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VOLATILITY ESTIMATION UNDER ONE-SIDED ERRORS
WITH APPLICATIONS TO LIMIT ORDER BOOKS1

BY MARKUS BIBINGER∗, MORITZ JIRAK† AND MARKUS REISS†

Universität Mannheim∗ and Humboldt-Universität zu Berlin†

For a semi-martingale Xt , which forms a stochastic boundary, a rate-
optimal estimator for its quadratic variation 〈X,X〉t is constructed based
on observations in the vicinity of Xt . The problem is embedded in a Pois-
son point process framework, which reveals an interesting connection to the
theory of Brownian excursion areas. We derive n−1/3 as optimal conver-
gence rate in a high-frequency framework with n observations (in mean). We
discuss a potential application for the estimation of the integrated squared
volatility of an efficient price process Xt from intra-day order book quotes.

1. Introduction. Consider observations (Yi ) above a stochastic boundary
(Xt , t ∈ [0,1]), which is formed by the graph of a continuous semi-martingale. The
objective is to optimally recover the driving characteristic 〈X,X〉t of the bound-
ary Xt , given the observations (Yi ). A quantification of the information content
in these observations is nontrivial and leads to intriguing mathematical questions.
One motivation for considering this stochastic boundary problem stems from fi-
nancial applications in the context of limit order books. From a microeconomic
point of view, ask prices will typically lie above the efficient market price. Here,
the underlying latent efficient log-price of a stock (Xt , t ∈ [0,1]), observed over
a trading period like a day, serves as the boundary, whereas ask prices form the
observations (Yi ). Bid prices can be handled symmetrically and independently,
which can be used to validate the model.

Climate physics provides another example where semi-martingales appear as
stochastic boundaries. Considerable efforts are devoted to understanding the driv-
ing stochastic term for SDEs modeling the long-term temperature evolution; see,
for instance, [17] and [26]. One key source for historical temperature data is given
by annual tree rings (dendrochronology and dendroclimatology; see, for example,
[13]), whose relationship with temperature in an ideal environment is known. For
individual trees, only sizes up to this ideal boundary are observed due to growth
obstructions like limited nutrition, leading to deviations modeled as negative ob-
servation errors.
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FIG. 1. Left: Microstructure noise model Yi = Xi/n + εi , i = 0, . . . , n = 1000, with

εi
i.i.d.∼ Exp(50). Right: Poisson point process model with intensity λt,y = 50n1(y≥Xt ) with Xt an

Itô process.

As a prototype model, we consider the continuous Itô semi-martingale

Xt = X0 +
∫ t

0
as ds +

∫ t

0
σs dWs, t ∈ [0,1],(1.1)

with (possibly stochastic) drift and volatility coefficients as and σs , defined on a
filtered probability space (�,F, (Ft ),P) with a standard (Ft )-Brownian motion
W . Its total quadratic variation 〈X,X〉1 = ∫ 1

0 σ 2
s ds is commonly called integrated

squared volatility. Section 3 provides a generalization to models with jumps. A nat-
ural continuous-time embedding of the boundary problem is in terms of a Pois-
son point process (PPP). Conditional on (Xt , t ∈ [0,1]), we observe a PPP on
[0,1] ×R with intensity measure

�(A) =
∫ 1

0

∫
R

1A(t, y)λt,y dt dy, where λt,y = nλ1(y ≥ Xt).(1.2)

We denote by (Tj ,Yj ) the observations of that point process, which are homoge-
neously dispersed above the graph of (Xt , t ∈ [0,1]); cf. Figure 1. Theoretically
and also intuitively, information on the stochastic boundary can only be recovered
from the lowest observation points and a homogeneous intensity away from the
boundary is assumed for convenience only.

An associated discrete-time regression-type model, which explains well the dif-
ference to classical noise models, is defined by

Yi = Xtni
+ εi, i = 0, . . . , n, εi ≥ 0, εi

i.i.d.∼ Fλ,(1.3)

with observation times tni and an error distribution function Fλ satisfying

Fλ(x) = λx
(
1 + O(1)

)
, as x ↓ 0.(1.4)

One natural parametric specification is εi ∼ Exp(λ); cf. Figure 1. The noise is
assumed to be independent of the signal part X. In microstructure noise models
for transaction prices it is usually assumed that E[εi] = 0 holds, while here Xtni
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determines the boundary of the support measure for Yi . In fact, if the boundary
function was piecewise constant, then by standard PPP properties we would obtain
the regression-type model (1.3) with exponential noise from the PPP-model (1.2)
by taking local minima (on those pieces). Here, we show that under so-called
high-frequency asymptotics, the fundamental quantities in both models exhibit the
same asymptotic behaviour; see Proposition 3.2 below. Compare also [27] for the
stronger Le Cam equivalence in the case of smoother boundaries.

We shall first concentrate on the more universal PPP model which also allows
for simpler scaling and geometric interpretation. Local minima mn,k of Yj for Tj

in some small intervals [khn, (k + 1)hn) ⊆ [0,1] will form the basic quantities to
recover the boundary, which by PPP properties leads to the study of

P(mn,k > x) = E

[
exp

(
−

∫ (k+1)hn

khn

(Xt + x)+ dt

)]
, x ∈ R,

where A+ = max(A,0), and its associated moments. For the fundamental case
Xt = σWt , this opens an interesting connection to the theory of Brownian excur-
sion areas and also reveals the difficulty of this problem. It is well documented in
the literature; see, for example, [21], that no explicit form of the expectation in the
expression above is available. Essentially only (double) Laplace transforms and
related quantities are known, cf. Proposition 3.3 below and the attached discus-
sion. This makes the recovery of 〈X,X〉1 an intricate probabilistic question. Still,
we are able to prove that our estimator attains the rate n−1/3. What is more, by
information-theoretic arguments we are able to derive a lower bound showing that
the n−1/3-rate is indeed minimax optimal. A more direct proof seems out of reach
because the Poisson part from the noise intertwines with the Gaussian martingale
part in a way which renders the likelihood and respective Hellinger distances dif-
ficult to control, even asymptotically.

So far, the growing finance literature on limit order books focuses on modeling
and empirical studies. Empirical contributions as [5, 9] and [28] have investigated
price and volume distribution, inter-event durations as well as the structure of the
order-flow. Probabilistic models proposed for a limit order book include point pro-
cess models; see [3, 12] and [20], with mutually exciting processes. Other mod-
els come from queuing theory, for instance [14, 31] and [11], or stochastic op-
timal control theory as [10]. The main objective of most modeling approaches
is to explain how market prices arise from the book. For the financial applica-
tion, this papers adopts a different course with the focus on estimating the latent
volatility based on observations from a limit order book. Contrarily, to the regular
microstructure noise model which constitutes the standard setup for developing
volatility estimators from transaction data; see, for example, [1, 4, 34] and [18],
among many others, our model assumes one-sided noise. The optimal convergence
rate for volatility estimation in the model with Gaussian or regular centered noise
and n observations on an equidistant grid is n−1/4; see [16].
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FIG. 2. Order price levels for Facebook asset (NASDAQ) from 12:00 to 12:30 on June 2, 2014.
Colored areas highlight spreads between different bid and ask levels from level 1 up to level 5,
bid-ask spread is colored in dark red.2

Recently, as information from order books become more and more available, re-
searchers and practitioners have sparked the discussion to which kind of observed
prices estimation methods should be applied. Gatheral and Oomen [15] discuss
this point and the possibilities of mid-quotes, executed traded prices or micro-
prices which are volume-weighted combinations of bid and ask order levels. None
of these observed time series, however, is free from market microstructure cor-
ruptions and the idea of an underlying efficient price remains untouched. Figure 2
visualizes the information about the evolution of prices provided by a limit order
book for one specific data set. The colored areas highlight differences between the
five best bid and five best ask levels, the dark area in the center marking the bid-ask
spread between best bid and best ask. The idea is that an efficient price should lie,
at least most of the time, below the best ask (and symmetrically above the best bid)
and that its distance to this stochastic frontier is homogeneous. Similar reasoning
served as the fundament of the order book model by [25] as well as for the dynamic
trading model by [2].

Since modeling in science, economics and particularly finance is always a com-
promise between catching major features and too complex descriptive models, ro-
bustness to model misspecification is a key issue. Therefore, we propose a simple
modification of our estimator such that occasional violations of the continuous
semi-martingale model do not change the asymptotic properties of the estimator.
We shall show that for general violations, in particular evoked by jumps of the
efficient price and the volatility our adjusted estimation method is robust.

The remainder of the paper is organized as follows. In Section 2, we present
an estimation approach based on local order statistics whose asymptotic properties

2Data provided by LOBSTER academic data—powered by NASDAQ OMX.
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are explored in Section 3, along with the robustification against violations. In Sec-
tion 4, we prove the lower bound for the minimax estimation rate. An empirical
example is performed in Section 5 which concludes with a discussion. Proofs are
provided in the Appendix.

2. Volatility estimation based on local minima. We construct the integrated
squared volatility estimator in both models (1.2) and (1.3). We partition the unit
interval into h−1

n ∈ N equi-spaced bins T n
k = [khn, (k +1)hn), k = 0, . . . , h−1

n −1,
with bin-widths hn. For simplicity, suppose that nhn ∈ N. As n → ∞ the bin-
width gets smaller hn → 0, whereas the number of observed values on each bin
gets large, nhn → ∞. If we think of a constant signal locally on a bin observed
with one-sided positive errors, classical parametric estimation theory motivates
to use the bin-wise minimum as an estimator of the local signal (it then forms a
sufficient statistic under exponential noise or equivalently in the PPP model). In
the regression-type model (1.3) with equidistant observation times tni = i/n, we
therefore set

mn,k = min
i∈In

k

Yi, In
k = {

khnn, khnn + 1, . . . , (k + 1)hnn − 1
}
.(2.1)

Equally, in the PPP model (1.2) the local minima are given by

mn,k = min
Tj∈T n

k

Yj , T n
k = [

khn, (k + 1)hn

)
.(2.2)

The same symbol mn,k is used in both models because the following construction
only depends on the mn,k . All results and proofs will refer to the concrete model
under consideration.

Since Var(mn,k|(Xt)) ∝ (nλhn)
−2 holds in both models, the variance is much

smaller than for an estimator based on a local mean. Nevertheless, we may con-
tinue in the spirit of the pre-averaging paradigm, cf. [18], and interpret mn,k as a
proxy for Xt on T n

k , which in a second step is inserted in the realized variance

expression
∑h−1

n

i=1(Xkhn − X(k−1)hn)
2 without noise. The use of a locally constant

signal approximation Xt = Xkhn + OP(h
1/2
n ) on T n

k is only admissible, however,

if hn is chosen so small that h
1/2
n = o((nλhn)

−1), which would result in a sub-
optimal procedure.

