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Abstract. We consider the distribution of the maximum MT of branching Brownian motion with time-inhomogeneous variance
of the form σ 2(t/T ), where σ(·) is a strictly decreasing function. This corresponds to the study of the time-inhomogeneous
Fisher–Kolmogorov–Petrovskii–Piskunov (F-KPP) equation Ft (x, t) = σ 2(1− t/T )Fxx(x, t)/2+g(F (x, t)), for appropriate non-
linearities g(·). Fang and Zeitouni (J. Stat. Phys. 149 (2012) 1–9) showed that MT − vσ T is negative of order T 1/3, where
vσ = ∫ 1

0 σ(s)ds. In this paper, we show the existence of a function m′
T

, such that MT − m′
T

converges in law, as T → ∞. Fur-

thermore, m′
T

= vσ T − wσ T 1/3 − σ(1) logT + O(1) with wσ = 2−1/3α1
∫ 1

0 σ(s)1/3|σ ′(s)|2/3 ds. Here, −α1 = −2.33811 . . . is
the largest zero of the Airy function Ai. The proof uses a mixture of probabilistic and analytic arguments.

Résumé. Nous étudions la loi du maximum MT d’un mouvement brownien branchant avec une variance inhomogène en temps
de la form σ 2(t/T ), où σ(·) est une fonction strictement décroissante. Ceci correspond à étudier l’équation Fisher–Kolmogorov–
Petrovskii–Piskunov (F-KPP) inhomogène en temps, Ft (x, t) = σ 2(1 − t/T )Fxx(x, t)/2 + g(F (x, t)), pour des nonlinéarités
g(·) appropriées. Fang et Zeitouni (J. Stat. Phys. 149 (2012) 1–9) ont montré que MT − vσ T est negatif de l’ordre T 1/3, où
vσ = ∫ 1

0 σ(s)ds. Dans cet article, nous montrons l’existence d’une fonction m′
T

telle que MT −m′
T

converge en loi quand T → ∞.

De plus, m′
T

= vσ T − wσ T 1/3 − σ(1) logT + O(1) avec wσ = 2−1/3α1
∫ 1

0 σ(s)1/3|σ ′(s)|2/3 ds. Ici, −α1 = −2.33811 . . . est la
plus grande racine de la fonction d’Airy Ai. La démonstration repose sur un mélange d’arguments probabilistes et analytiques.

1. Introduction

The classical branching Brownian motion (BBM) model in R can be described probabilistically as follows. Fix a law
μ of finite variance on [2,∞) ∩ Z. At time t = 0, one particle exists and is located at the origin. This particle starts
performing standard Brownian motion on the real line, up to an exponentially distributed random time, with parameter
β0 = (2(Eμ[L]−1))−1 (i.e., branching occurs at rate β0). At that time, the particle instantaneously splits into a random
number L ≥ 2 of independent particles, and those start afresh performing Brownian motion until their (independent)
exponential clocks ring. There is an extensive literature on this model and its discrete analog, the branching random
walk, in particular concerning the position of the right-most particle (see, e.g., [1,4,5,8,18,22]). In order to state the
main result, introduce the F–KPP travelling wave equation

φ :R→ (0,1) increasing,
1

2
φ′′ + φ′ + β0

(
Eμ

[
φL

] − φ
) = 0, φ(−∞) = 0, φ(+∞) = 1. (1.1)
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One has the following theorem:

Theorem (Bramson [5]). Let Mt denote the position of the right-most particle at time t in branching Brownian
motion as defined above. Then there exists a solution φ to (1.1), such that for all x ∈R,

P
(

Mt ≤ t − 3

2
log t + x

)
→ φ(x), as t → ∞.

We discuss in this paper a variant of the BBM model, first introduced in [8], where the motion of the particle(s)
is controlled by a time-inhomogeneous variance. More precisely, let σ ∈ C2([0,1]) be a strictly decreasing function
with σ(1) > 0 and inft∈[0,1] |σ ′(t)| > 0. We assume that the variance of the Brownian motions at time t ∈ [0, T ] is
given by σ 2(t/T ).

Let N(t), t ∈ [0, T ] denote the collection of particles alive at time t and for any particle v ∈ N(t), let Xv(s),
s ∈ [0,1] denote the trajectory performed by the particle and its ancestors. Then Mt = maxu∈N(t) Xu(t) denotes the
location of the rightmost particle at time t . The cumulative distribution function of MT is F(·, T ), where F(x, t) is
the solution of the time-inhomogeneous Fisher–Kolmogorov–Petrovskii–Piskunov (F-KPP) equation

∂F

∂t
(x, t) = σ 2(1 − t/T )

2

∂2F

∂2x
(x, t) + β0

(
Eμ

[
F(x, t)L

] − F(x, t)
)
, t ∈ [0, T ], x ∈R,

(1.2)
F(x,0) = 1x≥0.

See [18] for this probabilistic interpretation of the F-KPP equation in the time homogeneous case.
In [10], the authors prove the following.

Theorem (Fang and Zeitouni [10]). There exist constants C,C′ > 0 so that

−C ≤ lim inf
T →∞

MT − vσ T

T 1/3
≤ lim sup

T →∞
MT − vσ T

T 1/3
≤ −C′ < 0, (1.3)

where vσ = ∫ 1
0 σ(s)ds.

(The derivation in [10] is for the case that P(L = 2) = 1, but applies with no changes to the current setup. The
linear in T asymptotics, i.e., the speed vσ , can be read off with some effort from the results in [8] and [3].)

Our goal in this paper is to significantly refine Theorem 1. To state our results, introduce the functions v,w :
[0,1] →R+ by

v(t) =
∫ t

0
σ(s)ds, (1.4)

and

w(t) = 2−1/3α1

∫ t

0
σ(s)1/3

∣∣σ ′(s)
∣∣2/3 ds, (1.5)

where −α1 = −2.33811 . . . is the largest zero of the Airy function of the first kind

Ai(x) = 1

π

∫ ∞

0
cos

(
t3

3
+ xt

)
dt, (1.6)

see [2], Section 10.4, for definitions; note that Ai satisfies the Airy differential equation Ai′′(x) − x Ai(x) = 0. Note
also that vσ = v(1). Set

mT = v(1)T − w(1)T 1/3 − σ(1) logT .

Our main result is the following.
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Theorem 1.1. The family of random variables (MT − mT )T ≥0 is tight. Further, there exists a solution φ(x) to (1.1)
and a function m′

T with Cσ = lim supT ≥0 |m′
T − mT | < ∞, such that for all x ∈ R,

lim
T →∞ P

(
MT ≤ m′

T + x
) = φ

(
x/σ(0)

)
.

Furthermore, for a fixed travelling wave φ, the constant Cσ above is uniformly bounded for

σ ∈
{
σ ∈ C2([0,1]) : σ(0) + 1/σ(1) < c0, sup

t∈[0,1]
∣∣σ ′′(t)

∣∣ < c0, inf
t∈[0,1]

∣∣σ ′(t)
∣∣ > 1/c0

}
=: Ξc0 .

