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MULTI-LEVEL STOCHASTIC APPROXIMATION ALGORITHMS

BY NOUFEL FRIKHA

Université Paris Diderot

This paper studies multi-level stochastic approximation algorithms. Our
aim is to extend the scope of the multi-level Monte Carlo method recently
introduced by Giles [Oper. Res. 56 (2008) 607–617] to the framework of
stochastic optimization by means of stochastic approximation algorithm.
We first introduce and study a two-level method, also referred as statistical
Romberg stochastic approximation algorithm. Then its extension to a multi-
level method is proposed. We prove a central limit theorem for both methods
and give optimal parameters. Numerical results confirm the theoretical anal-
ysis and show a significant reduction in the initial computational cost.

1. Introduction. In this paper we propose and analyze a multi-level paradigm
for stochastic optimization problems by means of stochastic approximation
schemes. The multi-level Monte Carlo method introduced by Heinrich [18] and
popularized in numerical probability by [21] and [15] allows one to significantly
increase the computational efficiency of the expectation of an R-valued nonsimu-
latable random variable Y that can only be strongly approximated by a sequence
(Y n)n≥1 of easily simulatable random variables (all defined on the same proba-
bility space) as the bias parameter n goes to infinity with a weak error or bias
E[Y ] − E[Yn] of order n−α , α > 0. Let us be more specific. In this context, the
standard Monte Carlo method uses the statistical estimator M−1 × ∑M

j=1 Yn,j

where the (Y n,j )j∈[[1,M]] are M independent copies of Yn. Given the order of the
weak error, a natural question is how to find the optimal choice of the sample size
M to achieve a global error. If the weak error is of order n−α , then for a total error
of order n−α (α ∈ [1/2,1]), the minimal computation necessary for the standard

Monte Carlo algorithm is obtained for M = n2α ; see [8]. So if the computational
cost required to simulate one sample of Yn is of order n, then the optimal com-
putational cost of the Monte Carlo method is CMC = C × n2α+1, for a positive
constant C > 0.

In order to reduce the complexity of the computation, the principle of the multi-
level Monte Carlo method, introduced by Giles [15] as a generalization of Ke-
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baier’s approach [21], consists of using the telescopic sum

E
[
YmL] = E

[
Y 1]+

L∑
�=1

E
[
Ym� − Ym�−1]

,

where m ∈ N
∗ \ {1} satisfies mL = n. For each level � ∈ {1, . . . ,L} the numerical

computation of E[Ym� − Ym�−1] is achieved by the standard Monte Carlo method
using N� independent samples of (Ym�−1

, Ym�
). An important point is that the

random samples Ym�
and Ym�−1

are perfectly correlated. Then the expectation
E[Yn] is approximated by the following multi-level estimator:

1

N0

N0∑
j=1

Y 1,j +
L∑

�=1

1

N�

N�∑
j=1

(
Ym�,j − Ym�−1,j ),

where for each level �, (Ym�,j )j∈[[1,N�]] is a sequence of i.i.d. random variables

with the same law as Ym�
.

Based on an analysis of the variance, Giles [15] proposed an optimal choice
for the sequence (N�)1≤�≤L which minimizes the total complexity of the algo-
rithm. More recently, Ben Alaya and Kebaier [6] proposed a different analysis
to obtain the optimal choice of the parameters that relies on a Lindeberg–Feller
central limit theorem (CLT) for the multi-level Monte Carlo algorithm. To ob-
tain a global error of order n−α , both approaches allow one to achieve a com-
plexity of order n2α(logn)2 if the L2(P) strong approximation rate of Y by Yn,
namely E[|Yn − Y |2], is of order 1/n. Hence the multi-level Monte Carlo method
is significantly more effective than the crude Monte Carlo and the statistical
Romberg methods. Originally introduced for the computation of expectations
involving stochastic differential equation (SDE), it has been widely applied to
various problems of numerical probability; see Giles [14], Dereich [7], Giles,
Higham and Mao [16], among others. We refer the interested reader to the web
page http://people.maths.ox.ac.uk/gilesm/mlmc_community.html for further de-
velopments.

In the present paper, we are interested in broadening the scope of the multi-
level Monte Carlo method to the framework of stochastic approximation (SA)
algorithm. Introduced by Robbins and Monro [26], these recursive, simulation-
based algorithms are effective procedures that are widely used to solve inverse
problems. To be more specific, their aim is to find a zero of a continuous func-
tion h :Rd →R

d which is unknown to the experimenter but can only be estimated
through experiments. Successfully and widely investigated from both a theoretical
and applied point of view since this seminal work, such procedures are now com-
monly used in various contexts such as convex optimization since minimizing a
function amounts to finding a zero of its gradient. In the general Robbins–Monro
procedure, the function h writes h(θ) := E[H(θ,U)] where H :Rd × R

q → R
d

http://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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and U is an R
q -valued random vector. To estimate the zero of h, they proposed the

algorithm

θp+1 = θp − γp+1H
(
θp,Up+1), p ≥ 0,(1.1)

where (Up)p≥1 is an i.i.d. sequence of copies of U defined on a probability space
(�,F,P), θ0 is independent of the innovation of the algorithm with E[|θ0|2] <

+∞ and γ = (γp)p≥1 is a sequence of nonnegative deterministic and decreasing
steps satisfying the assumption∑

p≥1

γp = +∞ and
∑
p≥1

γ 2
p < +∞.(1.2)

When the function h is the gradient of a convex potential, the recursive proce-
dure (1.1) is a stochastic gradient algorithm. Indeed, replacing H(θp,Up+1) by
h(θp) in (1.1) leads to the usual deterministic descent gradient procedure. When
h(θ) = k(θ) − �, θ ∈ R, where k is a monotone function, say increasing, which
writes k(θ) = E[K(θ,U)], K :R×R

q → R being a Borel function and � a given
desired level, then setting H = K − �, the recursive procedure (1.1) aims to com-
pute the value θ̄ such that k(θ̄) = �.

As in the case of the Monte Carlo method described above, the random vec-
tor U is not directly simulatable (at a reasonable cost) but can only be approx-
imated by another sequence of easily simulatable random vectors ((Un)p)p≥1,
which strongly approximates U as n → +∞ with a standard weak discretization
error (or bias) E[f (U)] −E[f (Un)] of order n−α for a specific class of functions.
The computational cost required to simulate one sample of Un is assumed to be
of order n, that is, Cost(Un) = K × n for some positive constant K . One standard
situation corresponds to the case of a discretization of an SDE by means of an
Euler–Maruyama scheme with n time steps.

Some typical applications are the computations of the implied volatility or the
implied correlation, both of which boil down to finding the zero of a function that
writes as an expectation. Computing the value-at-risk and the conditional value-at-
risk of a financial portfolio when the dynamics of the underlying assets are given
by an SDE also appears as an inverse problem for which a SA scheme may be
devised; see, for example, [2, 3]. The risk minimization of a financial portfolio by
means of SA has been investigated in [4, 12]. For more applications and a complete
overview in the theory of stochastic approximation, the reader may refer to [9, 22]
and [5].

The important point here is that the function h is generally neither known nor
computable (at least at reasonable cost), and since the random variable U can-
not be simulated, estimating θ∗ using the recursive scheme (1.1) is not possible.
Therefore, the following two steps are needed to compute θ∗:

– The first step consists of approximating the zero θ∗ of h by the zero θ∗,n

of hn defined by hn(θ) := E[H(θ,Un)], θ ∈ R
d . It induces an implicit weak error
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which writes

ED(n) := θ∗ − θ∗,n.

Let us note that θ∗,n appears as a proxy of θ∗, and one would naturally expect that
θ∗,n → θ∗ as the bias parameter n tends to infinity.

– The second step consists of approximating θ∗,n by M ∈ N
∗ steps of the fol-

lowing SA scheme:

θn
p+1 = θn

p − γp+1H
(
θn
p,

(
Un)p+1)

, p ∈ [[0,M − 1]],(1.3)

where ((Un)p)p∈[[1,M]] is an i.i.d. sequence of random variables with the same law
as Un, θn

0 is independent of the innovation of the algorithm with supn≥1 E[|θn
0 |2] <

+∞ and γ = (γp)p≥1 is a sequence of nonnegative deterministic and decreasing
steps satisfying (1.2). This induces a statistical error which writes

ES(n,M,γ ) := θ∗,n − θn
M.

The global error between the quantity to estimate θ∗ and its implementable
approximation θn

M can be decomposed as follows:

Eglob(n,M,γ ) = θ∗ − θ∗,n + θ∗,n − θn
M := ED(n) + ES(n,M,γ ).

The first step of our analysis consists of investigating the behavior of the implicit
weak error ED(n). Under mild assumptions on the functions h and hn, namely the
local uniform convergence of (hn)n≥1 toward h and a mean reverting assumption
of h and hn, we prove that limn ED(n) = 0. We next show that under additional
assumption, namely the local uniform convergence of (Dhn)n≥1 toward Dh and
the nonsingularity of Dh(θ∗), the rate of convergence of the standard weak error
hn(θ) − h(θ), for a fixed θ ∈ R

d , transfers to the implicit weak error ED(n) =
θ∗ − θ∗,n.

Regarding the statistical error ES(n,M,γ ) := θ∗,n − θn
M , it is well known that

under standard assumptions, that is, a mean reverting assumption on hn and a
growth control of the L2(P)-norm of the noise of the algorithm, the Robbins–
Monro theorem guarantees that limM ES(n,M,γ ) = 0 for each fixed n ∈ N

∗; see
Theorem 2.3 below. Moreover, under mild technical conditions, a CLT holds at
rate γ −1/2(M); that is, for each fixed n ∈ N

∗, γ −1/2(M)ES(n,M,γ ) converges
in distribution to a normally distributed random variable with mean zero and finite
covariance matrix; see Theorem 2.4 below. The reader may also refer to [10, 13] for
some recent developments on nonasymptotic deviation bounds for the statistical
error. In particular, if we set γ (p) = γ0/p, γ0 > 0, p ≥ 1, the weak convergence
rate is

√
M , provided that 2Re(λmin)γ0 > 1 where λmin denotes the eigenvalue of

Dh(θ∗) with the smallest real part. However, this local condition on the Jacobian
matrix of h at the equilibrium is difficult to handle in practical situations.

To circumvent such a difficulty, it is fairly well known that the key idea is to
carefully smooth the trajectories of a converging SA algorithm by averaging ac-
cording to the Ruppert–Polyak averaging principle; see, for example, [24, 27]. It
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consists of devising the original SA algorithm (1.3) with a slow decreasing step
and simultaneously computing the empirical mean (θ̄n

p)p≥1 (which a.s. converges
to θ∗,n) of the sequence (θn

p)p≥0 by setting

θ̄ n
p = θn

0 + θn
1 + · · · + θn

p

p + 1
= θ̄ n

p−1 − 1

p + 1

(
θ̄ n
p−1 − θn

p

)
.(1.4)

The statistical error now writes ES(n,M,γ ) := θ∗,n − θ̄ n
M , and under mild as-

sumptions a CLT holds at rate
√

M without any stringent condition on γ0.
Given the order of the implicit weak error and a step sequence γ satisfying (1.2),

a natural question is how to find the optimal balance between the value of n and the
number M of steps in (1.3) in order to achieve a given global error. This problem
was originally investigated in [8] for the standard Monte Carlo method. The error
between θ∗ and the approximation θn

M writes θn
M − θ∗ = θn

M − θ∗,n + θ∗,n − θ∗,
suggesting the selection of M = γ −1(1/n2α), where γ −1 is the inverse function
of γ , when the weak error is of order n−α . However, due to the nonlinearity of
the SA algorithm (1.3), the methodology developed in [8] does not apply in our
context. The key tool that is necessary to tackle this question consists of linearizing
the dynamic of (θn

p)p∈[[1,M]] around its target θ∗,n, quantifying the contribution of
the nonlinearities in the space variable θn

p and the innovations and finally exploiting
stability arguments from SA schemes. Optimizing with respect to the usual choice
of the step sequence, the minimal computational cost (to achieve an error of order
n−α) is given by CSA = K × n × γ −1(1/n2α) and is optimal for γ (p) = γ0/p,
p ≥ 1, provided that the constant γ0 satisfies a stringent condition involving hn,
leading to a complexity of order n2α+1. Considering the empirical mean sequence
(θ̄n

p)p∈[[1,n2α]] instead of the crude SA estimate also allows one to reach the optimal
complexity for free, without any condition on γ0.

To increase the computational efficiency for the estimation of θ∗ by means of
SA algorithm, we investigate in a second part, multi-level SA algorithms. The first
one is a two-level method, also referred as the statistical Romberg SA procedures.
It consists of approximating the unique zero θ∗ of h by �sr

n = θnβ

M1
+ θn

M2
− θnβ

M2
,

β ∈ (0,1). The couple (θn
M2

, θnβ

M2
) is computed using M2 independent copies of

(Un,U2n). Moreover the random samples used to obtain θnβ

M1
are independent of

those used for the computation of (θn
M2

, θnβ

M2
). For an implicit weak error of order

n−α , we prove a CLT for the sequence (�sr
n )n≥1 through which we are able to

optimally set M1, M2 and β with respect to n and the step sequence γ . The intuitive
idea is that when n is large, (θn

p)p∈[[0,M2]] and (θnβ

p )p∈[[0,M2]] are close to the SA
scheme (θp)p∈[[0,M2]] devised with the innovation variables (Up)p≥1 so that the

correction term writes θn
M2

− θM2 − (θnβ

M2
− θM2). Then we quantify the two main

contributions in this decomposition, namely the one due to the nonlinearity in the
space variables (θnβ

p , θn
p, θp)p∈[[0,M2]] and the one due to the nonlinearity in the
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innovation variables (Unβ,p,Un,p,Up)p≥1. Under mild smoothness assumption
on the function H , the weak rate of convergence is ruled by the nonlinearity in
the innovation variables for which we use the weak convergence of the normalized
error nρ(Un − U), ρ ∈ (0,1/2]. The optimal choice of the step sequence is again
γp = γ0/p, p ≥ 1 and induces a complexity for the procedure given by CSA-SR =
K ×n2α+1/(1+ρ), provided that γ0 satisfies again a condition involving hn which is
difficult to handle in practice. By considering the empirical mean sequence �̄sr

n =
θ̄ nβ

M3
+ θ̄ n

M4
− θ̄ nβ

M4
, where (θ̄nβ

p )p∈[[0,M3]] and (θ̄n
p, θ̄nβ

p )p∈[[0,M4]] are, respectively, the

empirical means of the sequences (θnβ

p )p∈[[0,M3]] and (θn
p, θnβ

p )p∈[[0,M4]] devised
with the same slow decreasing step sequence, this optimal complexity is reached
for free by setting M3 = n2α , M4 = n2α−1/(1+ρ) without any condition on γ0.

Moreover, we generalize this approach to the case of the multi-level SA
method. In the spirit of [15] for Monte Carlo path simulation, the multi-level SA
scheme estimates θ∗,n by computing the quantity �ml

n = θ1
M0

+∑L
�=1 θm�

M�
− θm�−1

M�

where for every �, the couple (θm�

M�
, θm�−1

M�
) is obtained using M� independent

copies of (Um�−1
,Um�

). Here again to establish a CLT for this estimator (in
the spirit of [6] for the Monte Carlo path simulation), our analysis follows the
lines of the methodology developed so far. The optimal computational cost to
achieve an accuracy of order 1/n is reached by setting M0 = γ −1(1/n2), M� =
γ −1(m� log(m)/(n2 log(n)(m−1))), � = 1, . . . ,L in the case ρ = 1/2. Once again
the step sequence γ (p) = γ0/p, p ≥ 1 is optimal among the usual choices, and it
induces an asymptotic complexity of order n2(log(n))2. We thus recover the rates
as in the multi-level Monte Carlo path simulation for SDE obtained in [15] and [6].

The paper is organized as follows. In the next section we state our main results
and list the assumptions. Section 3 is devoted to the proofs. In Section 4 numer-
ical results are presented to confirm the theoretical analysis. Finally, Section 5 is
devoted to technical results which are useful throughout the paper.