Rate-optimality can be attained if we balance the magnitude (nλhn)
−1 of bin-

wise minimal errors due to noise with the range h
1/2
n of the motion of X on the

bin. This gives the order

hn ∝ (nλ)−2/3, nhn ∝ n1/3λ−2/3.(2.3)

In the PPP model (1.2), this natural choice of the bin-width also follows nicely
by a scaling argument: W̄t = h

−1/2
n Whnt defines a standard Brownian motion for

t ∈ [0,1] based on the values of W on [0, hn]; the correspondingly scaled PPP
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FIG. 3. The points indicate the function �(σ 2) with K = 31.6 for small (left) and moderate (right)
values of σ 2. The calculation is based on accurate Monte Carlo simulations. The lines show close
linear functions for comparison.

observations (T̄j , Ȳj ) with T̄j = h−1
n Tj , Ȳj = h

−1/2
n Yj have an intensity with

density λ̄t,y = nλh
3/2
n 1(y ≥ W̄t ), which becomes independent of n exactly for

hn = (nλ)−2/3.
In this balanced setup, the law of the statistics mn,k depends on the motion of

X as well as the error distribution in a nontrivial way. Still, the natural statistics
to assess the quadratic variation of the boundary process X are the squared differ-
ences (mn,k − mn,k−1)

2 between consecutive local minima. In the PPP model and
with the choice

hn =K2/3(nλ)−2/3 for some constant K > 0(2.4)

the law of h
−1/2
n mn,k is independent of n, hn and λ and for Xt = X(k−1)hn +

σ
∫ t
(k−1)hn

dWs on T n
k−1 ∪ T n

k , we may introduce

�
(
σ 2) = h−1

n E
[
(mn,k − mn,k−1)

2]
, k = 1, . . . , h−1

n − 1.(2.5)

Below we shall derive theoretical properties of � , and in particular, we shall
see that it is invertible as soon as K > 0 is chosen sufficiently large. Numerically,
the function � can be determined by standard Monte Carlo simulations (see Fig-
ure 3), and is thus available. This paves the way for a moment-estimator approach.
In fact,

∑
k(mn,2k −mn,2k−1)

2 approximates
∫

�(σ 2
t ) dt with corresponding sum-

mation and integration intervals. Under regularity assumptions on t �→ σ 2
t and by

the smoothness of � shown below, we have

�−1

( lr−1
n /2∑

k=(l−1)r−1
n /2+1

(mn,2k − mn,2k−1)
22h−1

n rn

)
≈ σ 2

lr−1
n hn

,(2.6)

where r−1
n hn is a coarse grid size with rnh

−1
n ∈ N, r−1

n ∈ 2N. This gives rise to
the following estimator of integrated squared volatility IV = ∫ 1

0 σ 2
t dt in the PPP

model (1.2) with bin-width (2.4):

ĨVhn,rn
n =

rnh−1
n∑

l=1

�−1

( lr−1
n /2∑

k=(l−1)r−1
n /2+1

(mn,2k − mn,2k−1)
22h−1

n rn

)
hnr

−1
n .(2.7)
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In the regression-type model (1.3), the corresponding second moments still de-
pend on n and we write explicitly

�n

(
σ 2) = h−1

n E
[
(mn,k − mn,k−1)

2]
, k = 1, . . . , h−1

n − 1.(2.8)

We shall see below that �n → � holds, but a nonasymptotic form of the volatility
estimator from regression-type observations is given by

ÎVhn,rn
n =

rnh−1
n∑

l=1

�−1
n

( lr−1
n /2∑

k=(l−1)r−1
n /2+1

(mn,2k − mn,2k−1)
22h−1

n rn

)
hnr

−1
n .(2.9)

For a parametric estimation of σt = σ = const., we employ the global moment-
type estimator ÎVhn,hn

n . Here, inversion of the entire sum of squared differences is
conducted. In the nonparametric case of varying σt instead a localized estimator
ÎVhn,rn

n , with rn → 0, r−1
n hn → 0, is applied. A balance between a second-order

term on each coarse interval of order rn and an approximation error controlled
by a semi-martingale assumption on σt of order r−1

n hn will lead to the choice

rn ∝ h
1/2
n ∝ (nλ)−1/3.

3. The convergence rate of the estimator. In order to centralize the local
minima, we write

mn,k − mn,k−1 = Rn,k −Ln,k, k = 1, . . . , h−1
n − 1,(3.1)

where Rn,k = mn,k − Xkhn and Ln,k = mn,k−1 − Xkhn measure the distances be-
tween the minima on bin T n

k and T n
k−1, respectively, to the central true value

Xkhn between both bins. In our high-frequency framework, the drift is asymptoti-
cally negligible and a regular volatility function will be approximated by a piece-
wise constant function on blocks of the coarse grid. In this setting, where Xt =
Xkhn + σ(Wt − Wkhn) and σ is deterministic, we may invoke time-reversibility
of Brownian motion to see that Xt − Xkhn , t ∈ T n

k−1, and Xt − Xkhn , t ∈ T n
k ,

form independent Brownian motions of variance σ 2 such that Rn,k,Ln,k, k =
(l − 1)r−1

n + 1, . . . , lr−1
n , are all identically distributed and there is independence

whenever different bins are considered (but Rn,k and Ln,k+1 are dependent). From
(2.5) and (3.1), we infer

�
(
σ 2

khn

)
hn = E

[
R2

n,k

] +E
[
L2

n,k

] − 2E[Rn,k]E[Ln,k] = 2 Var(Rn,k),

and similarly for �n. The histogram in Figure 4 shows the distribution of Rn,k

(equivalently Ln,k) in the regression model jointly with the associated histograms
for mini∈In

k
Xtni

−Xkhn and mini∈In
k
εi . In this situation, the law of Rn,k is given as

the convolution between an exponential distribution and the law of the minimum
of Brownian motion on the discrete grid In

k . The latter converges to the law of the
minimum of W on [0,1], but the simulations confirm the known feature that the
laws deviate rather strongly around zero for moderate discretisations. Let us state
and prove a slightly more general result.
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FIG. 4. Distributions of bin-wise minima of the signal process, noise and the convolution. Based
on 100,000 simulated bins with σ = 1, εi ∼ Exp(5), nhn = 100.

PROPOSITION 3.1. Choose hn according to (2.4). Consider t ∈ T n
k for fixed

k and suppose that Xt = Xkhn + ∫ t
khn

σ dWs, t ∈ T n
k . Then in the PPP model (1.2)

for all x ∈ R

P
(
h−1/2

n Rn,k > xσ
) = E

[
exp

(
−Kσ

∫ 1

0
(x + Wt)+ dt

)]
.(3.2)

PROOF. By conditioning on the Brownian motion, we infer from the PPP
properties of (Tj ,Yj ):

P
(
h−1/2

n Rn,k > xσ |W ) = exp
(
−

∫
T n

k

∫ xσh
1/2
n +Xkhn

−∞
λt,y dt dy

)

= exp
(
−nλσ

∫
T n

k

(
xh1/2

n − (Wt − Wkhn)
)
+ dt

)
.

Noting that W̄s = h
−1/2
n (W(k+s)hn −Wkhn), s ∈ [0,1], is again a Brownian motion;

the result follows by rescaling and taking expectations. �

For the regression-type model, the survival function is asymptotically of the
same form.

PROPOSITION 3.2. Choose hn according to (2.4). Suppose that Xt = Xkhn +∫ t
khn

σ dWs , t ∈ T n
k , for a fixed bin number k. Then in the regression-type

model (1.3) for all x ∈ R

lim
n→∞P

(
h−1/2

n Rn,k > xσ
) = E

[
exp

(
−Kσ

∫ 1

0
(x + Wt)+ dt

)]
.(3.3)

The approximation error due to nonconstant σ and drift is considered in detail
in Appendix A.1 and proved to be asymptotically negligible. This way, the asymp-
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totic analysis of our estimation problem leads into the theory of Brownian excur-
sion areas. Let Rt be a real random variable distributed as limn→∞ h

−1/2
n R

n,�th−1
n �.

The law of Rt determines �(σ 2
t ) via

Var(Rt ) = 1
2�

(
σ 2

t

)
.(3.4)

The Feynman–Kac formula gives a connection of the right-hand side in Proposi-
tion (3.1) to a parabolic PDE based on the heat semigroup for Brownian motion.
We can prove the following explicit result on the Laplace transform which deter-
mines the distribution of (Rt ), t ∈ [0,1].

PROPOSITION 3.3. The Laplace transform (in t) of

E

[
exp

(
−√

2ϑ

∫ t

0
(x + Ws)+ ds

)]
with ϑ ∈ R satisfies the following identity:

E

[∫ ∞
0

exp
(
−st − √

2ϑ

∫ t

0
(x + Ws)+ ds

)
dt

]
= ϑ−2/3ζs(x,ϑ),

with ζs(x,ϑ) = ζs,−(x,ϑ)1(−∞,0)(x) + ζs,+(x,ϑ)1[0,∞)(x) defined by the func-
tions

ζs,+(x,ϑ) = π(ϑ1/3Gi′(ϑ−2/3s) − √
sGi(ϑ−2/3s)) + ϑ2/3s−1/2

√
sAi(ϑ−2/3s) − ϑ1/3Ai′(ϑ−2/3s)

× Ai
(√

2ϑ1/3x + ϑ−2/3s
) + πGi

(√
2ϑ1/3x + ϑ−2/3s

)
,

ζs,−(x,ϑ) =
(

ϑ2/3s−1/2Ai(ϑ−2/3s) + ϑ1/3AI(ϑ−2/3s)√
sAi(ϑ−2/3s) − ϑ1/3Ai′(ϑ−2/3s)

− s−1ϑ2/3
)

× exp (
√

2sx) + s−1ϑ2/3,

where Ai is the Airy function which is bounded on the positive half axis,

Ai(x) = π−1
∫ ∞

0
cos

(
t3/3 + xt

)
dt,

and Gi is the Scorer function bounded on the positive half axis

Gi(x) = π−1
∫ ∞

0
sin

(
t3/3 + xt

)
dt,

and we define AI(x) = ∫ ∞
x Ai(y) dy.

This result generalizes the Laplace transform of the exponential integrated pos-
itive part of a Brownian motion derived by [29]. Inserting x = 0 and setting ϑ = 1
renders the result by [29]. An inversion of the Laplace transform in Proposition 3.3
in order to obtain an explicit form of the distribution function and then � appears
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unfeasible as several experts vainly attempted to solve related problems; see [29]
and [21]. Exploiting the strong Markov property of Brownian motion together with
hitting times, we are able to circumvent this problem in our study of �(σ 2), for
details we refer to the Appendix.

