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Abstract. We consider the Burgers equation on H = L2(0,1) perturbed by white noise and the corresponding transition semi-
group Pt . We prove a new formula for PtDxϕ which depends on ϕ but not on its derivative. This formula allows us to provide
a bound on Dxϕ in L2(H,ν) where ν is the invariant measure of Pt . Some new consequences for the invariant measure ν of Pt

are discussed as its Fomin differentiability and an integration by parts formula which generalises the classical one for Gaussian
measures.

Résumé. Nous considèrons l’équation de Burgers stochastique sur H = L2(0,1) dirigée par un bruit blanc, de semi-groupe de
transition Pt , et démontrons une nouvelle formule qui permet d’exprimer PtDxϕ en terme de ϕ mais pas de sa différentielle. Celle-
ci nous permet d’obtenir des estimations sur Dxϕ dans L2(H,ν), où ν est la mesure invariante de Pt , dont découlent quelques
conséquences telles que l’existence de dérivées de Fomin pour ν ou encore une formule d’intégration par partie qui généralise celle
bien connue pour les mesures gaussiennes.
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1. Introduction

We consider the following stochastic Burgers equation in the interval [0,1] with Dirichlet boundary conditions,⎧⎨
⎩

dX(t, ξ) = (∂2
ξ X(t, ξ) + ∂ξ (X

2(t, ξ))) dt + dW(t, ξ), t > 0, ξ ∈ (0,1),

X(t,0) = X(t,1) = 0, t > 0,

X(0, ξ) = x(ξ), ξ ∈ (0,1).

(1)

The unknown X is a real valued process depending on ξ ∈ [0,1] and t ≥ 0 and dW/dt is a space–time white noise
on [0,1] × [0,∞). This equation has been studied by several authors (see [4,7,9,11]) and it is known that there exists
a unique solution with paths in C([0, T ];Lp(0,1)) if the initial data x ∈ Lp(0,1), p ≥ 2. In this article, we want to
prove new properties on the transition semigroup associated to (1).

We rewrite (1) as an abstract differential equation in the Hilbert space H = L2(0,1),{
dX = (AX + b(X))dt + dWt,

X(0) = x.
(2)
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As usual A = ∂ξξ with Dirichlet boundary conditions, on the domain D(A) = H 2(0,1) ∩ H 1
0 (0,1), b(x) = ∂ξ (x

2).
Here and below, for s ≥ 0, Hs(0,1) is the standard L2(0,1) based Sobolev space. Also, W is a cylindrical Wiener
process on H . We denote by X(t, x) the solution.

We denote by (Pt )t≥0 the transition semigroup associated to equation (2) on Bb(H), the space of all real bounded
and Borel functions on H endowed with the norm

‖ϕ‖0 = sup
x∈H

∣∣ϕ(x)
∣∣, ∀ϕ ∈ Bb(H).

We know that Pt possesses a unique invariant measure ν so that Pt is uniquely extendible to a strongly continuous
semigroup of contractions on L2(H, ν) (still denoted by Pt ) whose infinitesimal generator we shall denote by L. Let
EA(H) be the linear span of real parts of all ϕ of the form

ϕh(x) := ei〈h,x〉, x ∈ D(A), x ∈ H,

where 〈·, ·〉 denotes the scalar product in H . We have proved in Section 4.1 of [6] that EA(H) is a core for L and that

Lϕ(x) = 1

2
Tr

[
D2

xϕ(x)
] + 〈

Ax + b(x),Dxϕ(x)
〉
, ∀ϕ ∈ EA(H), x ∈ D(A). (3)