2. Main results. In the present paper, we make no attempt to provide an ex-
haustive discussion related to convergence results of SA schemes. We refer the
interested readers to [9, 22] and [5], among others, for developments and a more
complete overview in SA theory. In the next section, we first recall some basic facts
concerning stable convergence (following the notations of Jacod and Protter [20])
and list classical results of SA theory.

2.1. Preliminaries.

2.1.1. Stable convergence. For a sequence of E-valued (E being a Polish
space) random variables (Xn)n≥1 defined on a probability space (�,F,P), we
say that (Xn)n≥1 converges in law stably to X defined on an extension (�̃, F̃, P̃)
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of (�,F,P) and write Xn
stably	⇒ X if for all bounded random variables � defined

on (�,F,P) and for all h :E →R bounded continuous, one has

E
[
�h(Xn)

] → Ẽ
[
�h(X)

]
, n → +∞.

This convergence is obviously stronger than convergence in law, which we de-
note by “	⇒.” Stable convergence was introduced in [25] and notably investigated
in [1]. The following lemma is a basic result on stable convergence that will be
useful throughout the paper. We refer to [20], Lemma 2.1 for a proof. Here, E and
F will denote two Polish spaces. We consider a sequence (Xn)n≥1 of E-valued
random variables defined on (�,F).

LEMMA 2.1. Let (Yn)n≥1 be a sequence of F -valued random variables de-
fined on (�,F), satisfying

Yn
P−→ Y,

where Y is defined on (�,F). If Xn
stably	⇒ X where X is defined on an extension of

(�,F), then we have

(Xn,Yn)
stably	⇒ (X,Y ).

Let us note that this result remains valid when Yn = Y , for all n ≥ 1.

2.1.2. Application: Euler–Maruyama discretization of diffusion processes.
We illustrate this notion by the Euler–Maruyama discretization scheme of a dif-
fusion process X solution of an SDE. The following results will be useful in the
sequel in order to illustrate multi-level SA methods. We first introduce some nota-
tion, namely for x ∈ R

q ,

f (x) =

⎛
⎜⎜⎜⎝

b1(x) σ11(x) · · · σ1q ′(x)

b2(x) σ21(x) · · · σ2q ′(x)
...

... · · · ...

bq(x) σq1(x) · · · σqq ′(x)

⎞
⎟⎟⎟⎠

and dYt = (dt dW 1
t · · · dW

q ′
t )T where b :Rq → R

q , σ :Rq → R
q ×R

q ′
. Here,

as below, uT denotes the transpose of the vector u. The dynamic of X will be
written in the compact form

∀t ∈ [0, T ], Xt = x +
∫ t

0
f (Xs) dYs

with its Euler–Maruyama scheme with time step  = T/n, ti = i, i = 0, . . . , n,
φn(s) = sup{ti : ti ≤ s}

Xn
t = x +

∫ t

0
f
(
Xn

φn(s)

)
dYs.

We introduce the following smoothness assumption on the coefficients:
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(HS) The coefficients b,σ are uniformly Lipschitz continuous.
(HD) The coefficients b,σ satisfy (HS) and are continuously differentiable.

The following result is due to [20], Theorem 3.2, page 276 and Theorem 5.5,
page 293.

THEOREM 2.1. Assume that (HD) holds. Then the process V n := Xn − X

satisfies √
n

T
V n stably	⇒ V as n → +∞,

the process V being defined by V0 = 0 and

dV i
t =

q ′+1∑
j=1

q∑
k=1

f
′ij
k (Xt )

[
V k

t dY
j
t −

q ′+1∑
�=1

f k�(Xt) dZ
�j
t

]
,(2.1)

where f
′ij
k is the kth partial derivative of f ij and

∀(i, j) ∈ [[
2, q ′ + 1

]]× [[
2, q ′ + 1

]]
,

Z
ij
t = 1√

2

∑
1≤k,�≤q

∫ t

0
σ ik(Xs)σ

j�(Xs) dBk�
s ,

∀j ∈ [[
1, q ′ + 1

]]
, Z1j = 0,

∀i ∈ [[
1, q ′ + 1

]]
, Zi1 = 0,

where B is a standard (q ′)2-dimensional Brownian motion defined on an extension
(�̃, F̃, (F̃t )t≥0, P̃) of (�,F, (Ft )t≥0,P) and independent of W .

We will also use the following result which is due to [6], Theorem 4.

THEOREM 2.2. Let m ∈ N
∗ \ {1}. Assume that (HD) holds. Then we have√

m�

(m − 1)T

(
Xm� − Xm�−1) stably	⇒ V as � → +∞.

2.1.3. On some basic results related to stochastic approximation. We now
turn our attention to SA. There are various theorems that guarantee the a.s. and/or
Lp convergence of SA algorithms. We provide below a general result in order to
derive the a.s. convergence of such procedures. It is also known as the Robbins–
Monro theorem and covers most situations; see the remark below.

THEOREM 2.3 (Robbins–Monro theorem). Let H :Rd ×R
q →R

d be a Borel
function and U be an R

q -valued random vector with law μ. Define

∀θ ∈ R
d, h(θ) = E

[
H(θ,U)

]
,
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and denote by θ∗ the (unique) solution to h(θ) = 0. Suppose that h is a continuous
function that satisfies the mean-reverting assumption

∀θ ∈ R
d, θ = θ∗,

〈
θ − θ∗, h(θ)

〉
> 0.(2.2)

Let γ = (γp)p≥1 be a sequence of gain parameters satisfying (1.2). Suppose that

∀θ ∈ R
d, E

[∣∣H(θ,U)
∣∣2] ≤ C

(
1 + ∣∣θ − θ∗∣∣2).(2.3)

Let (Up)p≥1 be an i.i.d. sequence of random vectors with common law μ and
θ0 a random vector independent of (Up)p≥1 satisfying E[|θ0|2] < +∞. Then the
recursive procedure defined by

θp+1 = θp − γp+1H(θp,Up+1), p ≥ 0(2.4)

satisfies

θp
a.s.−→ θ∗ as p → +∞.

Let us point out that the Robbins–Monro theorem also covers the framework
of stochastic gradient algorithms. Indeed, if the function h is the gradient of a
convex potential L, namely h = ∇L where L ∈ C1(Rd,R+), satisfying that ∇L

is Lipschitz, |∇L|2 ≤ C(1 + L) and lim|θ |→+∞ L(θ) = +∞, then ArgminL is
nonempty, and according to the standard lemma θ �→ 1

2 |θ − θ∗|2, it is a Lyapunov
function so that the sequence (θn)n≥1 defined by (2.4) converges a.s. to θ∗.

LEMMA 2.2. Let L ∈ C1(Rd,R+) be a convex function. Then

∀θ, θ ′ ∈ R
d,

〈∇L(θ) − ∇L
(
θ ′), θ − θ ′〉 ≥ 0.

Moreover, if ArgminL is nonempty, then one has

∀θ ∈ R
d \ ArgminL,∀θ∗ ∈ ArgminL,

〈∇L(θ), θ − θ∗〉 > 0.

Now, we provide a result on the weak rate of convergence of the SA al-
gorithm. In standard situations, it is well known that a stochastic algorithm
(θp)p≥1 converges to its target at a rate γ

−1/2
p . More precisely, the sequence

(γ
−1/2
p (θp − θ∗))p≥1 converges in distribution to some normal distribution with

a covariance matrix based on E[H(θ∗,U)H(θ∗,U)T ] where U is the noise of
the algorithm. The following result is due to [23] (see also [9], page 161, Theo-
rem 4.III.5) and has the advantage to be local, in the sense that a CLT holds on
the set of convergence of the algorithm to an equilibrium which makes possible a
straightforward application to multi-target algorithms.

THEOREM 2.4. Let θ∗ ∈ {h = 0}. Suppose that h is twice continuously differ-
entiable in a neighborhood of θ∗ and that Dh(θ∗) is a stable d × d matrix; that
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is, all its eigenvalues have strictly positive real parts. Assume that the function H

satisfies the following regularity and growth control property:

θ �→ E
[
H(θ,U)H(θ,U)T

]
is continuous on R

d,

∃ε > 0 s.t. θ �→ E
[∣∣H(θ,U)

∣∣2+ε] is locally bounded on R
d .

Assume that the noise of the algorithm is not degenerated at the equilibrium; that
is, �(θ∗) := E[H(θ∗,U)H(θ∗,U)T ] is a positive definite deterministic matrix.

The step sequence of procedure (2.4) is given by γp = γ (p), p ≥ 1, where γ

is a positive function defined on [0,+∞[ decreasing to zero. We assume that γ

satisfies one of the following assumptions:

• γ varies regularly with exponent (−a), a ∈ [0,1); that is, for any x > 0,
limt→+∞ γ (tx)/γ (t) = x−a . In this case, set ζ = 0.

• For t ≥ 1, γ (t) = γ0/t and γ0 satisfy 2Re(λmin)γ0 > 1, where λmin denotes the
eigenvalue of Dh(θ∗) with the lowest real part. In this case, set ζ = 1/(2γ0).

Then, on the event {θp → θ∗}, one has

γ (p)−1/2(θp − θ∗) 	⇒N
(
0,�∗),

where �∗ := ∫∞
0 exp(−s(Dh(θ∗) − ζ Id))T �(θ∗) exp(−s(Dh(θ∗) − ζ Id)) ds.

REMARK 2.1. In SA theory it is also said that −Dh(θ∗) is a Hurwitz matrix;
that is, all its eigenvalues have strictly negative real parts. The assumption on the
step sequence (γn)n≥1 is quite general and includes polynomial step sequences.
In practical situations, the above theorem is often applied to the usual gain γp =
γ (p) = γ0p

−a , with 1/2 < a ≤ 1, which notably satisfies (1.2).

Hence we clearly see that the optimal weak rate of convergence is achieved by
choosing γp = γ0/p with 2Re(λmin)γ0 > 1. However, the main drawback of this
choice is that the constraint on γ0 is difficult to handle in practical implementation.
Moreover it is well known that in this case the asymptotic covariance matrix is not
optimal; see, for example, [9] or [5], among others.

As mentioned in the Introduction, a solution consists of devising the original SA
algorithm (2.4) with a slow decreasing step γ = (γp)p≥1, where γ varies regularly
with exponent (−a), a ∈ (1/2,1), and to simultaneously compute the empirical
mean (θ̄p)p≥1 of the sequence (θp)p≥0 by setting

θ̄p = θ0 + θ1 + · · · + θp

p + 1
= θ̄p−1 − 1

p + 1
(θ̄p−1 − θp).(2.5)

The following result states the weak rate of convergence for the sequence
(θ̄p)p≥1. In particular, it shows that the optimal weak rate of convergence and
the optimal asymptotic covariance matrix can be obtained without any condition
on γ0. For a proof, the reader may refer to [9], page 169.
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THEOREM 2.5. Let θ∗ ∈ {h = 0}. Suppose that h is twice continuously differ-
entiable in a neighborhood of θ∗ and that Dh(θ∗) is a stable d × d matrix; that
is, all its eigenvalues have positive real parts. Assume that the function H satisfies
the following regularity and growth control property:

θ �→ E
[
H(θ,U)H(θ,U)T

]
is continuous on R

d,

∃b > 0 s.t. θ �→ E
[∣∣H(θ,U)

∣∣2+b] is locally bounded on R
d .

Assume that the noise of the algorithm is not degenerated at the equilibrium;
that is, �(θ∗) := E[H(θ∗,U)H(θ∗,U)T ] is a positive definite deterministic ma-
trix.

The step sequence of procedure (2.4) is given by γp = γ (p), p ≥ 1, where γ

varies regularly with exponent (−a), a ∈ (1/2,1). Then, on the event {θp → θ∗},
one has

√
p
(
θ̄p − θ∗) 	⇒N

(
0,Dh

(
θ∗)−1

�
(
θ∗)(Dh

(
θ∗)−1)T )

.

2.2. Main assumptions. We list here the required assumptions in our frame-
work to derive our asymptotic results and make some remarks.

(HWR1) There exists ρ ∈ (0,1/2],
nρ(Un − U

) stably	⇒ V as n → +∞,

where V is an R
q -valued random variable eventually defined on an extension

(�̃, F̃, P̃) of (�,F,P).
(HWR2) There exists ρ ∈ (0,1/2],

m�ρ(Um� − Um�−1) stably	⇒ V m as � → +∞,

where V m is an R
q -valued random variable eventually defined on an extension

(�̃, F̃, P̃) of (�,F,P).
(HSR) There exists δ > 0,

sup
n≥1

E
[∣∣nρ(Un − U

)∣∣2+δ]
< +∞.

(HR) There exists b ∈ (0,1],

sup
n∈N∗,(θ,θ ′)∈(Rd )2

E[|H(θ,Un) − H(θ ′,Un)|2]
|θ − θ ′|2b

< +∞.

(HDH) For all θ ∈ R
d , P(U /∈ DH,θ ) = 0 with DH,θ := {x ∈ R

q :x �→
H(θ, x) is differentiable at x}.

(HLH) For all (θ, θ ′, x) ∈ (Rd)2 × R
q, |H(θ, x) − H(θ ′, x)| ≤ C(1 +

|x|r )|θ − θ ′|, for some C, r > 0.
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(HI) There exists δ > 0 such that for all R > 0, we have

sup
{θ : |θ |≤R,n∈N∗}

E
[∣∣H (

θ,Un)∣∣2+δ]
< +∞.

The sequence (θ �→ E[H(θ,Un)H(θ,Un)T ])n≥1 converges locally uniformly to-
ward θ �→ E[H(θ,U)H(θ,U)T ]. The function θ �→ E[H(θ,U)H(θ,U)T ] is con-
tinuous, and E[H(θ∗,U)H(θ∗,U)T ] is a positive deterministic matrix.

(HMR) There exists λ > 0 such that ∀n ≥ 1

∀θ ∈ R
d,

〈
θ − θ∗,n, hn(θ)

〉 ≥ λ
∣∣θ − θ∗,n

∣∣2.
We will denote by λm the lowest real part of the eigenvalues of Dh(θ∗). We

will assume that the step sequence is given by γp = γ (p), p ≥ 1, where γ is a
positive function defined on [0,+∞[ decreasing to zero and satisfying one of the
following assumptions:

(HS1) γ varies regularly with exponent (−a), a ∈ [0,1); that is, for any x > 0,
limt→+∞ γ (tx)/γ (t) = x−a .

(HS2) For t ≥ 1, γ (t) = γ0/t and γ0 satisfy 2λγ0 > 1.

REMARK 2.2. Assumption (HR) is trivially satisfied when θ �→ H(θ, x) is
Hölder-continuous with modulus having polynomial growth in x. However, it is
also satisfied when H is less regular. For instance, it holds for H(θ, x) = 1{x≤θ}
under the additional assumption that Un has a bounded density (uniformly in n).

REMARK 2.3. Assumption (HMR) already appears in [9] and [5]; see also
[13] and [10] in another context. It allows one to control the L2-norm E[|θn

p −
θ∗,n|2] with respect to the step γ (p) uniformly in n; see Lemma 5.2 in Section 5.
As discussed in [22], Chapter 10, Section 5, if one considers the projected version
of algorithm (1.3) on a bounded convex set D (e.g., a hyperrectangle

∏d
i=1[ai, bi])

containing θ∗,n, ∀n ≥ 1, as very often happens from a practical point of view,
this assumption can be localized on D; that is, it holds on D instead of R

d . In
this case, a sufficient condition is infθ∈D,n∈N∗ λmin((Dhn(θ) + Dhn(θ)T )/2) > 0,
where λmin(A) denotes the lowest eigenvalue of the matrix A.

We also want to point out that if (HMR) holds, then one has λm ≥ λ. Indeed,
writing hn(θ) = ∫ 1

0 Dhn(tθ + (1 − t)θ∗,n)(θ − θ∗,n) dt , for all θ ∈ R
d , we clearly

have〈
θ − θ∗,n, hn(θ)

〉
=

∫ 1

0

〈
θ − θ∗,n,

Dhn(tθ + (1 − t)θ∗,n) + Dhn(tθ + (1 − t)θ∗,n)T

2

(
θ − θ∗,n)〉dt

≥ λ
∣∣θ − θ∗,n

∣∣2.
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Using the local uniform convergence of (Dhn)n≥1 and the convergence of
(θ∗,n)n≥1 toward θ∗, by passing to the limit n → +∞ in the above inequality,
we obtain∫ 1

0

〈
θ − θ∗, Dh(tθ + (1 − t)θ∗) + Dh(tθ + (1 − t)θ∗)T

2

(
θ − θ∗)〉dt

≥ λ
∣∣θ − θ∗∣∣2 ∀θ ∈ K,

where K is a compact set such that θ∗ + um ∈ K , um being the eigenvector as-
sociated to the eigenvalue of Dh(θ∗) with the lowest real part. Hence, selecting
θ = θ∗ + εum in the previous inequality and passing to the limit ε → 0, we get
λm ≥ λ.