The observation models (1.2) and (1.3) as well as the semi-martingale model
(1.1) for X might be idealized. In finance, effects of surprise elements and informa-
tion processing might occasionally result in violations of this model, for instance
by price jumps. In such situations, a regularization of �−1(·) can yield more ro-
bust estimation results. We propose to truncate the estimator on the coarse grid by
employing

�−1
τ (·) = �−1(·) ∧ τ(3.5)

for some τ > 0 instead of �−1, giving the adjusted estimators ĨVhn,rn
n,τ and ÎVhn,rn

n,τ

in (2.7) and (2.9). The truncation level τ > 0 is chosen such that we can guaran-
tee supt∈[0,1]\Vn

σ 2
t ≤ τ almost surely where Vn denotes the union of all violated

blocks. In practice, any over-estimated bound from independent historical data
may work. Furthermore, observe that any continuous process of finite variation Āt

may corrupt the observations via Yi = Xtni
+Atni

+ εi without harming our volatil-
ity estimator because it can be incorporated as a drift into the new semi-martingale
Xt + At . For order books, the corruption Atni

may account for spreads due to mar-
ket processing and inventory costs.

We formulate now the main convergence results whose proofs are given in the
Appendix. For that, we impose some mild regularity on the drift and diffusion
coefficient. Moreover, we need that the function � is invertible and sufficiently
regular, which by Proposition A.6 below is ensured by a sufficiently large choice
of K, but at least numerically seems to be the case for much smaller choices; cf.
Figure 3. We work under the general structural hypothesis that the volatility is an
Itô semi-martingale with finite activity jumps. This is a standard assumption in
financial volatility estimation; see, for example, [4] and [18], allowing for stochas-
tic volatility with leverage. To remain concise, we assume global conditions on
the characteristics, but extensions via localization techniques as in Section 4.4.1 of
[19] are clearly possible.

ASSUMPTION 3.4. We work in the stochastic volatility model with potential
jumps in X and σ :

Xt = X0 +
∫ t

0
as ds +

∫ t

0
σs dWs +

∫ t

0

∫
R

x dμX(ds, dx),

σt = σ0 +
∫ t

0
ãs ds +

∫ t

0
σ̃s dWs +

∫ t

0
η̃s dW⊥

s +
∫ t

0

∫
R

x dμσ (ds, dx),

with finite random measures μX,μσ , that is, (μX + μσ )([0,1],R) < ∞ almost
surely. Assume that the volatility is uniformly bounded away from zero, that is,
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inf0≤t≤1 σt ≥ σ− almost surely for a deterministic constant σ− > 0. The character-
istics as , ãs , σ̃s and η̃s are progressively-measurable and uniformly bounded. The
constant K in the definition (2.4) of hn is chosen large enough that Proposition A.6
below applies.

THEOREM 3.5. Grant Assumption 3.4 with continuous X from (1.1), choose
hn according to (2.4) and rn = κn−1/3 for some κ > 0. Then the estimator (2.7)
based on observations from the PPP-model satisfies(

ĨVhn,rn
n −

∫ 1

0
σ 2

s ds

)
= OP

(
n−1/3)

.(3.6)

On the general Assumption 3.4, utilizing the truncation in (3.5) and if
supt∈[0,1] σ 2

t ≤ τ almost surely, it also holds that(
ĨVhn,rn

n,τ −
∫ 1

0
σ 2

s ds

)
= OP

(
n−1/3)

.(3.7)

Based on the same strategy of proof, we can obtain an analogous result for the
regression-type model.

COROLLARY 3.6. Grant Assumption 3.4, choose hn according to (2.4) and
rn = κn−1/3 for some κ > 0. Then the estimator (2.9) based on observations
from the regression-type model satisfies the same asymptotic properties as esti-
mator (2.7) in Theorem 3.5.

In the rate-optimal balanced setup, there are three error contributions of the
same order: the implied observational noise on the bins [khn, (k + 1)hn), the bin-
wise approximation of X, and a second-order term on the coarse blocks arising
from the nonlinearity of � . Their interplay is nontrivial, and thus a general sta-
ble central limit theorem for the rescaled error does not seem straight-forward. If
we dropped the ambition of rate-optimality, however, we could undersmooth or
oversmooth by a different choice of the block sizes hn and rn such that only one
or two error terms would prevail for which estimators with a simpler asymptotic
distribution theory would be available. This is not pursued here.

4. Lower bound for the rate of convergence. Consider our PPP-model
(1.2). We show that even in the simpler parametric statistical experiment where
Xt = σWt, t ∈ [0,1], and σ > 0 is unknown the optimal rate of convergence is
n−1/3 in a minimax sense. This lower bound for the parametric case then serves
a fortiori as a lower bound for the general nonparametric case. A lower bound for
the discrete regression-type model is obtained in a similar way; in fact the proof is
even simpler, replacing the Poisson sampling (T s

j ) below by a deterministic design

of distance n−2/3.
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THEOREM 4.1. We have for any sequence of estimators σ̂ 2
n of σ 2 ∈ (0,∞)

from the parametric PPP-model for each σ 2
0 > 0, the local minimax lower bound

∃δ > 0 : lim inf
n→∞ inf

σ̂n

max
σ 2∈{σ 2

0 ,σ 2
0 +δn−1/3}

Pσ 2
(∣∣σ̂ 2

n − σ 2∣∣ ≥ δn−1/3)
> 0,

where the infimum extends over all estimators σ̂n based on the PPP-model (1.2)
with λ = 1 and Xt = σWt . The law of the latter is denoted by Pσ 2 .

The proof falls into three main parts. We first simplify the problem by consid-
ering more informative experiments. These reductions are given in the two steps
below. Then, in the third step we use bounds for the Hellinger distance. The more
technical step 3 is worked out in Appendix B.

1. A PPP with intensity � is obtained as the sum of two independent PPPs with
intensities �r and �s , respectively, satisfying � = �r + �s ; see, for example,
[23]. Hence, for b > 0 the experiment of observing (T r

i ,Yr
i )i≥1 from a PPP with

regularized intensity density

λr(t, y) = n
((

(y − Xt)+/b
)2 ∧ 1

)
and independently (T s

j ,Ys
j )j≥1 from a PPP with discontinuous intensity density

λs = λ − λr is more informative. We now provide even more information by re-
placing (T s

j ,Ys
j )j≥1 by (T s

j ,XT s
j
)j≥1, the direct observation of the martingale val-

ues at the random times (T s
j ). A lower bound proved for observing (T r

i ,Yr
i )i≥1

and (T s
j ,XT s

j
)j≥1 independently thus also applies to the original (less informa-

tive) observations.
2. Due to

∫∫
λs(t, y) dt dy = (2/3)nb, we conclude that the times (T s

j ) are
given by a Poisson sampling of intensity (2/3)nb on [0,1] and there are a.s. only
finitely many times (T s

j )j=1,...,J . Let us first work conditionally on (T s
j ) and put

T s
0 = 0, T s

J+1 = 1. All observations of (T r
i ,Yr

i )i≥1 with T r
i ∈ [T s

j−1, T
s
j ) are trans-

formed via(
T r

i ,Yr
i

) �→
(
T r

i − T s
j−1,Yr

i −
(
XT s

j−1

T r
i − T s

j−1

T s
j − T s

j−1
+ XT s

j

T s
j − T r

i

T s
j − T s

j−1

))
.

Noting that (Bt − (t/T )BT , t ∈ [0, T ]) defines a Brownian bridge B0,T on [0, T ],
we thus obtain conditionally on (T s

j ) for each j = 1, . . . , J + 1 observations of a
PPP on [0, T s

j − T s
j−1] with intensity density

λj (t, y) = n
(
b−1(

y − σB
0,T s

j −T s
j−1

t

)
+ ∧ 1

)
.

The transformation has rendered the family of PPPs with intensity densities
(λj )j=1,...,J+1 independent by reducing the Brownian motion to piecewise Brow-
nian bridges. Conditionally on (T s

j ), we thus have independent observations of

(T s
j ,XT s

j
)j=1,...,J and independent PPPs with intensity densities (λj )j=1,...,J+1.
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By using the latter, more informative experiment and by choosing b ∝ n−1/3

we show below that for a Poisson sampling (T s
j )j=1,...,J on [0,1] of intensity

(2/3)nb ∝ n2/3 of direct observations XT s
j

as well as for independent observations
of PPPs, generated by σ times a Brownian bridge in-between the sampling points
(T s

j )j , we cannot estimate at a better rate than n−1/3. This is accomplished by

bounding the Hellinger distance between the experiments for σ 2 = σ 2
0 and σ 2 =

σ 2
0 + δn−1/3.

5. Discussion. For the application to limit order books, we model the relation-
ship between ask quotes and an efficient price process by a pure boundary model,
not taking into account the fine structure of order book dynamics. This agnostic
point of view seems attractive for statistical purposes because more complex mod-
els will usually require more data for the same estimation accuracy and are highly
exposed to model misspecification. To check whether the semi-martingale bound-
ary model leads to realistic results, we apply our estimator to limit order book data
and compare it to integrated volatility estimators, which are commonly used for
traded prices under market microstructure noise.

We consider limit order book data of the Facebook asset (FB) traded at NAS-
DAQ provided by LOBSTER academic data, recorded over the 21 trading days in
August 2015. Empirical data analysis with similar assets lead to comparable re-
sults. The August 2015 time series has the advantage of starting with a relatively
calm period before incorporating a period of high trading activity, which can serve
as a kind of stress test to the estimators. We estimate day-wise integrated volatili-
ties based on:

1. Our estimator (2.9) with truncation for the regression-type model and first
level ask quotes log-prices (and symmetrically, but independently bid quotes),
called ÎV in the sequel. The average number of newly submitted best ask quotes
per day, n, in the considered period is about 100,000. The average n for bid quotes
is similar, but the difference on certain days may be large. The maximal absolute
difference is 30,537 in the considered period.

2. The local method of moment (LMM) estimator from [6], adjusted to possible
jumps with the truncated version from [8], and log-prices from trades reconstructed
from the order book. The average number of trades per day in the considered period
is about 43,000.

The LMM is the asymptotically efficient estimator for the standard regular noise
model with centered noise and we follow the implementation with a selection of
tuning parameter described in [7]. For the truncation step, we employ a global
threshold τ = 2 log(h−1

n )hnÎVpre, with the pre-estimator of integrated volatility
obtained from the first estimation step of the two-stage adaptive LMM, for both
approaches using their different bin-lengths hn and sample sizes n. hn is chosen
in a data-driven way, for the LMM we arrive at about 100 bins per day and for
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FIG. 5. Estimated daily volatilities multiplied by 105 for Facebook, August 2015. Days on which
jumps have been filtered are highlighted by ∗-symbols.

the ÎV at about 650 bins. We expect that comparative studies using alternative
estimators for the regular noise model as, for example, realized kernels from [4] or
pre-averaging from [18], would yield similar results.

