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Posterior Model Consistency in Variable
Selection as the Model Dimension Grows
Elías Moreno, Javier Girón and George Casella

Abstract. Most of the consistency analyses of Bayesian procedures for vari-
able selection in regression refer to pairwise consistency, that is, consistency
of Bayes factors. However, variable selection in regression is carried out in
a given class of regression models where a natural variable selector is the
posterior probability of the models.

In this paper we analyze the consistency of the posterior model probabili-
ties when the number of potential regressors grows as the sample size grows.
The novelty in the posterior model consistency is that it depends not only on
the priors for the model parameters through the Bayes factor, but also on the
model priors, so that it is a useful tool for choosing priors for both models
and model parameters.

We have found that some classes of priors typically used in variable se-
lection yield posterior model inconsistency, while mixtures of these priors
improve this undesirable behavior.

For moderate sample sizes, we evaluate Bayesian pairwise variable selec-
tion procedures by comparing their frequentist Type I and II error probabil-
ities. This provides valuable information to discriminate between the priors
for the model parameters commonly used for variable selection.

Key words and phrases: Bayes factors, Bernoulli model priors, g-priors, hi-
erarchical uniform model prior, intrinsic priors, posterior model consistency,
rate of growth of the number of regressors, variable selection.

1. INTRODUCTION

In some applications of regression models to com-
plex problems, for instance, in genomic, clustering,
change points detection, etc., the dimension of the pa-
rameter space of the sampling models is either very
large or grows with the sample size. The question we
address here is whether consistency of the Bayesian
variable selection approach still holds in this setting.
A partial answer to this question was given in Moreno,
Girón and Casella (2010), where consistency of the
Bayes factors (pairwise consistency) when the number
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of regressors k increases with rate k = O(nb), b ≤ 1,
was considered. It was there proved that any pair of
nested regression models for which the Bayes factor
has an asymptotic approximation equivalent to the BIC
(Schwarz, 1978) is consistent for b < 1 but it is not for
b = 1. Note that the BIC is a valid approximation for a
wide class of prior distributions on the model parame-
ters. It was also seen that the Bayes factor for the intrin-
sic priors considerably improves the BIC behavior for
small or moderate sample sizes (Casella et al., 2009).

Nevertheless, variable selection in regression is a
model selection problem in a class M of 2k normal
regression models, and we wonder if the Bayes factor
consistency when k = O(nb), b ≤ 1, can be extended
to posterior model consistency in the class of mod-
els M. The use of the posterior model probabilities as a
variable selector procedure implies that variable selec-
tion is understood as a decision problem where the de-
cision space D and the space of states of nature M are
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the same. Assuming a 0–1 loss function on the product
space D×M, the optimal decision is that of choosing
the model with the highest posterior probability; other
loss functions can indeed be used; see, for instance, the
review paper by Clyde and George (2004).

Posterior model consistency in M is understood as
the convergence to one, in probability, of the sequence
of the posterior probabilities of the true model. We are
considering the true model to be the one from which
the observations are drawn. We note that the frequen-
tist and Bayesian consistency notions do not neces-
sarily coincide. For instance, Shao (1997) defines a
true model to be the submodel minimizing the average
squared prediction error, and consistency of a model
selection procedure means that the selected model con-
verges in probability to this model.

From the necessary and sufficient conditions we give
to achieve posterior model consistency it follows that
Bayes factor consistency does not necessarily yield
posterior model consistency. This was already pointed
out by Johnson and Rossell (2012). Further, posterior
model consistency of a Bayesian procedure in M de-
pends on the Bayes factor, the prior over the class of
models M and the rate of growth of k, and thus it has
to be studied in a case-by-case basis.

The Bayes factors we review here are those obtained
using the intrinsic priors on the model parameters
(Berger and Pericchi, 1996; Moreno, 1997; Moreno,
Bertolino and Racugno, 1998) and a couple of ver-
sions of the Zellner’s g-priors (Zellner and Siow, 1980;
Zellner, 1986). These versions include the g-priors
with g = n and the prior obtained as a mixture of g-
priors with respect to the InverseGamma(g|1/2, n/2).
This latter prior was recommended by Zellner and
Siow (1980) and considered in Liang et al. (2008) and
Scott and Berger (2010), among others. As we will see,
these Bayes factors exhibit different dimension correc-
tions, that suggest a different behavior for moderate
sample sizes, a point that we also explore here.

The priors over the set of models we review are the
independent Bernoulli parametric class {π(M|θ), 0 <

θ < 1} introduced by George and McCulloch (1993)
and a specific mixture of these priors which we refer to
as the hierarchical uniform model prior πHU(M). This
latter prior is a particular case of a set of hierarchically
uniform priors considered by George and McCulloch
(1993), who argued that “one may wish to weight more
according the model size.”

Related posterior model consistency for variable se-
lection for homoscedastic high-dimensional regression
models was analyzed by Johnson and Rossell (2012).