REMARK 2.4. Assumptions (HWR1), (HWR2) and (HSR) allow us to estab-
lish a CLT for the multi-level SA estimators presented in Sections 2.5 and 2.6. They
include the case of the value at time T of an SDE, namely, U = XT approximated
by its continuous Euler–Maruyama scheme Un = Xn

T with n time steps. Under
(HD) one has ρ = 1/2. Moreover, U may depend on the whole path of an SDE.
For instance, one may have U = LT , the local time at level 0 of a one-dimensional
continuous and adapted diffusion process, and the approximations may be given by

Un =
[nt]∑
i=1

f
(
unX(i−1)/n,

√
n(Xi/n − X(i−1)/n)

)
.

Then under some assumptions on the function f and the coefficients b,σ , the
weak and strong rate of convergence is ρ = 1/4; see [19] for more details. Let us
note that we do not know what happens when ρ > 1/2, which includes the case of
higher order schemes for discretization schemes of SDE.

2.3. On the implicit weak error. As we have already observed, the approxi-
mation of θ∗ is affected by two errors: the implicit discretization error and the
statistical error. Our first results concern the convergence of θ∗,n toward θ∗ and
its convergence rate as n → +∞. The proof of the next theorem is postponed to
Section 3.1.

THEOREM 2.6. For all n ∈ N
∗, assume that h and hn satisfy the mean revert-

ing assumption (2.2) of Theorem 2.3. Moreover, suppose that (hn)n≥1 converges
locally uniformly toward h. Then one has

θ∗,n → θ∗ as n → +∞.

Moreover, suppose that h and hn, n ≥ 1 are continuously differentiable and that
Dh(θ∗) is nonsingular. Assume that (Dhn)n≥1 converges locally uniformly to Dh.
If there exists α ∈ R

∗ such that

∀θ ∈ R
d, lim

n→+∞nα(hn(θ) − h(θ)
) = E(h,α, θ),



946 N. FRIKHA

then one has

lim
n→+∞nα(θ∗,n − θ∗) = −Dh−1(θ∗)E(h,α, θ∗).

2.4. On the optimal tradeoff between the implicit error and the statistical error.
Given the order of the implicit weak error, a natural question is how to find the
optimal balance between the value of n in the approximation of U and the number
M of steps in (1.3) for the computation of θ∗,n in order to achieve a given global
error ε.

THEOREM 2.7. Suppose that the assumptions of Theorem 2.6 are satisfied
and that h satisfies the assumptions of Theorem 2.4. Assume that (HR), (HI)
and (HMR) hold and that hn is twice continuously differentiable with Dhn Lip-
schitz continuous uniformly in n. If (HS1) or (HS2) is satisfied, then one has

nα(θn
γ −1(1/n2α)

− θ∗) 	⇒ −Dh−1(θ∗)E(h,α, θ∗)+N
(
0,�∗),

where

�∗ :=
∫ ∞

0
exp

(−s
(
Dh

(
θ∗)− ζ Id

))T
E
[
H
(
θ∗,U

)
H
(
θ∗,U

)T ]
(2.6)

× exp
(−s

(
Dh

(
θ∗)− ζ Id

))
ds

with ζ = 0 if (HS1) holds and ζ = 1/2γ0 if (HS2) holds.

The proof of the following lemma is carried out in Section 3.2

LEMMA 2.3. Let δ > 0. Under the assumptions of Theorem 2.7, one has

nα(θnδ

γ −1(1/n2α)
− θ∗,nδ ) 	⇒N

(
0,�∗), n → +∞.

PROOF OF THEOREM 2.7. We decompose the error as follows:

θn
γ −1(1/n2α)

− θ∗ = θn
γ −1(1/n2α)

− θ∗,n + θ∗,n − θ∗

and analyze each term of the above sum. By Lemma 2.3, we have

nα(θn
γ −1(1/n2α)

− θ∗,n) 	⇒N
(
0,�∗),

and using Theorem 2.6, we also obtain

nα(θ∗,n − θ∗) → −Dh−1(θ∗)E(h,α, θ∗). �

The result of Theorem 2.7 could be construed as follows. For a total error of
order 1/nα , it is necessary to achieve at least M = γ −1(1/n2α) steps of the SA
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scheme defined by (1.3). Hence in this case, the complexity (or computational
cost) of the algorithm is given by

CSA(γ ) = C × n × γ −1(1/n2α),(2.7)

where C is some positive constant. We now investigate the impact of the step
sequence (γn)n≥1 on the complexity by considering the two following basic step
sequences:

• if we choose γ (p) = γ0/p with 2λγ0 > 1, then CSA = C × n2α+1;
• if we choose γ (p) = γ0/p

ρ , 1
2 < ρ < 1, then CSA = C × n2α/ρ+1.

Hence we clearly see that the minimal complexity is achieved by choosing γp =
γ0/p with 2λγ0 > 1. In this latter case, we see that the computational cost is similar
to the one achieved by the classical Monte Carlo algorithm for the computation of
Ex[f (XT )]. However, the main drawback of this choice of step sequence comes
from the constraint on γ0. Our next result shows that the optimal complexity can
be reached for free through the smoothing of procedure (1.3), according to the
Ruppert–Polyak averaging principle.

THEOREM 2.8. Suppose that the assumptions of Theorem 2.6 are satisfied
and that h satisfies the assumptions of Theorem 2.4. Assume that (HR), (HI) and
(HMR) hold and that hn is twice continuously differentiable with Dhn Lipschitz
continuous uniformly in n. Define the empirical mean sequence (θ̄n

p)p≥1 of the
sequence (θn

p)p≥1 by setting

θ̄ n
p = θ0 + θn

1 + · · · + θn
p

p + 1
= θ̄ n

p−1 − 1

p + 1

(
θ̄ n
p−1 − θn

p

)
,

where the step sequence γ = (γp)p≥1 satisfies (HS1) with ρ ∈ (1/2,1). Then one
has

nα(θ̄ n
n2α − θ∗) 	⇒ −Dh−1(θ∗)E(h,α, θ∗)

+N
(
0,Dh

(
θ∗)−1

E
[
H
(
θ∗,U

)
H
(
θ∗,U

)T ](
Dh

(
θ∗)−1)T )

.

We omit the proof of the following lemma since it can be done in a similar
manner to that of the SA literature. We refer to [11] for a proof.

LEMMA 2.4. Let δ > 0. Under the assumptions of Theorem 2.8, one has

nα(θ̄ nδ

n2α − θ∗,nδ ) 	⇒ N
(
0,Dh

(
θ∗)−1

E
[
H
(
θ∗,U

)
H
(
θ∗,U

)T ](
Dh

(
θ∗)−1)T )

,

n → +∞.
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PROOF OF THEOREM 2.8. Similarly to the proof of Theorem 2.7, we decom-
pose the error as follows:

θ̄ n
n2α − θ∗ = θ̄ n

n2α − θ∗,n + θ∗,n − θ∗.

Applying successively Theorem 2.6 and Lemma 2.4, we obtain

nα(θ̄ n
n2α − θ∗) 	⇒ −Dh−1(θ∗)E(h,α, θ∗)+N

(
0,�∗). �

The result of Theorem 2.8 shows that for a total error of order 1/nα , it is nec-
essary to achieve at least M = n2α steps of the SA scheme defined by (1.3) with
step sequence satisfying (HS1) and to simultaneously compute its empirical mean,
which represents a negligible part of the total cost. As a consequence, we see that
in this case the complexity of the algorithm is given by

CSA-RP(γ ) = C × n2α+1.

Therefore, the optimal complexity is reached for free, without any condition
on γ0, thanks to the Ruppert–Polyak averaging principle.

2.5. The statistical Romberg stochastic approximation method. In this sec-
tion we present a two-level SA scheme that will be also referred to as the sta-
tistical Romberg SA method, which allows us to minimize the complexity of the
SA algorithm (θn

p)p∈[[0,γ −1(1/n2α)]] for the numerical computation of θ∗ solution to
h(θ) = E[H(θ,U)] = 0. It is clearly apparent that

θ∗,n = θ∗,nβ + θ∗,n − θ∗,nβ

, β ∈ (0,1).

The statistical Romberg SA scheme independently estimates each of the solu-
tions appearing on the right-hand side in a way that minimizes the computational
complexity. Let θnβ

M1
be an estimator of θ∗,nβ

using M1 independent samples of

Unβ
and θn

M2
− θnβ

M2
be an estimator of θ∗,n − θ∗,nβ

using M2 independent copies

of (Unβ
,Un). Using the above decomposition, we estimate θ∗ by the quantity

�sr
n = θnβ

M1
+ θn

M2
− θnβ

M2
.

It is important to point out here that the couple (θn
M2

, θnβ

M2
) is computed using

i.i.d. copies of (Unβ
,Un), the random variables Unβ

and Un being perfectly corre-
lated. Moreover, the random variables used to obtain θnβ

M1
are independent of those

used for the computation of (θn
M2

, θnβ

M2
).

We also establish a central limit theorem for the statistical Romberg-based em-
pirical sequence according to the Ruppert–Polyak averaging principle. It consists
of estimating θ∗ by

�̄sr
n = θ̄ nβ

M3
+ θ̄ n

M4
− θ̄ nβ

M4
,
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where (θ̄nβ

p )p∈[[0,M3]] and (θ̄n
p, θ̄nβ

p )p∈[[0,M4]] are, respectively, the empirical means

of the sequences (θnβ

p )p∈[[0,M3]] and (θn
p, θnβ

p )p∈[[0,M4]] devised with the same slow
decreasing step, that is, a step sequence (γ (p))p≥1 where γ varies regularly with
exponent (−a), a ∈ (1/2,1).

THEOREM 2.9. Suppose that h and hn satisfy the assumptions of Theorem 2.6
with α ∈ (ρ ∨ 2ρβ,1] and that h satisfies the assumptions of Theorem 2.4. Assume
that (HWR1), (HSR), (HD), (HMR), (HDH) and (HLH) hold and that hn are
twice continuously differentiable in a neighborhood of θ∗, with Dhn Lipschitz-
continuous uniformly in n, satisfying

∀θ ∈ R
d, nρ

∥∥Dhn(θ) − Dh(θ)
∥∥ → 0 as n → +∞.

Suppose that Ẽ[(DxH(θ∗,U)V )(DxH(θ∗,U)V )T ] is a positive definite ma-
trix. Assume that the step sequence is given by γp = γ (p), p ≥ 1, where γ is a
positive function defined on [0,+∞[ decreasing to zero, satisfying one of the fol-
lowing assumptions:

• γ varies regularly with exponent (−a), a ∈ (1/2,1); that is, for any x > 0,
limt→+∞ γ (tx)/γ (t) = x−a .

• For t ≥ 1, γ (t) = γ0/t and γ0 satisfy λγ0 > α/(2α − 2ρβ).

Then, for M1 = γ −1(1/n2α) and M2 = γ −1(1/(n2α−2ρβ)), one has

nα(�sr
n − θ∗) 	⇒ Dh−1(θ∗)E(h,α, θ∗)+N

(
0,�∗), n → +∞

with

�∗ :=
∫ ∞

0

(
e−s(Dh(θ∗)−ζ Id ))T (

E
[
H
(
θ∗,U

)
H
(
θ∗,U

)T ]
+ Ẽ

[(
DxH

(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])

× (
DxH

(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])T ])

× e−s(Dh(θ∗)−ζ Id ) ds.

REMARK 2.5. Let us note that in the above theorem the condition on the con-
vergence of the discretization error on the Jacobian matrix of h has been strength-
ened, compared to the standard SA algorithm appearing in Theorem 2.7. This is
due to the presence of annoying second-order terms when we deal with the correc-
tion term θn

M2
− θnβ

M2
. Thus this assumption appears as a typical feature of multi-

level SA methods; see also Theorems 2.10 and 2.11.

The proof of the following lemma is carried out in Section 3.3.

LEMMA 2.5. Let (θp)p≥0 be the procedure defined for p ≥ 0 by

θp+1 = θp − γp+1H
(
θp, (U)p+1),(2.8)
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where ((Un)p, (U)p)p≥1 is an i.i.d. sequence of random variables with the same

law as (Un,U), (γp)p≥1 is the step sequence of the procedure (θnβ

p )p≥0 and

(θn
p)p≥0 and θ0 is independent of the innovation satisfying E[|θ0|2] < +∞. Un-

der the assumptions of Theorem 2.9, one has

nα(θnβ

γ −1(1/(n2α−β))
− θγ −1(1/(n2α−β)) − (

θ∗,nβ − θ∗)) 	⇒N
(
0,�∗),

n → +∞,

with

�∗ :=
∫ ∞

0

(
e−s(Dh(θ∗)−ζ Id ))T

Ẽ
[(

DxH
(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])

× (
DxH

(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])T ]

× e−s(Dh(θ∗)−ζ Id ) ds

and

nα(θn
γ −1(1/(n2α−β))

− θγ −1(1/(n2α−β)) − (
θ∗,n − θ∗)) P−→ 0, n → +∞.

PROOF OF THEOREM 2.9. We first write the following decomposition:

�sr
n − θ∗ = θnβ

γ −1(1/n2α)
− θ∗,nβ + θn

γ −1(1/n2α−2ρβ)

− θnβ

γ −1(1/n2α−2ρβ)
− (

θ∗,n − θ∗,nβ )+ θ∗,n − θ∗.
For the last term of the above sum, we use Theorem 2.6 to directly deduce

nα(θ∗,n − θ∗) → −Dh−1(θ∗)E(h,α, θ∗) as n → +∞.

For the first term, from Lemma 2.3 it follows that

nα(θnβ

γ −1(1/n2α)
− θ∗,nβ ) 	⇒N

(
0,�∗),

with

�∗ :=
∫ ∞

0
exp

(−s
(
Dh

(
θ∗)− ζ Id

))T
E
[
H
(
θ∗,U

)
H
(
θ∗,U

)T ]
× exp

(−s
(
Dh

(
θ∗)− ζ Id

))
ds.

We decompose the last remaining term, namely θn
γ −1(1/n2α−2ρβ)

− θnβ

γ −1(1/n2α−2ρβ)
−

(θ∗,n − θ∗,nβ
), as follows:

θn
γ −1(1/n2α−2ρβ)

− θnβ

γ −1(1/n2α−2ρβ)
− (

θ∗,n − θ∗,nβ )
= θn

γ −1(1/n2α−2ρβ)
− θγ −1(1/n2α−2ρβ) − (

θ∗,n − θ∗)
− (

θnβ

γ −1(1/n2α−2ρβ)
− θγ −1(1/n2α−2ρβ) − (

θ∗,nβ − θ∗)),
and we use Lemma 2.5 to complete the proof. �
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THEOREM 2.10. Suppose that h and hn satisfy the assumptions of Theo-
rem 2.6 (with α ∈ (ρ∨2ρβ,1]) and that h satisfies the assumptions of Theorem 2.4.
Assume that the step sequence γ = (γp)p≥1 satisfies (HS1) with a ∈ (1/2,1) and

a > α
2α−2ρβ

∨ α(1−β)
(α−ρβ)

. Suppose that (HWR1), (HSR), (HD), (HMR), (HDH) and
(HLH) hold and that hn is twice continuously differentiable in a neighborhood
of θ∗, with Dhn Lipschitz-continuous uniformly in n satisfying

∀θ ∈ R
d, nα−(α−ρβ)a

∥∥Dh(θ) − Dhnβ

(θ)
∥∥ → 0 as n → +∞.(2.9)

Suppose that Ẽ[(DxH(θ∗,U)V − Ẽ[DxH(θ∗,U)V ])(DxH(θ∗,U)V −
Ẽ[DxH(θ∗,U)V ])T ] is a positive definite matrix. Then, for M3 = n2α and
M4 = n2α−2ρβ , one has

nα(�̄sr
n − θ∗) 	⇒ Dh−1(θ∗)E(h,α, θ∗)+N

(
0, �̄∗), n → +∞,

where

�̄∗ := Dh
(
θ∗)−1(

E
[
H
(
θ∗,U

)
H
(
θ∗,U

)T ]
+ Ẽ

[(
DxH

(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])

× (
DxH

(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])T ])(

Dh
(
θ∗)−1)T

.