Here and below, Dx denotes the differential with respect to x ∈ H . When ϕ is a real valued differentiable function,
we often identify Dxϕ with its gradient. Similarly, D2

x is the second differential and for a real valued two times
differentiable function D2

xϕ can be identify with the Hessian.
We write C1

b(H) for the space of continuously differentiable real valued functions with bounded differential.
In this paper, we use a formula for PtDxϕ (equation (4)) which depends on ϕ but not on its derivative. To our

knowledge, this formula is new.
For a finite dimensional stochastic equation a formula for PtDx can be obtained, under suitable assumptions, using

the Malliavin calculus and it is the key tool for proving the existence of a density of the law of X(t, x) with respect
to the Lebesgue measure, see [12]. Concerning SPDEs, several results are available for densities of finite dimensional
projections of the law of the solutions, see [15] and the references therein. For these results, Malliavin calculus is used
on a finite dimensional random variable. Malliavin calculus is difficult to generalize to a true infinite dimensional
setting and it does not seem useful to give estimate on PtDxϕ in terms of ϕ. The formula we use allows a completely
different approach. It relates PtDx to DxPt . In the recent years several formulae for DxPtϕ independent of Dxϕ

have been proved thanks to suitable generalizations of the Bismut–Elworthy–Li formula (BEL). Thus, combining our
formula to estimates obtained on DxPt implies useful information on PtDx . As we shall show, these can be used to
extend to the measure ν a basic integration by parts identity well known for Gaussian measures.

Let us explain the main ideas. They are based on the following identity proved in Section 1.2 below.

Proposition 1. For any ϕ ∈ C1
b(H), x ∈ H and any h ∈ D(A) we have

Pt

(〈
Dxϕ(x),h

〉) = 〈
DxPtϕ(x),h

〉 − ∫ t

0
Pt−s

(〈
Ah + b′(x)h,DxPsϕ(x)

〉)
ds. (4)

This formula could be used to prove the following pointwise estimate: For all ϕ ∈ C1
b(H), δ > 0 and all h ∈

H 1+δ(0,1), we have∣∣Pt

(〈Dxϕ,h〉)(x)
∣∣ ≤ cect

(
1 + t−1/2)(1 + |x|L4

)8‖ϕ‖0|h|1+δ, (5)

where | · |1+δ is the norm in H 1+δ(0,1). We do not give the proof here, it uses similar arguments as in Section 3.
Integrating (4) with respect to ν over H and taking into account the invariance of ν, yields∫

H

〈
Dxϕ(x),h

〉
ν(dx) =

∫
H

〈
DxPtϕ(x),h

〉
ν(dx)

−
∫ t

0

∫
H

(〈
Ah + b′(x)h,DxPsϕ(x)

〉)
ν(dx)ds. (6)
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Using identity (6) we arrive at the main result of the paper, proved in Section 3.

Theorem 2. For any p > 1, δ > 0, there exists C > 0 such that for all ϕ ∈ C1
b(H) and all h ∈ H 1+δ(0,1), we have

∣∣∣∣
∫

H

〈
Dxϕ(x),h

〉
ν(dx)

∣∣∣∣ ≤ C‖ϕ‖Lp(H,ν)|h|1+δ, (7)

for t > 0, where | · |1+δ is the norm in H 1+δ(0,1).

For a Gaussian measure, it is easy to obtain such an estimate. In fact, if μ is the invariant measure of the stochastic
heat equation on (0,1), i.e., Equation (2) without the nonlinear term, then the same formula holds with δ = 0. Thus
our result is not totally optimal and we except that it can be extended to δ = 0.

Also, identity (6) is general and we believe that it can be used in many other situations. For instance, we will inves-
tigate the generalization of our results to other SPDEs such as reaction–diffusion and 2D- Navier–Stokes equations.
This will be the object of a future work.

Finally, we consider the case of a space time white noise in (2). This allows in particular to use previous results
from [6]. It is easy to extend to the situation of a noise which has some correlation in space. For instance, if one takes
C1/2 dW in (2) for a bounded C such that |C−1/2x| ≤ c|x|β for some β ≥ 0 and a constant c, then Theorem 2 still
holds provided β < δ < 1.

In Section 2, we show that Theorem 2 can be used to derive an integration by parts formula for the measure ν.
Theorem 2 is proved in Section 3.

1.1. Notations and preliminaries

We shall denote by (ek) an orthonormal basis in H and by (αk) a sequence of positive numbers such that

Aek = −αkek, k ∈N.