They considered Bayes factors for nonlocal priors on
the regression parameters, an inverse gamma for the
common variance errors, and models priors such that
π(Mt)/π(M) > ε > 0 for any M ∈ M, where Mt ,
the true model, is a fixed model. We note that the
Bernoulli class of model priors and the hierarchical
uniform model prior πHU(M) are excluded from their
analysis. Further, the rate of growth of the number of
regressors does not play a relevant role for the posterior
model consistency of their Bayesian models, while for
the Bayesian models considered here it does.

1.1 Notation

Let Y represent an observable random variable and
X1, . . . ,Xk a potential set of explanatory regressors re-
lated through the normal linear model

Y = β0 + β1X1 + · · · + βkXk + εk, εk ∼ N
(
0, σ 2

k

)
,

where the vector of regression coefficients βk+1 =
(β0, β1, . . . , βk)

′ and the variance error σ 2
k are un-

known. Let (y,X) be the data set, where y is a vec-
tor of n independent observations of Y and X a n ×
(k + 1) design matrix of full rank. This full sam-
pling normal model Nn(y|Xβk+1, σ

2
k In) is denoted

as Mk and the simplest intercept only normal model
Nn(y|β01n, σ

2
0 In) as M0. We remark that the regres-

sion coefficients change across models, although for
simplicity we use the same alphabetical notation.

It is convenient to split the class M of regres-
sion models involved in variable selection as fol-
lows. By Mj we denote the class of models with
j regressors, 0 ≤ j ≤ k, the number of which is(k
j

)
, and by Mj we denote a generic model in Mj

with sampling density Nn(y|Xj+1βj+1, σ
2
j In), where

βj+1 = (β0, β1, . . . , βj )
′ is the unknown vector of re-

gression coefficients, Xj+1 a n × (j + 1) submatrix
of X and σ 2

j the unknown variance error. Therefore,

M = ⋃k
j=0 Mj . The developments in the paper will

be clear using this somewhat ambiguous, but simpler,
notation.

1.2 Summary

We find that when k grows with n, the intrinsic priors
for model parameters are preferred to either the g-prior
for g = n or the mixtures of g-priors, and the hierarchi-
cal uniform model prior is preferred to the Bernoulli
model prior for any fixed value of the hyperparameter
θ ∈ (0,1).

The rest of the paper is organized as follows. In Sec-
tion 2 we give necessary and sufficient conditions to
achieve posterior model consistency. In Section 3 we
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give asymptotic approximations to the Bayes factors
for the g-priors with g = n, for the mixture of g-priors
and for the intrinsic priors over the model parameters,
for k = O(nb), 0 ≤ b ≤ 1. In Section 4 posterior model
consistency for the Bayesian procedures is presented.
Section 5 contains a sampling evaluation of the three
Bayes factors for moderate sample sizes. A summary
of the conclusions is given in Section 6, and the Ap-
pendix contains the proofs of most of the results.

2. POSTERIOR MODEL CONSISTENCY

Given a data set (y,X) coming from a linear model
in M, and the priors for the models and model pa-
rameters {π(βj+1, σj |Mj),π(Mj), Mj ∈ Mj , j =
0,1, . . . , k}, the posterior probability of a generic
model Mj can be written as

Pr(Mj |y,X) = Bj0(y,X)π(Mj)∑k
i=0

∑
Mi∈Mi

Bi0(y,X)π(Mi)
,(1)

where Bj0(y,X) denotes the Bayes factor for compar-
ing models Mj and M0, which is given by

Bj0(y,X)

=
(∫

Nn

(
y|Xj+1βj+1, σ

2
j In

)

· π(βj+1, σj |Mj)dβj dσj

)
/(∫

Nn

(
y|β0, σ

2
0 In

)
π(β0, σ0|M0) dα0 dσ0

)
.

The advantage of the posterior model probability in ex-
pression (1) is that it only involves Bayes factors for
nested models. The variable selection procedure that
uses this posterior model probability as model selector
is called encompassing from below variable selection
(Girón et al., 2006). We may also use the encompass-
ing from above approach in which all the Bayes fac-
tors considered are of the form Bjk(y,X) (Casella and
Moreno, 2006). Both methods give similar results, and
in this paper we will consider the encompassing from
below approach.

DEFINITION. Posterior model consistency when
sampling from model Mt holds if the limit in probabil-
ity [Mt ] of the random variables {Pr(Mj |y,X),Mj ∈
M} is such that

lim
n→∞ Pr(Mj |y,X) =

{
1, if j = t ,
0, if j �= t ,

[Mt ].
A necessary and sufficient condition to achieve pos-

terior model consistency when sampling from Mt is
given in the next theorem.

THEOREM 1. When sampling from Mt ∈ Mt , pos-
terior model consistency holds if and only if the equal-
ity

lim
n→∞

k∑
j=0

∑
Mj∈Mj

Mj �=Mt

Bj0(y,X)

Bt0(y,X)

π(Mj)

π(Mt)
= 0, [Mt ],(A)

holds.

