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THE SNAPPING OUT BROWNIAN MOTION

BY ANTOINE LEJAY1

Inria Nancy Grand-Est

We give a probabilistic representation of a one-dimensional diffusion
equation where the solution is discontinuous at 0 with a jump proportional to
its flux. This kind of interface condition is usually seen as a semi-permeable
barrier. For this, we use a process called here the snapping out Brownian mo-
tion, whose properties are studied. As this construction is motivated by appli-
cations, for example, in brain imaging or in chemistry, a simulation scheme
is also provided.

1. Introduction. Many diffusion phenomena have to deal with interface con-
ditions. Let D be a diffusivity coefficient which is smooth away from a regular
surface S, but presents some discontinuity there. In this case, the solution to the
diffusion equation

∂tu(t, x) = 1
2∇(

D(x)∇u(t, x)
) = 0 with u(0, x) = f (x)(1)

has to be understood as a weak solution. However, u is smooth away from S and
satisfies

u(t, x+) = u(t, x−) and
(2)

D(x+)n+(x) · ∇u(t, x+) = D(x−)n−(x) · ∇u(t, x−),

for x ∈ S, when S is assumed to separate locally R
d into a “+” and a “−” part

and where n± is a vector normal to S at x pointing to the “±” side. The second
condition is called the continuity of the flux.

Now, let us assume that D takes scalar values, and is constant away from a thin
layer of width 2� enclosed between two parallel surfaces S+ and S−. When the
width � of the layer tends to 0, S+ and S− merge into a single interface located on
a surface S.

When the diffusivity D0 decreases to 0 with � and D0/� → λ > 0, then the so-
lution to (1) converges to a function v satisfying (1) away from S with the interface
condition for x ∈ S:

∇v(t, x+) = ∇v(t, x−) and
(3)

λ

2

(
v(t, x+) − v(t, x−)

) = D(x±)∇v(t, x±).
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FIG. 1. The thin layer problem.

The solution has a continuous flux on S but is discontinuous on S (see, e.g., [33],
Chapter 13). A heuristic explanation is given Figure 1.

If D is smooth on R
d , it is well known that

u(t, x) = Ex

[
f (Xt)

]
,(4)

where X is the diffusion process generated by 1
2∇(D∇) which is solution under

Px to the stochastic differential equation (SDE)

Xt = x +
∫ t

0
σ(Xs)dBt +

∫ t

0

1

2

d∑
i=1

Di,·
∂xi

(Xs)ds with σσT = D(5)

for a Brownian motion B .
When D presents some discontinuities, (5) has no longer a meaning. However,

a Feller processes (X, (Ft )t≥0, (Px)x∈R) is associated to 1
2∇(D∇·) for which (4)

holds. In particular, the marginal distributions Xt have a density p(t, x, ·) un-
der Px , where p(t, x, y) is the fundamental solution to (1) (see, e.g., [36]).

Let us now assume that the dimension of the space is equal to 1 and that D

is discontinuous at some separated points {xi} with left and right limit there, and
smooth elsewhere. The process X is solution to a SDE with local time. The Itô–
Tanaka formula is the key tool to manipulate it, and several simulation algorithms
have been proposed (see the references in [25], e.g.). The process called the Skew
Brownian motion is the main tool for this construction [22, 24].

Coming back to the thin layer problem, we assume that D is constant and equal
to D1 on (−∞,−�) and (�,∞), and to D0 on (−�, �). The associated stochastic
process is solution to

Xt = x +
∫ t

0

√
D(Xs)dBs + D1 − D0

D1 + D0
L�

t (X) + D0 − D1

D1 + D0
L−�

t (X),

where L±�
t (X) is the local time of X at ±� [24].

Letting D0/� converging to 2κ with � → 0, one may expect that X converges in
distribution to a stochastic process Y such that the solution to (1) with the interface
condition (3) is given by v(t, x) = Ex[f (Yt )].
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The article then aims at constructing and giving several properties related to the
process Y which we call a snapping out Brownian motion (SNOB). This process is
Feller on G = (−∞,0−]∪ [0+,+∞) but not on R. The intervals in the definition
of G are disjoint so that 0 corresponds either to 0+ or 0− seen as distinct points.