For any k ∈N, Dk will represent the directional derivative in the direction of ek .
The norm of H = L2(0,1) is denoted by | · |. For p ≥ 1, | · |Lp is the norm of Lp(0,1). The operator A is self–adjoint

negative. For any α ∈ R, (−A)α denotes the α power of the operator −A and | · |α is the norm of D((−A)α/2) which
is equivalent to the norm of the Sobolev space Hα(0,1). We have | · |0 = | · | = | · |L2 . We shall use the interpolatory
estimate

|x|β ≤ |x|(γ−β)/(γ−α)
α |x|(β−α)/(γ−α)

γ , α < β < γ, (8)

and Agmon’s inequality

|x|L∞ ≤ |x|1/2|x|1/2
1 . (9)

1.2. Galerkin approximations

For m ∈ N, we define the projector Pm onto the first m eigenvectors of A and set bm(x) = Pmb(Pmx), for x ∈ H .
Then, we write the following approximations{

dXm(t, x) = (AXm(t, x) + bm(Xm(t, x))) dt + Pm dW(t),

Xm(0, x) = Pmx = xm,
(10)

and {
dum

dt
= 1

2 Tr[PmD2
xum] + 〈Ax + bm(x),Dxum〉 = Lm(um),

um(0) = ϕ.
(11)
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We can extend the definition of um(t, x) to any x ∈ H by setting um(t, x) = um(t,Pmx). Equation (11) has a unique
solution given by

um(t, x) = P m
t ϕ(x) = E

[
ϕ
(
Xm(t, x)

)]
. (12)

Let us sketch now the proof of Proposition 1.

Proof. Let u(t, x) = Ptϕ(x), where ϕ ∈ C1
b(H) and set um(t, x) = P m

t ϕ(x). Then um(t, x) is smooth for t > 0 and is
a solution of the Kolmogorov equation{

Dtum(t, x) = 1
2 Tr[PmD2

xum(t, x)] + 〈Ax + bm(x),Dxum(t, x)〉,
um(0, x) = ϕ(Pmx).

(13)

Set vh,m(t, x) = 〈Dxum(t, x), h〉, the differential of u with respect to x in the direction h ∈ Pm(H). Then vh,m is a
solution to the equation{

Dtvh,m(t, x) = Lmvh,m(t, x) + 〈Ah + b′
m(x)h,Dxum(t, x)〉,

vh,m(0, x) = 〈Dxϕ(Pmx),h〉. (14)

By (14) and variation of constants, it follows that

vh.m(t, x) = P m
t

(〈
Dxϕ(Pmx),h

〉) +
∫ t

0
P m

t−s

(〈
Ah + b′

m(x)h,Dxum(s, x)
〉)

ds. (15)

Letting m → ∞ we find (4). �

2. Integration by parts formula for ν

This section is devoted to some consequences of Theorem 2. Here we take p = 2 for simplicity. In this case (7) can
be rewritten as∣∣∣∣

∫
H

〈
(−A)−αDxϕ(x),h

〉
ν(dx)

∣∣∣∣ ≤ C‖ϕ‖L2(H,ν)|h|, ∀h ∈ H, (16)

where α = 1+δ
2 .

Proposition 3. Let α > 1
2 , then for any h ∈ H the linear operator

ϕ ∈ C1
b(H) 
→ 〈

(−A)−αDxϕ(x),h
〉 ∈ Cb(H)

is closable in L2(H, ν).

Proof. Let (ϕn) ⊂ C1
b(H) and f ∈ L2(H, ν) such that

ϕn → 0 in L2(H, ν),
〈
(−A)−αDxϕn(x),h

〉 → f in L2(H, ν).