We omit the proof of the following lemma since it can be done in a similar
manner to that in the SA literature. For a proof the reader may refer to [11].

LEMMA 2.6. Let (θ̄p)p≥1 be the empirical mean sequence associated to
(θp)p≥1 defined by (2.8). Under the assumptions of Theorem 2.10, one has

nα(θ̄ nβ

n2α−2ρβ − θ̄n2α−2ρβ − (
θ∗,nβ − θ∗)) 	⇒ N

(
0, �̄∗)

with

�̄∗ = Dh
(
θ∗)−1

Ẽ
[(

DxH
(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])T ](

Dh
(
θ∗)−1)T

and

nα(θ̄ n
n2α−2ρβ − θ̄n2α−2ρβ − (

θ∗,n − θ∗)) P−→ 0.

PROOF OF THEOREM 2.10. We decompose the error as follows:

�̄sr
n − θ∗ = θ̄ nβ

n2α − θ∗,nβ + θ̄ n
n2α−2ρβ − θ̄ nβ

n2α−2ρβ − (
θ∗,n − θ∗,nβ )+ θ∗,n − θ∗.

For the first term, from Lemma 2.4 it follows that

nα(θ̄ nβ

n2α − θ∗,nβ ) 	⇒ N
(
0,Dh

(
θ∗)−1

E
[
H
(
θ∗,U

)
H
(
θ∗,U

)T ](
Dh

(
θ∗)−1)T )

.
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For the last term using Theorem 2.6, we have nα(θ∗,n − θ∗) → −Dh−1(θ∗) ×
E(h,α, θ∗). We now focus on the last remaining term, namely θ̄ n

n2α−2ρβ − θ̄ nβ

n2α−2ρβ −
(θ∗,n − θ∗,nβ

). We decompose it as follows:

θ̄ n
n2α−2ρβ − θ̄ nβ

n2α−2ρβ − (
θ∗,n − θ∗,nβ )

= θ̄ n
n2α−2ρβ − θ̄n2α−2ρβ − (

θ∗,n − θ∗)− (
θ̄ nβ

n2α−2ρβ − θ̄n2α−2ρβ − (
θ∗,nβ − θ∗)),

where (θ̄p)p≥1 is the empirical mean sequence associated to (θp)p≥1, and we use
Lemma 2.6 to complete the proof. �

2.6. The multi-level stochastic approximation method. As we mentioned in
the Introduction, the multi-level SA method uses L + 1 stochastic schemes with a
sequence of bias parameters (m�)�∈[[0,L]], for a fixed integer m ≥ 2, that satisfies
mL = n, that is, L = log(n)/ log(m) and estimates θ∗ by computing the quantity

�ml
n = θ1

M0
+

L∑
�=1

(
θm�

M�
− θm�−1

M�

)
.

It is important to point out here that for each level �, the couple (θm�

M�
, θm�−1

M�
)

is computed using i.i.d. copies of (Um�−1
,Um�

). Moreover the random variables
Um�−1

and Um�
use two different bias parameter but are perfectly correlated. Fi-

nally, for two different levels, the SA schemes are based on independent samples.

THEOREM 2.11. Suppose that h and (hn)n∈N satisfy the assumptions of
Theorem 2.6. Assume that (HWR2), (HSR), (HD), (HMR), (HDH) and (HLH)
hold and that hn is twice continuously differentiable in a neighborhood of θ∗,
with Dhn Lipschitz-continuous uniformly in n. Suppose that Ẽ[(DxH(θ∗,U)V −
Ẽ[DxH(θ∗,U)V ])(DxH(θ∗,U)V − Ẽ[DxH(θ∗,U)V ])T ] is a positive definite
matrix. Assume that the step sequence is given by γp = γ (p), p ≥ 1, where γ is
a positive function defined on [0,+∞[ decreasing to zero, satisfying one of the
following assumptions:

• γ varies regularly with exponent (−a), a ∈ (1/2,1); that is, for any x > 0,
limt→+∞ γ (tx)/γ (t) = x−a .

• For t ≥ 1, γ (t) = γ0/t and γ0 satisfy λγ0 > 1.

Suppose that ρ satisfies one of the following assumptions:

• If ρ ∈ (0,1/2), then assume that α > 2ρ, λγ0 > α/(α − 2ρ) [if γ (t) = γ0/t]
and

∃β > ρ,∀θ ∈ R
d, sup

n≥1
nβ

∥∥Dhn(θ) − Dh(θ)
∥∥ < +∞.

In this case we set M0 = γ −1(1/(n2α log(n))) and Ml = γ −1(m�((1+2ρ)/2) ×
(m(1−2ρ)/2 − 1)/(n2α(n(1−2ρ)/2 − 1))), � = 1, . . . ,L.
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• If ρ = 1/2, then assume that α = 1, θm�

0 = θ0, � = 1, . . . ,L, with E[|θ0|2] < +∞
and

∃β > 1/2,∀θ ∈ R
d, sup

n≥1
nβ

∥∥Dhn(θ) − Dh(θ)
∥∥ < +∞.

In this case we set M0 = γ −1(1/(n2 log(n))) and Ml = γ −1(m� log(m)/

(n2 log(n)(m − 1))), � = 1, . . . ,L.

Then one has

nα(�ml
n − θ∗) 	⇒ −Dh−1(θ∗)E(h,1, θ∗)+N

(
0,�∗), n → +∞

with

�∗ :=
∫ ∞

0

(
e−s(Dh(θ∗)−ζ Id ))T

Ẽ
[(

DxH
(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])

× (
DxH

(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])T ]

× e−s(Dh(θ∗)−ζ Id ) ds.

PROOF. We first write the following decomposition:

�ml
n − θ∗ = θ1

γ −1(1/n2)
− θ∗,1

+
L∑

�=1

(
θm�

M�
− θm�−1

M�
− (

θ∗,m� − θ∗,m�−1))+ θ∗,n − θ∗.

For the last term of the above sum, we use Theorem 2.6 to directly deduce

nα(θ∗,n − θ∗) → −Dh−1(θ∗)E(h,1, θ∗) as n → +∞.

For the first term, from Lemma 5.2 we get

nα(θ1
γ −1(1/(n2α log(n)))

− θ∗,1) P−→ 0.

Finally to deal with the last remaining term, namely nα ∑L
�=1(θ

m�

M�
− θm�−1

M�
−

(θ∗,m� − θ∗,m�−1
)), we will need the following lemma, whose proof is carried out

in Section 3.4. �

LEMMA 2.7. Under the assumptions of Theorem 2.9, one has

nα
L∑

�=1

(
θm�

M�
− θm�−1

M�
− (

θ∗,m� − θ∗,m�−1)) 	⇒N
(
0,�∗), n → +∞,
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with

�∗ :=
∫ ∞

0

(
e−s(Dh(θ∗)−ζ Id ))T

(2.10)
× Ẽ

[(
DxH

(
θ∗,U

)
V m − Ẽ

[
DxH

(
θ∗,U

)
V m])

× (
DxH

(
θ∗,U

)
V m − Ẽ

[
DxH

(
θ∗,U

)
V m])T ]

(2.11)
× e−s(Dh(θ∗)−ζ Id ) ds.

REMARK 2.6. The value of M0 in Theorem 2.11 seems arbitrary and is
asymptotically suboptimal. Indeed, one observes that the key point is to choose
M0 such that γ (M0) = o(1/n2α) and M0 = O(γ −1(1/n2α+1−2ρ)) if ρ ∈ (0,1/2)

or M0 = O(γ −1(1/(n2 log(n))) if ρ = 1/2 so that nα(θ1
M0

− θ∗,1)
P−→ 0, and M0

does not influence the asymptotic complexity; see Section 2.7 below. From an
asymptotic point of view, any choice satisfying this condition would lead to the
same complexity. From a nonasymptotic point of view, one may choose M0 =
γ −1(1/n2α) so that the nonasymptotic computational complexity is smaller than
in the other case. However, now one has nα(θ1

γ −1(1/n2α)
− θ∗,1) 	⇒N (0,�∗) with

�∗ :=
∫ ∞

0
exp

(−s
(
Dh

(
θ∗)− ζ Id

))T
E
[
H
(
θ∗,U1)H (

θ∗,U1)T ]
× exp

(−s
(
Dh

(
θ∗)− ζ Id

))
ds

so that the new asymptotic covariance matrix �∗ := �∗ + �∗ is higher than that
of Theorem 2.11.

REMARK 2.7. The previous result shows that a CLT for the multi-level
stochastic approximation estimator of θ∗ holds if the standard weak error (and
thus the implicit weak error) is of order 1/nα , and the strong rate error is of order
1/nρ with α > 2ρ or α = 1 and ρ = 1/2. Due to the nonlinearity of the procedures,
which leads to annoying remainder terms in the Taylor expansions, these results do
not seem to easily extend to a weak discretization error of order 1/nα with α < 1
and ρ = 1/2 or a faster strong convergence rate ρ > 1/2. Moreover, for the same
reason, this result does not seem to extend to the empirical sequence associated to
the multi-level estimator, according to the Ruppert–Polyak averaging principle.

2.7. Complexity analysis. The result of Theorem 2.9 can be interpreted as fol-
lows. For a total error of order 1/nα , it is necessary to set M1 = γ −1(1/n2α) steps
of a stochastic algorithm with time step nβ and M2 = γ −1(1/n2α−2ρβ) steps of
two stochastic algorithms with time step n and nβ using the same Brownian mo-
tion, the samples used for the first M1 steps being independent of those used for
the second scheme. Hence the complexity of the statistical Romberg SA method is
given by

CSR-SA(γ ) = C × (
nβγ −1(1/n2α)+ (

n + nβ)γ −1(1/
(
n2α−2ρβ)))(2.12)
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under the constraint α > 2ρβ ∨ρ. Consequently, concerning the impact of the step
sequence (γn)n≥1 on the complexity of the procedure, we have the two following
cases:

• If we choose γ (p) = γ0/p, then simple computations show that β∗ = 1/(1 +
2ρ) is the optimal choice leading to a complexity

CSR-SA(γ ) = C′n2α+1/(1+2ρ),

under the constraint λγ0 > α(1+ 2ρ)/(2α(1+ 2ρ)− 2ρ) and α > 2ρ/(1+ 2ρ).
Let us note that this computational cost is similar to the one achieved by the
statistical Romberg Monte Carlo method for the computation of Ex[f (XT )].

• If we choose γ (p) = γ0/p
a , 1

2 < a < 1, then the computational cost is given by

CSR-SA(γ ) = C′(n(2α/a)+β + n(2α/a)−(β/a)+1),
which is minimized for β∗ = a/(2ρ + a), leading to an optimal complexity,

CSR-SA(γ ) = C′n(2α/a)+(a/(2ρ+a)),

under the constraint α > 2ρa/(a + 2ρ) ∨ ρ. Observe that this complexity de-
creases with respect to a and that it is minimal for a → 1, leading to the optimal
computational cost obtained in the previous case. Let us also point out that con-
trary to the case γ (p) = γ0/p, p ≥ 1, there is no constraint on the choice of γ0.
Moreover, such a condition is difficult to handle in practical implementation, so
a blind choice often has to be made.

The CLT proved in Theorem 2.10 shows that for a total error of order 1/nα ,
it is necessary to set M1 = n2α , M2 = n2α−2ρβ and to simultaneously compute
its empirical mean, which represents a negligible part of the total cost. Both SA
algorithm are devised with a step γ satisfying (HS1) with a ∈ (1/2,1) and a >

α
2α−2ρβ

∨ α(1−β)
α−ρβ

. It is plain to see that β∗ = 1/(1 + 2ρ) is the optimal choice
leading to a complexity given by

CSR-RP(γ ) = C × n2α+(1/(1+2ρ)),

provided that a >
α(1+2ρ)

2α+2ρ(2α−1)
and ∀θ ∈ R

d, nα−(α−(ρ/(1+2ρ)))a‖Dh(θ) −
Dhn1/(1+2ρ)

(θ)‖ → 0 as n → +∞. (Note that when a → 1, this condition is the
same as in Theorem 2.9.) For instance, if α = 1 and ρ = 1/2, then this condition
writes a > 2/3 and n1−(3/4)a‖Dh(θ) − Dhn1/2

(θ)‖ → 0, and a should be selected
sufficiently close to 1, according to the weak discretization error of the Jacobian
matrix of h. Therefore, the optimal complexity is reached for free without any con-
dition on γ0, thanks to the Ruppert–Polyak averaging principle. Let us also note
that although we do not intend to develop this point, it is possible to prove that
averaging allows us to achieve the optimal asymptotic covariance matrix, as with
standard SA algorithms.

Finally, concerning the CLT provided in Theorem 2.11, we show that in order to
obtain an error of order 1/nα , one has to set M0 = γ −1(1/(n2α log(n))) and Ml =
γ −1(m�(1+2ρ)/2(m(1−2ρ)/2 − 1)/(n2α(n(1−2ρ)/2 − 1))), if ρ ∈ (0,1/2) or M0 =
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γ −1(1/(n2 log(n))) and Ml = γ −1(m� log(m)/(n2 log(n)(m−1))) if ρ = 1/2, � =
1, . . . ,L with L = log(n)/ log(m). In both cases the complexity of the multi-level
SA method is given by

CML-SA(γ ) = C ×
(
γ −1(1/

(
n2α log(n)

))+
L∑

�=1

M�

(
m� + m�−1)).(2.13)

As for the Statistical Romberg SA method, we distinguish the two following
cases:

• If γ (p) = γ0/p, then the optimal complexity is given by

CML-SA(γ ) = C

(
n2α log(n)

+ n2(n(1−2ρ)/2 − 1)

m(1−2ρ)/2 − 1

L∑
�=1

m−((1+2ρ)/2)�(m� + m�−1))

= O
(
n2αn1−2ρ),

if ρ ∈ (0,1/2) under the constraint λγ0 > α/(α − 2ρ) and

CML-SA(γ ) = C

(
n2 log(n) + n2(logn)2 m2 − 1

m(logm)2

)
= O

(
n2(log(n)

)2)
,

if ρ = 1/2 under the constraint λγ0 > 1. These computational costs are similar
to those achieved by the multi-level Monte Carlo method for the computation
of Ex[f (XT )]; see [15] and [6]. As discussed in [15], this complexity attains a
minimum near m = 7.

• If we choose γ (p) = γ0/p
a , 1

2 < a < 1, then simple computations show that the
computational cost is given by

CML-SA(γ ) = C

(
n2α/a log1/a(n)

+ n2/a(n1−2ρ − 1
)1/a

L∑
�=1

m−((1+2ρ)/a)�(m� + m�−1))

= O
(
n2α/an(1−2ρ)/a),

if ρ ∈ (0,1/2) and

CML-SA(γ ) = C

(
n2/a log1/a(n)

+ n2/a(logn)1/a (m − 1)1/a(m + 1)

m(logm)1/a

L∑
�=1

m−�((1/a)−1)

)

= O
(
n2/a(logn)1/a)
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if ρ = 1/2. Observe that once again these computational costs decrease with
respect to a and that they are minimal for a → 1 leading to the optimal compu-
tational cost obtained in the previous case. In this last case, the optimal choice
for the parameter m depends on the value of a.

3. Proofs of main results.

3.1. Proof of Theorem 2.6. We first prove that θ∗,n → θ∗, n → +∞. Let
ε > 0. The mean-reverting assumption (2.2) and the continuity of u �→ 〈u,h(θ∗ +
εu)〉 on the (compact) set Sd := {u ∈ R

d, |u| = 1} yield

η := inf
u∈Sd

〈
u,h

(
θ∗ + εu

)〉
> 0.

The local uniform convergence of (hn)n≥1 implies

∃nη ∈ N
∗,∀n ≥ nη, θ ∈ B̄

(
θ∗, ε

) ⇒ ∣∣hn(θ) − h(θ)
∣∣ ≤ η/2.