The behavior of this process is the following: Assume that its starting point is
x ≥ 0. It behaves as a positively reflected Brownian motion until its local time is
greater than an independent exponential random variable of parameter 2κ . Then its
decides its sign with probability 1/2 and starts afresh as a new reflected Brownian
motion, until its local time is greater than a new exponential random variable, and
so on. Using the properties of the exponential random variable, it is equivalent
to assert that the particle changes its sign when its local time is greater than an
exponential random variable with parameter κ , and behaves like a positively or
negatively reflected Brownian motion between these switching times.

Its name is justified by the following fact: As the time at which the particle
possibly changes it signs is the same as for the elastic Brownian motion [10, 15,
18, 19] (also called the partially reflected Brownian motion), it could also be seen
as some elastic Brownian motion which is reborn once killed.

The elastic Brownian motion, also called a partially reflected Brownian motion,
is associated to the Robin boundary condition and has then many applications [8,
15, 35]. This process is the “basic brick” for constructing the SNOB.

The behavior of the SNOB justifies also the old heuristic that the interface con-
dition (3) corresponds to a semi-permeable barrier, which arises, for example, in
diffusion magnetic resonance imaging [11] or in chemistry [1, 8]. The interface
condition (3) is different from (2), to which is associated a Skew Brownian motion
and where the particle crosses the interface when it reaches it, and which corre-
sponds to a permeable barrier (see references in [22, 25]).

Here, we work under the condition of a single interface at 0. In short time, it
is sufficient to describe the behavior of the process even in a more complex me-
dia, since other interface or boundary conditions far enough have “exponentially
small” influence on the distribution of the process. This is sufficient for simulation
purposes, where particles positions are represented by the stochastic process and
move according to its dynamic.

Using similar computations, one may generalize our work to the case where
D(x) = D+ if x ≥ 0, D− if x ≤ 0 and an interface condition

∇u(t,0+) = β∇u(t,0−) and λu(t,0+) − μu(t, x−) = ∇u(t, x+)

with λ,μ > 0. Diffusions on graphs specified by a condition at each vertex could
also be considered, which could be of interest in several applications. This process
has been described without proof by Bobrowski in [6], which have studied its limit
behavior when the diffusion coefficients increase.

Although the SNOB may be seen as a diffusion on a graph, it is not a diffusion
on a metric graph, where the edges are joined by vertices. Such diffusions have
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been classified by Freidlin and Wentzell in [12, 13]. The conditions that are re-
quired at the vertices of the graphs are some extension of the possible boundary
conditions for a Markov process studied by Feller [10]. See also [21], for example,
for the related problem of pasting diffusions.2

Our interface condition does not fall in these categories. Our process is best
thought as a kind of random evolution process which switches back and forth ran-
domly among a collection of processes (see, e.g., [16, 34]).

Outline. In Sections 2 and 3, we present quickly the main results related to the
elastic Brownian motions and the piecing out procedure. The SNOB is constructed
in Section 4 through its resolvent. In Section 5, we show the relationship between
the SNOB and the thin layer problem. Finally, in Section 6, we show how to sim-
ulate this process.

2. Elastic Brownian motion. Let (Rt )t≥0 a reflected Brownian motion, and
denote by (Lt )t≥0 its symmetric local time at 0. We add a cemetery point † to
R+. For a constant κ > 0, we consider an exponential random variable ξ with
parameter κ independent from B . Set

Zt =
{

Rt, if Lt ≤ ξ ,
†, if Lt > ξ .

Thanks to the properties of the local time, this process, called the elastic Brownian
motion (EBM), is still a strong Markov process. Its semi-group is

P e
t f (x) = Ex

[
exp(−κLt)f (Xt)

]
for f in the set C0(R+,R) of continuous functions that vanishes at infinity. Closed
form expressions of the density transition function are given in [14, 35].