Let ψ ∈ C1
b(H), then by (16) it follows that

∣∣∣∣
∫

H

[
ψ(x)

〈
(−A)−αDxϕn(x),h

〉 + ϕn(x)
〈
(−A)−αDxψ(x),h

〉]
ν(dx)

∣∣∣∣
≤ ‖ϕnψ‖L2(H,ν)|h| ≤ ‖ψ‖0‖ϕn‖L2(H,ν)|h|.
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Letting n → ∞, yields∫
H

ψ(x)f (x)ν(dx) = 0,

which yields f = 0 by the arbitrariness of ψ . �

We can now define the Sobolev space W 1,2
α (H,ν). First we improve Proposition 3.

Corollary 4. Let α > 1
2 , then the linear operator

ϕ ∈ C1
b(H) 
→ (−A)−αDxϕ ∈ Cb(H ;H)

is closable in L2(H, ν).

Proof. By Proposition 3 taking h = ek we see that Dk is a closed operator on L2(H, ν) for any k ∈ N. Set, for
ϕ ∈ C1

b(H),

(−A)−αDxϕ(x) =
∞∑

k=1

α−α
k Dkϕ(x)ek, ∀x ∈ H,

the series being convergent in L2(H, ν). Then

∣∣(−A)−αDxϕ(x)
∣∣2 =

∞∑
k=1

α−2α
k

∣∣Dkϕ(x)
∣∣2

.

Let (ϕn) ⊂ C1
b(H) and F ∈ L2(H, ν;H) such that

ϕn → 0 in L2(H, ν), (−A)−αDxϕn → F in L2(H, ν;H).

We have to show that F = 0.
Now for any k ∈ N we have Dkϕn(x) → αα

k 〈F(x), ek〉 in L2(H, ν). So, 〈F,ek〉 = 0 and the conclusion follows.
�

Let us denote by W 1,2
α (H,ν) the domain of the closure of (−A)−αDx . Then if M∗ denotes the adjoint of

(−A)−αDx we have∫
H

〈
(−A)−αDxϕ(x),F (x)

〉
ν(dx) =

∫
H

ϕ(x)M∗(F )(x)ν(dx). (17)

Set now Fh(x) = h where h ∈ H . By Theorem 2 Fh belongs to the domain of M∗. Setting M∗(Fh) = vh we obtain
the following integration by parts formula.

Proposition 5. Let α > 1
2 , then for any h ∈ H there exists a function vh ∈ L2(H, ν) such that

∫
H

〈
(−A)−αDxϕ(x),h

〉
ν(dx) =

∫
H

ϕ(x)vh(x)ν(dx), (18)

for any ϕ ∈ W 1,2
α (H,ν).

By (18) it follows that the measure ν possesses the Fomin derivative in all directions (−A)−αh for h ∈ H , see, e.g.,
[14].
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If, in (2), b = 0 then the Gaussian measure μ = NQ, where Q = − 1
2A−1, is the invariant measure and vh(x) =√

2〈Q−1/2x,h〉. Then (18) reduces to the usual integration by parts formula for the Gaussian measure μ. Note that it
follows that, as already mentioned, Theorem 2 is true with δ = 0 in this case.

We recall the importance of formula (18) for different topics as Malliavin calculus [12], definition of integral
on infinite dimensional surfaces of H [3,5,10], definition of BV functions in abstract Wiener spaces [2], infinite
dimensional generalization of DiPerna-Lions theory [1,8] and so on.

We think that Theorem 2 opens the possibility to study these topics in the more general situations of non Gaussian
measures. Obviously this requires much work to be done. As a first application we prove the following result.

Proposition 6. Assume that g ∈ W 1,2
α (H,ν) where α > 0 and that∣∣(−A)−αDxg(x)

∣∣ > 0, ν-a.e.

Then ν ◦ g−1 � λ where λ is the Lebesgue measure in R.

Proof. Let I be a Borel set of R such that λ(I) = 0. Choose a sequence (βn)n∈N of nonnegative functions in C1
b(R)

such that

βn(r) → β(r) = 1I (r), λ-a.e. and ν ◦ g−1-a.e.

Set

ψn(r) :=
∫ r

0
βn(s) ds

and

ψ(r) :=
∫ r

0
β(s) ds = λ

([0, r] ∩ I
) = 0.