Then using the decomposition〈
θ − θ∗, hn(θ)

〉 = 〈
θ − θ∗, h(θ)

〉+ 〈
θ − θ∗, hn(θ) − h(θ)

〉
,

one has for θ = θ∗ ± εu, u ∈ Sd ,

ε
〈
u,hn(θ∗ + εu

)〉 ≥ 〈
εu,h

(
θ∗ + εu

)〉− εη/2 ≥ εη − εη/2 = εη/2,

−ε
〈
u,hn(θ∗ − εu

)〉 ≥ 〈−εu,h
(
θ∗ − εu

)〉− εη/2 ≥ εη − εη/2 = εη/2

so that 〈u,hn(θ∗ + εu)〉 > 0 and 〈u,hn(θ∗ − εu)〉 < 0, which combined with the
intermediate value theorem applied to the continuous function x �→ 〈u,hn(θ∗ +
xu)〉 on the interval [−ε, ε] yields〈

u,hn(θ∗ + x̃u
)〉 = 0

for some x̃ = x̃(u) ∈] −ε, ε[. Now we set u = θ∗ − θ∗,n/|θ∗ − θ∗,n| as soon as
possible. (Otherwise, the proof is complete.) Hence there exists x∗ ∈ ] −ε, ε[ such
that 〈

θ∗ − θ∗,n

|θ∗ − θ∗,n| , h
n

(
θ∗ + x∗ θ∗ − θ∗,n

|θ∗ − θ∗,n|
)〉

= 0

so that multiplying the previous equality by x∗ + |θ∗ − θ∗,n|, we get〈
θ∗,n +

(
x∗

|θ∗ − θ∗,n| + 1
)(

θ∗ − θ∗,n)− θ∗,n,

hn

(
θ∗,n +

(
x∗

|θ∗ − θ∗,n| + 1
)(

θ∗ − θ∗,n))〉 = 0.
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Consequently, by the very definition of θ∗,n, we deduce that x∗ = −|θ∗ − θ∗,n|
and finally |θ∗ − θ∗,n| < ε for n ≥ nη. Hence we conclude that θ∗,n → θ∗. We
now derive a convergence rate. A Taylor expansion yields for all n ≥ 1,

hn(θ∗) = hn(θ∗,n)+
(∫ 1

0
Dhn(λθ∗,n + (1 − λ)θ∗)dλ

)(
θ∗ − θ∗,n).

Combining the local uniform convergence of (Dhn)n≥1 to Dh, the convergence
of (θ∗,n)n≥1 to θ∗ and the nonsingularity of Dh(θ∗), one clearly gets that for n

large enough,
∫ 1

0 Dhn(λθ∗,n + (1 − λ)θ∗) dλ is nonsingular and that(∫ 1

0
Dhn(λθ∗,n + (1 − λ)θ∗)dλ

)−1

→ Dh−1(θ∗), n → +∞.

Consequently, recalling that h(θ∗) = 0 and hn(θ∗,n) = 0, it is plain to see

nα(θ∗,n − θ∗) = −
(∫ 1

0
Dhn(λθ∗,n + (1 − λ)θ∗)dλ

)−1

nα(hn(θ∗)− h
(
θ∗))

→ −Dh−1(θ∗)E(h,α, θ∗).
3.2. Proofs of Lemma 2.3. We define for all p ≥ 1,Mnδ

p := hnδ
(θnδ

p−1) −
H(θnδ

p−1, (U
nδ

)p) = E[H(θnδ

p−1, (U
nδ

)p)|Fp−1] − H(θnδ

p−1, (U
nδ

)p). Recalling

that ((Unδ
)p)p≥1 is a sequence of i.i.d. random variables, we have that (Mnδ

p )p≥1

is a sequence of martingale increments w.r.t. the natural filtration F := (Fp :=
σ(θnδ

0 , (Unδ
)1, . . . , (Unδ

)p);p ≥ 1). From the dynamic (1.3), one clearly gets for
p ≥ 0,

θnδ

p+1 − θ∗,nδ = θnδ

p − θ∗,nδ − γp+1Dhnδ (
θ∗,nδ )(

θnδ

p − θ∗,nδ )
+ γp+1Mnδ

p+1 + γp+1ζ
nδ

p

with ζ nδ

p := Dhnδ
(θ∗,nδ

)(θnδ

p − θ∗,nδ
) − hnδ

(θnδ

p ). Moreover, since Dhnδ
is

Lipschitz-continuous (uniformly in n), by Taylor’s formula one gets ζ nδ

p =
O(|θnδ

p − θ∗,nδ |2). Hence by a simple induction, we obtain

θnδ

n − θ∗,nδ

= �1,n

(
θnδ

0 − θ∗,nδ )+
n∑

k=1

γk�k+1,nMnδ

k(3.1)

+
n∑

k=1

γk�k+1,n

(
ζ nδ

k−1 + (
Dh

(
θ∗)− Dhnδ (

θ∗,nδ ))(
θnδ

k−1 − θ∗,nδ ))
,

where �k,n := ∏n
j=k(Id − γjDh(θ∗)), with the convention that �n+1,n = Id . We

now investigate the asymptotic behavior of each term in the above decomposition.
Actually, in steps 1 and 2 we will prove that the first and third terms on the right-
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hand side of the above equality converge in probability to zero at a faster rate
than n−α . We will then prove in step 3 that the second term satisfies a CLT at
rate nα .

Step 1: study of the sequence {nα�1,γ −1(1/n2α)(θ
nδ

0 − θ∗,nδ
), n ≥ 0}.

First, since −Dh(θ∗) is an Hurwitz matrix, ∀λ ∈ [0, λm), there exists C > 0
such that for any k ≤ n, ‖�k,n‖ ≤ C

∏n
j=k(1 − λγj ) ≤ C exp(−λ

∑n
j=k γj ). We

refer to [9] and [5] for more details. Hence one has for all η ∈ (0, λm),

nα
E
∣∣�1,γ −1(1/n2α)

(
θnδ

0 − θ∗,nδ )∣∣
≤ C

(
sup
n≥1

E
∣∣θn

0

∣∣+ 1
)
nα exp

(
−(λm − η)

γ −1(1/n2α)∑
k=1

γk

)
.

Selecting η such that 2(λm − η)γ0 > 2(λ − η)γ0 > 1, under (HS2) and any
η ∈ (0, λm) under (HS1), we derive the convergence to zero of the right-hand side
of the last but one inequality.

Step 2: study of {nα ∑γ −1(1/n2α)
k=1 γk�k+1,γ −1(1/n2α)(ζ

nδ

k−1 + (Dh(θ∗) −
Dhnδ

(θ∗,nδ
))(θnδ

k−1 − θ∗,nδ
)), n ≥ 0}.

We focus on the last term of (3.1). Using Lemma 5.2 we get

E

∣∣∣∣∣
n∑

k=1

γk�k+1,n

(
ζ nδ

k−1 + (
Dh

(
θ∗)− Dhnδ (

θ∗,nδ ))(
θnδ

k−1 − θ∗,nδ ))∣∣∣∣∣
≤ C

n∑
k=1

‖�k+1,n‖(γ 2
k + γ

3/2
k

∥∥Dh
(
θ∗)− Dhnδ (

θ∗,nδ )∥∥),
so that by Lemma 5.1 (see also remark 2.3), the local uniform convergence of
(Dhn)n≥1 and the continuity of Dh at θ∗, we derive

lim sup
n

nα
E

∣∣∣∣∣
γ −1(1/n2α)∑

k=1

γk�k+1,γ −1(1/n2α)

× (
ζ nδ

k−1 + (
Dh

(
θ∗)− Dhnδ (

θ∗,nδ ))(
θnδ

k−1 − θ∗,nδ ))∣∣∣∣∣ = 0.

Step 3: study of the sequence {nα ∑γ −1(1/n2α)
k=1 γk�k+1,γ −1(1/n2α)Mnδ

k , n ≥ 0}.
We use the following decomposition:

n∑
k=1

γk�k+1,nMnδ

k

=
n∑

k=1

γk�k+1,n

(
hnδ (

θnδ

k

)− hnδ (
θ∗,nδ )



960 N. FRIKHA

− (
H
(
θnδ

k ,
(
Unδ )k+1)− H

(
θ∗,nδ

,
(
Unδ )k+1)))

+
n∑

k=1

γk�k+1,n

(
hnδ (

θ∗,nδ )− H
(
θ∗,nδ

,
(
Unδ )k+1))

:= Rn + Mn.

Now, using that E[H(θnδ

k , (Unδ
)k+1)|Fk] = hnδ

(θnδ

k ), E[H(θ∗,nδ
, (Unδ

)k+1)|
Fk] = hnδ

(θ∗,nδ
) and (HR), we have

E|Rn|2 ≤
n∑

k=1

γ 2
k ‖�k+1,n‖2

E
[∣∣θnδ

k − θ∗,nδ ∣∣2a] ≤
n∑

k=1

γ 2+a
k ‖�k+1,n‖2,

where we use Lemma 5.2 and Jensen’s inequality for the last inequality. Moreover,
according to Lemma 5.1, we have

lim sup
n

n2α
γ −1(1/n2α)∑

k=1

γ 2+a
k ‖�k+1,γ −1(1/n2α)‖2 = 0

so that nα ∑n
k=1 γk�k+1,n(h

nδ
(θnδ

k )−hnδ
(θ∗,nδ

)− (H(θnδ

k , (Unδ
)k+1)−H(θ∗,nδ

,

(Unδ
)k+1)))

L2(P)−→ 0.
To conclude we prove that the sequence {γ −1/2(n)Mn,n ≥ 0} satisfies a CLT.

In order to do this we apply standard results on CLT for martingale arrays. More
precisely, we will apply Theorem 3.2 and Corollary 3.1, page 58, in [17] so
that we need to prove that the conditional Lindeberg assumption is satisfied, that
is, limn

∑n
k=1 E[|γ −1/2(n)γk�k+1,n(h

nδ
(θ∗,nδ

) − H(θ∗,nδ
, (Unδ

)k+1))|p] = 0, for
some p > 2 and that the conditional variance (Sn)n≥1 defined by

Sn := 1

γ (n)

n∑
k=1

γ 2
k �k+1,nEk

[(
hnδ (

θ∗,nδ )− H
(
θ∗,nδ

,
(
Unδ )k+1))

× (
hnδ (

θ∗,nδ )− H
(
θ∗,nδ

,
(
Unδ )k+1))T ]

�T
k+1,n

= 1

γ (n)

n∑
k=1

γ 2
k �k+1,n�n�

T
k+1,n

with �n := E[H(θ∗,nδ
,Unδ

)(H(θ∗,nδ
,Unδ

))T ], since hnδ
(θ∗,nδ

) = 0, satisfies
Sn

a.s.−→ �∗ as n → +∞. We also set �∗ := E[H(θ∗,U)(H(θ∗,U))T ].
By (HI), it holds for some R > 0 such that ∀n ≥ 1, θ∗,n ∈ B(0,R)

n∑
k=1

E
∣∣γ −1/2(n)γk�k+1,n

(
hnδ (

θ∗,nδ )− H
(
θ∗,nδ

,
(
Unδ )k+1))∣∣2+δ

≤ C sup
{θ : |θ |≤R,n∈N∗}

E
[∣∣H (

θ,Un)∣∣2+δ]
γ −1+δ/2(n)

n∑
k=1

γ 2+δ
k ‖�k+1,n‖2+δ.
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By Lemma 5.1, we have lim supn γ −1+δ/2(n)
∑n

k=1 γ 2+δ
k ‖�k+1,n‖2+δ ≤

lim supn γ δ/2(n) = 0, so that the conditional Lindeberg condition (see [17], Corol-
lary 3.1) is satisfied. Now we focus on the conditional variance. By the local
uniform convergence of (θ �→ E[H(θ,Unδ

)(H(θ,Unδ
))T ])n≥0, the continuity of

θ �→ E[H(θ,U)(H(θ,U))T ] at θ∗ and since θ∗,nδ → θ∗, we have �n → �∗, so
that from Lemma 5.1, it follows that

lim sup
n

∥∥∥∥∥ 1

γ (n)

n∑
k=1

γ 2
k �k+1,n

(
�n − �∗)�T

k+1,n

∥∥∥∥∥ ≤ lim sup
n

∥∥�n − �∗∥∥ = 0.

Hence we see that limn Sn = limn
1

γ (n)

∑n
k=1 γ 2

k �k+1,n�
∗�T

k+1,n if this latter

limit exists. Let us note that �∗ given by (2.6) is the (unique) matrix A solution to
the Lyapunov equation

�∗ − (
Dh

(
θ∗)− ζ Id

)
A − A

(
Dh

(
θ∗)− ζ Id

)T = 0.

We aim at proving that Sn
a.s.−→ �∗. In order to do this, we define

An+1 := 1

γ (n + 1)

n+1∑
k=1

γ 2
k �k+1,n�

∗�T
k+1,n,

which can be written in the following recursive form:

An+1 = γn+1�
∗ + γn

γn+1

(
Id − γn+1Dh

(
θ∗))An

(
Id − γn+1Dh

(
θ∗))T

= An + γn

(
�∗ − Dh

(
θ∗)An − AnDh

(
θ∗)T )

+ (γn+1 − γn)�
∗ + γnγn+1Dh

(
θ∗)AnDh

(
θ∗)T + γn − γn+1

γn+1
An.

Under the assumptions made on the step sequence (γn)n≥1, we have γn−γn+1
γn+1

=
2ζγn + o(γn) and γn+1 − γn =O(γ 2

n ). Consequently, introducing Zn = An − �∗,
simple computations from the previous equality yield

Zn+1 = Zn − γn

((
Dh

(
θ∗)− ζ Id

)
Zn + Zn

(
Dh

(
θ∗)− ζ Id

)T )
+ γnγn+1Dh

(
θ∗)ZnDh

(
θ∗)T +

(
γn − γn+1

γn+1
− 2ζγn

)
Zn

+ γnγn+1Dh
(
θ∗)�∗Dh

(
θ∗)T + (γn+1 − γn)�

∗

+
(

γn − γn+1

γn+1
− 2ζγn

)
�∗.

Let us note that by the very definition of ζ and assumptions (HS1) and (HS2), the
matrix Dh(θ∗) − ζ Id is stable, so that taking the norm in the previous equality,
there exists λ > 0 such that

‖Zn+1‖ ≤ (
1 − λγn + o(γn)

)‖Zn‖ + o(γn)
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for n ≥ n0, n0 large enough. By a simple induction, it holds for n ≥ N ≥ n0,

‖Zn‖ ≤ C‖ZN‖ exp(−λsN,n) + C exp(−λsN,n)

n∑
k=N

exp(λsN,k)γk‖ek‖,

where en = o(1), and we set sN,n := ∑n
k=N γk . From assumption (1.2), it follows

that for N ≥ n0,

lim sup
n

‖Zn‖ ≤ C sup
k≥N

‖ek‖,

and passing to the limit as N goes to infinity, it clearly yields lim supn ‖Zn‖ = 0.

Hence Sn
a.s.−→ �∗, and the proof is complete.

3.3. Proof of Lemma 2.5. We will just prove the first assertion of the lemma;
the second will readily follow. When the exact value of a constant is not important,
we may repeat the same symbol for constants that may change from one line to
next. We come back to the decomposition used in the proof of Lemma 2.3, and we
consequently use the same notation. Let us note that the procedure (θp)p≥0 a.s.
converges to θ∗ and satisfies a CLT according to Theorem 2.4.