PROOF. The assertion follows from expression (1).
�

Theorem 1 implies that, if the Bayes factor Bt0(y,X)

is inconsistent under Mt , then posterior model consis-
tency under Mt does not hold. We note that when k is
bounded, posterior model consistency holds for virtu-
ally any prior over the models (Casella et al., 2009).
However, when k = O(nb), 0 < b ≤ 1, it is apparent
from (A) that posterior model consistency crucially de-
pends on the rate of convergence under Mt to zero of
the ratio [Bj0(y,X)π(Mj)]/[Bt0(y,X)π(Mt)].

Under the null model M0, the necessary and suffi-
cient condition (A) reduces to

lim
n→∞

k∑
j=1

∑
Mj∈Mj

Bj0(y,X)
π(Mj)

π(M0)
= 0, [M0],(B)

and it follows that if for some Mi the Bayes fac-
tor Bi0(y,X) is inconsistent under M0, then posterior
model consistency under M0 does not hold. It is clear
that, when k = O(nb), 0 < b ≤ 1, the rate of conver-
gence to zero of Bj0(y,X)π(Mj) determines the pos-
terior model consistency.

Thus, from Theorem 1 it is clear that when k in-
creases as the sample size n increases, posterior model
consistency is a more stringent notion than that of
the Bayes factor consistency. Furthermore, posterior
model consistency depends on the specific Bayes fac-
tors Bj0 and the prior on the class of models M, and,
consequently, it has to be established in a case-by-case
basis.

3. PRIORS AND BAYES FACTORS FOR
VARIABLE SELECTION

In this section we present priors for the parame-
ters of the models and priors over the class of mod-
els which are commonly used in variable selection. We
give formulae for the Bayes factors and their asymp-
totic approximations when sampling from an arbitrary
but fixed model Mt and rate of growth k = O(nb) for
0 ≤ b ≤ 1.
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3.1 Intrinsic Priors for Model Parameters

The intrinsic priors were introduced to justify the in-
trinsic Bayes factor (Berger and Pericchi, 1996). The
original conditions defining the intrinsic priors given
by Berger and Pericchi (1996) render a class of in-
trinsic priors (Moreno, 1997), and a limiting proce-
dure for choosing a specific pair of intrinsic priors for
model selection was proposed in Moreno, Bertolino
and Racugno (1998). This procedure is based on the
additional requirement that the intrinsic priors derived
from improper priors, which are not necessarily proper,
are a limit of proper intrinsic priors.

Bayes factors for intrinsic priors were used for vari-
able selection in regression in Moreno and Girón
(2005), Casella and Moreno (2006), Girón et al. (2006),
Leon-Novelo, Moreno and Casella (2012), Consonni,
Forster and La Rocca (2015), among others, and
this variable selection procedure improves upon the
Schwarz approximation for finite sample sizes (Casella
et al., 2009) and asymptotically for high-dimensional
regression models (Moreno, Girón and Casella, 2010).

The standard intrinsic method for comparing the null
model M0 versus the alternative Mj , starting from the
improper reference prior for the parameters of the mod-
els M0 and Mj , provides the proper intrinsic prior for
the parameters (βj+1, σj ), conditional on a null point
(α0, σ0), as

πI (βj+1, σj |α0, σ0)

= Nj+1
(
βj+1|α̃0,

(
σ 2

j + σ 2
0
)
W−1

j+1

)
HC+(σj |σ0),

where α̃0 = (α0,0′
j )

′, W−1
j+1 = n

j+2(X′
j+1Xj+1)

−1,
and

HC+(σj |σ0) = 2

π

σ0

σ 2
j + σ 2

0

is the half Cauchy distribution on R+ with location
parameter 0 and scale σ0. The unconditional intrinsic
prior with respect to the reference prior πN(α0, σ0) =
c0/σ0 is then given by

πI (βj+1, σj )

=
∫

πI (βj+1, σj |α0, σ0)π
N(α0, σ0) dα0 dσ0.

For comparing model M0 versus Mj the intrinsic priors
are the pair (πN(α0, σ0),π

I (βj+1, σj )). We note that
πI (βj+1, σj ) depends on the arbitrary constant c0 that
cancels out in the Bayes factor Bj0(y,X), and hence no
tuning hyperparameters have to be adjusted. Thus, the
Bayes factor for intrinsic priors are automatically con-
structed from the sampling models and the reference
priors.

3.2 Zellner’s g-Priors for Model Parameters

For variable selection with the g-priors we also
use the encompassing from below approach (the en-
compassing from above version is given in Scott and
Berger, 2010). A basic assumption on the regression
models for constructing the g-priors is that the inter-
cept and the variance error are common parameters to
all models, which reduces the number of parameters
involved when comparing Mj versus M0 from j + 4
to j + 2. According to this restriction, the regression
parameters of a generic model Mj will be denoted
as (β0,βj )

′ = (β0, β1, . . . , βj )
′ and the variance error

as σ 2, where β0 and σ are common to all models.
For a sample (y,X), most references to g-priors in

the variable selection literature (Berger and Pericchi,
2001; Clyde and George, 2000; George and Foster,
2000; Fernández, Ley and Steel, 2001; Hansen and Yu,
2001; Liang et al., 2008, among others) refer to them
as the pair (πN(β0, σ ), πg(βj |σ)), where

πN(β0, σ ) = c0

σ
1R×R+(β0, σ )

is the reference prior, and

π(βj |σ,g) = Nj

(
βj |0j , gσ 2(

X′
j Xj

)−1)
,

g being an unknown positive hyperparameter, and Xj

the matrix of dimensions n × j resulting from sup-
pressing the first column in the design matrix Xj+1 of
the original formulation of the regression model Mj .