The results are presented in Figure 5. It shows a rather close relationship be-
tween the three sequences of estimates. Estimates obtained from bid and ask quotes
can differ, but their differences are very small. On August 24, 2015, however, there
is a large difference among the estimators. On that day a flash crash manipulated
the traded and order quote prices challenging all market models. The huge differ-
ence among the truncated estimates is due to the rougher time resolution of bins
for LMM which are equidistant in calendar time. The flash crash led to tremen-
dous price movements in very short time at the beginning of the trading day along
with a huge trading activity. In the regular noise model the LMM ascribes those
movements on its first two time bins to jumps and truncates, while our bin widths
hn are much smaller, and thus ÎV is still affected by this period because not all
bins are truncated. The same effect explains why the values of ÎV are significantly
larger around that date.

A priori, even from a microeconomic perspective, it is not clear whether the as-
sumed efficient price processes for the different market mechanisms giving rise to
bids, asks and trades are the same or at least exhibit the same integrated volatility.
A proper statistical test for the latter hypothesis requires a simultaneous distribu-
tion theory for ÎV and the LMM (a CLT alone is not sufficient), which is beyond
the scope of the present work and a project in its own right. For the LMM alone,
however, a feasible central limit theorem is available; see Theorem 4.4 of [6].

For the Facebook data set, we have conducted a test on the hypothesis that
the integrated volatilities in the order book and transaction price models coincide,
assuming independence of the estimators and a Gaussian limit distribution where
the variance of ÎV does not exceed the one of LMM. Applied to 21 trading days and
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at asymptotic level α = 5%, the test has accepted the null on 14 days and rejected
on 7 days. This testing problem illustrates that more mathematical analysis of the
estimator’s risk is highly desirable as well as a more profound empirical study.

APPENDIX A: PROOFS OF SECTION 3

Proposition 3.2 considers the simplified model where Xt, t ∈ T n
k , is approx-

imated by Xkhn + ∫ t
khn

σkhn dWt . The resulting approximation error is bounded
within Proposition A.2 for the PPP-model and an analogous proof carries over
to the regression-type model. In the sequel, we write A+ = A1(A ≥ 0), A− =
|A|1(A ≤ 0) and ‖Z‖p = E[|Z|p]1/p,p ≥ 1.

PROOF OF PROPOSITION 3.2. By law invariance of Rn,k with respect to k for
Xt = X0 + σWt , we can simplify

P
(
h−1/2

n Rn,k > xσ
) = P

(
h−1/2

n min
i=0,...,nhn−1

(Xi/n − X0 + εi) > xσ
)

= P

(
min

i=0,...,nhn−1

(
Wi/(nhn) + σ−1h−1/2

n εi

)
> x

)
,

where we used that h
1/2
n Wt/hn is another Brownian motion. We condition on the

driving Brownian motion W = (Wt , t ∈ [0,1]) and obtain in terms of the distribu-
tion function Fλ of εi :

P
(
h−1/2

n Rn,k > xσ
) = E

[
nhn−1∏
i=0

P
(
εi > σh1/2

n (x − Wi/(nhn))|W )]

= E

[
exp

(
nhn−1∑
i=0

log
(
1 − Fλ

(
σh1/2

n (x − Wi/(nhn))
)))]

.

The expansion (1.4) of Fλ together with expanding the logarithm therefore yields

P
(
h−1/2

n Rn,k > xσ
) = E

[
exp

(
−σh1/2

n λ

nhn−1∑
i=0

(x − Wi/(nhn))+
(
1 + O(1)

))]
,

where O(1) is to be understood ω-wise and holds uniformly over i and n

whenever maxt∈[0,1](x − Wt(ω))+ is bounded. By the choice of hn we have

h
1/2
n λ = K(nhn)

−1 and the integrand is a Riemann sum tending almost surely
to exp(−σK

∫ 1
0 (x − Wt)+ dt). Noting that a conditional probability is always

bounded by 1, the assertion follows by dominated convergence and use of −W
d=

W . �

PROOF OF PROPOSITION 3.3. Throughout the proof, we drop the dependence
on ϑ in ζs(x,ϑ), ζs,−(x,ϑ) and ζs,+(x,ϑ) to lighten the notation. We shall apply
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the Kac formula in the version as in formulae (4.13) and (4.14) of [22]. It connects
the considered Laplace transform with the solution of a differential equation which
becomes in our case:

d2ζ

dx2 = 2sζ − 2ϑ2/3, x < 0,(A.1a)

d2ζ

dx2 = 2(
√

2ϑx + s)ζ − 2ϑ2/3, x > 0.(A.1b)

Since all assertions necessary to apply the Kac formula are fulfilled, the Laplace
transform from above multiplied with a constant Lagrangian ϑ2/3 satisfies

E

[∫ ∞
0

ϑ2/3 exp
(
−st − √

2ϑ

∫ t

0
(x + Ws)+ ds

)
dt

]
= ζs(x).

The general solution of (A.1a) is given by

ζs,−(x) = A exp (
√

2sx) + ϑ2/3s−1,(A.2a)

with a constant A (depending on s but not on x). Airy’s function Ai solves the
homogenous differential equation of the type (A.1b), whereas the Scorer function
Gi is a particular solution of the inhomogeneous equation ζ ′′ − xζ = π−1, both
being bounded on the positive real line. Hence, a solution ansatz for (A.1b) is
given by

ζs,+(x) = BAi
(√

2ϑ1/3x + ϑ−2/3s
) + πGi

(√
2ϑ1/3x + ϑ−2/3s

)
,(A.2b)

with a constant B . Continuity conditions on ζ and dζ/dx at x = 0 give rise to

B = π(ϑ1/3Gi′(ϑ−2/3s) − √
sGi(ϑ−2/3s)) + ϑ2/3s−1/2

√
sAi(ϑ−2/3s) − ϑ1/3Ai′(ϑ−2/3s)

.

In order to express A in a more concise and simple manner, we exploit the follow-
ing relation for the Wronskian of Ai and Gi:

π
(
Gi′(x)Ai(x) − Ai′(x)Gi(x)

) = AI(x) =
∫ ∞
x

Ai(y) dy.(A.3)

A proof of the latter equality can be found in [33]. Thereby, we obtain

A =
(

ϑ2/3s−1/2Ai(ϑ−2/3s) + ϑ1/3AI(ϑ−2/3s)√
sAi(ϑ−2/3s) − ϑ1/3Ai′(ϑ−2/3s)

− s−1ϑ2/3
)
.

This result completes the proof. �
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A.1. Asymptotic analysis of the estimator. Recall that due to Assump-
tion 3.4 we can assume without loss of generality that ‖a‖∞,‖ã‖∞,‖σ̃‖∞,

‖η̃‖∞ ≤ C+ a.s., and that inf0≤t≤1 σt ≥ σ− > 0 a.s. Here, C+ and σ− are abso-
lute constants. From here on, An � Bn expresses shortly that An ≤ K · Bn for two
sequences An,Bn and some real constant K < ∞. We use the notation A �a.s. B

if this holds P-almost surely. Similarly, we write A = Oa.s.(B) and use A ≤a.s. B

for short notation. We also write P|k(·) = P(·|Fkhn) and analogously for the con-
ditional expectation. Moreover, we use ‖|kZ‖q = E|k[|Z|q]1/q, q ≥ 1.

First, we establish Theorem 3.5 and Corollary 3.6 on Assumption 3.4 and in ab-
sence of jumps in X and σ for estimators (2.7) and (2.9), respectively. Robustness
of the truncated versions against violations is proved at the end of this section. As a
first step, we analyze the approximation error assuming a locally constant volatil-
ity and neglecting the drift. Then we prove Theorem 3.5 exploiting properties of
� which are established in Appendix A.2. We shall use the following identities for
moments of real random variables:

E[X] =
∫ ∞

0
P(X > x)dx −

∫ ∞
0

P(−X > x)dx,(A.4a)

E
[
X2] = 2

∫ ∞
0

xP(X > x)dx + 2
∫ ∞

0
xP(−X > x)dx.(A.4b)

LEMMA A.1. For any finite p > 1 and x > 0, 0 ≤ s ≤ t ≤ 1, we have

P

(
sup

s≤r≤t

∣∣σ 2
r − σ 2

s

∣∣ ≥ xσs

∣∣Fs

)
�a.s.

(|t − s|/(
x2 ∧ x

))p/2
.

PROOF. Since ‖ã‖∞ ≤ C+ a.s.; we get that
∫ t
s |ãr |dr ≤ C+(t − s) almost

surely. Hence, using Markov’s and Burkholder’s inequality, for any finite p > 1

P

(
sup

s≤r≤t
|σr − σs | ≥ z

∣∣Fs

)
�a.s.

(|t − s|/z2)p/2
, z > 0,(A.5)

where we also used ‖σ̃‖∞,‖η̃‖∞ ≤ C+ a.s. Since

σ 2
r − σ 2

s = (σr − σs)
2 + 2σs(σr − σs),

we obtain that

P

(
sup

s≤r≤t

∣∣σ 2
r − σ 2

s

∣∣ ≥ xσs

∣∣Fs

)
≤ P

(
sup

s≤r≤t
|σr − σs | ≥

√
xσs/2

∣∣Fs

)
+ P

(
sup

s≤r≤t
|σr − σs | ≥ x/4

∣∣Fs

)
.

Hence, using (A.5) and inf0≤s≤1 σs ≥ σ− a.s., the claim follows. �
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PROPOSITION A.2. Consider hn in (2.4) and t ∈ T n
k for fixed k. Then

P

(
min
j∈T n

k

Yj − Xkhn > xσkhn

√
hn

∣∣Fkhn

)

= E

[
exp

(
−Kσkhn

∫ 1

0
(x + W̃t )+ dt

)∣∣∣Fkhn

]
+ (λn)−1/3G(x), a.s.,

where (W̃t )0≤t≤1 is a standard Brownian motion independent of (Ft )0≤t≤1, G(x)

is deterministic and |x|p|G(x)| ∈ L1(R) for any finite p ≥ 0. If σt is constant and
at = 0 for t ∈ T n

k , then G(x) = 0.

PROOF. Throughout the proof, C0, C1, . . . denote positive, generic constants
that may vary from line to line. Proposition 3.1 already gives the last statement in
case of no drift and bin-wise constant volatility. Let Az = T n

k × (−∞, z] and

z = xσkhn

√
hn.(A.6)

Let �Xt(k) = ∫ t
khn

σs dWs and �At(k) = ∫ t
khn

as ds. Then, using basic properties
of a PPP, it follows that

P|k
(

min
j∈T n

k

Yj − Xkhn > z
)

= E|k
[
P

(
�(Az) = 0|X)] = E|k

[
exp

(−�(Az)
)]

= E|k
[
exp

(
−nλ

∫
Az

1{�Xt(k)+�At(k)≤y} dt dy

)]
(A.7)

= E|k
[
exp

(
−nλ

∫
T n

k

(
z − �Xt(k) − �At(k)

)
+ dt

)]
.