Then

ψn(g) → ψ(g) = 0 pointwise and in L2(H, ν).

Moreover

(−A)−αDx

(
ψn(g)

) = βn(g)(−A)−αDxg → β(g)(−A)−αDxg in L2(H, ν;H).

Therefore

ψn(g) → 0 in L2(H, ν),

(−A)−αDx

(
ψn(g)

) → β(g)(−A)−αDxg in L2(H, ν;H).

Since (−A)−αDx is closable we have β(g)(−A)−αDxg = 0 and since |(−A)−αDxg(x)| > 0ν-a.e. we have β(g) = 0
ν a.e. so that (ν ◦ g−1)(I ) = 0 as required. �

We notice that when α = 1
2 and ν is Gaussian Proposition 6 is well known, see, e.g., [13], Theorem 2.1.3.

3. Proof of Theorem 2

For h ∈ H , ηh(t, x) is the differential of X(t, x) in the direction h and (ηh(t, x))t≥0 satisfies the equation{
dηh(t,x)

dt
= Aηh(t, x) + b′(X(t, x))ηh(t, x),

ηh(0, x) = h.
(19)
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Note that this equation as well as the computations below are done at a formal level. They could easily be justified
rigorously by an approximation argument, such as Galerkin approximation, see the end of Section 1. The following
result is proved in [6], see Proposition 3.1.

Lemma 7. For any α ∈ [−1,0], there exists c = c(α) > 0 such that for all t ≥ 0, x,h ∈ H

e
−c

∫ t
0 |X(s,x)|8/3

L4 ds∣∣ηh(t, x)
∣∣2
α

+
∫ t

0
e
−c

∫ t
s |X(τ,x)|8/3

L4 dτ ∣∣ηh(s, x)
∣∣2
1+α

ds ≤ |h|2α. (20)

We introduce the following Feynman–Kac semigroup

Stϕ(x) = E
[
ϕ
(
X(t, x)

)
e
−K

∫ t
0 |X(s,x)|4

L4 ds]
.

Next lemma is a slight generalization of Lemma 3.2 in [6].

Lemma 8. For any ϕ ∈ Bb(H), t ≥ 0, x ∈ H , α ∈ [0,1] and p > 1, if K is chosen large enough then we have

∣∣DxStϕ(x)
∣∣
α

≤ cect
(
1 + t−(1+α)/2)(1 + |x|3

L6

)[
E

(
ϕp

(
X(t, x)

))]1/p
, (21)

where c depends on p, K , α.

Proof. It is clearly sufficient to prove the result for p ≤ 2. We proceed as in [6] and write

〈
DxStϕ(x),h

〉 = I1 + I2,

where

I1 = 1

t
E

(
e
−K

∫ t
0 |X(s,x)|4

L4 ds
ϕ
(
X(t, x)

) ∫ t

0

〈
ηh(s, x), dW(s)

〉)

and

I2 = −4KE

(
e
−K

∫ t
0 |X(s,x)|4

L4 ds
ϕ
(
X(t, x)

) ∫ t

0

(
1 − s

t

)〈
X3(s, x), ηh(s, x)

〉
ds

)
.

For I1 we have with 1
p

+ 1
q

= 1:

I1 ≤ 1

t

[
E

(
ϕp

(
X(t, x)

))]1/p

×
[
E

(
e
−Kq

∫ t
0 |X(s,x)|4

L4 ds

∣∣∣∣
∫ t

0

〈
ηh(s, x), dW(s)

〉∣∣∣∣
q)]1/q

.