The conjugate property of these priors makes the ex-
pression of the Bayes factor quite simple, and it is well
known that the hyperparameter g plays an important
role in the behavior of the Bayes factor. Several values
for g have been suggested, although none of them satis-
fies all the reasonable requirements (Berger and Peric-
chi, 2001; Clyde and George, 2004; Clyde, Parmigiani
and Vidakovic, 1998; Fernández, Ley and Steel, 2001;
George and Foster, 2000; Hansen and Yu, 2001; Liang
et al., 2008). For instance, large g values induce the
Lindley–Bartlett paradox (Bartlett, 1957), and a fixed
value for g induces inconsistency, which can be cor-
rected if g were dependent on n.

We consider two versions of the g-prior. The first
is the one obtained for g = n, which is justified on
the ground that it provides a consistent Bayes factor,
and it is a “unit information prior” (Kass and Wasser-
man, 1995). The second g-prior version was derived
for avoiding an incoherent property of the g-prior de-
tected by Berger and Pericchi (2001): the Bayes factor
for comparing Mj versus M0 for the g-prior does not
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tend to infinity as the coefficient of determination of
Mj tends to one. A way to avoid this behavior is to in-
tegrate the conditional g-priors {π(βj |σ,g), g > 0} to
obtain the mixture of g-priors

πMix(βj |σ) =
∫ ∞

0
π(βj |σ,g)π(g) dg,

where

π(g) = (n/2)1/2

�(1/2)
g−3/2 exp

(
− n

2g

)
.

This mixture has been considered by some other au-
thors, including Clyde and George (2004), Liang et al.
(2008) and Scott and Berger (2010).

3.3 Priors for Models

Since M is a discrete space, a natural default prior
over it is the uniform prior, but, as we will see, it is not
a good prior when k = O(nb), 1/2 ≤ b ≤ 1. A gener-
alization of the uniform prior is the parametric inde-
pendent Bernoulli prior class (George and McCulloch,
1993), for which the probability of a generic model Mj

containing j out of k regressors, j ≤ k, is given by

π(Mj |θ) = θj (1 − θ)k−j , 0 ≤ θ ≤ 1,

where θ is an unknown hyperparameter, the meaning of
which is the probability of inclusion of a regressor in
the model. The prior π(Mj |θ) assigns the same proba-
bility to models with the same dimension, and, in par-
ticular, for θ = 1/2 the uniform prior is obtained.

If we assume a uniform distribution for θ , the uncon-
ditional probability of model Mj is given by

πHU(Mj ) =
∫ 1

0
θj (1 − θ)k−j dθ =

(
k

j

)−1 1

k + 1
.

If we decompose this probability as

πHU(Mj ) = πHU(Mj |Mj )π
HU(Mj ),

it follows that the model prior distribution, conditional
on the class Mj , is uniform, and the marginal over the
classes {Mj , j = 0,1, . . . , k} is also uniform. Then, it
seems appropriate to call to this prior the hierarchical
uniform prior.

We will see that the variable selection procedure that
uses the hierarchical prior πHU(Mj) outperforms the
behavior of the one using the prior π(Mj |θ), for any
value of θ .

3.4 Bayes Factors

For the data (y,X), it can easily be seen that the
Bayes factor for comparing Mj versus M0 for the g-
prior with g = n is given by

B
g=n
j0 (y,X) = (1 + n)(n−j−1)/2

(1 + nBj0)(n−1)/2 ,(2)

for the mixture of g-priors by

BMix
j0 (y,X)

= (n/2)1/2

�(1/2)
(3)

·
∫ ∞

0

(1 + g)(n−j−1)/2

(1 + gBj0)(n−1)/2 g−3/2 exp
(
− n

2g

)
dg,

and for the intrinsic priors by

BIP
j0(y,X)

= 2

π
(j + 2)j/2(4)

·
∫ π/2

0

sinj ϕ(n + (j + 2) sin2 ϕ)(n−j−1)/2

(nBj0 + (j + 2) sin2 ϕ)(n−1)/2
dϕ.

The integrals on (0,∞) in (3) and on (0, π/2) in (4) do
not have explicit expressions but need numerical inte-
gration.