Introduce

Tk = nλ

∫
T n

k

(
z − �Xt(k) − �At(k)

)
+ dt,

Vk = nλ

∫ (k+1)hn

khn

(
z − σkhn(Wt − Wkhn)

)
+ dt,

Uk = nλ

∫ (k+1)hn

khn

∣∣∣∣∣
∫ t

khn

(σs − σkhn) dWs

∣∣∣∣∣dt and Ak = nλh2
n max

t∈T n
k

|at |.

Then we have the upper and lower bounds

Vk − Uk − Ak ≤ Tk ≤ Vk + Uk + Ak.

By scaling and symmetry properties of Brownian motion, we have that

Vk
d= nλσkhnh

3/2
n

∫ 1

0
(W̃t + x)+ dt =Kσkhn

∫ 1

0
(W̃t + x)+ dt,

with a standard Brownian motion W̃ independent of (Ft )0≤t≤1. In the sequel, we
distinguish the two cases where x ≥ −1 and x < −1.
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Case x ≥ −1: As a first objective, we derive an upper bound for E|k[exp(−y ×
Tk)], y > 0. To this end, note that by the Dambis–Dubins–Schwarz theorem (The-
orem 4.6 in [22]), on a possibly larger probability space (extending time and pro-
cesses from T = 1 to T = ∞), there exists a Brownian motion (W�

t ) independent
of Fkhn such that

�Xt(k)
d= W�〈�X(k),�X(k)〉t .

Lemma A.1 yields that for x ∈ R

P|k
(

sup
khn≤t≤(k+1)hn

∫ t

khn

∣∣σ 2
s − σ 2

khn

∣∣ds ≥ |x|σkhn

)
�a.s.

(
hn/|x|)p′/2 ∧ 1,

p′ > 0.

Since 〈�X(k),�X(k)〉t = ∫ t
khn

σ 2
s ds for t ≥ khn, we deduce

P|k
(

sup
t∈T n

k

∣∣�Xt(k)
∣∣ ≥ |z|/2

)
�a.s. P|k

(
sup

0≤t≤|x|σkhn

∣∣W�√
t

∣∣ ≥ |z|/2
)

+ (
hn/|x|)p′/2 ∧ 1

(A.8)

�a.s. P|k
(

sup
0≤t≤1

∣∣W�
t

∣∣ ≥ C0σkhn |x|
σkhn + √|x|σkhn

)
+ (

hn/|x|)p′/2 ∧ 1

�a.s. P
(∣∣W�

1

∣∣ ≥ C0
√|x|) + (

hn/|x|)p′/2 ∧ 1,

with some C0 > 0. Next, observe that by the boundedness of at , it follows that

Ak �a.s. nλh2
n max

t∈[0,1] |at | �a.s. (λn)−1/3.(A.9)

We thus obtain for y > 0 the upper bound

E|k
[
exp(−yTk)

]
�a.s. P

(|W1| ≥ C0
√|x|) + (

hn/|x|)p′/2 ∧ 1
(A.10)

+ exp
(−C1|x|ynhnσkhn/2 + C2yn−1/3) + 1(x < 0),

where p′ arbitrarily large but finite. Note that elementary calculations yield that
(A.10) also supplies a bound for E|k[exp(−yVk)]. Next, observe that

Uk ≤ nhnλ sup
khn≤t≤(k+1)hn

∣∣∣∣∣
∫ t

khn

(σs − σkhn) dWs

∣∣∣∣∣ def= U+
k .

Applying Burkholder’s inequality, we get

∥∥|kU
+
k

∥∥
q �a.s. nλhn

∥∥∥∥∥|k

∫ (k+1)hn

khn

(σs − σkhn)
2 ds

∥∥∥∥∥
1/2

q/2

,
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hence another application of Burkholder’s inequality yields that∥∥|kU
+
k

∥∥
q �a.s. nλh3/2

n h1/2
n = (λn)−1/3K4/3,(A.11)

where we also used that ‖ã‖∞,‖σ̃‖∞,‖η̃‖∞ < ∞ almost surely. Set Uk,n =
{U+

k ≤ δ}. By the Markov inequality and (A.11), it follows for q ≥ 1 and δ =
(nλ)−1/6

P|k
(
Uc

k,n

)
�a.s. δ

−q(nλ)−q/3 = (nλ)−q/6.(A.12)

Using the power series of exp(x) and (A.9), we obtain by Cauchy–Schwarz in-
equality

E|k
[
exp(−Tk)1Uk,n

]
≤ E|k

[
exp(−Vk)

] +E|k
[
exp(−Vk)

(
exp

(
U+

k + Ak

) − 1
)
1Uk,n

]
≤ E|k

[
exp(−Vk)

] + ∥∥|kexp(−Vk)
∥∥

2

∥∥|k
(
exp

(
U+

k + Ak

) − 1
)
1Uk,n

∥∥
2

≤ E|k
[
exp(−Vk)

] + C3
∥∥|kexp(−Vk)

∥∥
2

(∥∥|kU
+
k

∥∥
2 + δ2 + (λn)−1/3)

,

with some constant C3. From (A.11), this is bounded by

E|k
[
exp(−Vk)

] + C4
∥∥|kexp(−Vk)

∥∥
2(λn)−1/3, C4 > 0.(A.13)

On the other hand, it follows from Cauchy–Schwarz inequality that

E|k
[
exp(−Tk)1Uc

k,n

] ≤ ∥∥|kexp(−2Tk)
∥∥

2

√
P|k

(
Uc

k,n

)
.(A.14)

Combining the above, we thus conclude from (A.10) (y = 2, p′ large enough) and
(A.12) (q large enough) for some constant C5:

E|k
[
exp(−Tk)

] ≤a.s. E|k
[
exp(−Vk)

] + C5
∥∥|kexp(−Vk)

∥∥
2(λn)−1/3

+ ∥∥|kexp(−2Tk)
∥∥

2

√
P|k

(
Uc

k,n

)
≤a.s. E|k

[
exp(−Vk)

] + C5

(λn)1/3

(
P

(|W1| ≥ C5
√|x|) +

(
hn

|x|
)p′/4−1

+ 1(x ≤ 0) + exp
(−|x|nhnσkhnC5

))1/2

.

In the same manner, one obtains a lower bound, and hence the claim follows (for
x ≥ 0), since inf0≤t≤1 σt ≥ σ− > 0 almost surely.

Case x < −1: Let

Vn,k(z) =
{

sup
t∈T n

k

∣∣σkhn(Wt − Wkhn)
∣∣ < |z|/4

}
,

(A.15)
Xn,k(z) =

{
sup
t∈T n

k

∣∣�Xt(k)
∣∣ < |z|/2

}
,
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and denote with Vc
n,k(z) and X c

n,k(z) their complements. Observe that since |x| ≥ 1
and inf0≤s≤1 σs ≥ σ− and∣∣�At(k)

∣∣ �a.s. hn max
t∈[0,1] |at | �a.s. hn,

we get 0 = Tk = Vk for large enough n on the set Vn,k(z) ∩ Xn,k(z). Hence, we
obtain from (A.8) that∣∣E|k

[(
exp(−Tk) − exp(−Vk)

)
1Vn,k(z)

]∣∣
≤ ∣∣E|k[1Vn,k(z)∩X c

n,k(z)
]∣∣

�a.s. P
(|W1| ≥ C6

√|x|) + (
hn/|x|)p′/2 ∧ 1,

with some C6 > 0. On the other hand, using very similar arguments as for the case
x ≥ −1, one derives that∣∣E|k

[(
exp(−Tk) − exp(−Vk)

)
1Vc

n,k(z)

]∣∣
�a.s.

1

(λn)1/3

(
P

(|W1| ≥ C6
√|x|) +

(
hn

|x|
)p′/4−1

+ exp
(−|x|nhnσkhnC6

))1/2

,

which completes the proof. �

Denote with Rn,k(σ ) the version of Rn,k where σ 2
t = σ 2 is constant for t ∈

(T n
k ∪ T n

k−1), and we use the same notation Ln,k(σ ) for Ln,k . It is apparent from
the proof of Proposition A.2 that σkhn can be replaced with any σ(k−j)hn where
j ≥ 0 is finite and independent of n.

LEMMA A.3. For p ≥ 1, we have∥∥h−1/2
n Rn,k

∥∥
p,

∥∥h−1/2
n Ln,k

∥∥
p < ∞.

PROOF. Using the identity,

E
[|X|p] = p

∫ ∞
0

xp−1(
P(X > x) + 1 − P(X ≥ −x)

)
dx,

the claim follows from Proposition A.2 and the tower property of conditional ex-
pectation. �

LEMMA A.4. We have the equality

E
[
h−1

n (Ln,k −Rn,k)
2|F(k−1)hn

] = �
(
σ 2

(k−1)hn

) +Oa.s.
(
h1/2

n

)
.
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PROOF. Using Proposition A.2 and relations (A.4a), (A.4b), one readily com-
putes that

E[Ln,k|F(k−1)hn] = E
[
Ln,k(σ(k−1)hn)|F(k−1)hn

] +Oa.s.(hn),
(A.16)

E
[
L2

n,k|F(k−1)hn

] = E
[
L2

n,k(σ(k−1)hn)|F(k−1)hn

] +Oa.s.
(
h3/2

n

)
,

and similarly

E[Rn,k|F(k−1)hn] = E
[
Rn,k(σ(k−1)hn)|F(k−1)hn

] +Oa.s.(hn),
(A.17)

E
[
R2

n,k|F(k−1)hn

] = E
[
R2

n,k(σ(k−1)hn)|F(k−1)hn

] +Oa.s.
(
h3/2

n

)
.

Hence, by (A.16) and (A.17), we obtain

E|k−1
[
(Ln,k −Rn,k)

2] = E|k−1
[
L2

n,k(σ(k−1)hn)
] +E|k−1

[
R2

n,k(σ(k−1)hn)
]

(A.18)
+Oa.s.

(
h3/2

n

) − 2E|k−1[Ln,kRn,k].
It thus suffices to consider the cross term in the last line. Note that by the tower
property of conditional expectations

E|k−1[Ln,kRn,k] = E|k−1
[
Ln,kE|k[Rn,k]]

= E|k−1
[
Ln,k

(
E|k[Rn,k] −E|k−1

[
Rn,k(σ(k−1)hn)

]
+E|k−1

[
Rn,k(σ(k−1)hn)

])]
= E|k−1

[
Ln,k

(
E|k[Rn,k] −E|k−1

[
Rn,k(σ(k−1)hn)

])]
+E|k−1

[
Ln,kE|k−1

[
Rn,k(σ(k−1)hn)

]]
.

By Lemma A.3 and (A.17),∣∣E|k−1
[
Ln,k

(
E|k[Rn,k] −E|k−1

[
Rn,k(σ(k−1)hn)

])]∣∣ = Oa.s.(hn)E|k
[|Ln,k|]

(A.19)
= Oa.s.