Using Itô’s formula for |z(t)|q = e
−Kq

∫ t
0 |X(s,x)|4

L4 ds | ∫ t

0 〈ηh(s, x), dW(s)〉|q , we get:

∣∣z(t)∣∣q = −4Kq

∫ t

0

∣∣X(s, x)
∣∣4
L4

∣∣z(s)∣∣q ds

+ q

∫ t

0
e
−K

∫ s
0 |X(s,x)|4

L4 ds∣∣z(s)∣∣q−2
z(s)

〈
ηh(s, x), dW(s)

〉

+ 1

2
q(q − 1)

∫ t

0
e
−2K

∫ t
0 |X(s,x)|4

L4 ds∣∣z(s)∣∣q−2∣∣ηh(s, x)
∣∣2

ds.
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We deduce:

E

(
sup

r∈[0,t]
∣∣z(r)∣∣q)

≤ qE

(
sup

r∈[0,t]

∣∣∣∣
∫ r

0
e
−K

∫ s
0 |X(s,x)|4

L4 ds∣∣z(s)∣∣q−2
z(s)

〈
ηh(s, x), dW(s)

〉∣∣∣∣
)

+ 1

2
q(q − 1)E

(∫ t

0
e
−2K

∫ t
0 |X(s,x)|4

L4 ds∣∣z(s)∣∣q−2∣∣ηh(s, x)
∣∣2

ds

)
= A1 + A2.

By a standard martingale inequality, (8) and Lemma 7, we have

A1 ≤ 3qE

(∣∣∣∣
∫ t

0
e
−2K

∫ s
0 |X(s,x)|4

L4 ds∣∣z(s)∣∣2(q−1)∣∣ηh(s, x)
∣∣2

ds

∣∣∣∣
1/2)

≤ 3qE

(
sup

r∈[0,t]
∣∣z(r)∣∣q−1

(∫ t

0
e
−2K

∫ s
0 |X(s,x)|4

L4 ds∣∣ηh(s, x)
∣∣2

ds

)1/2)

≤ 3qE

(
sup

r∈[0,t]
∣∣z(r)∣∣q−1

(∫ t

0
e
−2K

∫ s
0 |X(s,x)|4

L4 ds∣∣ηh(s, x)
∣∣2(1−α)

−α

∣∣ηh(s, x)
∣∣2α

1−α
ds

)1/2)

≤ 3qt(1−α)/2|h|−αE

(
sup

r∈[0,t]
∣∣z(r)∣∣q−1

)

≤ 3qt(1−α)/2|h|−α

[
E

(
sup

r∈[0,t]

∣∣z(r)∣∣q)](q−1)/q

≤ 1

4
E

(
sup

r∈[0,t]

∣∣z(r)∣∣q)
+ ct(q(1−α))/2|h|q−α.

Similarly:

A2 ≤ 1

2
q(q − 1)E

(
sup

r∈[0,t]
∣∣z(r)∣∣q−2

∫ t

0
e
−2K

∫ s
0 |X(s,x)|4

L4 ds∣∣ηh(s, x)
∣∣2

ds

)

≤ 1

2
q(q − 1)E

(
sup

r∈[0,t]

∣∣z(r)∣∣q−2
∫ t

0
e
−2K

∫ t
0 |X(s,x)|4

L4 ds∣∣ηh(s, x)
∣∣2(1−α)

−α

∣∣ηh(s, x)
∣∣2α

1−α
ds

)

≤ 1

2
q(q − 1)t1−α|h|2−αE

(
sup

r∈[0,t]

∣∣z(r)∣∣q−2
)

≤ 1

2
q(q − 1)t1−α|h|2−α

[
E

(
sup

r∈[0,t]
∣∣z(r)∣∣q)](q−2)/q

≤ 1

4
E

(
sup

r∈[0,t]
∣∣z(r)∣∣q)

+ ctq(1−α)/2|h|q−α.

We deduce:

I1 ≤ ct−(1+α)/2|h|−α

[
E

(
ϕp

(
X(t, x)

))]1/p
.

For I2 we write

I2 = 4KE

(
e
−K

∫ t
0 |X(s,x)|4

L4 ds
ϕ
(
X(t, x)

) ∫ t

0

(
1 − s

t

)〈
X3(s, x), ηh(s, x)

〉
ds

)

≤ 4K
[
E

(
ϕp

(
X(t, x)

))]1/p
[
E

(
e
−Kq

∫ t
0 |X(s,x)|4

L4 ds

(∫ t

0

∣∣X(s, x)
∣∣3
L6

∣∣ηh(s, x)
∣∣ds

)q)]1/q

.
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By Lemma 7 and Proposition 2.2 in [6]

I2 ≤ cq

(
1 + |x|3

L6

)[
E

(
ϕp

(
X(t, x)

))]1/p|h|−1.