We note that all these Bayes factors depend on the
data through the statistic Bj0, which is the ratio of the
square sum of the residuals of models Mj and M0, that
is,

Bj0 = y′(I − Hj )y
y′(I − (1/n)1n1′

n)y
,(5)

where Hj is the hat matrix associated to Xj .
We observe that each Bayes factor exhibits a dif-

ferent dimension correction, and this suggests that for
small or moderate samples sizes their behavior might
be different, a point that we later explore in Section 5.

For large sample sizes n useful analytic approxima-
tions to the above Bayes factors are given in the next
lemma.

LEMMA 1. For large sample sizes n, k = O(nb)

and 0 ≤ b ≤ 1, the following approximations hold for
any j ≤ k:

(i)

B
g=n
j0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−j/2B−n/2
j0 exp

{
1

2

(
1 − 1

Bj0

)}
,

for b < 1,

n−j/2B−n/2
j0 exp

{
1

2

(
1 − 1

Bj0
− j

n

)}
,

for b = 1,

(6)
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(ii)

BMix
j0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n

2

)−j/2
B−(n−j−2)/2

j0
�((j + 1)/2)

�(1/2)
,

for b < 1,(
n

2

)−j/2

B−(n−j−2)/2
j0

·
(

1 + j

n
Bj0

)−(j+1)/2

· �((j + 1)/2)

�(1/2)
,

for b = 1,

(7)

(iii)

BIP
j0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n

j + 2

)−j/2

B−(n−1)/2
j0

· exp
{
j + 2

2

(
1 − 1

Bj0

)}
,

for b < 1,(
1 + n

j + 2

)(n−j−1)/2

·
(

1 + nBj0

j + 2

)−(n−1)/2

,

for b = 1.

(8)

PROOF. See Appendix A. �
The next theorem summarizes the fact that the three

Bayes factors have an equivalent expression for large
samples sizes n and a bounded potential number of re-
gressors k. Further, this expression is the one obtained
by Schwarz (1978).

THEOREM 2. When k is bounded, then, for large
sample sizes n, the Bayes factors in (2), (3) and (4) are
equivalent to the Schwarz approximation, that is,

B
g=n
j0 ≈ BMix

j0 ≈ BIP
j0 ≈ exp

(
−j

2
logn − n

2
logBj0

)
.

PROOF. The proof follows from Lemma 1 and
some algebraic manipulations. �

Theorem 2 implies that for low-dimensional regular
models, any Bayes factor is consistent, as the Schwarz
approximation guarantees Bayes factor consistency. In
this setting, for any positive model prior, posterior
model consistency under an arbitrary model Mt also
holds.

However, for high-dimensional models the Schwarz
approximation does not necessarily guarantee either
the Bayes factor consistency or the posterior model

consistency. Other approximating forms than that of
Schwarz appear in this latter setting.

3.5 Asymptotic Approximations to the
Bayes Factors

The Bayes factor approximations in (6), (7) and (8)
depend on the random sequence {Bj0, n ≥ 1} given
in (5). In this section we go a step forward and use
the asymptotic distribution of the statistic Bj0 under an
arbitrary but fixed model Mt to approximate the Bayes
factors B

g=n
j0 , BMix

j0 and BIP
j0.

We first note that the asymptotic distribution of Bj0

under Mt , a doubly noncentral beta distribution, de-
pends on the limit of the pseudo-distance between
models defined as

δn(Mt,Mj) = 1

2σ 2
t

β ′
t

X′
t (In − Hj )Xt

n
β t .

General properties of this pseudo-distance have been
studied in Girón et al. (2010). This pseudo-distance
δn(Mt,Mj) can be simplified as follows. We first write
the covariance matrix of the joint set of covariates of
the model Mt and Mj , the dimensions of which are
(t + j) × (t + j), as

�
(n)
t+j =

(
S

(n)
tt S

(n)
tj

S
(n)
j t S

(n)
jj

)
,

where the matrices S
(n)
tt , S

(n)
jj are definite positive. Let

us consider the matrices S
(n)
t ·j = S

(n)
tt − S

(n)
tj S

(n)
jj

−1
S

(n)
j t ,

and St ·j = limn→∞ S
(n)
t ·j . Then, it can now be seen that

δn(Mt,Mj) can be expressed as

δn(Mt,Mj) = 1

2σ 2
t

β ′
t S

(n)
t ·j β t .

In what follows we denote δ∗(Mt ,Mj) =
limn→∞ δn(Mt,Mj), and if there is no confusion,
δ∗(Mt ,Mj) and δn(Mt,Mj) will be simply written as
δ∗
tj and δtj .
For any Mj , using the asymptotic distribution of Bj0

under Mt , we can now provide asymptotic approxima-
tions in probability [Mt ] to the Bayes factors B

g=n
j0 ,

BMix
j0 and BIP

j0 that we summarize in Lemma 2.