Let k be the time at which the EBM is killed, which means k = inf{t > 0|Lt ≥
ξ}. This is a stopping time. Since the local time increases only on the closure of
Z = {t > 0|Xt = 0}, it holds that Zk = 0 almost surely. Using standard computa-
tions in the inverse of the local time of the Brownian motion,

ψ(x,α) = Ex

[
exp(−αk)

] = κ√
2α + κ

exp(−√
2αx).(6)

Using the Itô formula, it is easily shown that u(t, x) = P e
t f (x) is solution to the

heat equation with Robin (or third kind) boundary condition [3, 15, 31]⎧⎪⎪⎨⎪⎪⎩
∂u(t, x)

∂t
= 1

2

u(t, x), on (0,+∞)2,

∂u(t,0)

∂x
= κu(t,0).

2The article [32] defines a notion of semipermeable membrane which is different from ours, where
the solution is continuous with a discontinuous gradient.
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For a Markov process X, let us recall that its resolvent (Gα)α>0 is a family of
operators defined by Gαf (x) = Ex[∫ +∞

0 e−αsf (Xs)ds] for any f ∈ C0 and any
α > 0. It has a density gα when Gαf (x) = ∫

gα(x, y)f (y)dy.
Using standard computations on the Green functions, the density ge

α(x, y) of
the resolvent of the EBM is for x, y ≥ 0,

ge
α(x, y) = 1√

2α

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2α − κ√
2α + κ

e−√
2α(y+x) + e−√

2α(x−y), for y ∈ [0, x],

e
√

2α(x−y) +
√

2α − κ√
2α + κ

e−√
2α(x+y), for y ≥ x.

We extend the EBM to a process on G by symmetry, so that its resolvent be-
comes

Ge
αf (x) := Ex

[∫ k

0
e−αsf (Xs)ds

]
=

∫ +∞
0

ge
α

(|x|, y)
f

(
sgn(x)y

)
dy(7)

for x ∈ G. This process evolves either on R− or R+ but never crosses 0 and is
naturally identified with a process on G.

3. Piecing out Markov processes. The procedure of piecing out is a way to
construct a Markov process from a killed one. We present in this section a re-
sult due to Ikeda, Nagasawa and Watanabe [17] (similar considerations are given
in [29]).

On a probability space (�,F,P) and a state space S, let ((Xt)t≥0, (Ft )t≥0,

(Px)x∈S) be a right continuous strong Markov process living in the extended state
space S

† = S∪ {†} with a death point †. The lifetime of X is denoted by k.
The shift operator associated to X is denoted by (θt )t≥0.
We also consider a family μ defined on � × S

† such that μ(ω, ·) is a proba-
bility measure on S

† and for any fixed Borel subset A, μ(·,A) is σ(Xt , t ≥ 0)-
measurable. We assume additionally that μ(ω,dy) = δ†(dy) when k(ω) = 0 and

Px

[
μ(ω,dy) = μ(θt(ω)ω,dy), t(ω) < k(ω)

] = Px[t< k]
for any stopping time t. The family μ, called an instantaneous distribution, de-
scribes the way the process is reborn once killed.

Let �̂ be the product of an infinite, countable, number of copies of � × S
†. We

define X on �̂ by

Xt(ω̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt (ω1), if t ∈ [
0, k(ω1)

)
,

y1, if t = k(ω1),
xt−k(ω1)(ω̃2), if t ∈ (

k(ω1), k(ω1) + k(ω2)
)
,

y2, if t = k(ω2),
· · ·
†, if t ≥ k(ω1) + · · · + kN(ωN)
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with ω̂ = (ω1, y1,ω2, y2, . . .) ∈ �̂ and N = inf{k ≥ 0; k(ωk) = 0}.
We consider the probability measure

P̂x

[
dω1,dx1, . . . ,dωn,dxn]
= Px

[
dω1]

μ
(
ω1,dx1)

Px1
[
dω2]

μ
(
ω1,dx2) · · ·Pxn

[
dω2]

μ
(
ωn,dxn)

.

Under this measure P̂x , when the path X(ω) is killed, we let it reborn by placing
it at the point x1 with probability μ(ω,dx1) and then start again.