Parallel to our work, and an inspiration to it, was the study [20], by PDE techniques, of a class of time-
inhomogeneous F-KPP equations that includes (1.2). Compared with [20], we deal with a slightly restricted class
of equations, but are able to obtain finer (up to order 1) asymptotics and convergence to a travelling wave. We hope
that our techniques can be pushed to yield convergence in distribution of the family (MT − mT )T ≥0 (instead of
(MT − m′

T )T ≥0), in parallel with the recent results in [6], but this requires significant changes in the approach of [6]
(mainly, because unlike in the time-homogeneous case, extremal particles at time T will, with positive probability, be
extremal at some random intermediate time between εT and (1 − ε)T ). We therefore leave the adaptation for possible
future work.

We remark that Mallein [17] has recently published results similar to ours which are less precise but hold for a
rather general class of (not necessarily Gaussian) time-inhomogeneous branching random walks.

The core of the proof of Theorem 1.1 is based on a constrained first and second moment analysis of the num-
ber of particles that reach a target value but remain below a barrier for the duration of their lifetime. Due to the
time-inhomogeneity of σ(·), the choice of barrier is not straight-forward, and in particular it is not a straight line;
“rectifying” it introduces a killing potential. The analysis of the survival of Brownian motion in this potential eventu-
ally leads to a time-inhomogeneous Airy-type differential equation which we study by analytic means, exploiting the
anti-symmetry of the differential operator. (As pointed out to us by Dima Ioffe, a similar phenomenon with related
T 1/3 scaling was already observed in [11,13].) These methods together lead to estimates of the right tail of MT which
are sharp up to a multiplicative factor (Proposition 3.1). By a bootstrapping procedure that may be of independent
interest, these estimates are then turned into convergence in law by using a convergence result for the derivative Gibbs
measure of (time-homogeneous) branching Brownian motion.

The structure of the paper is as follows. In the next section, we introduce a barrier γT (·), and show that with high
probability, no particle crosses (a shifted version of) the barrier, see Lemma 2.1. Using the barrier, we then control the
distribution of extremal particles at all times large enough (Lemma 2.2). In these lemmas, results concerning time-
inhomogeneous Airy-type PDE’s are needed, and the proof of those is given in Appendix A. Section 3 combines the
results of Section 2 (taken at time T − T 2/3) together with an analysis of the last segment of time of length T 2/3, and
provides the first-and-second moment results needed to obtain lower and upper bound on the right tail of MT . The
proof of Theorem 1.1 is then completed in Section 4, using a result about the convergence of the derivative Gibbs
measure of (time-homogeneous) branching Brownian motion, which is given in Appendix B.

Notation. In the rest of this article (except in the appendix), the symbols C, C′, C1, C2 etc. stand for positive constants,
possibly depending on c0 (see Theorem 1.1), whose values may change from line to line. The phrase “X holds for
large T ” means that there exists T0, possibly depending on c0, such that X holds for T ≥ T0 for all σ ∈ Ξc0 . We
further use the Landau symbols O(·) and o(·), which are always to be interpreted with respect to T → ∞, and which
may depend on c0 as well. Finally, the symbols P and E (possibly with sub-/superscripts) always stand for the law of
a branching Markov process (branching Brownian motion with time-varying or constant variance and with or without
absorption of particles) and the expectation with respect to this law. On this other hand, the symbols P and E are used
for probability and expectation with respect to a single particle (i.e., a Markov process, usually a Brownian motion
with time-varying or constant variance or a three-dimensional Bessel process). The location of the initial particle is
denoted by a subscript, e.g., Px , without a subscript the initial particle is implicitly located at the origin.
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2. Crossing estimates

Fix T . Define the curve γT : [0, T ] →R by

γT (t) = T v(t/T ) − T 1/3w(t/T ).

Introduce the constant

κ := 8/σ 2(1). (2.1)

In this section we prove two lemmas. The first lemma bounds, for any fixed K ≥ 1, the probability that there exists
a particle that reaches the curve γT (t) + K . The second lemma estimates the expected number of particles that have
stayed below the curve up to time t , and reach a given terminal value at time t .

Lemma 2.1. There exists a constant C = C(c0), such that for large T , for any σ ∈ Ξc0 and every K ∈ [1, T 1/3],

P
(
∃t ∈ [0, T ] : max

u∈N(t)
Xu(t) ≥ γT (t) + K

)
≤ CKe−K/σ(0).

Proof. The proof goes by a first moment estimate of the number of particles hitting the curve γT + K . For an interval
I ⊂ [0, T ], let RI be the number of particles hitting the curve γT + K for the first time during the interval I . Let Bt

be a Brownian motion with variance σ 2(t/T ) started from the point x under Px (see the remarks on notation in the
introduction). For a path (Xt )t≥0, define H0(X) = inf{t ≥ 0 : Xt = 0}. By the first moment formula1 for branching
Markov processes ([14], Theorem 4.1) (also known as “Many-to-one lemma”) we then have (taking x = K)

E[RI ] = E0
[
eH0(γT +K−B)/21H0(γT +K−B)∈I

] = EK

[
eH0(B+γT )/21H0(B+γT )∈I

]
,

where the second equality follows from the fact that the law of K − Bt under P0 is equal to the law of Bt under PK

by symmetry. Applying Girsanov’s theorem we get that

E[RI ] = EK

[
exp

(∫ H0(B)

0

γ ′
T (t)

σ 2(t/T )
dBt + H0(B)

2
−

∫ H0(B)

0

(γ ′
T (t))2

2σ 2(t/T )
dt

)
1H0(B)∈I

]

= e−Kγ ′
T (0)/σ 2(0)+o(1)EK

[
exp

(
1

T

∫ H0(B)

0

(
−qT (t/T )Bt + T 1/3 w′(t/T )

σ (t/T )

)
dt

)
1H0(B)∈I

]
,

where the last equation follows by integration by parts and the function qT : [0,1] → R is defined by

qT (t) = |σ ′(t)|
σ 2(t)

+ T −2/3(w′/σ 2)′(t).
For large T , this yields by (1.5) and the assumptions on σ and K ,

E[RI ] = e−K/σ(0)+o(1)EK

[
exp

(
1

T

∫ H0(B)

0

{
−qT (t/T )Bt

+ α1qT (t)2/3
(

1

2
σ 2(t/T )

)1/3

T 1/3
}

dt

)
1H0(B)∈I

]
. (2.2)

Set

J (t) =
∫ t

0

1

2
σ(s)2 ds. (2.3)

1Note that due to our choice of the branching rate β0, the expected number of particles in the system at the time t is E[N(t)] = et/2, which is the
reason for the exponential term arising in the formula.
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Recall the constant κ from (2.1). We will bound separately E[R[0,κT 2/3]] and E[R[κT 2/3,T ]]. For the first term, (2.2)
immediately gives

E[R[0,κT 2/3]] ≤ Ce−K/σ(0), (2.4)

because under PK , Bt is positive until the time H0(B) and the factor in front of T 1/3 in the integral in (2.2) is bounded
by a constant C. In order to bound E[RκT 2/3,T ]], we note that the expectation on the right-hand side of (2.2) equals∫

I

1

2
σ 2(t/T )

dG(K,y; t)
dy

∣∣∣∣
y=0

dt, (2.5)

where G(x,y; t) is the fundamental solution to the PDE (A.4), with Q(t) = qT (J (t/T )) (see [12], Sections 5.2.1 and
5.2.8, for an elementary, but somewhat non-rigorous proof of this fact, and [7], Sections I.XI.7 and 2.IX.13, for the
formal definition of parabolic measure and its relation to hitting time distributions for Brownian motion). Now, by
(A.7) of Corollary A.4,

dG(K,y; t)
dy

∣∣∣∣
y=0

≤ CT −1K,

for any t ∈ [κT 2/3, T ]. Together with (2.2) and (2.5), this yields for large T ,

E[R[κT 2/3,T ]] ≤ CKe−K/σ(0). (2.6)

The lemma now follows from (2.4) and (2.6) and Markov’s inequality. �

We next control the expected number of particles that stay below the curve γT (·) + K up to time t ≤ T and reach
a prescribed value at time t . In what follows, for measures μ, ν we use the notation μ(· ∈ dy) ≤ ν(· ∈ dy), y ≥ 0, to
mean that for any interval I ⊂R+, μ(· ∈ I ) ≤ ν(· ∈ I ).