Gathering the estimates on I1 and I2 gives the result. �

Lemma 9. For any α ∈ [0,1), p > 1, q > 1 satisfying 1
p

+ 1
q

< 1, if K is chosen large enough there exists a

constants c depending on α, p, q such that for any ϕ Borel bounded and h : H → D((−A)−α/2) Borel such that∫
H

|h(x)|q−αν(dx) < ∞ we have

∣∣∣∣
∫

H

〈
DxPtϕ(x),h(x)

〉
ν(dx)

∣∣∣∣ ≤ cect
(
1 + t−(1+α)/2)‖ϕ‖Lp(H,ν)

(∫
H

∣∣h(x)
∣∣q−α

ν(dx)

)1/q

. (22)

Proof. We first prove a similar estimate for St . Using Lemma 8 we have by Hölder’s inequality

∣∣∣∣
∫

H

〈
DxStϕ(x),h(x)

〉
ν(dx)

∣∣∣∣
≤ cect

(
1 + t−(1+α)/2)∫

H

(
1 + |x|3

L6

)[
E

(
ϕp

(
X(t, x)

))]1/p∣∣h(x)
∣∣−α

ν(dx)

≤ cect
(
1 + t−(1+α)/2)[∫

H

(
1 + |x|3

L6

)r
ν(dx)

]1/r

×
[∫

H

E
(
ϕp

(
X(t, x)

))
ν(dx)

]1/p[∫
H

∣∣h(x)
∣∣q−α

ν(dx)

]1/q

,

with 1
p

+ 1
q

+ 1
r

= 1. Thus by Proposition 2.3 in [6] and the invariance of ν:

∣∣∣∣
∫

H

〈
DxStϕ(x),h(x)

〉
ν(dx)

∣∣∣∣ ≤ cect
(
1 + t−(1+α)/2)‖ϕ‖Lp(H,ν)

(∫
H

∣∣h(x)
∣∣q−α

ν(dx)

)1/q

.

We then proceed as in [6] to get a similar estimate on Pt . We write

Ptϕ(x) = Stϕ(x) + K

∫ t

0
St−s

(|x|4
L4Psϕ

)
ds.

It follows that, using the estimate above with p > p̃ > 1 such that 1
p̃

+ 1
q

< 1:

∣∣∣∣
∫

H

〈
DxPtϕ(x),h(x)

〉
ν(dx)

∣∣∣∣ ≤ cect
(
1 + t−(1+α)/2)‖ϕ‖Lp(H,ν)

(∫
H

∣∣h(x)
∣∣q−α

ν(dx)

)1/q

+ K

∫ t

0
cec(t−s)

(
1 + (t − s)−(1+α)/2)(∫

H

|x|4
L4

∣∣Psϕ(x)
∣∣p̃ dν(dx)

)1/p̃

×
(∫

H

∣∣h(x)
∣∣q−α

ν(dx)

)1/q

ds.

The result follows by Hölder’s inequality and the invariance of ν. �

Theorem 2 follows directly from the following result thanks to the invariance of ν and taking for instance t = 1.



Estimate for PtD for the stochastic Burgers equation 1257

Proposition 10. For all p > 1, δ > 0, there exists a constant c > 0 such that for ϕ ∈ C1
b(H), and all h ∈ H 1+δ(0,1),

we have∣∣∣∣
∫

H

Pt

(〈Dxϕ,h〉)(x)ν(dx)

∣∣∣∣ ≤ cect
(
1 + t−1/2)‖ϕ‖Lp(H,ν)|h|1+δ. (23)

Proof. By the Poincaré inequality, it is no loss of generality to assume δ < min{2(1 − 1
p
), 1