From the dynamics of (θnδ

p )p≥0 and (θp)p≥0, we write for p ≥ 0,

θnβ

p+1 − θ∗,nβ = θnβ

p − θ∗,nβ − γp+1Dhnβ (
θ∗,nβ )(

θnβ

p − θ∗,nβ )
+ γp+1Mn

p+1 + γp+1ζ
nβ

p ,

θp+1 − θ∗ = θp − θ∗ − γp+1Dh
(
θ∗)(θp − θ∗)+ γp+1Mp+1 + γp+1ζp,

with Mp+1 = h(θp) − H(θp, (U)p+1), p ≥ 0 and ζ nβ

p := Dhnβ
(θ∗,nβ

)(θnβ

p −
θ∗,nβ

) − hnβ
(θnβ

p ), ζp = Dh(θ∗)(θp − θ∗) − h(θp). Since Dhn and Dh are

Lipschitz-continuous, by Taylor’s formula one gets ζ nβ

p = O(|θnβ

p − θ∗,nβ |2) and

ζp = O(|θp − θ∗|2). Therefore, defining znβ

p = θnβ

p − θp − (θ∗,nβ − θ∗), p ≥ 0,

with znβ

0 = θ∗ − θ∗,nβ
, by a simple induction argument one has

znβ

n = �1,nz
nβ

0 +
n∑

k=1

γk�k+1,nNnβ

k +
n∑

k=1

γk�k+1,nRnβ

k

+
n∑

k=1

γk�k+1,n

(
ζ n
k−1 − ζk−1(3.2)

+ (
Dh

(
θ∗)− Dhnβ (

θ∗,nβ ))(
θnβ

k−1 − θ∗,nβ ))
,

where �k,n := ∏n
j=k(Id − γjDh(θ∗)), with the convention that �n+1,n = Id

and Nnβ

k := hnβ
(θ∗) − h(θ∗) − (H(θ∗, (Unβ

)k+1) − H(θ∗,Uk+1)), Rnβ

k =
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hnβ
(θnβ

k ) − hnβ
(θ∗) − (H(θnβ

k , (Unβ
)k+1) − H(θ∗, (Unβ

)k+1)) + H(θk,U
k+1) −

H(θ∗,Uk+1) − (h(θk) − h(θ∗)) for k ≥ 1. We will now investigate the asymptotic
behavior of each term in the above decomposition. We will see that the second
term, which represents the nonlinearity in the innovation variables (Unβ

,U), pro-
vides the announced weak rate of convergence.

Step 1: study of the sequence {nα�1,γ −1(1/(n2α−2ρβ))z
nβ

0 , n ≥ 0}.
Under the assumptions on the step sequence γ , one has for all η ∈ (0, λm),

nα
E
[∣∣�1,γ −1(1/(n2α−2ρβ))z

nβ

0

∣∣]
≤ nα‖�1,γ −1(1/(n2α−2ρβ))‖

(
E|θ0| + sup

n≥1
E
∣∣θn

0

∣∣+ ∣∣θ∗,nβ − θ∗∣∣)

≤ Cnα exp

(
−(λm − η)

γ −1(1/(n2α−2ρβ))∑
k=1

γk

)
→ 0,

by selecting η s.t. (λm −η)γ0 > (λ−η)γ0 > α/(2α−2ρβ) if γ (p) = γ0/p, p ≥ 1.

Step 2: study of the sequence {nα ∑γ −1(1/(n2α−2ρβ))
k=1 γk�k+1,γ −1(1/(n2α−2ρβ)) ×

(ζ n
k−1 − ζk−1 + (Dh(θ∗) − Dhnβ

(θ∗,nβ
))(θnβ

k−1 − θ∗,nβ
)), n ≥ 0}.

By Lemma 5.2, one has

E

∣∣∣∣∣
n∑

k=1

γk�k+1,n

(
ζ nβ

k−1 − ζk−1 + (
Dh

(
θ∗)− Dhnβ (

θ∗,nβ ))(
θnβ

k−1 − θ∗,nβ ))∣∣∣∣∣
≤ C

n∑
k=1

‖�k+1,n‖(γ 2
k + γ

3/2
k

∥∥Dh
(
θ∗)− Dhnβ (

θ∗,nβ )∥∥),
so that by Lemma 5.1, we easily derive that [if γ (p) = γ0/p—recall that λγ0 >

α/(2α − 2ρβ)]
∑n

k=1 γ 2
k ‖�k+1,n‖ = o(γ α/(2α−2ρβ)(n)) and [note that λγ0 >

α/(2α − 2ρβ) > 1/2]
∑n

k=1 γ
3/2
k ‖�k+1,n‖ = O(γ 1/2(n)) which in turn yields

lim sup
n

nα
γ −1(1/(n2α−2ρβ))∑

k=1

γ 2
k ‖�k+1,γ −1(1/(n2α−2ρβ))‖ = 0.

Moreover, since Dhnβ
is Lipschitz-continuous (uniformly in n), we clearly have

n∑
k=1

γ
3/2
k ‖�k+1,n‖

∥∥Dh
(
θ∗)− Dhnβ (

θ∗,nβ )∥∥

≤
n∑

k=1

γ
3/2
k ‖�k+1,n‖(∥∥Dh

(
θ∗)− Dhnβ (

θ∗)∥∥+ ∣∣θ∗,nβ − θ∗∣∣),
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which, combined with nρβ‖Dh(θ∗) − Dhnβ
(θ∗)‖ → 0 and nρβ |θ∗,nβ − θ∗| → 0

(recall that α > ρ), implies that

lim sup
n

nα
γ −1(1/(n2α−2ρβ))∑

k=1

γ
3/2
k ‖�k+1,γ −1(1/(n2α−2ρβ))‖

∥∥Dh(θ∗) − Dhnβ (
θ∗,nβ )∥∥

= 0.

Hence we conclude that

nα
γ −1(1/(n2α−2ρβ))∑

k=1

γk�k+1,γ −1(1/(n2α−2ρβ))

× (
ζ nβ

k−1 − ζk−1 + (
Dh

(
θ∗)− Dhnβ (

θ∗,nβ ))(
θnβ

k−1 − θ∗,nβ ))
L1(P)−→ 0.

Step 3: study of the sequence {nα ∑γ −1(1/(n2α−2ρβ))
k=1 γk�k+1,γ −1(1/(n2α−2ρβ)) ×

Rnβ

k , n ≥ 0}.
Regarding the third term of (3.2), namely

∑n
k=1 γk�k+1,nRnβ

k , we decompose
as follows:

n∑
k=1

γk�k+1,nRnβ

k

=
n∑

k=1

γk�k+1,n

(
hnβ (

θnβ

k

)− hnβ (
θ∗)

− (
H
(
θnβ

k ,
(
Unβ )k+1)− H

(
θ∗,

(
Unβ )k+1)))

+
n∑

k=1

γk�k+1,n

(
H
(
θk,U

k+1)− H
(
θ∗,Uk+1)− (

h(θk) − h
(
θ∗)))

= An + Bn.

Now, using that E[H(θnβ

k , (Unβ
)k+1) − H(θ∗, (Unβ

)k+1)|Fk] = hnβ
(θnβ

k ) −
hnβ

(θ∗) and (HLH), it follows that

E|An|2 ≤ C

n∑
k=1

γ 2
k ‖�k+1,n‖2(

E
∣∣θnβ

k − θ∗,nβ ∣∣2 + ∣∣θ∗,nβ − θ∗∣∣2)

≤ C

(
n∑

k=1

γ 3
k ‖�k+1,n‖2 +

n∑
k=1

γ 2
k ‖�k+1,n‖2∣∣θ∗,nβ − θ∗∣∣2)

:= A1
n + A2

n.
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From Lemma 5.1 we get

n∑
k=1

γ 3
k ‖�k+1,n‖2 = o

(
γ 2α/(2α−2ρβ)
n

)
and

n∑
k=1

γ 2
k ‖�k+1,n‖2 = O(γn).

Consequently, we derive

lim sup
n

n2αA1
γ −1(1/(n2α−2ρβ))

= 0 and lim sup
n

n2αA2
γ −1(1/(n2α−2ρβ))

= 0.

Similarly using (HLH) and Lemma 5.2, we derive nαBγ −1(1/(n2α−2ρβ))

L2(P)−→ 0 as
n → +∞ so that

nα
γ −1(1/(n2α−2ρβ))∑

k=1

γk�k+1,γ −1(1/(n2α−2ρβ))Rnβ

k

P−→ 0, n → +∞.

Step 4: study of the sequence {nα ∑γ −1(1/(n2α−2ρβ))
k=1 γk�k+1,γ −1(1/(n2α−2ρβ)) ×

Nnβ

k , n ≥ 0}.
We now prove a CLT for the sequence

{
nα

γ −1(1/(n2α−2ρβ))∑
k=1

γk�k+1,γ −1(1/(n2α−2ρβ))Nnβ

k , n ≥ 0

}
.

It holds

γ −1(1/(n2α−2ρβ))∑
k=1

E
∣∣nαγk�k+1,γ −1(1/(n2α−2ρβ))Nnβ

k

∣∣2+δ

≤ sup
n≥1

sup
k∈[[1,n]]

E
∣∣nρβNnβ

k

∣∣2+δ

× n(2+δ)(α−ρβ)

(γ −1(1/(n2α−2ρβ))∑
k=1

γ 2+δ
k ‖�k+1,γ −1(1/(n2α−2ρβ))‖2+δ

)
.

By Lemma 5.1, we have the following bound:
∑n

k=1 γ 2+δ
k ‖�k+1,n‖2+δ =

o(γ (2+δ)(α−ρβ)/(2α−2ρβ)(n)), which implies

lim sup
n

n(2+δ)(α−ρβ)
γ −1(1/(n2α−2ρβ))∑

k=1

γ 2+δ
k ‖�k+1,γ −1(1/(n2α−2ρβ))‖2+δ = 0.

Moreover simple computations lead to

E
∣∣nρβNnβ

k

∣∣2+δ

≤ C
(∣∣nρβ(hnβ (

θ∗)− h
(
θ∗))∣∣2+δ +E

(
nρβ

∣∣H (
θ∗,Unβ )− H

(
θ∗,U

)∣∣)2+δ)
.
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For the first term in the above inequality, we have supn≥1 |nρβ(hnβ
(θ∗) −

h(θ∗))|2+δ < +∞ ⇔ α ≥ ρ. For the second term, using assumptions (HLH) and
(HSR), we get supn≥1 E[(nρβ |H(θ∗,Unβ

) − H(θ∗,U)|)2+δ] < +∞. Hence we
conclude that

sup
n≥1

sup
k∈[[1,n]]

E
∣∣nρβNnβ

k

∣∣2+δ
< +∞

so that the conditional Lindeberg condition holds. Now, we focus on the condi-
tional variance. We set

Sn := n2α
γ −1(1/(n2α−2ρβ))∑

k=1

γ 2
k �k+1,γ −1(1/(n2α−2ρβ))Ek

[
Nnβ

k

(
Nnβ

k

)T ]
(3.3)

× �T
k+1,γ −1(1/(n2α−2ρβ))

and V nβ = Unβ − U .
A Taylor expansion yields

nρβ(H (
θ∗,Unβ )− H

(
θ∗,U

)) = DxH
(
θ∗,U

)
nρβV nβ + ψ

(
θ∗,U,V nβ )

nρβV nβ

with ψ(θ∗,U,V nβ
)

P−→ 0. From the tightness of (nρβV nβ
)n≥1, we get ψ(θ∗,U,

V nβ
)nρβV nβ P−→ 0 so that using Theorem 2.1 and Lemma 2.1 yields

nρβ(H (
θ∗,Unβ )− H

(
θ∗,U

)) 	⇒ DxH
(
θ∗,U

)
V.

Moreover, from assumptions (HLH) and (HSR) it follows that

sup
n≥1

E
[∣∣nρβ(H (

θ∗,Unβ )− H
(
θ∗,U

))∣∣2+δ]
< +∞,

which, combined with (HDH), implies

E
[
nρβ(H (

θ∗,Unβ )− H
(
θ∗,U

))] → Ẽ
[
DxH

(
θ∗,U

)
V
]
,

E
[
nρβ(H (

θ∗,Unβ )− H
(
θ∗,U

))(
nρβ(H (

θ∗,Unβ )− H
(
θ∗,U

)))T ]
→ Ẽ

[(
DxH

(
θ∗,U

)
V
)(

DxH
(
θ∗,U

)
V
)T ]

.

Hence we have

�n → �∗ := Ẽ
[(

DxH
(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])

× (
DxH

(
θ∗,U

)
V − Ẽ

[
DxH

(
θ∗,U

)
V
])T ]

,

where for n ≥ 1 we set

�n := n2ρβ
Ek

[
Nnβ

k

(
Nnβ

k

)T ]
.
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Consequently, using the decomposition

1

γ (n)

n∑
k=1

γ 2
k �k+1,n�n�

T
k+1,n

= 1

γ (n)

n∑
k=1

γ 2
k �k+1,n�

∗�T
k+1,n + 1

γ (n)

n∑
k=1

γ 2
k �k+1,n

(
�n − �∗)�T

k+1,n

with

lim sup
n

1

γ (n)

∥∥∥∥∥
n∑

k=1

γ 2
k �k+1,n

(
�n − �∗)�T

k+1,n

∥∥∥∥∥ ≤ C lim sup
n

∥∥�n − �∗∥∥ = 0,

which is a consequence of Lemma 5.1, we clearly see that

lim
n

Sn = lim
n

1

γ (n)

n∑
k=1

γ 2
k �k+1,n�

∗�T
k+1,n

if this latter limit exists. Let us note that �∗ is the (unique) matrix A solution to
the Lyapunov equation

�∗ − (
Dh

(
θ∗)− ζ Id

)
A − A

(
Dh

(
θ∗)− ζ Id

)T = 0.

Following the lines of the proof of Lemma 2.3, step 3, we have Sn
a.s.−→ �∗. We

leave the computational details to the reader.

3.4. Proof of Lemma 2.7. We come back to the decomposition used in the
proof of Lemma 2.3, and we consequently use the same notation. We will not go
into the computational detail. We deal with the case ρ ∈ (0,1/2). The case ρ = 1/2
can be handled in a similar fashion.

We first write for p ≥ 0,

θm�

p+1 − θ∗,m� = θm�

p − θ∗,m� − γp+1Dhm�(
θ∗,m�)(

θm�

p − θ∗,m�)
+ γp+1Mm�

p+1 + γp+1ζ
m�

p

with Mm�

p+1 = hm�
(θm�

p ) − H(θm�

p , (Um�
)p+1) and ζm�

p = O(|θm�

p+1 − θ∗,m� |2),
p ≥ 0. Therefore, defining z�

p = θm�

p − θm�−1

p − (θ∗,m� − θ∗,m�−1
), p ≥ 0, with

z�
0 = θm�

0 − θm�

0 − (θ∗,m� − θ∗,m�−1
), by a simple induction argument, one has

z�
M�

= �1,M�
z�

0 +
M�∑
k=1

γk�k+1,M�
N�

k +
M�∑
k=1

γk�k+1,M�
R�

k

+
M�∑
k=1

γk�k+1,M�

(3.4)
× (

ζ �
k−1 − ζ �−1

k−1 + (
Dh

(
θ∗)− Dhm�(

θ∗,m�))(
θm�

k−1 − θ∗,m�)
− (

Dh
(
θ∗)− Dhm�−1(

θ∗,m�−1))(
θm�−1

k−1 − θ∗,m�−1))
,
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where �k,n := ∏n
j=k(Id − γjDh(θ∗)), with the convention that �n+1,n = Id ,

and N�
k := hm�

(θ∗) − hm�−1
(θ∗) − (H(θ∗, (Um�

)k+1) − H(θ∗, (Um�−1
)k+1)),

R�
k = hm�

(θm�

k ) − hm�
(θ∗) − (H(θm�

k , (Um�
)k+1) − H(θ∗, (Um�

)k+1)) +
H(θm�−1

k , (Um�−1
)k+1) − H(θ∗, (Um�−1

)k+1) − (hm�−1
(θm�−1

k ) − hm�−1
(θ∗)) for

k ≥ 0. We follow the same methodology developed so far and quantify the con-
tribution of each term. Once again the weak rate of convergence will be ruled
by the second term which involves the nonlinearity in the innovation variable
(Um�−1

,Um�
), for which we prove a CLT.

Step 1: study of {nα ∑L
�=1 �1,M�

z�
0, n ≥ 0}.