Lemma 2.2. For large T , we have for all t ∈ [0, T ], K ∈ [0, T 1/3] and y > 0,

E
[
#
{
u ∈ N(t) : γT (t) + K − Xu(t) ∈ dy and Xu(s) ≤ γT (s) + K,∀s ≤ t

}]
≤ 2ey/σ(t/T )−K/σ(0)G(K,y; t)dy,

where G(x,y; t) is the fundamental solution to the PDE (A.4), with Q(t) = qT (J (t/T )).

Proof. By a similar argument as the one leading to (2.2), the expectation in the statement of the lemma equals

eyγ ′
T (t)/σ 2(t/T )−Kγ ′

T (0)/σ 2(0)+o(1)G(K,y; t)dy.

By the assumption on K , we have Kγ ′
T (0)/σ 2(0) = K/σ(0)+o(1) and by definition of γT , we have γ ′

T (t) ≤ σ(t/T ).
The claim follows. �

3. Tail estimates

We derive in this section tail estimates on the distribution of MT summarized in the following proposition.

Proposition 3.1. There exists a constant C = C(c0), such that for large T , for any σ ∈ Ξc0 and every K ∈ [1, T 1/3],

C−1Ke−K/σ(0) ≤ P
(
MT ≥ mT + K

) ≤ CKe−K/σ(0).
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The proof of Proposition 3.1 goes by a suitably truncated first-second moment method, inspired by analogous
results in the time-homogeneous case [1,4,6,22]. The key ingredients are estimates on a single Brownian particle with
time-inhomogeneous variance staying below a curve and reaching a certain point at a given time t . These results,
which have already been used in the previous section, are obtained in the appendix by analytic methods. However,
as in the time-homogeneous case, the first-second moment method applied directly to the particles staying under the
curve γT would not yield the O(1) precision on the maximum at time T that we are aiming at, but would rather
induce an error of magnitude O(log logT ). This can be rectified in our case by slightly changing the curve in the
time interval [T − T 2/3, T ] in a way similar to the time-homogeneous case (namely, by having it end at the point
γT (T ) − σ(1) logT ). Luckily, for the upper bound it is possible to shortcut this approach, as Slepian’s inequality
allows us here to directly use existing results in the time-homogeneous case for the system during the time interval
[T − T 2/3, T ] (see Section 3.1 for details).

3.1. Proof of Proposition 3.1: Upper bound

Set t0 = T − T 2/3 and let K ≥ 2. Let (Ft )t≥0 be the natural filtration of the BBM. A union bound gives,

P
(
MT ≥ mT + K | Ft0

) ≤
∑

u∈N(t0)

P(Xu(t0),t0)

(
MT ≥ mT + K

)
,

where P(x,t) denotes the law of BBM with variance σ 2(·/T ) starting with one particle at the point x at time t . We
will estimate the summands on the right-hand side by comparison with a BBM with constant variance. Set σ 2

c =
T 1/3

∫ 1
1−T −1/3 σ 2(t)dt . By the assumption on σ , we have

mT − γT (t0) ≥ T

∫ 1

1−T −1/3
σ(t)dt − σ(1) logT − C ≥ σc

(
T 2/3 − 3

2
logT 2/3

)
− C1,

for some constant C1 that we fix for the remainder of this proof. Now, let (Yu(T
2/3))u and (Y c

u (T 2/3))u be the positions
of the particles at time T 2/3 in branching Brownian motions with branching rate β0 and variances σ 2((· + t0)/T ) and
σ 2

c , respectively. Conditioned on the genealogy, we have E[Yu(T
2/3)2] = E[Y c

u (T 2/3)2] and E[Yu(T
2/3)Yv(T

2/3)] ≥
E[Y c

u (T 2/3)Y c
v (T 2/3)] for every u and v, by the definition of σ 2

c and the fact that σ 2 is decreasing. Hence, setting
Mc = maxu Y c

u (T 2/3), we have by Slepian’s inequality [23] for every x ≥ 1,

P(γT (t0)+K−C1−x,t0)

(
MT ≥ mT + K

) ≤ P
(

Mc ≥ σc

(
T 2/3 − 3

2
logT 2/3

)
+ x

)
.

The tail estimates for the maximum of time-homogeneous BBM are available, e.g., in [5], and we obtain that

P(γT (t0)+K−C1−x,t0)

(
MT ≥ mT + K

) ≤ Cxe−x/σc ≤ Cxe−x/σ(t0/T ), (3.1)

for large T , uniformly in x ≥ 1.
Let A denote the event that no particle reaches the curve γT (t) + K − C1 − 1 until time t0. Integrating the upper

bound in Lemma 2.2 (taken at time t = t0) against the distribution in (3.1) and using Corollary A.5 now yields for
K ≥ 2(C1 + 1) and large T ,

P
({

MT ≥ mT + K
} ∩ A

) ≤ CKe−K/σ(0).

The upper bound in the statement of Proposition 3.1 now follows from this inequality, together with the fact that
P(Ac) ≤ CKe−K/σ(0) for large T by Lemma 2.1.

3.2. Proof of Proposition 3.1: Lower bound

As discussed above, the proof involves a second moment (“Many-to-two”) argument. In order to carry it out, we need
to modify the curve γT (·) at the last interval [T −T 2/3, T ]. Toward this end, fix K > 1 and let φT (t) be an increasing,
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twice differentiable function2 such that φT (t) ≡ 0 on [0, T − T 2/3], φT (T ) = σ(1) logT , φ′
T (t) ≤ 2σ(1) logT/T 2/3

and φ′′
T (t) ≤ 4σ(1) logT/T 4/3. Define the curve

ζT (t) = γT (t) + K − φT (t).

