x −Rt,T y)}2:n|)1+α

}

≤ C

T − t

[
δ ∧ |x −Rt,T y|ηα∧1](pα + p̆α)(t, T , x, y), (B.8)

using Propositions 3.3, 3.4 and Lemma 5.2 for the last but second inequality.
From (B.6) and (B.8) we derive:

∣∣(LN
t − L̃

T ,y,N
t

)
p̃α(t, T , x, y)

∣∣≤ C

T − t

[
δ ∧ |x −Rt,T y|η(α∧1)

]
(pα + p̆α)(t, T , x, y),

which together with (B.5) gives the statement of Lemma 3.7 in the off-diagonal regime.

Remark B.1 (About the rediagonalization). Observe that a similar rediagonalization phenomenon occurs in the non-
degenerate case as well. The fact is that, in that case we integrate a density in (B.7) and not a marginal. The decay
of the jump measure gives in that case up to a multiplicative singularity in (T − t)−1 the asymptotic behavior of
the stable density. Namely when n = 1 we would have d + α instead of d + 1+ α in (B.7) and in the off-diagonal
regime: |x − Rt,T y|−(d+α) = 1

T−t
× T−t
|x−Rt,T y|d+α ≤ C

T−t
1

(T−t)d/α(1+|x−Rt,T y|/(T−t)1/α)d+α := C
T−t

pα(t, T , x, y), where

pα indeed corresponds to the upper bound for the large scale asymptotics of a stable process whose spectral measure
is absolutely continuous, see again Proposition 3.3. In that framework, our proof provides an alternative to the Fourier
arguments employed in [21].
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Remark B.2 (Loss of concentration in the stable case). From equations (B.7)–(B.8) we see that when |{(Tα
T−t )

−1×
(x−Rt,T y)}2:n| ≤K , i.e. the fast component in the backward dynamics are diagonal, we have a loss of concentration
w.r.t. to the worst asymptotic bounds given in Proposition 3.3. Note also that in this case the lower bound in that
proposition yields:∣∣∣∣

∫
Rd

p̃(t, T , x +Bz,y)− p̃(t, T , x, y)1|z|>a(T−t)1/α

dz

|z|d+α

∣∣∣∣
≥− C

(T − t)
pα(t, T , x, y)

+ C−1

|(x −Rt,T y)1|d+α

1

(T − t)(n−1)d/α+n(n−1)d/2(1+ |{(Tα
T−t )

−1(x −Rt,T y)}2:n|)nd(1+α)−d

≥ 1

(T − t)(n−1)d/α+n(n−1)d/2

{
C−1

|(x −Rt,T y)1|d+α(1+K)nd(1+α)−d
− C

|(x −Rt,T y)1|d+α+1
(T − t)1/α

}

≥ 1

2(T − t)(n−1)d/α+n(n−1)d/2

C−1

|(x −Rt,T y)1|d+α(1+K)nd(1+α)−d
,

if |(x −Rt,T y)1| ≥K(T − t)1/α for K large enough. Hence, if d = 1 the previous bound is sharp provided σ(t, x)−
σ(t,Rt,T y)≥ δ > 0.
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