We left the technical details about the construction of the probability space and
the filtration and presents the main result on piecing out Markov process.

THEOREM 1 ([17]). Using the above defined notation, there exists a probabil-
ity space (�̂, B̂, P̂) and a filtration (B̂t )t≥0 on which (X, (B̂t )t≥0, (P̂x)x∈S†) is a
strong Markov process on S

† with P†[Xt = †,∀t ≥ 0] = 1.

4. The snapping out Brownian motion.

DEFINITION 1. A snapping out Brownian motion (SNOB) X is a strong
Markov stochastic process living on G constructed by making EBM reborn on
0+ or 0− with probability 1/2 using the piecing-out procedure.

The sign of X changes with probability 1/2 when its local time Lt at 0 is greater
than uk with u0 = 0, uk − uk−1 ∼ exp(κ) is independent from (ui )i≤k−1. From the
properties of the exponential and binomial distributions, the sign of X changes
when its local time is greater than sk with s0 = 0, sk − sk−1 ∼ exp(κ/2) is inde-
pendent from (si)i≤k−1.

It is also immediate that |X| is a reflected Brownian motion, where | · | is the
canonical projection of G onto [0,+∞).

PROPOSITION 1. The resolvent family (Gα)α>0 of the SNOB is solution to(
α − 1

2



)
Gαf (x) = f (x) for x ∈ G

with ∇Gαf (0+) = ∇Gαf (0−) and
κ

2

(
Gαf (0+) − Gαf (0−)

) = ∇Gαf (0)

for any bounded, continuous function f on G that vanishes at infinity.

This proposition identifies the infinitesimal generator of the process X. The
points 0+ and 0− are then interpreted as the sides of a semi-permeable barrier.

PROOF OF PROPOSITION 1. From this very construction and the strong
Markov property, for any continuous function f on G which vanishes at infinity,

Gαf (x) = Ge
αf (x) + ψ(|x|, α)

2

(
Gαf (0+) + Gαf (0−)

)
,(8)
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where Ge
α is defined by (7).

Using x = 0+ and x = 0− in (8) and summing the two resulting equations leads
to

Gαf (x) = Ge
αf (x) + κe−√

2α|x|

2
√

2α
β(f )

(9)
with β(f ) = Ge

αf (0+) + Ge
αf (0−).

Then

Gαf (x) + Gαf (−x) = Ge
αf (x) + Ge

αf (−x) + κ√
2α

e−√
2α|x|β(f ),(10)

Gαf (x) − Gαf (−x) = Ge
αf (x) − Ge

αf (−x).(11)

Derivating (10) and setting x = 0+, since ∇Ge
αf (0±) = ±κGe

αf (0±),

∇Gαf (0+) − ∇Gαf (0−) = 0.

Derivating (11),

2∇Gαf (0±) = ∇Gαf (0+) + ∇Gαf (0−) = ∇Ge
αf (0+) + ∇Ge

αf (0−)

= κ
(
Ge

αf (0+) − Ge
αf (0−)

) = κ
(
Gαf (0+) − Gαf (0−)

)
.

In addition, it is easily seen that (α − 1
2
)Gαf = f since ψ(x,α) is solution to

(α − 1
2
)ψ(x,α) = 0. The resolvent is then identified. �

PROPOSITION 2. The semi-group (Pt )t≥0 of the SNOB has the following rep-
resentation:

Ptf (x) = Ex

[(
1 + e−κLt

2

)
f

(
sgn(x)|Bt |)]

(12)

+Ex

[(
1 − e−κLt

2

)
f

(− sgn(x)|Bt |)]
for a Brownian motion B .

PROOF. Let us decompose a function f as its even and odd parts:

f̂ (x) = 1
2

(
f (x) + f (−x)

)
and f̌ (x) = 1

2

(
f (x) − f (−x)

)
.