(
h3/2

n

)
.

The same arguments as above lead to

E|k−1
[
Ln,kE|k−1

[
Rn,k(σ(k−1)hn)

]]
(A.20)

= E|k−1
[
Ln,k(σ(k−1)hn)

]
E|k−1

[
Rn,k(σ(k−1)hn)

] +Oa.s.
(
h3/2

n

)
.

Since E|k−1[Rn,k(σ(k−1)hn)] = E|k[Rn,k(σ(k−1)hn)], we have by the tower prop-
erty of conditional expectations

E|k−1
[
Ln,k(σ(k−1)hn)

]
E|k−1

[
Rn,k(σ(k−1)hn)

]
= E|k−1

[
E|k

[
Ln,k(σ(k−1)hn)Rn,k(σ(k−1)hn)

]]
(A.21)

= E|k−1
[
Ln,k(σ(k−1)hn)Rn,k(σ(k−1)hn)

]
.

Combining (A.19), (A.20) and (A.21), we obtain

E|k−1[Ln,kRn,k] = E|k−1
[
Ln,k(σ(k−1)hn)Rn,k(σ(k−1)hn)

] +Oa.s.
(
h3/2

n

)
,

and hence the claim follows. �



2776 M. BIBINGER, M. JIRAK AND M. REISS

LEMMA A.5. Let �̃(x) = �(x2), an,l = lr−1
n /2, sn,l = lhnr

−1
n = 2an,lhn and

Mk,n = (mn,2k − mn,2k−1)
22h−1

n rn. We then have the following upper bounds:

(i)

∥∥∥∥∥
h−1

n rn∑
l=1

(
�−1)′(

�
(
σ 2

sn,l−1

))
rn

an,l∑
k=an,l−1+1

(
�

(
σ 2

khn

) − �
(
σ 2

sn,l−1

))∥∥∥∥∥
1

=O(1),

(ii)
h−1

n rn∑
l=1

r2
n

∥∥∥∥∥
an,l∑

k=an,l−1+1

(
�

(
σ 2

khn

) − �
(
σ 2

sn,l−1

))∥∥∥∥∥
2

2

= O(1),

(iii)

∥∥∥∥∥
rnh−1

n∑
l=1

σ 2
sn,l−1

hnr
−1
n −

rnh−1
n∑

l=1

an,l∑
k=an,l−1+1

σ 2
khn

hnr
−1
n

∥∥∥∥∥
1

� n−1/3.

PROOF. Note first that due to (A.36) and (A.37) below, it follows that for any
p ≥ 1

sup
t∈[0,1]

∥∥�̃ ′
(σt )

∥∥
p, sup

x≥σ−

∣∣�̃ ′′
(x)

∣∣ < ∞.(A.22)

Case (i): By Itô’s formula and the independence of Ws and W⊥
s in Assump-

tion 3.4,

�̃(σt ) − �̃(σs) =
∫ t

s
�̃

′
(σr) dσr + 1

2

∫ t

s
�̃

′′
(σr)

(
σ̃ 2

r + η̃2
r

)
dr.(A.23)

Using (A.22), we thus obtain∥∥∥∥∥
h−1

n rn∑
l=1

(
�−1)′(

�
(
σ 2

sn,l−1

))
rn

an,l∑
k=an,l−1+1

(
�̃(σkhn) − �̃(σsn,l−1)

)∥∥∥∥∥
1

�
∥∥∥∥∥
h−1

n rn∑
l=1

(
�−1)′(

�
(
σ 2

sn,l−1

))
rn

an,l∑
k=an,l−1+1

∫ khn

an,lhn

�̃
′
(σr)

(
σ̃rdWr + η̃rdW⊥

r

)∥∥∥∥∥
1

+
h−1

n rn∑
l=1

rn

an,l∑
k=an,l−1+1

(an,l − k)hn

�
∥∥∥∥∥

h−1
n rn∑
l=1

(
�−1)′(

�
(
σ 2

sn,l−1

))
rn

an,l∑
k=an,l−1+1

(an,l − k)

×
∫ (k+1)hn

khn

�̃
′
(σr)

(
σ̃rdWr + η̃rdW⊥

r

)∥∥∥∥∥
1

+O(1).
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Jensen’s inequality gives a bound with the ‖ · ‖2 norm for the squared ‖ · ‖1
norm above and Burkholder’s inequality and (A.22) then yield the upper bound∑h−1

n rn
l=1 r2

n

∑an,l

k=an,l−1+1(an,l − k)2hn = O(1). Combining all bounds, we thus ob-
tain (i). Case (ii) and (iii) can be handled in a very similar manner and we omit the
proofs. �

PROOF OF THEOREM 3.5 AND COROLLARY 3.6. Observe that M̄k,n =
Mk,n − E[Mk,n|F(k−1)hn] is a sequence of martingale differences. Lemma A.3
yields that all moments of M̄k,n exist. Hence, for any index set J ⊆ {0, . . . , h−1

n −
1}, Burkholder’s inequality ensures that for any p ≥ 1∥∥∥∥∑

k∈J
M̄k,n

∥∥∥∥
p

� rn
√|J |,(A.24)

where |J | is the cardinality of the set J . Let

Ml =
{ an,l∑

k=an,l−1+1

M̄k,n + �
(
σ 2

sn,l−1

)
/2 > 0

}
, and M =

h−1
n −1⋂
l=1

Ml .

Proposition A.6 yields that �(x2) > 0 for x > 0. Then we obtain from the Markov
inequality and (A.24) that

P

(h−1
n −1⋃
l=0

Mc
l

)
≤

h−1
n −1∑
l=0

P
(
Mc

l

)
� 2p

h−1
n −1∑
l=0

�
(
σ 2

sn,l−1

)−p

∥∥∥∥∥
an,l∑

k=an,l−1+1

M̄k,n

∥∥∥∥∥
p

p

(A.25)

�
h−1

n −1∑
l=0

rp/2
n = O(1),

for p > 4. We are now ready to proceed to the main proof. From (2.7), it follows
that

ĨVhn,rn
n −

∫ 1

0
σ 2

t dt

=
rnh−1

n∑
l=1

σ 2
sn,l−1

hnr
−1
n −

∫ 1

0
σ 2

t dt

+
rnh−1

n∑
l=1

(
�−1

( an,l∑
k=an,l−1+1

(mn,2k − mn,2k−1)
22h−1

n rn

)
− σ 2

sn,l−1

)
hnr

−1
n .

Consider first the approximation error in the quadratic variation by setting the
volatility locally constant on the blocks of the coarse grid. Due to Lemma A.5(iii),
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it suffices to consider the error∥∥∥∥∥
h−1

n∑
l=1

σ 2
lhn

hn −
∫ 1

0
σ 2

t dt

∥∥∥∥∥
2

≤
h−1

n∑
l=1

∫ lhn

(l−1)hn

∥∥σ 2
t − σ 2

lhn

∥∥
2 dt,

which by the triangle and Burkholder’s inequality is bounded by

�
h−1

n∑
l=1

∫ lhn

(l−1)hn

(√
hn + hn‖ã‖∞

)
dt � n−1/3.

In order to bound the remaining estimation error

rnh−1
n∑

l=1

(
�−1

( an,l∑
k=an,l−1+1

Mk,n

)
− σ 2

sn,l−1

)
hnr

−1
n ,

we use a Taylor expansion and that the first two derivatives of �−1 exist and are
bounded according to Proposition A.6 below. To this end, denote with

�k,l,n(M,�) = E[Mk,n|F(k−1)hn] − �
(
σ 2

khn

) + �
(
σ 2

khn

) − �
(
σ 2

sn,l−1

)
.

It then follows that

�−1

( an,l∑
k=an,l−1+1

Mk,n − �
(
σ 2

sn,l−1

) + �
(
σ 2

sn,l−1

))

= σ 2
sn,l−1

+ (
�−1)′(

�
(
σ 2

sn,l−1

))( an,l∑
k=an,l−1+1

(
M̄k,n + �k,l,n(M,�)

))

+ 1

2

(
�−1)′′

(ξl)

( an,l∑
k=an,l−1+1

(
M̄k,n + �k,l,n(M,�)

))2

def= σ 2
sn,l−1

+ �(�)l,1 + �(�)l,2,

where ξl ≥ �(σ 2
sn,l−1

)/2 > 0 on the set Ml . We first deal with �(�)l,1. To this

end, denote with Zl = ∑an,l

k=an,l−1+1 M̄k,n, which is a partial sum of martingale dif-
ferences. Hence, by Burkholder’s inequality [see also (A.24)], we obtain∥∥∥∥∥

rnh−1
n∑

l=1

(
�−1)′(

�
(
σ 2

sn,l−1

))
Zl

∥∥∥∥∥
2

2

�
rnh−1

n∑
l=1

‖Zl‖2
2 � r2

nh−1
n =O(1).(A.26)

On the other hand, we obtain from Lemma A.4 and Lemma A.5(i) that∣∣∣∣∣
rnh−1

n∑
l=1

(
�−1)′(

�
(
σ 2

sn,l−1

)) an,l∑
k=an,l−1+1

�k,l,n(M,�)

∣∣∣∣∣ =OP(1).(A.27)
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Combining (A.26) and (A.27), we find∣∣∣∣∣
rnh−1

n∑
l=1

�(�)l,11M

∣∣∣∣∣ = OP(1).(A.28)

In the same manner, but using Lemma A.5(ii) and additionally ‖(�−1)′′(ξl) ×
1Ml

‖∞ < ∞ by Proposition A.6 below, we obtain∥∥∥∥∥
rnh−1

n∑
l=1

�(�)l,21M

∥∥∥∥∥
1

�
rnh−1

n∑
l=1

(
‖Zl‖2

2 +
∥∥∥∥∥

an,l∑
k=an,l−1+1

�k,l,n(M,�)

∥∥∥∥∥
2

2

)
=O(1).

Since P(Mc) = O(1) by (A.25), this suffices to guarantee that

ĨVhn,rn
n −

∫ 1

0
σ 2

t dt =OP

(
n−1/3)

.

Based on a Taylor expansion for �−1
n and using analogous bounds and Proposi-

tion A.7, we obtain likewise

ÎVhn,rn
n −

∫ 1

0
σ 2

t dt = OP

(
n−1/3)

,

and conclude Corollary 3.6. This completes the proof of Theorem 3.5 and Corol-
lary 3.6 in absence of jumps for estimators (2.7) and (2.9), respectively.