From the definitions, one obtains after some algebraic manipulations

(ζ ′
T (t))2

2σ 2(t/T )
= 1

2
− T −2/3 w′(t/T )

σ (t/T )
− φ′

T (t)

σ (1)
+ o(1/T ). (3.2)

For s, t ∈ [0, T ], let

Gζ (x, y; s, t)dy = E(K−x,s)

[
#
{
u ∈ N(t) : Xu(r) ≤ ζT (r) ∀s ≤ r ≤ t, ζT (t) − Xu(t) ∈ dy

}]
denote the expected number of descendants at time t of a particle present at time s at location K − x, so that the path
of the descendant stayed below the curve ζT (·) until time t , and reached, at time t , an infinitesimal neighborhood of
the value ζT (t) − y. Similarly to the proof of (2.2), we have, using (3.2), that

Gζ (x, y; s, t)dy = E(x,s)

[
exp

(∫ t

s

ζ ′
T (r)

σ 2(r/T )
dBr + t − s

2
−

∫ t

s

(ζ ′
T (r))2

2σ 2(r/T )
dr

)
1Bt∈dy,H0(Bs+·)>t−s

]
= exp

(
ζ ′
T (t)

σ 2(t/T )
y − ζ ′

T (s)

σ 2(s/T )
x + φT (t) − φT (s)

σ (1)
+ o(1)

)
G(x,y; s, t)dy, (3.3)

where under P(x,s), (Bt )t≥s is the time-inhomogeneous Brownian motion starting at time s at x and with instantaneous
variance σ 2(·/T ) and G(x,y; s, t) is the fundamental solution to (A.4), with Q(t) = |σ ′(J (t/T ))|/σ 2(J (t/T )) +
O(logT/T 2/3). In particular, if NT denotes the number of particles, at time T , whose trajectory stayed under the
curve ζT (·) and reached the interval [ζT (T ) − 2, ζT (T ) − 1] at time T , then, for large T ,

E[NT ] =
∫ 2

1
Gζ (0, y;0, T )dy ≥ CT e−K/σ(0)

∫ 2

1
G(K,y;0, T )dy ≥ CKe−K/σ(0), (3.4)

where the last inequality follows from (A.6) of Corollary A.4.
We now estimate the second moment of NT . For the rest of the proof, fix the constant C1 = 1/(2σ(0)), which satis-

fies C1 ≤ inft∈[0,T ] ζ ′
T (t)/σ 2(t/T ) for large T . The second moment formula3 (“Many-to-two lemma”) for branching

Markov processes ([14], Theorem 4.15), then yields for large T ,

E
[
N2

T

] = E[NT ] + β0Eμ

[
L2 − L

] ∫ T

0
dt

∫ ∞

0
dyGζ (K,y;0, t)

(∫ 2

1
Gζ (y, z; t, T )dz

)2

≤ E[NT ] + Ce−K/σ(0)

∫ T

0
T dt

×
∫ ∞

0
dyG(K,y;0, t)

(∫ 2

1
G(y, z; t, T )dz

)2

e−C1y+((φT (T )−φT (t))/σ (1)). (3.5)

We split the integral into three parts, according to intervals of time [0, κT 2/3], [κT 2/3, T −κT 2/3] and [T −κT 2/3, T ]
and denote the three parts by I1, I2 and I3. In order to estimate the first and third part, we bound the Green kernel

2The construction of such a function is possible for large enough T , for example by gluing together a parabola on [T − T 2/3, T − T 2/3/2] and a

line on [T − T 2/3/2, T ].
3It can be derived by conditioning on the splitting time of pairs of particles.
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G(x,y; s, t) for t − s ≤ κT 2/3 by the Green kernel of Brownian motion killed at the origin. Namely, writing V (t) =∫ t

0 σ 2(s/T )ds, we have for t − s ≤ κT 2/3 and x, y ≥ 0,

G(x,y; s, t) ≤ C√
t − s

exp

(
− (x − y)2

2(V (t) − V (s))

)(
xy

t − s
∧ 1

)
. (3.6)

For t ≥ κT 2/3, we use Corollary A.4 in order to bound G(K,y;0, t) and G(y, z;T − t, T ) (for the latter, we consider
the time-reversal of (A.4), and Q(·) as above). This yields G(K,y;0, t) ≤ CT −1Ky and G(y, z;T − t, T ) ≤ CT −1y

for every t ≥ κT 2/3 and z ∈ [1,2].
For the first part, we now get by exchanging integrals,

I1 ≤ T 2
∫ ∞

0

(
T −1y

)2
e−C1y

(∫ κT 2/3

0
G(K,y;0, t)dt

)
dy ≤ C

∫ ∞

0
y2e−C1y(1 + Ky)dy ≤ CK,

for K ≥ 1 and large T . Here, we used the fact that by (3.6),∫ κT 2/3

0
G(K,y;0, t)dt ≤ C

∫ 1

0

1√
t

dt + C

∫ ∞

1

Ky

t3/2
dt ≤ C(1 + Ky).

For the second part, we have

I2 ≤ CT 2
∫ T −κT 2/3

κT 2/3
dt

∫ ∞

0
T −3Ky3e−C1y dy ≤ CK.

For the third part, we note that by (3.6) and the assumptions on φT , we have for every y ≥ 0, for large T ,∫ κT 2/3

1

(∫ 2

1
G(y, z;T − t, T )dz

)2

e(φT (T )−φT (T −t))/σ (1) dt

≤ Cy2
(∫ T 2/3/ logT

1
t−3 dt + T 2/3T

(
T 2/3

logT

)−3)
≤ Cy2.

Furthermore, for t ≤ 1, we have (
∫ 2

1 G(y, z;T − t, T )dz)2 exp((φT (T ) − φT (T − t))/σ (1)) ≤ C for every y. This
gives,

I3 ≤
∫ ∞

0
Ky3e−C1y dy +

∫ 1

0
CK dt ≤ CK.

In total, we have

E
[
N2

T

] ≤ E[NT ] + Ce−K/σ(0)(I1 + I2 + I3) ≤ CE[NT ],
by (3.4). This now yields,

P(NT ≥ 1) ≥ E[NT ]2

E[N2
T ] ≥ C−1E[NT ],

which, together with (3.4), finishes the proof of the lower bound in Proposition 3.1.

4. Proof of Theorem 1.1

Armed with the tail estimates provided by Proposition 3.1, the proof of Theorem 1.1 follows by considering the
descendants of the particles living at a large (but fixed) time t . Here are the details.



1152 P. Maillard and O. Zeitouni

We assume without loss of generality that σ(0) = 1 (otherwise we can rescale space). Write PT and ET in place of
P and E, similarly, we write PT

(x,t) in place of P(x,t) (see Section 3.1). Furthermore, we will denote by Phom and Ehom

the law of (time-homogeneous) branching Brownian motion with variance 1 and branching rate β0, starting with one
particle at the origin. In what follows, we fix y ∈ R and let t ≥ 0 large enough, such that |y| < log t − 2. We will later
let first T , then t go to infinity, i.e., we will choose t as a function of T , such that t (T ) goes to infinity slowly enough
as T → ∞.

As in Section 3.1, let (Ft ′)t ′≥0 be the natural filtration of the BBM. Define the Ft -measurable random variable
Wt,T by

Wt,T = PT
(
MT ≤ mT + y |Ft

) =
∏

u∈N(t)

(
1 − PT

(Xu(t),t)

(
MT ≥ mT + y

))
.

Furthermore, define

Dt =
∑

u∈N(t)

(
t − Xu(t)

)
eXu(t)−t .

By Proposition 3.1 applied with the function σ̄ (t ′) = σ((t ′(T − t) + t)/T ), there exists a constant C and for each
large T a function gt,T :R+ → [C−1,C], such that for each x ∈ [−t, t − log t],

1 − PT
(x,t)

(
MT ≥ mT + y

) = exp
(−gt,T

(
(y − x + t)/

√
t
)
(y − x + t)e−(y−x+t)

)
. (4.1)

By the continuity of PT
(x,t) in x, the functions gt,T are actually continuous, in particular, they are Lebesgue-measurable.