Then Ge
αf̂ (−x) = Ge

αf̂ (x) and Ge
αf̌ (−x) = −Ge

αf̌ (x), so that β(f̌ ) = 0 for β

defined by (9). Thus Gαf̌ (x) = Ge
αf̌ (x). In addition, since f̂ (|x|) = f̂ (x) and the

SNOB has the same distribution as the reflected Brownian motion |B|,

Gαf̂ (x) = Gr
αf̂ (x) := Ex

[∫ +∞
0

e−αsf̂
(|Bs |) ds

]
.
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This gives an alternative representation for the resolvent of the SNOB: Gαf (x) =
Gr

αf̂ (x) + Ge
αf̌ (x). Inverting the resolvent to recover the semi-group (Pt )t≥0,

Ptf (x) = P r
t f̂ (x) + P e

t f̌ (x) = Ex

[
f̂

(|Bt |)] +Ex

[
exp(−κLt)f̌

(
sgn(x)|Bt |)].

This expression could be arranged as (12). �

5. The thin layer problem. We now fix ε > 0 and we consider the process
Xε generated by (see, e.g., [36] for general considerations on this process)

Lε := 1

2

∂

∂x

(
aε(x)

∂

∂x

)
with aε(x) :=

{
1, when x /∈ [−ε, ε],
κε, when x ∈ [−ε, ε]

whose domain Dom(Lε) = {f ∈ L2(R)|Lεf ∈ L2(R)} is a subset of the Sobolev
space H1(R) [hence, any function in Dom(Lε) is identified with a continuous func-
tion], where L2(R) is the set of square integrable functions on R with scalar prod-
uct 〈f,g〉 = ∫

R
f (x)g(x)dx. Let us set [h](x) := h(x−) − h(x+) and

Dε :=
⎧⎨⎩f ∈ C2(

(−∞,−ε) ∪ (−ε, ε) ∪ (ε,∞)
)∣∣∣∣∣∣

f,f ′′ ∈ L2(R),

[f ](±ε) = 0,[
aε∇f

]
(±ε) = 0

⎫⎬⎭ .(13)

For k ≥ 0, we write Ck
c (R) the set of functions with compact support and con-

tinuous derivatives up to order k. With an integration by parts, for f ∈ Dε and
g ∈ C2

c (R), 〈
(α − L)f,g

〉 = α〈f,g〉 +
∫
R

aε(x)∇f (x)∇g(x)dx

+ [
aε∇f

]
(−ε)g(−ε) − [

aε∇f
]
(ε)g(ε).

Using this formula and the regularity of the solution to (α − L)f = g when g ∈
C∞(I,R) with −ε, ε /∈ I , we easily get that Dε contains (α −Lε)−1(C∞

c (R)) and
is then dense in Dom(Lε) for the operator norm (〈f,f 〉 + 〈Lf,Lf 〉)1/2.

A fundamental solution may be associated to Lε , as well as a resolvent density
gε

α , which we will compute explicitly.
This operator is self-adjoint with respect to 〈·, ·〉, so that its resolvent density

satisfies gε
α(x, y) = gε

α(y, x). This process is a Feller process, and is a strong solu-
tion to the SDE with local time

Xε
t = x +

∫ t

0

√
aε

(
Xε

s

)
dBs + ηεL

ε
t

(
Xε) − ηεL

−ε
t

(
Xε) with ηε = 1 − κε

1 + κε
,

where B is a Brownian motion and Lx
t (X

ε) is the symmetric local time at x of Xε

(see, e.g., [24], and [4, 28] among others for general results on SDEs with local
time).

In [10], Section 11, the elastic Brownian motion is constructed as the limit of
a process which either jumps at ε or is killed with probability κε when it arrives
at 0.
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Using the piecing out procedure, we construct a strong Markov process Zε by
considering the process Xε which is instantaneously replaced at −ε or ε with
probability 1/2 when it reaches 0, and then behaving again as Xε until it reaches 0,
and so on. This process Zε could be identified as a process living in G by defining
P0+ as Pε and P0− as P−ε , since the process is instantaneously killed when at 0.

THEOREM 2. The process Zε with Zε
0 = x converges in distribution to the

SNOB starting from x in the Skorohod topology.

The proof relies on the next two results.

PROPOSITION 3. Let gε
α be the resolvent density of Xε . Then gε

α(x, y) con-
verges to g(x, y) for any x, y �= 0 and any α > 0 as ε → 0.