LEMMA 2. When sampling from a model Mt , the
Bayes factors in (2), (3) and (4) for j ≤ k = O(nb),
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b ≤ 1, can be approximated for large n as

B
g=n
j0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−j/2
(1 + δ∗

tj

1 + δ∗
t0

)−n/2

· exp
( δ∗

tj − δ∗
t0

2(1 + δ∗
tj )

)
,

for b < 1,

n−j/2
(1 + δ∗

tj − j/n

1 + δ∗
t0

)−n/2

· exp
( δ∗

tj − δ∗
t0 − j/n

2(1 + δ∗
tj − j/n)

)
,

for b = 1,

(9)

BMix
j0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ne

j + 1

)−j/2(1 + δ∗
tj

1 + δ∗
t0

)−(n−j−2)/2

,

for b < 1,(
ne

j + 1

)−j/2

·
(1 + δ∗

tj − j/n

1 + δ∗
t0

)−(n−j−2)/2

,

for b = 1,

(10)

and

BIP
j0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n

j + 2

)−j/2(1 + δ∗
tj

1 + δ∗
t0

)−(n−j)/2

,

for b < 1,(
1 + n

j

)(n−j−1)/2

·
((n/j)(1 + δ∗

tj ) + δ∗
t0

1 + δ∗
t0

)−(n−1)/2

,

for b = 1.

(11)

PROOF. The proof follows from Lemma 1 and
the asymptotic distribution of the statistic Bj0 under
model Mt (Casella et al., 2009), and it is omitted. �

From Lemma 2 it follows that when sampling from
the null model M0, that is, when Mt = M0, the asymp-
totic approximations (9), (10) and (11) notably sim-
plify, as they only depend on n and the dimension j

of the model, irrespective of the particular set of co-
variates. This means that, under the null model M0, the
above Bayes factors are asymptotically constant across
models in the class Mj .

To prove some results on posterior model consis-
tency when sampling from an alternative model Mt , we
need to know for which models Mj in M the pseudo-
distance δ∗(Mt ,Mj) is zero. This result follows from
Lemma 3.

LEMMA 3. (i) For any model Mj such that
dim(Mj ) < dim(Mt), we have that

δ∗(Mt ,Mj) > 0.

(ii) For any model Mj such that dim(Mj ) =
dim(Mt),

δ∗(Mt ,Mj) =
{ 0, if Mj = Mt ,

>0, if Mj �= Mt .

(iii) For any model Mj such that dim(Mj) >

dim(Mt),

δ∗(Mt ,Mj) =
{

0, if Mt is nested in Mj ,
>0, otherwise.

PROOF. We note that (a) if Mt and Mj do not
have common covariates, then the matrix �t+j =
limn→∞ �

(n)
t+j is positive definite, and hence St ·j is

positive definite, and (b) if Mt and Mj do have com-
mon covariates, then it can be seen that

St ·j =
(

P O
O O

)
,

where P is a positive definite matrix of dimensions
max{0,dimMt − dimMj }. We observe that if either
dimMt = dimMj or Mt is nested in Mj , we have
that St ·j = O. The proof of Lemma 3 follows from (a)
and (b) and the fact that all regression coefficients β t

in model Mt are different from zero. �
It is interesting to remark that for b < 1 and any

Mj such that δ∗(Mt ,Mj) > 0, the rate of convergence
in probability [Mt ] to zero of B

g=n
j0 , BMix

j0 and BIP
j0

for Mt �= M0 is exponentially fast, but the rate of
convergence in probability [M0] to zero for j �= 0 is
only potentially fast. This is in line with the result for
b = 0 obtained by Dawid (2011) (for discrete data see
Consonni, Forster and La Rocca, 2015).

4. POSTERIOR MODEL CONSISTENCY FOR
k = O(nb) AND 0 ≤ b ≤ 1

Posterior model consistency results for the six
Bayesian variable selection procedures defined by the
Bayes factors B

g=n
j0 , BMix

j0 , BIP
j0, the Bernoulli model

prior π(Mj |θ) and the hierarchical uniform prior
πHU(Mj), when sampling from an arbitrary but fixed
model Mt are summarized in Theorem 3. For simplic-
ity, the posterior model consistency results for the case
when sampling from model M0 and from an alterna-
tive model Mt are not separated. However, we keep
in mind that the rate of convergence of the posterior
model probabilities when sampling from M0 is differ-
ent from the rate of convergence when sampling from
Mt �= M0.
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THEOREM 3. (i) When sampling from Mt and k =
O(nb), the Bayesian procedures for the Bayes factors
B

g=n
j0 , BMix

j0 , BIP
j0, and the Bernoulli model prior are

posterior model consistent for 0 ≤ b < 1/2 and poste-
rior model inconsistent for 1/2 ≤ b ≤ 1.

(ii) When sampling from Mt and k = O(nb), the
Bayesian procedures for the Bayes factors B

g=n
j0 , BMix

j0

and BIP
j0 and the hierarchical uniform prior are poste-

rior model consistent for 0 ≤ b ≤ 1.