Under the assumptions on the step sequence γ , for all η ∈ (0, λm) we have

‖�1,M�
‖ ≤ exp

(
−(λm − η)

M�∑
k=1

γk

)

= Cm�((1+2ρ)/2)(λm−η)γ0/
((

n2α+((1−2ρ)/2))(λm−η)γ0
)

if γ (p) = γ0/p or ‖�1,M�
‖ = O(γ (M�)) otherwise. Therefore, if γ (p) = γ0/p,

we select η > 0 such that γ0(λm − η) > α/(α − 2ρ), and then one has

E

∣∣∣∣∣nα
L∑

�=1

�1,M�
z�

0

∣∣∣∣∣ ≤ Cnα
L∑

�=1

‖�1,M�
‖

≤ C

n(λm−η)γ0(2α+((1−2ρ)/2))−α

L∑
�=1

m�(λm−η)γ0((1+2ρ)/2)

≤ C

n2(λm−η)γ0(α−2ρ)−α
→ 0

as n → +∞. Otherwise one has

E

∣∣∣∣∣nα
L∑

�=1

�1,M�
z�

0

∣∣∣∣∣ ≤ Cnα
L∑

�=1

γ (M�) ≤ C
n(1+2ρ)/2

nα+((1−2ρ)/2)
= C

nα−2ρ
→ 0.

Step 2: study of {nα ∑L
�=1

∑M�

k=1 γk�k+1,M�
(ζ �

k−1 − ζ �−1
k−1 ), n ≥ 0}.

By Lemma 5.2, one has

E

∣∣∣∣∣nα
L∑

�=1

M�∑
k=1

γk�k+1,M�

(
ζ �
k−1 − ζ �−1

k−1

)∣∣∣∣∣ ≤ Cnα
L∑

�=1

M�∑
k=1

γ 2
k ‖�k+1,M�

‖.

However, from Lemma 5.1 [if γ (p) = γ0/p—recall that λmγ0 > 1] we easily de-
rive lim supn

1
γ (n)

∑n
k=1 γ 2

k ‖�k+1,n‖ ≤ 1, so that

nα
L∑

�=1

M�∑
k=1

γ 2
k ‖�k+1,M�

‖ ≤ Cnα
L∑

�=1

γ (M�) → 0, n → +∞.
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Step 3: study of {nα ∑L
�=1

∑M�

k=1 γk�k+1,M�
((Dh(θ∗) − Dhm�

(θ∗,m�
))(θm�

k−1 −
θ∗,m�

)), n ≥ 0} and {nα(
∑L

�=1
∑M�

k=1 γk�k+1,M�
(Dh(θ∗) − Dhm�−1

(θ∗,m�−1
)) ×

(θm�−1

k−1 − θ∗,m�−1
)), n ≥ 0}.

By Lemma 5.2 and since Dhm�
is a Lipschitz function uniformly in m, we

clearly have

E

∣∣∣∣∣nα
L∑

�=1

M�∑
k=1

γ
3/2
k �k+1,M�

(
Dh

(
θ∗)− Dhm�(

θ∗,m�))(
θm�

k−1 − θ∗,m�)∣∣∣∣∣
≤ nα

L∑
�=1

M�∑
k=1

γ
3/2
k ‖�k+1,n‖ × (∥∥Dh

(
θ∗)− Dhm�(

θ∗)∥∥+ ∣∣θ∗,m� − θ∗∣∣)

≤ Cnα
L∑

�=1

γ 1/2(M�)
(∥∥Dh

(
θ∗)− Dhm�(

θ∗)∥∥+ ∣∣θ∗,m� − θ∗∣∣),
which, combined with supn≥1 nβ‖Dh(θ∗) − Dhn(θ∗)‖ < +∞ with β > ρ and
supn≥1 nα|θ∗,n − θ∗| < +∞, implies that

E

∣∣∣∣∣nα
L∑

�=1

M�∑
k=1

γk�k+1,M�

(
Dh

(
θ∗)− Dhm�(

θ∗,m�))(
θm�

k−1 − θ∗,m�)∣∣∣∣∣
≤ C

n(1−2ρ)/4

L∑
�=1

m�(1+2ρ)/4(m−�α + m−�β)

≤ C
(
nρ−α + nρ−β)

so that nα ∑L
�=1

∑M�

k=1 γk�k+1,M�
(Dh(θ∗) − Dhm�

(θ∗,m�
))(θm�

k−1 − θ∗,m�
)

L1(P)−→ 0.

By similar arguments, we easily deduce nα ∑L
�=1

∑M�

k=1 γk�k+1,M�
(Dh(θ∗) −

Dhm�−1
(θ∗,m�−1

))(θm�−1

k−1 − θ∗,m�−1
)

L1(P)−→ 0.

Step 4: study of {nα ∑L
�=1

∑M�

k=1 γk�k+1,M�
R�

k, n ≥ 0}.
Using the Cauchy–Schwarz inequality we deduce

E

∣∣∣∣∣nα
L∑

�=1

M�∑
k=1

γk�k+1,M�
R�

k

∣∣∣∣∣
2

≤ nα
L∑

�=1

(
M�∑
k=1

γ 2
k ‖�k+1,M�

‖2

×E
∣∣H (

θm�

k ,
(
Um�)k+1)− H

(
θ∗,

(
Um�)k+1)∣∣2)1/2
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+ nα
L∑

�=1

(
M�∑
k=1

γ 2
k ‖�k+1,M�

‖2

×E
∣∣H (

θm�−1

k ,
(
Um�−1)k+1)− H

(
θ∗,

(
Um�−1)k+1)∣∣2)1/2

≤ Cnα
L∑

�=1

(
M�∑
k=1

γ 3
k ‖�k+1,M�

‖2

)1/2

,

where we use (HLH) and Lemma 5.2. Now from Lemma 5.1 and simple compu-
tations, it follows that

nα
L∑

�=1

(
M�∑
k=1

γ 3
k ‖�k+1,M�

‖2

)1/2

≤ Cnα
L∑

�=1

γ (M�) → 0, n → +∞.

Therefore, we conclude that

n

L∑
�=1

M�∑
k=1

γk�k+1,M�
R�

k

L2(P)−→ 0, n → +∞.

Step 5: study of {nα ∑L
�=1

∑M�

k=1 γk�k+1,M�
N�

k , n ≥ 0}.
We now prove a CLT for the sequence {nα ∑L

�=1
∑M�

k=1 γk�k+1,M�
N�

k , n ≥ 0}.
By Burkhölder’s inequality and elementary computations, it holds that

L∑
�=1

E

∣∣∣∣∣
M�∑
k=1

nαγk�k+1,M�
N�

k

∣∣∣∣∣
2+δ

≤ Cn(2+δ)α
L∑

�=1

E

(
M�∑
k=1

γ 2
k ‖�k+1,M�

‖2∣∣N�
k

∣∣2)1+δ/2

≤ Cn(2+δ)α

×
L∑

�=1

(
M�∑
k=1

γ 2
k ‖�k+1,M�

‖2

)δ/2(M�∑
k=1

γ 2+δ
k ‖�k+1,M�

‖2+δ
E
∣∣N�

k

∣∣2+δ

)
.

Using (HLH) and (HSR) we have sup�≥1 E[(mρ�|H(θ∗,Um�
) − H(θ∗,

U)|)2+δ] < +∞ so that

E
∣∣N�

k

∣∣2+δ ≤ K

m�(2ρ+ρδ)
.

Moreover, by Lemma 5.1, we have

lim sup
n

(
1/γ (1+δ)(n)

) n∑
k=1

γ 2+δ
k ‖�k+1,n‖2+δ ≤ 1
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and

lim sup
n

(
1/γ (n)

) n∑
k=1

γ 2
k ‖�k+1,n‖2 ≤ 1.

Consequently we deduce

L∑
�=1

E

∣∣∣∣∣
M�∑
k=1

nαγk�k+1,M�
N�

k

∣∣∣∣∣
2+δ

≤ Cn(2+δ)α
L∑

�=1

γ 1+3δ/2(M�)m
−�(2ρ+ρδ)

≤ C

n2αδ
n2ρ(1+3δ/2)−2ρ−ρδ = C

n2δ(α−ρ)
,

which in turn implies

L∑
�=1

E

∣∣∣∣∣
M�∑
k=1

nαγk�k+1,M�
N�

k

∣∣∣∣∣
2+δ

→ 0, n → +∞

so that the conditional Lindeberg condition is satisfied. Now, we focus on the con-
ditional variance. We set

S� := n2α
M�∑
k=1

γ 2
k �k+1,M�

Ek

[
N�

k

(
N�

k

)T ]
�T

k+1,M�
and

(3.5)
U� = Um� − Um�−1

.

Observe that by the very definition of M� one has

S� = 1

γ (M�)

(
m(1−2ρ)/2 − 1

) m�((1+2ρ)/2)

n(1−2ρ)/2 − 1

×
M�∑
k=1

γ 2
k �k+1,M�

Ek

[
N�

k

(
N�

k

)T ]
�T

k+1,M�.

A Taylor expansion yields

H
(
θ∗,Um�)− H

(
θ∗,Um�−1)

= DxH
(
θ∗,U

)
U� + ψ

(
θ∗,U,Um� − U

)(
Um� − U

)
+ ψ

(
θ∗,U,Um�−1 − U

)(
Um�−1 − U

)
with (ψ(θ∗,U,Um� − U),ψ(θ∗,U,Um�−1 − U))

P−→ 0 as � → +∞. From the
tightness of the sequences (mρ�(Um� −U))�≥1 and (mρ�(Um�−1 −U))�≥1, we get

mρ�(ψ(
θ∗,U,Um� − U

)(
Um� − U

)+ ψ
(
θ∗,U,Um�−1 − U

)(
Um�−1 − U

))
P−→ 0, � → +∞.
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Therefore using Theorem 2.1 and Lemma 2.1 yields

mρ�(H (
θ∗,Um�)− H

(
θ∗,Um�−1)) 	⇒ DxH

(
θ∗,U

)
V m.

Moreover, from assumption (HLH) and (HRH) it follows that

sup
�≥1

E
∣∣mρ�(H (

θ∗,Um�)− H
(
θ∗,Um�−1))∣∣2+δ

< +∞,

which, combined with (HDH), implies

mρ�
E
[
H
(
θ∗,Um�)− H

(
θ∗,Um�−1)] → Ẽ

[
DxH

(
θ∗,U

)
V m],

m2ρ�
E
[(

H
(
θ∗,Um�)− H

(
θ∗,Um�−1))(

H
(
θ∗,Um�)− H

(
θ∗,Um�−1))T ]

→ Ẽ
[(

DxH
(
θ∗,U

)
V m)(DxH

(
θ∗,U

)
V m)T ]

as � → +∞. Hence, we have

m2ρ��� → �∗ := Ẽ
[(

DxH
(
θ∗,U

)
V m − Ẽ

[
DxH

(
θ∗,U

)
V m])

× (
DxH

(
θ∗,U

)
V m − Ẽ

[
DxH

(
θ∗,U

)
V m])T ],

where for � ≥ 1,

�� := Ek

[
N�

k

(
N�

k

)T ]
= E

[(
H
(
θ∗,Um�)− H

(
θ∗,Um�−1))(

H
(
θ∗,Um�)− H

(
θ∗,Um�−1))T ]

− (
hm�(

θ∗)− hm�−1(
θ∗))(hm�(

θ∗)− hm�−1(
θ∗))T .

Consequently, using the decomposition

1

γ (M�)
m2ρ�

M�∑
k=1

γ 2
k �k+1,M�

���
T
k+1,M�

= 1

γ (M�)

M�∑
k=1

γ 2
k �k+1,M�

�∗�T
k+1,M�

+ 1

γ (M�)

M�∑
k=1

γ 2
k �k+1,M�

(
m2ρ��� − �∗)�T

k+1,M�

with

lim sup
�

1

γ (M�)

∥∥∥∥∥
M�∑
k=1

γ 2
k �k+1,M�

(
m2ρ��� − �∗)�T

k+1,M�

∥∥∥∥∥
≤ C lim sup

�

∥∥m2ρ��� − �∗∥∥ = 0,

which is a consequence of Lemma 5.1, we clearly see that n(1−2ρ)/2−1
m�((1−2ρ)/2)(m(1−2ρ)/2−1)

×
lim� S� = limp→+∞ 1

γ (p)

∑p
k=1 γ 2

k �k+1,p�∗�T
k+1,p if this latter limit exists. The
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matrix �∗ defined by (2.10) is the (unique) matrix A solution to the Lyapunov
equation

�∗ − (
Dh

(
θ∗)− ζ Id

)
A − A

(
Dh

(
θ∗)− ζ Id

)T = 0.

Following along the lines of the proof of step 3, Lemma 2.3, we have

S�
(n(1−2ρ)/2−1)

m�(1−2ρ)/2(m(1−2ρ)/2−1)

a.s.−→ �∗ as � → +∞. We leave the computational details

to the reader. Finally, from Cesàro’s lemma it follows that

L∑
�=1

S� =
(

m(1−2ρ)/2 − 1

n(1−2ρ)/2 − 1

) L∑
�=1

(
S�

(n(1−2ρ)/2 − 1)

m�(1−2ρ)/2(m(1−2ρ)/2 − 1)

)
m�(1−2ρ)/2

a.s.−→
n→+∞�∗.

4. Numerical results. In this section we illustrate the results obtained in Sec-
tion 2.

4.1. Computation of quantiles of a one-dimensional diffusion process. We
first consider the problem of the computation of a quantile at level l ∈ (0,1) of a
one-dimensional diffusion process. This quantity, also referred as the value-at-risk
at level l in the practice of risk management, is the lowest amount not exceeded by
XT with probability l, namely

ql(XT ) := inf
{
θ :P(XT ≤ θ) ≥ l

}
.

To illustrate the results of Sections 2.3 and 2.4, we consider a simple geometric
Brownian motion

Xt = x +
∫ t

0
rXs ds +

∫ t

0
σXs dWs, t ∈ [0, T ](4.1)

for which the quantile is explicitly known at any level l. Hence we have ρ = 1/2.
Because the distribution function of XT is increasing, ql(XT ) is the unique solu-
tion of the equation h(θ) = Ex[H(θ,XT )] = 0 with H(θ, x) = 1{x≤θ} − l. A sim-
ple computation shows that

ql(XT ) = x0 exp
((

r − σ 2/2
)
T + σ

√
T φ−1(l)

)
,

where φ is the distribution function of the standard normal distribution N (0,1).
We associate to the SDE (4.1) its Euler like scheme Xn = (Xn

t )t∈[0,T ] with time
step  = T/n. We use the following values for the parameters: x = 100, r =
0.05, σ = 0.4, T = 1, l = 0.7. The reference Black–Scholes quantile is q0.7(XT ) =
119.69.

REMARK 4.1. Let us note that when l is close to 0 or 1 (usually less than
0.05 or more than 0.95), the convergence of the considered SA algorithm is slow
and chaotic. This is mainly due to the fact that the procedure obtains few signif-
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icant samples to update the estimate in this rare event situation. One solution is
to combine it with a variance reduction algorithm, such as an adaptive importance
sampling procedure, that will generate more samples in the area of interest; see,
for example, [2] and [3].

In order to illustrate the result of Theorem 2.6, we plot in Figure 1 the behaviors
of nhn(θ∗) and n(θ∗,n − θ∗) for n = 100, . . . ,500. Actually, hn(θ∗) is approxi-
mated by its Monte Carlo estimator, and θ∗,n is estimated by θn

M , both estimators

FIG. 1. On the top: weak discretization error n �→ nhn(θ∗). On the bottom: implicit discretization
error n �→ n(θ∗,n − θ∗), n = 100, . . . ,500.
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FIG. 2. Histogram of n(θn
γ −1(1/n2)

− θ∗), n = 100, with N = 1000 samples.

being computed with M = 108 samples. The variance of the Monte Carlo estima-
tor ranges from 2102.4 for n = 100 to 53,012.5 for n = 500. We set γp = γ0/p

with γ0 = 200. We clearly see that nhn(θ∗) and n(θ∗,n − θ∗) are stable with re-
spect to n. The histogram of Figure 2 illustrates Theorem 2.7. The distribution of
n(θn

γ −1(1/n2)
− θ∗), obtained with n = 100 and N = 1000 samples, is close to a

normal distribution.