REMARK 1. This result follows from classical results in deterministic homog-
enization theory (see, e.g., [33]) where the convergence holds in Sobolev spaces.
Here, we consider a direct computational proof for the convergence of the Green
kernel, which we use later.

PROOF OF PROPOSITION 3. We assume that x > 0 and we set μ := √
2α for

some α > 0. The resolvent density gε
α of Xε has the form, for x > ε,

gε
α(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cε(x)e−μy, for y > x,

Aε(x)e−μy + Bε(x)eμy, for y ∈ [ε, x],
Hε(x)eμy/

√
κε + Eε(x)e−μy/

√
κε, for y ∈ [−ε, ε],

Fε(x)eμy, for y < −ε.

By this, we mean that for any bounded, measurable function f ,

Ex

[∫ +∞
0

e−αtf
(
Xε

s

)
ds

]
=

∫
R

gε
α(x, y)f (y)dy.

The kernel gα
ε satisfies the conditions

gε
α(x, ε+) = gε

α(x, ε−), gε
α(x, ε−) = gε

α(x, ε+),

∇yg
ε
α(x,−ε−) = κε∇yg

ε
α(x,−ε+),

κε∇yg
ε
α(x, ε−) = ∇yg

ε
α(x, ε+),

∇yg
ε
α(x, x+) − ∇yg

ε
α(x, x−) = 2.

With μ = √
2α, the coefficients Aε , Bε , Cε , Hε and Fε are then expressed with the

help of

Gε := (
2e4με/

√
κε

√
κε + e4με/

√
κεκε + 2

√
κε − κε + e4με/

√
κε − 1

)
μ.
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Since ε → 0, Gε = 4
√

κε(1 + μ
κ

+ O(κε))μ. After tedious computations,

Aε(x) = −(
e4με/

√
κεκε − κε − e4με/

√
κε + 1

)
eμ(2ε−x)/Gε −→

ε→0
A0(x)

:= − e−μx

κ + μ
,

Bε(x) = B0(x) := −e−μx

μ
,

Cε(x) = −2 sinh(2ε/
√

κε)
(
de−μx+2με − e−μx+2με + deμx + e−μx)

× e2με/
√

κε/Gε + 4
√

κεeμx cosh(2ε/
√

κε)e2με/
√

κε/Gε

−→
ε→0

C0(x) := κeμx

μ(κ + μ)
,

Hε(x) = −2eμ(3ε+ε
√

κε−x
√

κε)/
√

κε(1 + √
κε)

√
κε/Gε −→

ε→0
H0(x)

:= − κe−μx

2μ(κ + μ)
,

Eε(x) = −2eμ(ε+ε
√

κε−x
√

κε)/
√

κε(1 − √
κε)

√
κε/Gε −→

ε→0
H0(x),

Fε(x) = −4
√

κεeμ(2ε+2ε
√

κε−x
√

κε)/
√

κε/Gε −→
ε→0

F0(x) := −κe−μx

μ(κ + μ)

= −C0(−x).

Let gα be the function

gα(x, y) :=
⎧⎪⎨⎪⎩

C0(x)e−μy, if y > x,
A0(x)e−μy + B0(x)eμy, if y ∈ [0, x],
F0(x)eμy, if y < 0.

A similar work may be performed for x < 0. Thus, we easily obtain that
gε

α(x, y) −→ε→0 gα(x, y) converges to gα and that gα is the density resolvent
of the SNOB by checking it satisfies the appropriate conditions at the interface.

�

PROPOSITION 4. Let hε
0 be the first hitting time of 0 for Xε .

Under Px , hε
0 converges in distribution to a random variable k distributed as the

lifetime of the EBM of parameter κ .

PROOF. As in [9, 24], we introduce �ε(x) as the piecewise linear function
defined by

d�ε

dx
(x) =

{
1/

√
κε, if x ∈ [−ε, ε],

1, otherwise.
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Set Y ε = �ε(Xε) so that Y ε is solution to the SDE [9, 24]

Y ε
t = �ε(x) + Bt + θεL

yε
t

(
Y ε) − θεL

−yε
t

(
Y ε)

with θε = 1 − √
κε

1 + √
κε

and yε := �ε(ε) =
√

ε

κ
.