PROOF. See Appendix B. �
It is interesting to observe that the Bernoulli prior

π(Mj |θ), conditional on θ , induces a Binomial distri-
bution on the classes Mj , which, in turn, by the change
of variables x = j/k, induces a distribution on x ∈
[0,1] which converges in probability to a Dirac’s delta
on θ , as k tends to infinity. In other words, for large val-
ues of k the Bernoulli prior concentrates around mod-
els which have a proportion of covariates close to θ .
Therefore, this apparently innocuous prior conveys too
much prior information about the proportion of co-
variates of the models, and thus it makes the posterior
model probabilities for 1/2 ≤ b ≤ 1 inconsistent. This
wrong asymptotic behavior is corrected by the hierar-
chical uniform prior.

5. SMALL SAMPLE COMPARISONS

Given a Bayes factor Bj0 for the models {M0,Mj },
the decision of choosing model Mj when Pr(Mj |
Bj0) ≥ 1/2 is an optimal decision under Pr(M0) =
Pr(Mj) = 1/2 and a 0–1 loss function. We recall that
for a uniform prior on the class of models M, to rank
the models in the class according to their posterior
model probabilities is equivalent to the ranking pro-
duced by the Bayes factor. In spite of this, a sampling
analysis of the optimal statistical decision function has
been long claimed [see, e.g., Fraser (2011) and dis-
cussions therein]. From expression (2), (3) and (4) it
is apparent that the dimension correction of the Bayes
factors for the g-prior with g = n, for the mixture of
g-priors and for the intrinsic priors are different from
each other. This suggests that their sampling behavior
for small and moderate sample sizes might be different.

In this section we study the sampling properties
of the posterior model probabilities for Pr(M0) =
Pr(Mj) = 1/2 and the Bayes factors B

g=n
j0 ,BMix

j0

and BIP
j0. We recall that the posterior probability

Pr(Mj |y,X) for any of these Bayes factors depends on
the data (y,X) through the same statistic Bj0, which

FIG. 1. Type I error probabilities for the intrinsic procedure (con-
tinuous line), the g-prior with g = n (dot-dashed) and the mixture
of g-priors (dashed).

takes values in the interval (0,1). Therefore, the crit-
ical regions for rejecting the null model M0 for these
Bayesian procedures are

R
(g=n)
j0 = {

Bj0 : Pr
(
Mj |Bg=n

j0

) ≥ 1/2
}
,

RMix
j0 = {

Bj0 : Pr
(
Mj |BMix

j0
) ≥ 1/2

}
and

RIP
j0 = {

Bj0 : Pr
(
Mj |BIP

j0
) ≥ 1/2

}
.

These critical regions are in (0,1) and, since the pos-
terior probabilities are monotone increasing functions
of Bj0, they are intervals. Using the distribution of the
statistic Bj0 under M0 and Mj , we can compute the
exact value of the Type I and II errors probabilities as
a function of the model dimension j and the sample
size n. Figure 1 shows the Type I error probabilities
of the optimal decision rule associated to the regions
R

(g=n)
j0 ,RMix

j0 and RIP
j0 for j = n/3 and the sample size

n = 1, . . . ,100.
From Figure 1 it follows that the Type I error prob-

abilities of the procedures based on g-priors are very
close to each other and smaller than that based on the
intrinsic priors. We note that as n and j increase at the
same pace, n/j = 3, the Type I error probabilities for
the procedure based on g-priors go faster to zero than
the procedure based on the intrinsic priors does.

In Figure 2 we display for δj0 = 1 and j = n/3 the
power function of the above procedures as a function
of the sample size n = 1, . . . ,100.

From Figure 2 we observe that the power of the pro-
cedure based on intrinsic priors is much larger than



236 E. MORENO, J. GIRÓN AND G. CASELLA

FIG. 2. Power for the Bayes factor for intrinsic priors (continu-
ous line), for g-priors for g = n (dot-dashed) and for the mixture
of g-priors (dashed).

those based on the g-priors. This is the price the proce-
dures based on g-priors pay for their very small Type I
error probabilities. Further, the power for the intrinsic
priors and the mixture of g-priors increases to one as
the sample size n and the model dimension j increase
at the same pace, that is, n/j = r ≥ 1, but the power for
the g-prior with g = n increases as n increases up to a
certain n and then decreases, which is a surprisingly
unreasonable behavior. The explanation to the anoma-
lous behavior of the Bayes factor for the g = n is due
to the inconsistency of this Bayes factor for any model
Mj such that j = O(n), a point that we discuss in Sec-
tion 6 and summarize in Table 2.

On the other hand, we remark that as δj0 increases,
the power of the three procedures increases for any
sample size n.

Figures 1 and 2 indicate how unbalanced are the
Type I and II error probabilities of the Bayesian pro-
cedures based on g-priors compared with that based
on the intrinsic priors. The practical implications of
this analysis are that for moderate sample sizes the
Bayesian procedures based on g-priors are strongly bi-
ased toward the null model.