4.2. Computation of the level of an unknown function. We turn our attention
to the computation of the level of the function θ �→ e−rT

E(XT − θ)+ (European
call option) for which the closed-form formula under the dynamic (4.1) is given by

e−rT
E(XT − θ)+ = e−rT xφ

(
d+(x, θ, σ )

)− e−rT θφ
(
d−(x, θ, σ )

)
,(4.2)

where d±(x, y, z) = log(x/y)/(z
√

T ) ± z
√

T /2. Therefore, we first fix a value θ∗
(the target of our procedure) and compute the corresponding level l = E(XT −
θ∗)+ by (4.2). Therefore we set h(θ) = Ex[H(θ,XT )] with H(θ, x) = � − (x −
θ)+. The values of the parameters x, r, σ, T remain unchanged. We plot in Fig-
ure 3 the behaviors of nhn(θ∗) and n(θ∗,n − θ∗) for n = 100, . . . ,500. As in the
previous example, hn(θ∗) is approximated by its Monte Carlo estimator, and θ∗,n

is estimated by θn
M , both estimators being computed with M = 108 samples. The

variance of the Monte Carlo estimator ranges from 9.73 × 106 for n = 100 to
9.39 × 107 for n = 500.

To compare the three methods in terms of computational costs, we compute the
different estimators, namely θn

γ −1(1/n2)
where (θn

p)p≥1 is given by (1.3), �sr
n and

�ml
n for a set of N = 200 values of the target θ∗ equidistributed on the interval

[90,110] and for different values of n. For each value n and for each method we
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FIG. 3. On the top: weak discretization error n �→ nhn(θ∗). On the bottom: implicit discretization
error n �→ n(θ∗,n − θ∗), n = 100, . . . ,500.

compute the complexity given by (2.7), (2.12) and (2.13), respectively, and the
root-mean-squared error which is given by

RMSE =
(

1

N

N∑
k=1

(
�n

k − θ∗
k

)2
)1/2

,

where �n
k = θn

γ −1(1/n2)
,�sr

n or �ml
n is the considered estimator. For each given n,

we provide a couple (RMSE, complexity), which is plotted on Figure 5. Let us
note that the multi-level SA estimator has been computed for different values of m
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(ranging from m = 2 to m = 7) and different values of L. We set γ (p) = γ0/p,
with γ0 = 2, p ≥ 1, so that β∗ = 1/2.

From a practical point of view, it is of interest to use the information pro-
vided at level 1 by the statistical Romberg SA estimator and at each level by the
multi-level SA estimator. More precisely, the initialization point of the SA proce-

dures devised to compute the correction terms θn
γ0n

3/2 − θ
√

n

γ0n
3/2 (for the statistical

Romberg SA) and θm�

M�
− θm�−1

M�
(for the multi-level SA) at level � are fixed to

θ
√

n

γ0n
2 and to θ1

γ0n
2 +∑L−1

�=1 θm�

M�
− θm�−1

M�
, respectively. We set θn1/2

0 = θ1
0 = x for all

k ∈ {1, . . . ,M} to initialize the procedures. Moreover, by Lemma 5.2, the L1(P)-
norm of an increment of a SA algorithm is of order

√
γ0/p since E|θn

p+1 − θn
p | ≤

E[|θn
p+1 −θ∗,n|2]1/2 +E[|θn

p −θ∗,n|2]1/2 ≤ C(H,γ )
√

γ (p). Hence during the first
iterations (say, M/100 if M denotes the number of samples of the estimator), to en-
sure that the different procedures do not jump too far ahead in one step, we freeze

the value of θ
√

n

p+1 (resp., θm�

p+1) and reset it to the value of the previous step as soon

as |θ
√

n

p+1 − θ
√

n
p | ≤ K/

√
p (resp., |θm�

p+1 − θm�

p | ≤ K/
√

p), for a pre-specified value
of K . This is just an heuristic approach that notably prevents the algorithm from
blowing up during the first steps of the procedure. We select K = 5 in the different
procedures. Note, however, that this projection-reinitialization step does not lead
to additional bias, but slightly increases the complexity of each procedures. In our
numerical examples, we observe that it only represents roughly 1–2% of the total
complexity.

Now let us interpret Figure 5. The curves of the statical Romberg SA and the
multi-level SA methods are displaced below the curve of the SA method. There-
fore, for a given error, the complexity of both methods is much lower than that of
the crude SA. The difference in terms of computational cost becomes more signif-
icant as the RMSE is small, which corresponds to large values of n. The difference
between the statistical romberg and the multi-level SA method is not significant for
small values of n, that is, for a RMSE between 1 and 0.1. For a RMSE lower than
5 × 10−2, which corresponds to a number of steps n greater than about 600–700,
we observe that the multi-level SA procedure becomes much more effective than
both methods. For a RMSE fixed around 1 (which corresponds to n = 100 for the
SA algorithm and statistical Romberg SA), one divides the complexity by a factor
of approximately 5 by using the statistical romberg SA. For a RMSE fixed at 10−1,
the computational cost gain is approximately equal to 10 by using either the sta-
tistical Romberg SA or the multi-level SA algorithm. Finally, for a RMSE fixed at
5 × 5 × 10−2, the complexity gain achieved by using the multi-level SA procedure
instead of the statistical Romberg procedure is approximately equal to 5.

The histograms of Figure 4 illustrate Theorems 2.7, 2.9 and 2.11. The dis-
tributions of n(θn

γ −1(1/n2)
− θ∗), n(�sr

n − θ∗) and n(�ml
n − θ∗), obtained with

n = 44 = 256 and N = 1000 samples, are close to a normal distribution.
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FIG. 4. Histograms of n(θγ −1(1/n2) − θ∗), n(�sr
n − θ∗) and n(�ml

n − θ∗) (from top to bottom),
n = 256, with N = 1000 samples.
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FIG. 5. Complexity with respect to RMSE.

5. Technical results. We provide here some useful technical results that are
used repeatedly throughout the paper. When the exact value of a constant is not
important, we may repeat the same symbol for constants that may change from
one line to next.

LEMMA 5.1. Let H be a stable d × d matrix, and denote by λmin its eigen-
value with the lowest real part. Let (γn)n≥1 be a sequence defined by γn = γ (n),
n ≥ 1, where γ is a positive function defined on [0,+∞[ decreasing to zero and
such that

∑
n≥1 γ (n) = +∞. Let a, b > 0. We assume that γ satisfies one of the

following assumptions:

• γ varies regularly with exponent (−c), c ∈ [0,1); that is, for any x > 0,
limt→+∞ γ (tx)/γ (t) = x−c;

• for t ≥ 1, γ (t) = γ0/t with bRe(λmin)γ0 > a.

Let (vn)n≥1 be a nonnegative sequence. Then, for some positive constant C, one
has

lim sup
n

γ −a
n

n∑
k=1

γ 1+a
k vk‖�k+1,n‖b ≤ C lim sup

n
vn,

where �k,n := ∏n
j=k(Id − γjH), with the convention �n+1,n = Id .



980 N. FRIKHA

PROOF. First, from the stability of H , for all 0 < λ <Re(λmin), there exists a
positive constant C such that for any k ≤ n, ‖�k+1,n‖ ≤ C

∏n
j=k(1 − λγj ). Hence

we have
∑n

k=1 γ 1+a
k vk‖�k+1,n‖b ≤ C

∑n
k=1 γ 1+a

k vke
−λb(sn−sk), n ≥ 1, with sn :=∑n

k=1 γk . We set zn := ∑n
k=1 γ 1+a

k vke
−λb(sn−sk). It can be written in the recursive

form

zn+1 = e−λbγn+1zn + γ a+1
n+1 vn+1, n ≥ 0.

Hence a simple induction shows that for any n > N , N ∈ N
∗,

zn = zN exp
(−λb(sn − sN)

)+ exp(−λbsn)

n∑
k=N+1

exp(λbsk)γ
a+1
k vk

≤ zN exp
(−λb(sn − sN)

)+
(

sup
k>N

vk

)
exp(−λbsn)

n∑
k=N+1

exp(λbsk)γ
a+1
k .

We study now the impact of the step sequence (γp)p≥1 on the above estimate.
We first assume that γp = γ0/p with bRe(λmin)γ0 > a. We select λ > 0 such that
bRe(λmin)γ0 > bλγ0 > a. Then one has sp = γ0 log(p) + c1 + rp , c1 > 0 and
rp → 0 so that a comparison between the series and the integral yields

exp(−λbsn)

n∑
k=N+1

exp(λbsk)γ
a+1
k ≤ C

1

nbλγ0

n∑
k=N+1

1

ka−bλγ0+1 ≤ C

na

for some positive constant C (independent of N ) so that we clearly have

lim sup
n

γ −a
n zn+1 ≤ C sup

k>N

vk,

and we conclude by passing to the limit N → +∞.
We now assume that γ varies regularly with exponent −c, c ∈ [0,1). Let s(t) =∫ t

0 γ (s) ds. We have

exp(−λbsn)

n∑
k=N

exp(λbsk)γ
a+1
k+1 ∼ exp

(−λbs(n)
) ∫ n

0
exp

(
λbs(t)

)
γ a+1(t) dt

∼ exp
(−λbs(n)

) ∫ s(n)

0
exp(λbt)γ a(s−1(t)

)
dt,

so that for any x such that 0 < x < 1, since t �→ γ a(s−1(t)) is decreasing, we
deduce∫ s(n)

0
exp(λbt)γ a(s−1(t)

)
dt

≤ γ a(s−1(0)
) ∫ xs(n)

0
exp(λbt) dt + γ a(s−1(xs(n)

)) ∫ s(n)

xs(n)
exp(λbt) dt

≤ γ a(s−1(0))

λb
exp

(
λbxs(n)

)+ γ a(s−1(xs(n)))

λb
exp

(
λbs(n)

)
.



MULTI-LEVEL STOCHASTIC APPROXIMATION ALGORITHMS 981

Hence it follows that

exp(−λbs(n))

γ a(n)

∫ s(n)

0
exp(λbt)γ a+1(t) dt

≤ γ (s−1(0))

λγ a(n)
exp

(−λb(1 − x)s(n)
)+ γ a(s−1(xs(n)))

λbγ a(n)
,

and since t �→ γ a(s−1(t)) varies regular with exponent −ac/(1 − c), and
limn→+∞ 1

γ a(n)
exp(−λ(1 − x)s(n)) = 0,

lim sup
n→+∞

exp(−λbs(n))

γ a(n)

∫ s(n)

0
exp(λbt)γ a+1(t) dt ≤ x−ac/(1−c)

λb
.

An argument similar to the previous case completes the proof. �

We omit the proof of the following lemma, which is quite standard, and refer
the interested reader to [11].

LEMMA 5.2. Let (θn
p)p≥0 be the procedure defined by (1.3) where θn

0 is in-

dependent of the innovation of the algorithm with supn≥1 E|θn
0 |2 < +∞. Suppose

that the assumptions of Theorem 2.6 are satisfied and that the mean-field function
hn satisfies

∃λ > 0,∀n ∈N
∗,∀θ ∈ R

d,
〈
θ − θ∗,n, hn(θ)

〉 ≥ λ
∣∣θ − θ∗,n

∣∣2,(5.1)

where θ∗,n is the unique zero of hn satisfying supn≥1 |θ∗,n| < +∞. Moreover, we
assume that γ satisfies one of the following assumptions:

• γ varies regularly with exponent (−c), c ∈ [0,1); that is, for any x > 0,
limt→+∞ γ (tx)/γ (t) = x−c;

• for t ≥ 1, γ (t) = γ0/t with 2λγ0 > 1.

Then for some positive constant C (independent of p and n), one has

∀p ≥ 1, sup
n≥1

E
[∣∣θn

p − θ∗,n
∣∣2]+E

[∣∣θp − θ∗∣∣2] ≤ Cγ (p).

PROPOSITION 5.1. Assume that the assumptions of Theorem 2.10 are satis-
fied. Then, for all n ∈ N there exist two sequences (μ̃n

p)p∈[[0,n]] and (r̃n
p)p∈[[0,n]]

with r̃n
0 = θn

0 − θ0 − (θ∗ − θ∗,n) such that

∀p ∈ [[0, n]], zn
p = θn

p − θ∗,n − (
θp − θ∗) = μ̃n

p + r̃n
p,

and satisfying for all n ∈ N, for all p ∈ [[1, n]],
sup
p≥1

γ −1/2
p E

∣∣μ̃n
p

∣∣ < Cn−ρ, sup
n≥1,p≥0

γ −1
p E

[∣∣r̃n
p

∣∣] < +∞.
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PROOF. Using (3.2), we define the two sequences (μ̃n
p)p∈[[0,n]] and (r̃n

p)p∈[[0,n]]
by

μ̃n
p =

p∑
k=1

γk�k+1,pNn
k +

p∑
k=1

γk�k+1,p

(
Dh

(
θ∗)− Dhn(θ∗,n))(θn

k−1 − θ∗,n)

+
p∑

k=1

γk�k+1,n

(
hn(θ∗,n)− hn(θ∗)

− (
H
(
θ∗,n,

(
Un)k+1)− H

(
θ∗,

(
Un)k+1)))

and

r̃n
p = �1,pzn

0 +
p∑

k=1

γk�k+1,p

(
ζ n
k−1 − ζk−1

)

+
p∑

k=1

γk�k+1,p

(
hn(θn

k

)− hn(θ∗,n)

− (
H
(
θn
k ,

(
Un)k+1)− H

(
θ∗,n,

(
Un)k+1)))

+
p∑

k=1

γk�k+1,p

(
H
(
θk,U

k+1)− H
(
θ∗,Uk+1)− (

h(θk) − h
(
θ∗))).

We first focus on the sequence (μ̃n
p)p∈[[0,n]]. Moreover, by the definition of the

sequence (Nn
k )k∈[[1,n]] and the Cauchy–Schwarz inequality, we derive

E

∣∣∣∣∣
p∑

k=1

γk�k+1,pNn
k

∣∣∣∣∣
≤ C

(
E
∣∣H (

θ∗,Un)− H
(
θ∗,U

)∣∣2)1/2
( p∑

k=1

γ 2
k ‖�k+1,p‖2

)1/2

= O
(
γ 1/2
p n−ρ).

Taking the expectation for the third term and following along the lines of the
proof of Lemma 2.7, we obtain

E

∣∣∣∣∣
p∑

k=1

γk�k+1,p

(
Dh

(
θ∗)− Dhn(θ∗,n))(θn

k−1 − θ∗,n)∣∣∣∣∣
≤ C

p∑
k=1

γ
3/2
k ‖�k+1,p‖(∣∣θ∗,n − θ∗∣∣+ ∥∥Dh

(
θ∗)− Dhn(θ∗)∥∥)

=O
(
γ 1/2
p n−ρ).
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Finally we take the square of the L2-norm of the last term and use Lemma 5.1
to derive

E

∣∣∣∣∣
p∑

k=1

γk�k+1,p

(
hn(θ∗,n)− hn(θ∗)− (

H
(
θ∗,n,

(
Un)k+1)− H

(
θ∗,

(
Un)k+1)))∣∣∣∣∣

2

≤ ∣∣θ∗ − θ∗,n
∣∣2 p∑

k=1

γ 2
k ‖�k+1,p‖2

=O
(
γpn−2ρ).

We now prove the bound concerning the sequence (r̃n
p)p∈[[0,n]]. Under the as-

sumption on the step sequence, we have

E
[∣∣�1,pzn

0

∣∣] ≤ ‖�1,p‖(1 + ∣∣θ∗ − θ∗,n
∣∣) = O(γp).

By Lemma 5.2, we derive

sup
n≥1

E

∣∣∣∣∣
p∑

k=1

γk�k+1,p

(
ζ n
k−1 − ζk−1

)∣∣∣∣∣ ≤ C

p∑
k=1

γ 2
k ‖�k+1,p‖ =O(γp).

Concerning the second term, following along the lines of the proof of Lem-
ma 2.7, we simply take the square of its L2(P)-norm to derive

sup
n≥1

E

∣∣∣∣∣
p∑

k=1

γk�k+1,p

(
hn(θn

k

)− hn(θ∗,n)

− (
H
(
θn
k ,

(
Un)k+1)− H

(
θ∗,n,

(
Un)k+1)))∣∣∣∣∣

2

≤ C

p∑
k=1

γ 3
k ‖�k+1,p‖2

= O
(
γ 2
p

)
and similarly

E

∣∣∣∣∣
p∑

k=1

γk�k+1,p

((
H
(
θk,U

k+1)− H
(
θ∗,Uk+1))− (

h(θk) − h
(
θ∗)))∣∣∣∣∣

2

= O
(
γ 2
p

)
. �
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