As in Appendix B (note that if (Bt )t≥0 is a Brownian motion started at the origin, then (t − Bt)t≥0 is a Brownian
motion with drift +1 started at the origin), define the derivative Gibbs measure

μt =
∑

u∈N (t)

(
t − Xu(t)

)
e−(t−Xu(t))δ(t−Xu(t))/

√
t .

Then, on the event At = {∀u ∈ N(t) : −t ≤ Xu(t) ≤ t − log t}, we get by (4.1)

Wt,T 1At = exp

(
−e−y

∫ ∞

0
gt,T (y/

√
t + x)μt (dx)

)
1At (4.2)

and Phom(At ) → 1 as t goes to infinity [5]. Now, note that as T → ∞, the law of the process until time t converges to
its law under Phom, because conditioned on the genealogical structure and the branching times, the particle motion until
time t on each of the finitely many branches of the genealogical tree converges to Brownian motion with variance 1.
Moreover, thanks to the continuity and positivity of the Gaussian density, we can construct a probability space with
probability measure P̃ which supports random variables (μ̃T )T ≥0 and μ̃, such that, under P̃, μ̃T follows the law of μt

under PT , μ̃ follows the law of μt under Phom and μ̃T = μ̃ on an event G̃T with P̃(G̃T ) → 1 as T → ∞. In particular,∫ ∞

0
gt,T (y/

√
t + x)μ̃T (dx) =

∫ ∞

0
gt,T (y/

√
t + x)μ̃(dx) on G̃T , for every y. (4.3)

By a diagonalization argument, we can now choose t = t (T ) growing slowly with T , so that (4.3) continues to hold
with this choice of t (T ). By Theorem B.1, we have that for every bounded continuous function f ,

Ehom

[
f

(∫ ∞

0
gt(T ),T

(
y/

√
t (T ) + x

)
μt(T )(dx)

)]
− Ehom

[
f

(
D∞

∫
gt(T ),T

(
y/

√
t (T ) + x

)
ρ(dx)

)]
→T →∞ 0,
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where ρ is the law of a BES(3) process at time 1, started at 0, and the variable D∞ is the derivative martingale limit
from Appendix B. Using the above coupling we conclude that

ET

[
f

(∫ ∞

0
gt(T ),T

(
y/

√
t (T ) + x

)
μt(T )(dx)

)]
− Ehom

[
f

(
D∞

∫
gt(T ),T

(
y/

√
t (T ) + x

)
ρ(dx)

)]
→ 0. (4.4)

On the other hand, since ρ has a continuous density with respect to Lebesgue measure, we have,

lim sup
T →∞

∣∣∣∣∫ gt(T ),T

(
y/

√
t (T ) + x

)
ρ(dx) −

∫
gt(T ),T (x)ρ(dx)

∣∣∣∣ = 0. (4.5)

Setting CT = ∫
gt(T ),T (x)ρ(dx), we get by (4.2), (4.4), (4.5) and dominated convergence,

lim
T →∞ PT

(
MT ≤ mT + y − logCT

) = Ehom
[
e−e−yD∞] = φ(x),

where φ is a solution to (1.1), see Appendix B. This yields Theorem 1.1.

Remark. While a-priori, the constant CT depends on the particular choice of sequence t (T ), it is clear that the
conclusion of Theorem 1.1 implies that a-posteriori, it is independent of this choice.

Appendix A: An Airy-type PDE with time-varying parameters

We are interested in the following parabolic PDE:

wt = ε−1{wxx − q(t)xw
}
, w(t,0) = 0 ∀t ≥ 0, (A.1)

for q ∈ C1[0,1], q > 0. We want to study its behaviour as ε → 0.
Before solving this equation, we recall some facts about the Airy differential operator Lψ = ψ ′′ − xψ . Let

L2([0,∞)) be the space of square-integrable functions on [0,∞) and let 〈·, ·〉 be the associated scalar product4 with
norm ‖ · ‖2. Recall the definition (1.6) of the Airy function of the first kind Ai(x). We denote by −α1 > −α2 > · · · its
discrete set of zeros, with α1 = 2.33811 . . . . The functions ψn defined by

ψn(x) = Ai(x − αn)

‖Ai(· − αn)‖2
, n = 1,2, . . .

then form an ONB of L2([0,∞)) and ψn is an eigenfunction of L with eigenvalue −αn [24, Section 4.4].
The following lemma collects some other facts about the functions ψn(x), which are probably well-known, al-

though we could not find a reference to some of them.

Lemma A.1.

1. ‖Ai(· − αn)‖2 = |Ai′(−αn)| for all n. In particular, ψ ′
n(0) = 1 for all n.

2. αnn
−2/3 → 3π/2 as n → ∞.

3. |ψn(x)| ≤ x for all n ≥ 1 and x ≥ 0.
4. For some numerical constant C, 〈|ψn|, x〉 ≤ Cn4/3 for all n ≥ 1.

Proof. The first and second points are [24, (4.52) and (2.52)], respectively. For the third point, we first note that
since Ai′′(x) = x Ai(x), the local extrema of Ai′ on R are exactly the zeros of Ai and the origin. Furthermore, by
the first point of the lemma, |Ai′(−αn)| is increasing in n and by [24, (3.50)], |Ai′(0)| < |Ai′(−α1)|. This yields
|Ai′(x)| ≤ |Ai′(−αn)| for all x ≥ −αn, from which the third point of the lemma follows.

4We will also use the notation 〈f,g〉 = ∫ ∞
0 f (x)g(x)dx for g /∈ L2([0,∞)), as long as the integral is well defined.
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The third point of the lemma in particular implies 〈|ψn|1x≤αn, x〉 ≤ α2
n/2 for all n. Now,〈|ψn|1x≥αn, x

〉 = ∥∥Ai(· − αn)
∥∥−1

2

〈|Ai |, x + αn

〉 ≤ ‖Ai‖−1
2

〈|Ai |, x + αn

〉
.

By the tail bound Ai(x) ≤ exp(−(2/3)x3/2) for large x [2, 10.4.59], the expression on the right-hand side of the last
inequality is finite, whence 〈|ψn|1x≥αn, x〉 ≤ Cαn, for some numerical constant C. Applying the second point of the
lemma shows the fourth point. �

We get back to the equation (A.1). Define for a constant q the operator Lqu = uxx − qxu. One easily checks that
the function ψ

q
n (x) = q1/6ψn(q

1/3x) is an eigenfunction of Lq with eigenvalue −αnq
2/3 and the functions ψ

q
n form

an ONB of L2([0,∞)). We further denote by g(x, y; t) := g(x, y;0, t) the fundamental solution of (A.1).

Proposition A.2. Set Q1 = inft∈[0,1] q(t)2/3 and Q2 = supt∈[0,1] |(logq)′(t)|. Suppose Q1 > 0. Then there exists

C0 = C0(Q
−1
1 ,Q2) > 0 depending continuously on its parameters, such that for all ε > 0, t ∈ [4ε,1] and δ ∈ [ε,√ε]

there exist

• (c∗n)n≥2 and (c∗
n)n≥2 with |c∗n| ∨ |c∗

n| ≤ C0 exp(−C−1
0 (t ∧ δ)ε−1n2/3),

• q∗(t) ≤ q(t) ≤ q∗(t) with q∗(t) − q∗(t) ≤ 2(t ∧ δ)2ε−1 supt∈[0,1] |q ′(t)|,
• C1 = C1(ε, δ,C0) > 1 depending continuously on its parameters and satisfying C1 → 1 as ε → 0 and δ/

√
ε → 0,

such that for all x ∈ [0,1],

C−1
1

(
ψ

q∗(t)
1 + ε

∞∑
n=2

c∗
nψ

q∗(t)
n

)
≤ g(x, ·; t)

ψ
q(0)

1 (x)
exp

(
ε−1α1

∫ t

0
q(s)2/3 ds

)
≤ C1

(
ψ

q∗(t)
1 + ε

∞∑
n=2

c∗nψ
q∗(t)
n

)
.