Finally, consider the truncated estimators. Since τ < ∞ and P(supt∈[0,1]\Vn
σ 2

t ≤
τ) = 1, the arguments above reveal that it suffices to show

rnh−1
n∑

l=1

∣∣∣∣∣
(
τ ∧ �−1

( an,l∑
k=an,l−1+1

Mk,n

))
− σ 2

sn,l−1

∣∣∣∣∣1
(

lhn

rn
∈ Vn

)
hn

rn
= OP

(
n−1/3)

,

uniformly for n ∈ N. However, since we have that sup0≤t≤1 σ 2
t < ∞ almost surely

and
∑rnh−1

n

l=1 1(lhn/rn ∈ Vn) is finite almost surely, the left-hand side above is
bounded by

rnh−1
n∑

l=1

OP

(
τ + sup

0≤t≤1
σ 2

t

)
1(lhn/rn ∈ Vn)hnr

−1
n = OP

(
τ + sup

0≤t≤1
σ 2

t

)
|Vn|n−1/3

= OP

(
n−1/3)

.

Therefore, it suffices to show that
∫ 1

0 σ 2
s 1(s ∈ Vn) ds =OP(n

−1/3). From∫ 1

0
σ 2

s 1(s ∈ Vn) ds ≤ sup
0≤s≤1

σ 2
s |Vn|r−1

n hn = OP

(
n−1/3)

,

the claim follows. �
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A.2. Properties of � . It follows from Proposition A.2 and (A.4a), (A.4b) that
for �̃(σ ) = �(σ 2)

h−1
n E

[
(mn,k − mn,k−1)

2] = �̃(σ ) +O
(
(λn)−1/3)

.(A.29)

Having understood the behaviour of �̃(σ ), analogue properties of �(σ 2) readily
follow. Let

H(x) =
∫ 1

0
(Wt + x)+ dt.(A.30)

Then by (A.4a), (A.4b), we derive

�̃(σ ) = 4σ 2
∫ ∞

0
x
(
E

[
e−KσH(x)] + 1 −E

[
e−KσH(−x)])dx

(A.31)

− 2σ 2
(∫ ∞

0

(
E

[
e−KσH(x)] − 1 +E

[
e−KσH(−x)])dx

)2

.

Next, consider the distribution on the negative half axis. With x < 0, we make the
decomposition

E
[
e−σK

∫ 1
0 (Wt−x)− dt ]

= E

[
e−σK

∫ 1
0 (Wt−x)− dt1

(
inf

0≤t≤1
Wt ≤ x

)
+ 1

(
inf

0≤t≤1
Wt ≥ x

)]
def= U1(x) + U2(x).

Let Tx be the first passage time of W to level x with density

fTx (t) = |x|√
2πt3

e−x2/2t , t ≥ 0;
see (6.3) in Section 2.6 of [22]. From {Tx ≤ 1} = {inf0≤t≤1 Wt ≤ x}, it follows
from the strong Markov property of W that

U1(x) =
∫ 1

0
E

[
e−σK

∫ 1
s (Wt−x)− dt |Tx = s

]
fTx (s) ds

=
∫ 1

0
E

[
e−σK

∫ 1−s
0 (Wt )− dt ]fTx (s) ds.

Using a time shift yields

U1(x) =
∫ 1

0
E

[
e−σK(1−s)3/2 ∫ 1

0 (Wt )− dt ]fTx (s) ds.

We then obtain that

E
[
e−σK

∫ 1
0 (Wt−x)− dt ]

= P

(
inf

0≤t≤1
Wt ≥ x

)
+

∫ 1

0
E

[
e−σK(1−s)3/2 ∫ 1

0 (Wt )− dt ]fTx (s) ds(A.32)

def= P

(
inf

0≤t≤1
Wt ≥ x

)
+ A−(x), for x < 0.
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Let I (Kσ, s) = E[e−Kσ(1−s)3/2 ∫ 1
0 (Wt )− dt ]. Then by (A.32)∫ ∞

0
x
(
1 −E

[
e−KσH(−x)])dx

=
∫ ∞

0
x
(
P

(
inf

0≤t≤1
Wt < −x

)
− A−(−x)

)
dx

=
∫ ∞

0
xP

(
inf

0≤t≤1
Wt < −x

)
dx −

∫ 1

0
I (Kσ, s)

∫ ∞
0

xfTx (s) dx ds

= 1

2
− 1

2

∫ 1

0
I (Kσ, s) ds,

since
∫ ∞

0 xP(inf0≤t≤1 Wt < −x)dx = 1
2 . Likewise, it follows that∫ ∞

0

(
1 −E

[
e−KσH(−x)])dx

=
∫ ∞

0
P

(
inf

0≤t≤1
Wt < −x

)
dx −

√
2

π

∫ 1

0
I (Kσ, s) ds(A.33)

=
√

2

π
−

√
2

π

∫ 1

0
I (Kσ, s) ds.

We thus obtain

�̃(σ ) = 4σ 2
(∫ ∞

0
xE

[
e−KσH(x)]dx + 1

2
− 1

2

∫ 1

0
I (Kσ, s) ds

)

− 2σ 2
(∫ ∞

0
E

[
e−KσH(x)]dx −

√
2

π
+

√
2

π

∫ 1

0
I (Kσ, s) ds

)2

(A.34)

= 2σ 2(
2�1(σ ) − �2

2(σ )
)
,

with functionals �1,�2. In the sequel, we write ∂kf (x) = ∂kf (x)/∂kx. The fur-
ther analysis of properties of �̃ is structured in several lemmas which combined
imply the following key proposition.

PROPOSITION A.6. Suppose that σ ≥ σ0 > 0, K ≥ C(σ0) for C(σ0) suffi-
ciently large [the exact value of C(σ0) follows from (A.39)]. Then we have uni-
formly for σ ≥ σ0

∂�̃(σ ) = 4σ

(
1 − 2

π

)
+O

(
σ 2/3

K1/3

)
> 0 and

(A.35)

�̃(σ ) = 2σ 2
(

1 − 2

π

)
+O

(
σ 2/3

K1/3

)
> 0.
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Moreover, it holds that

sup
σ≥σ0

∣∣∂2�̃(σ )
∣∣ < ∞.(A.36)

Using the relation

∂�̃
−1

(�) = 1

∂�̃(σ )
, �̃(σ ) = �,(A.37)

we get that the second derivative is uniformly bounded for σ ≥ σ0 = �̃
−1

(�0), that
is,

sup
�≥�0

∣∣∂2�̃
−1

(�)
∣∣ = sup

σ≥σ0

∣∣∣∣ ∂2�̃(σ )

(∂�̃(σ ))3

∣∣∣∣ < ∞.(A.38)

So far we have focused on results for �̃(σ ) = �(σ 2). Essentially, the same results
are valid for �n(σ

2), which we state now.

PROPOSITION A.7. Introduce

Bn,1 =
∫ ∞

0
xP

(
max

0≤i≤nhn−1
Wi/(nhn) ≥ x

)
dx and

Bn,2 =
∫ ∞

0
P

(
max

0≤i≤nhn−1
Wi/(nhn) ≥ x

)
dx,

which satisfy Bn,1 → 1
2 , Bn,2 →

√
2
π

. Then (A.35) and (A.36) in Proposition A.6

remain valid if we replace �̃(σ ) with �n(σ
2) and 1 − 2

π
with 2Bn,1 − B2

n,2. Like-
wise, (A.38) also holds.

PROOF OF PROPOSITION A.6. We write shortly �1 = �1(σ ), �2 = �2(σ ).
We have that

∂�̃(σ ) = 4σ
(
2�1 − �2

2
) + 2σ 2(2∂�1 − 2�2∂�2).

Using Lemmas A.8 and A.11 from below, we obtain with (A.34)∣∣∣∣�1 − 1

2

∣∣∣∣ ≤ 6(Kσ)−2/3 + 3

2

( Kσ

log(Kσ)

)−2/5
def= R�1,

∣∣∣∣�2 −
√

2

π

∣∣∣∣ ≤ 2
(√

2

π
+ 1

)
(Kσ)−1/3 + 3

√
2

π

( Kσ

log(Kσ)

)−2/5
def= R�2 .

Moreover, applying Lemmas A.9, A.10 and A.11 yields

|∂�1| ≤ 6
(
Kσ 3)−1/2 + 3

2σ

( Kσ

log(Kσ)

)−2/5
def= R∂�1, �2

2 ≤ 2

π
,



VOLATILITY ESTIMATION UNDER ONE-SIDED ERRORS 2783

|�2∂�2| ≤
(
R�2 +

√
2

π

)

×
(

4
(
1 + (2π)−1/2)

K−1/3σ−4/3 +
√

2

π

3

σ

( Kσ

log(Kσ)

)−2/5)
def= R∂�2 .

We thus obtain from the above that∣∣∣∣∂�̃ − 4σ

(
1 − 2

π

)∣∣∣∣ ≤ 4σ

(
2R�1 + R�2

(
R�2 + 2

√
2

π

))
+ 4σ 2(R∂�1 + R∂�2) = O

(
K−1/3σ 2/3)

,∣∣∣∣�̃ − 2σ 2
(

1 −
√

2

π

)∣∣∣∣ ≤ 2σ 2
(
R�1 + R�2

(
R�2 + 2

√
2

π

))
= O

(
K−1/3σ 2/3)

.

An explicit sufficient lower bound for K in terms of σ0 can be computed from the
two conditions

1 − 2

π
>

(
2R�1 + R�2

(
R�2 + 2

√
2

π

))
+ σ(R∂�1 + R∂�2),

(A.39)

1 −
√

2

π
> R�1 + R�2

(
R�2 + 2

√
2

π

)
.

It remains to show the boundedness property for the first two derivatives of �̃ . By
Lemma A.12, we have∣∣∂kJ (σ )

∣∣ ≤ C
(
1 + σ−k), k = 1,2,(A.40)

where J (σ ) = 2�1(σ ) − �2
2(σ ) and C is a constant not depending on σ . Observe

that

∂2�̃ = 4J + 6σ∂J + σ 2∂2J,

hence the claim follows. �

PROOF OF PROPOSITION A.7. The proof can be redirected to Proposition A.6
using Proposition 3.2 and a truncation argument for the integrals over x. The cor-
responding computations are very similar to those above and the lemmas given
below. We therefore omit the details. �

LEMMA A.8. For K > 0, p ∈ N0, we obtain the following decay behaviour of
the moment integrals:∫ ∞

0
xp

E
[
e−KσH(x)]dx ≤ 2p+1

(
E[|Z|p+1]

p + 1
+ �(p + 1)

)
(Kσ)−(p+1)/3

with Z ∼ N(0,1).



2784 M. BIBINGER, M. JIRAK AND M. REISS

PROOF. The following useful relation in terms of the N(0,1)-distribution
function � is derived from the law of the minimum of Brownian motion:

P(Tx ≤ l) = 2
(
1 − �

(|x|/√l
))

.(A.41)

Then for 0 < l < 1∫ ∞
0

xp
E

[
e−KσH(x)]dx ≤

∫ ∞
0

xp
E

[
1(T−x/2 ≤ l)

]
dx

+
∫ ∞

0
xp

E
[
e−KσH(x)1(T−x/2 > l)

]
dx

def= R1 + R2.