2 }. Integrating (4) on H ,
yields∫

H

Pt

(〈Dxϕ,h〉)(x)ν(dx) =
∫

H

〈
DxPtϕ(x),h

〉
ν(dx)

−
∫ t

0

∫
H

Pt−s

[〈
Ah + b′(x)h,DxPsϕ(x)

〉]
dsν(dx). (24)

Then by Lemma 9 we deduce∣∣∣∣
∫

H

Pt

(〈Dxϕ,h〉)(x)ν(dx)

∣∣∣∣ ≤ cect
(
1 + t−1/2)‖ϕ‖Lp(H,ν)|h|

+
∣∣∣∣
∫

H

∫ t

0
Pt−s

[〈
Ah + b′(x)h,DxPsϕ

〉]
dsν(dx)

∣∣∣∣.
By the invariance of ν:∫

H

∫ t

0
Pt−s

[〈
Ah + b′(·)h,DxPsϕ

〉]
dsν(dx) =

∫
H

∫ t

0

〈
Ah + b′(x)h,DxPsϕ

〉
dsν(dx).

Therefore, by Lemma 9 with α = 1 − δ and q = 2
δ
:∣∣∣∣

∫
H

∫ t

0
Pt−s

[〈
Ah + b′(x)h,DxPsϕ

〉]
dsν(dx)

∣∣∣∣
≤

∫ t

0
cec(t−s)

(
1 + s−1+δ/2)‖ϕ‖Lp(H,ν)

(∫
H

∣∣Ah + b′(·)h∣∣δ/2
−1+δ

ν(dx)

)δ/2

.

Note that∣∣b′(x)h
∣∣−1+δ

= ∣∣∂ξ (xh)
∣∣−1+δ

≤ c|xh|δ.
Then, we have:

|xh| ≤ c|x||h|1
by the embedding H 1 ⊂ L∞ and

|xh|1 ≤ c|x|1|h|1,
since H 1 is an algebra. We deduce by interpolation

|xh|δ ≤ c|x|δ|h|1.
It follows∣∣∣∣

∫
H

∫ t

0
Pt−s

[〈
Ah + b′(x)h,DxPsϕ

〉]
dsν(dx)

∣∣∣∣
≤ cδe

ct‖ϕ‖Lp(H,ν)

(
1 +

∫
H

|x|δ/2
δ ν(dx)

)2/δ

|h|1+δ.
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We need to estimate
∫
H

|x|δ/2
δ ν(dx). We use the notation of [6], Proposition 2.2,∣∣X(s, x)

∣∣
δ
≤ ∣∣Y(s, x)

∣∣
δ
+ ∣∣zα(s)

∣∣
δ

≤ ∣∣Y(s, x)
∣∣1−δ∣∣Y(s, x)

∣∣δ
1 + ∣∣zα(s)

∣∣
δ
.

Using computation in [6], Proposition 2.2, we obtain

sup
t∈[0,1]

∣∣Y(t, x)
∣∣2 +

∫ 1

0

∣∣Y(s, x)
∣∣2
1 ds ≤ c

(|x|2 + κ
)
,

where κ is a random variable with all moments finite. It follows by (8):

E

(∫ 1

0

∣∣Y(s, x)
∣∣2/δ

δ
ds

)
≤ E

(∫ 1

0

∣∣Y(s, x)
∣∣2(1−δ)/δ∣∣Y(s, x)

∣∣2
1 ds

)
≤ c

(|x|2 + 1
)1/δ

.

Generalizing slightly Proposition 2.1 in [6], we have:

E
(∣∣zα(t)

∣∣p
δ

) ≤ cδ,p

for t ∈ [0,1], δ < 1/2, α ≥ 1, p ≥ 1. We deduce:

E

(∫ 1

0

∣∣X(s, x)
∣∣2/δ

δ
ds

)
≤ c

(|x|2 + 1
)1/δ

.

Integrating with respect to ν and using Proposition 2.3 in [6] we deduce:∫
H

|x|δ/2
δ ν(dx) ≤ cδ

Then (23) follows. �
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