Before providing the proof of Proposition A.2, we derive some a-priori estimates on solutions of (A.1).

Lemma A.3. Define Q1 and Q2 as in Proposition A.2 and assume Q1 > 0. Let w(t, x) be the solution to (A.1)
with initial condition satisfying ‖w(0, ·)‖2 ≤ 1. Define for each t ≥ 0 the function Wt(x) = exp(

∫ t

0 ε−1α1q(s)2/3 ds) ×
w(t, x). Then there exist numerical constants C, C1, such that for all t ∈ [0,1],
1. ‖Wt‖2 ≤ 1,
2. |〈Wt,ψ

q(t)

1 〉 − 〈W0,ψ
q(0)

1 〉| ≤ C
Q2+1
Q1

ε and

3. (
∑

n≥2〈Wt,ψ
q(t)
n 〉2)1/2 ≤ C

Q2+1
Q1

ε(
Q2+1
Q1

ε + |〈W0,ψ
q(0)

1 〉|) + exp(−C1ε
−1Q1t).

Proof. After decomposing the solution of (A.1) in the eigen-basis determined by the Airy functions, the proof pro-
ceeds by analyzing a coupled system of linear, time inhomogeneous, ordinary differential equations.

Throughout the proof, C, C1 and C2 are some numerical constants which may change from line to line. Define the
vector c(t) = (c1(t), c2(t), . . .)

T , where cn(t) = 〈Wt,ψ
q(t)
n 〉. From (A.1), one gets

ċn(t) = −ε−1(αn − α1)q(t)2/3cn(t) +
∑
k≥1

ck(t)q
′(t)

〈
ψ

q(t)
k ,

d

dq̃
ψ

q̃
n (t)

∣∣∣∣
q̃=q(t)

〉
,

whence

ċ(t) = (
D(t) + A(t)

)
c(t), D(t) = −ε−1q(t)2/3 diag(αi − α1)i≥1, A(t) = (logq)′(t)A. (A.2)

Here, A is the antisymmetric matrix

A = 1

6

(
I + 2

(〈
xψ ′

i ,ψj

〉)
i,j≥1

) = 1

6

(〈
xψ ′

i ,ψj

〉 − 〈
xψ ′

j ,ψi

〉)
i,j≥1,

where the equality is easily verified by integration by parts5.

5In fact, Aij = 2(−1)i+j (αi − αj )−3 for i �= j , which can be easily verified by the equation (3.54) in [24], however, we will not use this fact.
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Since D(t) + A(t) and D(t ′) + A(t ′) do not commute unless q(t)2/3(logq)′(t ′) = q(t ′)2/3(logq)′(t), there is no
obvious explicit expression for the solution to (A.2). However, since D is diagonal and A antisymmetric, we have

d

dt

∥∥c(t)
∥∥2

2 = d

dt
cT (t)c(t) = cT (t)

(
DT (t) + AT (t) + D(t) + A(t)

)
c(t) = 2cT (t)D(t)c(t) ≤ 0,

by the positivity of q(t). This implies the first claim. In particular, |c1(t)| ≤ 1 for all t ≥ 0. Setting c̄(t) =
(0, c2(t), c3(t), . . .)

T , the previous equation yields,

d

dt
c̄T (t)c̄(t) = 2c̄T (t)D(t)c̄(t) − 2c1(t)

∞∑
j=2

A1j (t)cj (t)

≤ −2ε−1q(t)2/3(α2 − α1)c̄T (t)c̄(t) + 2
∣∣c1(t)

∣∣∥∥(A1j (t)
)
j≥2

∥∥
2

∥∥c̄(t)
∥∥

2,

by the Cauchy–Schwarz inequality. By Parseval’s formula, ‖(A1j )j≥2‖2 ≤ ‖xψ ′
1‖2/3 < ∞. This yields

d

dt

∥∥c̄(t)
∥∥

2 ≤ −C1ε
−1Q1

∥∥c̄(t)
∥∥

2 + C2Q2
∣∣c1(t)

∣∣.
Note that the general solution to the equation f ′(t) = −af (t)+b is f (t) = (b/a)+ C̃e−at , for arbitrary C̃ ∈ R. Since
c̄(0) ≤ 1, Grönwall’s inequality now yields that∥∥c̄(t)

∥∥
2 ≤ C(Q2/Q1)ε sup

s∈[0,1]
∣∣c1(s)

∣∣ + exp
(−C1ε

−1Q1t
)
, (A.3)

In order to show the second claim, we note that by (A.2), for every t ∈ [0,1],
∣∣c1(t) − c1(0)

∣∣ ≤
∫ t

0

∣∣∣∣∣
∞∑

j=2

A1j (t)cj (t)

∣∣∣∣∣dt ≤ C

∫ t

0

∥∥c̄(t)
∥∥

2 dt,

where the last inequality follows from the Cauchy–Schwarz inequality as above. Together with (A.3) and the fact that
supt∈[0,1] |c1(t)| ≤ 1, this implies the second claim. The third claim follows from this, together with (A.3). �

Proof of Proposition A.2. Fix t ∈ [4ε,1] and δ ∈ [ε, t − 3ε]. We can construct q∗, q∗ ∈ C1([0,1]) such that the
following holds:

– Q1 ≤ q∗ ≤ q ≤ q∗
– q∗ ≡ q ≡ q∗ on [2ε, t − ε − δ],
– q∗ and q∗ are constant on [0, ε] ∪ [t − δ, t],
– sups∈[0,1] max{|(logq∗)′(s)|, |(logq∗)′(s)|} ≤ Q2 and
– q∗ − q∗ ≤ 2(t ∧ δ)2ε−1 supt∈[0,1] |q ′(t)|.
Now let x ∈ [0,1]. Let w∗ and w∗ denote the solutions to (A.1) with q replaced by q∗ or q∗, respectively, and with
initial condition w∗(0, ·) = w∗(0, ·) = δ(· − x). By the parabolic maximum principle ([9], Theorem 7.1.9), we then
have w∗(t ′, y) ≤ g(x, y; t ′) ≤ w∗(t ′, y) for all y ≥ 0 and t ′ ∈ [0,1].