By (A.41), we have

R1 = 2
∫ ∞

0
xp(

1 − �(x/
√

4l)
)
dx

= (4l)(p+1)/2
∫ ∞

0
2zp(

1 − �(z)
)
dz = (4l)(p+1)/2E[|Z|p+1]

p + 1
.

We further note that T−x/2 > l implies H(x) ≥ ∫ l
0(−x/2 + x)+ dt = lx/2, such

that

R2 ≤
∫ ∞

0
xpe−Kσ lx/2 dx =

(
2

Kσ l

)p+1

�(p + 1).

Choosing l = (Kσ)−2/3, we obtain∫ ∞
0

xp
E

[
e−KσH(x)]dx ≤

(
2p+1E[|Z|p+1]

p + 1
+ 2p+1�(p + 1)

)
(Kσ)−(p+1)/3,

as asserted. �

LEMMA A.9. Let K > 0. Then∫ ∞
0

E
[
KH(x)e−KσH(x)]dx ≤ 4(1 + 1/

√
2π)K−1/3σ−4/3.

PROOF. We make the decomposition∫ ∞
0

E
[
KσH(x)e−KσH(x)]dx =

∫ ∞
0

E
[
1(T−x/2 ≤ l)KσH(x)e−KσH(x)]dx

+
∫ ∞

0
E

[
1(T−x/2 > l)KσH(x)e−KσH(x)]dx,

with some l > 0. Using ye−y ≤ 1 and (A.41), we obtain∫ ∞
0

E
[
1(T−x/2 ≤ l)KσH(x)e−KσH(x)]dx ≤ 2

∫ ∞
0

(
1 − �(x/

√
4l)

)
dx

=
√

8l/π.
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Now, using ye−y ≤ e−y/2 and T−x/2 > l ⇒ H(x) ≥ lx/2, we bound the other term
by ∫ ∞

0
E

[
1(T−x/2 > l)KσH(x)e−KσH(x)]dx ≤

∫ ∞
0

e−Kσ lx/4 dx = 4

Kσ l
.

The choice l = (Kσ)−2/3 and division by σ yield the claim. �

LEMMA A.10. Let K > 0. Then∫ ∞
0

xE
[
KH(x)e−KσH(x)]dx ≤ 6

K1/2σ 3/2 .

PROOF. We proceed as in the proof of Lemma A.9 and obtain for any l > 0∫ ∞
0

xE
[
KσH(x)e−KσH(x)]dx ≤

∫ ∞
0

x
(
2
(
1 − �(x/

√
4l)

) + e−Kσ lx/4)
dx

= 2l + (Kσ l/4)−1.

The result follows with l = (Kσ)−1/2. �

LEMMA A.11. Let K ≥ σ−1. Then∫ 1

0
I (Kσ, s) ds ≤ 3

( Kσ

log(Kσ)

)−2/5
,

∣∣∣∣∂
∫ 1

0 I (Kσ, s) ds

∂σ

∣∣∣∣ ≤ 3

σ

( Kσ

log(Kσ)

)−2/5

.

PROOF. With λ(s) = K(1 − s)3/2, we obtain for any T > 0∫ 1

0
I (Kσ, s) ds =

∫ 1

0
E

[
e−λ(s)σ

∫ 1
0 (Wt )− dt ]ds

≤
∫ 1

0

(
P

(
λ(s)σ

∫ 1

0
(Wt)− dt ≤ T

)
+ e−T

)
ds.

From
∫ 1

0 (Wt)− dt ≥ |Z| with Z = ∫ 1
0 Wt dt ∼ N(0,1/3), we deduce

P(
∫ 1

0 (Wt)− dt ≤ ε) ≤ ε, ε > 0, and thus∣∣∣∣∂
∫ 1

0 I (Kσ, s) ds

∂σ

∣∣∣∣ ≤
∫ 1

0

((
T σ−1λ(s)−1) ∧ 1

)
ds + e−T .

Using (σλ(s))−1 ≤ (Kσ/T )3/5 for s ≤ 1 − (Kσ/T )−2/5, the last integral is
bounded by 2(Kσ/T )−2/5. The choice T = log(Kσ) yields the first inequality.
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Then using ye−y ≤ e−y/2 we also obtain∣∣∣∣∂
∫ 1

0 I (Kσ, s) ds

∂σ

∣∣∣∣ =
∫ 1

0
E

[
λ(s)

∫ 1

0
(Wt)− dte−λ(s)σ

∫ 1
0 (Wt )− dt

]
ds

≤ σ−1
∫ 1

0

(
P

(
λ(s)σ

∫ 1

0
(Wt)− dt ≤ T

)
+ e−T/2

)
ds.

The previous bounds now apply in the same way. �

LEMMA A.12. Consider J (σ ) = 2�1(σ ) − �2
2(σ ). Then there exists a con-

stant B = B(K) > 0 only depending on K such that∣∣∂kJ (σ )
∣∣ ≤ B

(
1 + σ−k), k = 1,2.(A.42)

PROOF. Without loss of generality, we may assume that K = 1. From the con-
siderations below, existence of the kth derivative of J (σ ) with respect to σ follows.
We thus focus on establishing (A.42). First consider

∫ ∞
0 xE[e−σH(x)]dx. An ap-

plication of the Cauchy–Schwarz inequality gives∣∣∣∣∂k
∫ ∞

0 xE[e−σH(x)]dx

∂kσ

∣∣∣∣ =
∣∣∣∣∫ ∞

0
xE

[(−H(x)
)k

e−σH(x)]dx

∣∣∣∣
(A.43)

≤
∫ ∞

0
xE

[
H(x)2k]1/2

E
[
e−2σH(x)]1/2

dx.

Applying the triangle and Cauchy–Schwarz inequality further yields

E
[
H(x)2k]1/2 ≤ E

[(∫ 1

0
|Ws |ds + |x|

)2k]1/2

� 1 ∨ xk.(A.44)

The calculations in the proof of Lemma A.8 with l = √
x/σ/2 yield

E
[
exp

(−2σH(x)
)]

� exp
(−x3/2σ 1/2/2

)
.(A.45)

Combining (A.44) and (A.45), we deduce that∫ ∞
0

xE
[
H(x)2k]1/2

E
[
e−2σH(x)]1/2

dx

�
∫ ∞

0

(
x ∨ xk+1)

exp
(−x3/2σ 1/2/2

)
dx � σ−2/3(

1 + σ−k/3)
.

This implies that for some C > 0∣∣∣∣∂k
∫ ∞

0 xE[e−σH(x)]dx

∂kσ

∣∣∣∣ ≤ Cσ−2/3(
1 + σ−k/3)

.(A.46)

Arguing in the same manner, one also establishes that∣∣∣∣∂k
∫ ∞

0 E[e−σH(x)]dx

∂kσ

∣∣∣∣ ≤ Cσ−1/3(
1 + σ−k/3)

.(A.47)

Moreover, such bounds are also valid for the derivatives of
∫ 1

0 I (σ, s) ds. �
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APPENDIX B: PROOF OF THEOREM 4.1

After the reductions of the problem to a simpler and more informative ex-
periment, we now prove Theorem 4.1 using properties of the Hellinger distance
H(P,Q) between probability measures, in particular H 2(P1 ⊗ P2,Q1 ⊗ Q2) ≤
H 2(P1,Q1) + H 2(P2,Q2) (subadditivity under independence), H 2(P,Q) =
E[H 2(P,Q|T )] (Hellinger distance conditional on a statistic T ) and

H 2(
PPP(λ1),PPP(λ2)

) ≤
∫

(
√

λ1 − √
λ2)

2

(Hellinger bound for PPP measures with intensity densities λi , cf. [24]).
Put δn = δσ

5/3
0 n−1/3. From H 2(N(0, σ 2

0 ),N(0, σ 2
0 + δn)) ≤ 2(δnσ

−2
0 )2, cf. Ap-

pendix in [30], and the independent increments of Brownian motion we infer for
the Hellinger distance of the laws of (XT s

j
)j=1,...,J under σ 2

0 and σ 2
0 + δn

H 2(
P

(XT s
j
)

σ 2
0

,P
(XT s

j
)

σ 2
0 +δn

|(T s
j

)) ≤
J∑

j=1

2δ2
nσ

−4
0 = 2Jδ2

nσ
−4
0 .

For each PPP with intensity density λj , we obtain by integral calculations, in terms
of η = (σ 2

0 + δn)
1/2 − σ0:

H 2(
PPP

(
λj (

σ 2
0
))

,PPP
(
λj (

σ 2
0 + δn

))|(T s
j

)
,B

0,T s
j −T s

j−1
)

≤ n

∫ T s
j −T s

j−1

0

∫
R

((
b−1(

y − σ0B
0,T s

j −T s
j−1

t

)
+

) ∧ 1

− (
b−1(

y − (
σ 2

0 + δn

)1/2
B

0,T s
j −T s

j−1
t

)
+

) ∧ 1
)2

dy dt

= nb

∫ T s
j −T s

j−1

0

∫
R

(
u+ ∧ 1 − (

u − b−1ηB
0,T s

j −T s
j−1

t

)
+ ∧ 1

)2
dy dt

≤ nb

∫ T s
j −T s

j−1

0
b−2η2(

B
0,T s

j −T s
j−1

t

)2
dt.

Hence, by using the variance of a Brownian bridge we arrive at

H 2(
PPP

(
λj (

σ 2
0
))

,PPP
(
λj (

σ 2
0 + δn

))|(T s
j

))
≤ nb−1η2

∫ T s
j −T s

j−1

0
t
(
1 − (

T s
j − T s

j−1
)−1

t
)
dt = nη2

6b

(
T s

j − T s
j−1

)2
.

Since conditional on (T s
j ) all observations are independent, the total squared

Hellinger distance conditional on (T s
j ) is bounded by

2Jδ2
nσ

−4
0 + nη2

6b

J+1∑
j=1

(
T s

j − T s
j−1

)2
.
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Taking expectations and using J ∼ Poiss(2nb/3), T s
j −T s

j−1 ∼ Exp(2nb/3) to ap-
ply the Wald identity to the second sum, the unconditional total Hellinger distance
is bounded by

H 2 ≤ 4nbδ2
n

3σ 4
0

+ nη2

6b
(2nb/3)−1(

1 + o(1)
)
.

We have η2 ≤ 1
2δ2

nσ
−2
0 due to

√
1 + x ≤ 1 + x/2 for x > 0, and thus by choosing

b ∝ (σ 2
0 /n)1/3 optimally and plugging in δn

H 2 ≤ δ2n1/3σ
4/3
0 inf

b>0

(
2b

3σ 2
0

+ C

12b2n

)
≤ C′δ2.

From the general lower bound Theorem 2.2(ii) in [32], we thus obtain the result
if δ is chosen smaller than 2/C ′.

Acknowledgment. The authors are grateful for helpful comments by the ref-
eree.
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