The infinitesimal generator of Y ε is Lε := 1
2
 whose domain contains as a dense

subset [it is similar to the discussion on Dε in (13)]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
f ∈ C2(

(−∞,−yε) ∪ (−yε, yε) ∪ (yε,∞)
)
∣∣∣∣∣∣∣∣∣∣∣∣∣

f,f ′′ ∈ L2(R),

[f ](±yε
) = 0,(

1 − θε
)
f ′(yε−)

= (
1 + θε

)
f ′(yε+)

,(
1 + θε

)
f ′(−yε−)

= (
1 − θε

)
f ′(−yε+)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

From now, we assume for the sake of simplicity that x > 0.
The hitting time hε

0 is also the first hitting time of zero by Y ε . Since by symmetry
ψ(−x,α) = ψ(x,α) for any x ≥ 0, we consider only that x ≥ 0.

Since the Feynman–Kac formula is valid for the process Y ε , ψε(x,α) :=
Ex[e−αhε

0] is solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
ψε(x,α) = αψε(x,α), for x �= yε,

ψε(0, α) = 1,

ψε
(
yε−, α

) = ψε
(
yε+, α

)
,(

1 − θε
)∇xψ

ε
(
yε−, α

) = (
1 + θε

)∇xψ
ε
(
yε+, α

)
.

Hence, ψε(x,α) is sought as

ψε(x,α) =
{

γ ε exp(−√
2αx), if x > yε,

cos(
√

2αx) + βε sin(
√

2αx), if x ∈ [
0, yε

]
.

After some computations,

βε = − cos(
√

2αyε) + √
κε sin(

√
2αyε)

sin(
√

2αyε) + √
κε cos(

√
2αyε)

and
√

εβε ∼
ε→0

−√
κ

κ + √
2α

.

Besides,

γ ε = e
√

2αyε√
κε

(
βε cos

(√
2αyε) − βε sin

(√
2αyε)) ∼

ε→0

κ

κ + √
2α

.

Hence, for any x > 0,

ψε(x,α)−→
ε→0

ψ(x,α) := κ

κ + √
2α

e−√
2αx(14)

with ψ defined by (6).
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This proves that under Px , hε
0 converges to a random variable k whose Laplace

transform is ψ(x,α) under Px . This random variable k is then the lifetime of an
EBM. �

PROOF OF THEOREM 2. Using the properties of the resolvent, for α > 0 and
a bounded, measurable function f ,

Gε
αf (x) := Ex

[∫ +∞
0

e−αtf
(
Xε

s

)
ds

]
= Rε

αf (x) +Ex

[
e−αhε

0
]1

2

(
Gε

αf (ε) + Gε
αf (−ε)

)
with

Rε
αf (x) := Ex

[∫ hε
0

0
e−αtf

(
Xε

s

)
ds

]
.

Since ψε(x,α) = ψε(−x,α),

Gε
αf (x) = Rα

ε f (x) + ψε(x,α)

1 − ψε(ε,α)

Rα
ε f (ε) + Rα

ε f (−ε)

2
.

For the sake of simplicity, we assume that x > 0. Using the symmetry properties
of Lε ,

Rε
αf (x) =

∫ +∞
0

(
gε

α(x, y) − gε
α(x,−y)

)
f (y)dy.

But

gε
α(x, y) − gε

α(x,−y)−→
ε→0

gα(x, y) − gα(x,−y) = ge
α(x, y),

where ge
α(x, y) is the resolvent density of the EBM. Thus, Rα

ε f (x) −→ε→0
Ge

αf (x) for any x > 0. It is also easily obtained that

Rα
ε f (ε)−→

ε→0
Ge

αf (0+) and Rα
ε f (−ε)−→

ε→0
Ge

αf (0−).