Write W ∗
t ′ (y) = w∗(t ′, y) exp(ε−1α1

∫ t ′
0 q∗(s)2/3 ds) for all t ′, y. For every n, we have by the first point of

Lemma A.1 and the fact that ψ1(x) > 0 for all x > 0,∣∣〈W ∗
0 ,ψ

q∗(0)
n

〉∣∣ = ∣∣ψq∗(0)
n (x)

∣∣ ≤ Cψ
q(0)

1 (x),

for some constant C depending on Q1. By (A.2), we then have∣∣〈W ∗
ε ,ψ

q∗(0)
n

〉∣∣ ≤ C exp
(−(αn − α1)q

∗(0)2/3)ψq(0)

1 (x),
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for every n, since the off-diagonal terms cancel by the fact that q∗ is constant on [0, ε]. Together with the second point
of Lemma A.1, this yields ‖W ∗

ε ‖2 ≤ C1 for some constant C1 as ε is small enough. Furthermore,〈
W ∗

ε ,ψ
q∗(0)

1

〉 = 〈
W ∗

0 ,ψ
q∗(0)

1

〉 = (
1 + o(1)

)
ψ

q(0)

1 (x),

where o(1) is a term depending on Q1 and Q2 which vanishes as ε → 0. Applying Lemma A.3 with initial condition

w(0, ·) = W ∗
ε /C1, we get that 〈W ∗

t ,ψ
q∗(t)
1 〉 = (1 + o(1))ψ

q(0)

1 (x) and (
∑

n≥2〈W ∗
t−δ,ψ

q∗(t)
n 〉2)1/2 ≤ C2εψ

q(0)

1 (x) for
small ε, where C2 depends on Q1 and Q2. As above, this now implies that for every n ≥ 2, for small ε,∣∣〈W ∗

t ,ψ
q∗(0)
n

〉∣∣ ≤ exp
(−CQ1(t ∧ δ)ε−1n2/3)C2εψ

q(0)

1 (x).

Together with the previous estimates, this finally yields the existence of a sequence of constants (c∗
n)n≥2 with |c∗

n| ≤
exp(−CQ1(t ∧ δ)ε−1n2/3)C2, such that as ε → 0,

w∗(t, ·) ≥ (
1 + o(1)

)
exp

(
−ε−1α1

∫ t

0
q∗(s)2/3 ds

)
ψ

q(0)

1 (x)

(
ψ

q∗(t)
1 + ε

∞∑
n=2

c∗
nψ

q∗(t)
n

)
.

An analogous formula holds for w∗. The statement now follows from the fact that
∫ 1

0 q∗(s)2/3 − q∗(s)2/3 ds = O((t ∧
δ)2) by construction. �

Fix T > 0. The results obtained in the current section can be easily transported to the following PDE on [0, T ]×R+,
encountered in Sections 2 and 3.

ut (t, x) = 1

2
σ 2(t/T )uxx(t, x) +

{
−T −1Q(t)x + T −2/3α1Q(t)2/3

(
1

2
σ 2(t/T )

)1/3}
u(t, x), (A.4)

with Dirichlet boundary condition at 0 and where Q ∈ C1([0, T ]) with Q(t) > 0 for all t ∈ [0, T ]. Setting J (t) =∫ t

0
1
2σ(s)2 ds as in (2.3), defining q(t) by q(J (t)/J (1)) = 2Q(t)/σ 2(t), and changing variables by

u(t, x) = w
(
J (t/T )/J (1), T −1/3x

)
exp

(
J (1)T 1/3α1

∫ J (t/T )/J (1)

0
q(s)2/3 ds

)
,

we see that the function w(t, x) solves (A.1) on [0,1] × R+ with ε−1 = J (1)T 1/3 and the q(t) defined here. In
particular, if G(x,y; t) := G(x,y;0, t) and g(x, y; t) = g(x, y;0, t) denote the fundamental solutions of (A.4) and
(A.1), respectively, then we have the relation

G(x,y; t) = T −1/3g
(
T −1/3x,T −1/3y;J (t/T )/J (1)

)
× exp

(
J (1)T 1/3α1

∫ J (t/T )/J (1)

0
q(s)2/3 ds

)
. (A.5)

The following estimates on G(x,y; t) are used in the main text. Both are corollaries of Proposition A.2. Recall the
constant κ from (2.1).

Corollary A.4. For large T , we have for all x, y ≥ 0 and t ∈ [κT 2/3, T ],
C−1

0 T −1xy1x,y≤T 1/3 ≤ G(x,y; t) ≤ C0T
−1xy, (A.6)

where C0 > 0 depends continuously on σ(0), σ(1)−1, (inft∈[0,1] q(t))−1, supt∈[0,1] |q ′(t)| and q(0). In particular, with
the same assumptions,

d

dy
G(x, y; t)

∣∣∣∣
y=0

≤ C0T
−1x. (A.7)
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Corollary A.5. For large T , we have for all x ≥ 0, t ∈ [κT 2/3, T ],∫ ∞

0
G(x,y; t)y dy ≤ C0T

−1x, (A.8)

where C0 is as in the previous corollary.

Proof of Corollary A.4. Throughout the proof, we will use the fact that |ψq
n (x)| ≤ √

qx for every q ≥ 0, x ≥ 0 and
n ∈ N

∗, by the third part of Lemma A.1. Note that for t ≥ κT 2/3, we have with ε−1 = J (1)T 1/3,

J (t/T )/J (1) = J (1)−1
∫ t/T

0

1

2
σ 2(s)ds ≥ J (1)−1 1

2
σ 2(1)t/T ≥ 1

2
σ 2(1)κε = 4ε,

where the first inequality follows from the fact that σ 2 is a decreasing function and the last equality follows from
the definition of κ in (2.1). By (A.5) and Proposition A.2, with the notation introduced there, we then have for every
x, y ≥ 0,

G(x,y; t) � T −1/3ψ
q(0)

1

(
T −1/3x

)(
ψ

q∗(t)
1

(
T −1/3y

) + ε

∞∑
n=2

c∗n

∣∣ψq∗(t)
n

(
T −1/3y

)∣∣)

≤ C0T
−1xy

√
q(0) sup

t∈[0,1]

√
q(t). (A.9)

Here, C0 is a constant as in the statement of the corollary; this follows from the fact that the quantities Q−1
1 and Q2

in Proposition A.2 can be expressed as

Q−1
1 =

(
inf

t∈[0,1]q(t)
)−2/3

, Q2 = sup
t∈[0,1]

∣∣q ′(t)/q(t)
∣∣ ≤ supt∈[0,1] |q ′(t)|

inft∈[0,1] q(t)
.

Together with the fact that supt∈[0,1] q(t) ≤ q(0) + supt∈[0,1] |q ′(t)|, Equation (A.9) now implies the right-hand in-
equality of (A.6).

As for the left-hand inequality in (A.7), we have by Proposition A.2, again with the notation introduced there, for
every x, y ≥ 0,

G(x,y; t)� T −1/3ψ
q(0)

1

(
T −1/3x

)(
ψ

q∗(t)
1

(
T −1/3y

) − ε

∞∑
n=2

c∗
n

∣∣ψq∗(t)
n

(
T −1/3y

)∣∣). (A.10)

Now note that the function ψ1 is by definition (strictly) positive on (0,∞) and continuous on [0,∞). Furthermore,
ψ ′

1(0) = 1 by the first part of Lemma A.1. This implies that the function x �→ ψ1(x)/x can be extended to a continuous
and strictly positive function on [0,∞). In particular, for every q > 0, ψ1(x) ≥ C−1x for all x ∈ [0, q], where C =
infx∈[0,q] ψ1(x)/x > 0 depends continuously on q .

Letting ε → 0 (i.e., T → ∞), the left-hand inequality of (A.6) now readily follows from (A.10) by a reasoning
similar to the one used above for the right-hand inequality of (A.6), taking into the account the above lower bound
on ψ1.