Using (9) and (14), Gε
αf (x) −→ε→0 Gαf (x). The Trotter–Kato theorem (see,

e.g., [20], Theorem IX.2.16, page 504) and the Markov property imply the con-
vergence in finite-dimensional distributions of Zε to X under Px for x ≥ 0. By
symmetry, this could be extended to x ≤ 0.

The only remaining point of the tightness. When away from [−ε, ε], Xε behaves
like a Brownian motion. Hence, for 0 ≤ s ≤ t ≤ T , let us set f(s, t) := inf{u >

s; |Xε
u| = ε} with possibly f(s, t) = +∞ and l(s, t) := sup{u < t; |Xε

u| = ε} with
possibly l(s, t) = −∞.

If f(s, t) ≥ t and l(s, t) ≤ s, then for δ < 1/2, there exists an integrable random
variable C(ω) such that |Xε

t (ω) − Xε
s (ω)| ≤ C(ω)(t − s)δ for any 0 ≤ s ≤ t ≤ T .
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If f(s, t) ≤ t and l(s, t) ≤ s, then∣∣Xε
t − Xε

s

∣∣ ≤ ∣∣Xε
f(s,t) − Xε

s

∣∣ + ∣∣Xε
t − Xε

f(s,t)

∣∣ ≤ C(t − s)β + 2ε

since Xε
t belongs to [−ε, ε]. A similar analysis could be carried for the other cases,

which means that for some integrable random variable C,

sup
|t−s|<δ

∣∣Xε
t − Xε

s

∣∣ ≤ Cδβ + 2ε.

This proves that (Zε)ε>0 is tight is the space D([0, T ];R) of discontinuous func-
tions with the Skorohod topology (see, e.g., [5]) and then on D([0, T ];G). Hence,
we easily deduce the convergence of Zε to the SNOB in D([0, T ];G). �

6. Simulation of the SNOB. It is easy to simulate a discretized process X

in the same way it is easy to simulate the Brownian motion. Following Proposi-
tion 2, we draw a random variate with density p(δt, x, ·) when x is close enough
to 0.

For this, we use a Brownian bridge technique to check if the process reaches
0± before δt (see, e.g., [2] and [25], Section B.2, for an example of appli-
cation and further references). This involve the inverse Gaussian distribution

IG(λ,μ) whose density is rμ,λ(x) =
√

λ
2πx3 exp(

−λ(x−μ)2

2μ2x
). Random variates with

IG distribution could be simulated by the methods proposed in [7], page 148
and [30].

We simulate the local time using the following representation under P0 [26, 27]:(
L0

t (B), |Bt |) dist= (l, l− H) where l := 1
2

(
H +

√
V + H 2

)
with H ∼ N (0, t) and V ∼ exp(1/2t) independent from H .

The generic algorithm to simulate the process at time δt when at point x at
time 0 is the following:

1. Set y := x + √
δtG with G a random variate whose distribution is N (0,1).

2. If |x| ≥ 4
√

δt , then return y (here, we neglect the exponentially small probabil-
ity that the process crosses 0 between the times 0 and δt).

3. If xy > 0, then decide with probability exp(−2|xy|/δt) if the path X has
crossed 0.

• If no crossing occurs, then return y.
• If a crossing occurs, draw g ∼ IG(|x|/|y|, x2/2δt), so that z := δtg/(1 + g)

is a realization of the first hitting time of 0 for a Brownian bridge with B0 = x

and Bδt = y. Then go the step 5.

4. If xy < 0, then draw g ∼ IG(−|x|/|y|, x2/2δt) and set z := δtg/(1 + g), the
first time the Brownian bridge reaches 0. Go to step 5.

5. Set r := δt − z. For two independent random variates H ∼ N (0, r) and V ∼
exp(1/2r), set l := (H + √

V + H 2)/2.
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6. For U ∼ U(0,1) independent from V and H , set s := sgn(x) if exp(−κl) ≥
2U − 1. Otherwise, set s := − sgn(x).

7. Return s(l− H).

An application to the estimation of a macroscopic estimation parameter in the
context of a simplified problem related to brain imaging may be found in [23].
The results are satisfactory, unless κ is too small due to a problem of rare event
simulation.
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