Equation (A.7) immediately follows from (A.6). �

Proof of Corollary A.5. Similar to the proof of the last corollary, using in addition the fourth part of Lemma A.1.
We omit the details. �



1158 P. Maillard and O. Zeitouni

Appendix B: Convergence of the derivative Gibbs measure of (time–homogeneous) branching Brownian
motion

In this section, we consider branching Brownian motion with (time-homogeneous) variance σ 2 = 1, drift +1 and
reproduction law and branching rate as before. In particular, the left-most particle drifts off to +∞ with zero speed,
i.e., if Mt = minu∈N (t) Xu(t), then almost surely, as t → ∞, Mt/t → 0 and Mt → +∞ [4]. Define the derivative
Gibbs measure at time t :

μt =
∑

u∈N (t)

Xu(t)e
−Xu(t)δXu(t)/

√
t .

The quantity Dt = ∫
1 dμt is then known as the derivative martingale, and it is known ([15,19,25]) that Dt converges

almost surely as t → ∞ to a (strictly) positive limit D∞ whose Laplace transform is given by E[exp(−e−xD∞)] =
φ(x), where φ is a solution to (1.1).

Let ρ denote the law of a BES(3) process at time 1, started at 0, i.e.,

ρ(dx) =
√

2

π
x2e−x2/21x≥0 dx.

Theorem B.1. In probability, μt converges weakly to D∞ρ. Moreover, for every family (ft )t≥0 of uniformly bounded
measurable functions (i.e., supt,x |ft (x)| < ∞), we have∫

ft dμt − D∞
∫

ft dρ → 0, in probability.

Remark B.2. Convergence in probability of the Gibbs measure

μ∗
t = √

t ×
∑

u∈N (t)

e−Xu(t)δXu(t)/
√

t ,

has recently been shown by Madaule [16] for general branching random walks. While Theorem B.1 (at least the first
statement) could be in principle recovered from the results in [16] (see in particular Proposition 3.4 of that paper),
we present below for completeness a fairly simple proof.

Proof. Note that we can (and will) assume w.l.o.g. that ft ≥ 0 for each t ≥ 0. For every s ≤ t , define the measure

μs
t =

∑
u∈N (t)

Xu(t)e
−Xu(t)1(Xu(r)≥0 ∀s≤r≤t)δXu(t)/

√
t .

Since minu∈N (t) Xu(t) → +∞ almost surely [18], there exists a random time S, such that we have μs
t = μt for all

S ≤ s ≤ t . Since moreover Ds → D∞ almost surely, as s → ∞, it is enough to show that almost surely, for any family
of nonnegative functions (ft )t≥0 as in the statement of the theorem,

lim
s→∞ lim sup

t→∞
∣∣E[

e− ∫
ft dμs

t | Fs

] − e−Ds

∫
ft dρ

∣∣ = 0, a.s. (B.1)

Let s ≤ t . Define fs,t (x) = ft (x
√

(t − s)/t). By the branching property and Jensen’s inequality,

E
[
e− ∫

ft dμs
t | Fs

] =
∏

u∈N (s)

EXu(s)

[
e− ∫

fs,t dμ0
t−s

] ≥ exp

(
−

∑
u∈N (s)

EXu(s)

[∫
fs,t dμ0

t−s

])
. (B.2)

We now have for every x ≥ 0, by the first moment formula for branching Markov processes [14, Theorem 4.1] and
Girsanov’s theorem, for every bounded measurable function f ,

Ex

[∫
f dμ0

t

]
= et/2Ex

[
(Bt + t)e−(Bt+t)f

(
(Bt + t)/

√
t
)
1(Br≥0 ∀r≤t)

]
= e−xEx

[
Btf (Bt/

√
t)1(Br≥0 ∀r≤t)

] = xe−xEx

[
f (Rt/

√
t)
] = xe−xEx/

√
t

[
f (R1)

]
,
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where under Px , (Rt )t≥0 is a three-dimensional Bessel process started at x [21, Section XI.1]. The law of R1 under
Px has a continuous density with respect to Lebesgue measure for every x which converges uniformly to the density
of ρ as x → 0. It follows easily from this that for every x ≥ 0,

Ex

[∫
fs,t dμ0

t−s

]
− xe−x

∫
ft dρ → 0, as t → ∞. (B.3)

Equations (B.2) and (B.3) now yield the inequality “≥” in (B.1). In order to obtain the other inequality, we have by
Lemma B.3 below, for some constants C, C ′,

Ex

[(∫
fs,t dμ0

t−s

)2]
≤ C′E0

x

[
D2

t−s

] ≤ Ce−x, (B.4)

where the superscript in E0
x indicates that the particles are killed upon hitting the origin. By the branching property

and the inequalities e−x ≤ 1 − x + x2 ≤ e−x+x2
for x ≥ 0, we then get by (B.4),

E
[
e− ∫

ft dμs
t | Fs

] ≤ exp

( ∑
u∈N (s)

−EXu(s)

[∫
fs,t dμ0

t−s

]
+ EXu(s)

[(∫
fs,t dμ0

t−s

)2])

≤ exp

(
−Ds

∫
ft dρ + CWs + Es,t

)
, (B.5)

where Ws = ∑
u∈N (s) e

−Xu(s) and

Es,t =
∑

u∈N (s)

−EXu(s)

[∫
fs,t dμ0

t−s

]
+ Ds

∫
ft dρ

is an Fs -measurable term. By (B.4) and the fact that ρ has a continuous density with respect to Lebesgue’s measure,
Es,t tends to zero almost surely, as t → ∞, for each fixed s. Since Ws → 0 almost surely, as s → ∞ (see, e.g., [15,
19]), the inequality (B.5) yields the inequality “≤” in (B.1). This finishes the proof of the theorem. �

Lemma B.3. Let E0
x be the law of BBM as in the beginning of this section but where in addition particles are killed

upon hitting the origin. For some constant C, E0
x[D2

t ] ≤ Ce−x for every x ≥ 0 and t ≥ 0.

Proof. We first note that (Dt )t≥0 is a martingale as well under E0
x . In particular, E0

x[Dt ] = xe−x for every x ≥ 0
and t ≥ 0. By the second moment formula for branching Markov processes [14, Theorem 4.15], this gives for some
constant C,

E0
x

[
D2

t

] = E0
x

[ ∑
u∈N (t)

Xu(t)
2e−2Xu(t)

]
+ CE0

x

[∫ t

0

∑
u∈N (s)

Xu(s)
2e−2Xu(s) ds

]
.

By the first moment formula for branching Markov processes and Girsanov’s theorem we get as in the proof of
Theorem B.1,

E0
x

[
D2

t

] = e−x

(
Ex

[
B2

t e−Bt 1Bs≥0 ∀s≤t

] + CEx

[∫ t∧T0

0
B2

s e−Bs ds

])
,

where T0 is the first hitting time of the origin. The term in the first expectation is bounded by a constant. As for the
second expectation, by the inequality x2e−x ≤ C′e−x/2 and Ito’s formula, we have

Ex

[∫ t∧T0

0
B2

s e−Bs ds

]
≤ 4C′Ex

[
e−Bt∧T0 /2 − e−x/2] ≤ 4C′.

This yields the lemma. �
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