6. CONCLUDING REMARKS

Variable selection in regression is a central problem
in statistical inference and the aim of this paper has
been to evaluate the sampling properties of Bayesian

model selection procedures, a requirement long advo-
cated by many statisticians. For some interesting ap-
plications the number of regressors is very large, and
hence we assumed that the potential number of regres-
sors k grows with n. We very soon realized that the
variable selection takes place in a large class of models,
and hence posterior model consistency seems to be the
appropriate asymptotic property to be explored, a con-
cept that depends on the priors over the models and
the model parameters. Posterior model consistency for
variable selection for three popular Bayes factors and
two types of model priors has been explored, although
the methodology we used can be applied to any other
specific Bayes factor and model prior.

For low-dimensional normal regression models it
is well known that virtually any Bayes factor has an
asymptotic approximation which is equivalent to the
Schwarz approximation, which assures consistency.
However, for large-dimensional models more appropri-
ate asymptotic approximations for the Bayes factors,
such as those given in Lemma 2, are necessary for an-
alyzing consistency.

Although we considered the independent Bernoulli
class of model priors {π(M|θ), θ ∈ (0,1),M ∈ M}
and the hierarchical uniform prior πHU(M), a mix-
ture of π(M|θ) with respect to the uniform distribution
on θ , the asymptotic results for the hierarchical uni-
form prior can be formally extended to other regular
mixtures of Bernoulli model priors.

The conclusions on posterior model consistency we
draw for the above Bayesian procedures when sam-
pling from an arbitrary but fixed model Mt and for dif-
ferent rates of growth of k are summarized in Table 1.

Table 1 implies that when sampling from Mt , the
Bayesian procedures for the Bayes factors B

g=n
j0 , BMix

t0

and BIP
t0 and the Bernoulli model prior are inconsistent

for 1/2 ≤ b ≤ 1, but for the hierarchical uniform model
prior they are consistent for any 0 ≤ b ≤ 1. Thus, a first
conclusion is that the hierarchical uniform model prior

TABLE 1
Posterior model consistency when sampling from Mt ,

as a function of the Bayes factor, model prior and
the rate of growth of k = O(nb

)

Model prior π(M|θ) πHU(M)

Bayes factor B
g=n
j0 , BMix

j0 , BIP
j0 B

g=n
j0 , BMix

j0 , BIP
j0

0 ≤ b < 1/2 Consistent
1/2 ≤ b ≤ 1 Inconsistent Consistent
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πHU(M) outperforms the independent Bernoulli model
prior π(M|θ).

We remark that the above results are valid when
sampling from a fixed model Mt with finite dimen-
sion. The analysis of the infinite dimensional case is an
open problem that deserves more efforts, as the Bayes
factors are now not necessarily consistent (Moreno,
Girón and Casella, 2010) and, consequently, the pos-
terior model consistency results differ from those pre-
sented above. For instance, for t = O(n), the Bayes
factor B

g=n
t0 is such that

lim
n→∞B

g=n
t0 = 0, [Mt ],

so that it is inconsistent under any model Mt �= M0, and
this implies that it is also posterior model inconsistent
under Mt �= M0 for any model prior.

For the Bayes factors BMix
t0 and BIP

t0 the situation is
not so dramatic. The set of alternative models Mt for
which inconsistency of BMix

t0 holds is a small set of
models around M0 that satisfy the condition

δ∗
t0 < δmix(r) =

(
1 − 1

r

)
(er)1/(r−1) − 1,

where r = n/t > 1. Likewise, the set of alternative
models Mt for which BIP

t0 is inconsistent is that given
by the condition

δ∗
t0(r) < δIP(r) = r − 1

(r + 1)(r−1)/r
− 1.

A summary of these results is given in Table 2.
From Table 2 we can draw the conclusion that the in-

trinsic priors and the mixture of g-priors are preferred
to the g-prior for g = n.

We also note that δIP(r) < δmix(r), so that the in-
consistency region of the Bayes factor for the intrinsic
priors is smaller than that for the mixture of g-priors.
Further, for the case where r = 1 it can be shown that
the Bayes factor BMix

t0 is inconsistent for any alterna-
tive model Mt , while the Bayes factor BIP

t0 is inconsis-
tent only for those Mt such that δ∗

t0 < 1/ log 2 − 1.

TABLE 2
Posterior model consistency when sampling from Mt ,

for t = n/r , r > 1, and π(M0) > 0

Bayes factor Model prior Posterior model consistency

B
g=n
t0 π(M0) > 0 Inconsistent under any Mt

BMix
t0 π(M0) > 0 Inconsistent under Mt

such that δ∗
t0 < δmix(r)

BIP
t0 π(M0) > 0 Inconsistent under Mt

such that δ∗
t0 < δIP(r)

On the other hand, for small and moderate sample
sizes, Figures 1 and 2 that we presented indicate that
the behavior of the Bayes factors B

g=n
t0 and BMix

j0 are
strongly biased toward the null model, while the Bayes
factor for the intrinsic priors BIP

j0 has more balanced
Type I and II error probabilities.

Therefore, the overall conclusion from our analysis
is that the intrinsic priors over the model parameters
and the hierarchical uniform prior over the models are
nowadays the priors to be recommended for variable
selection in normal regression.

APPENDIX A: PROOF OF LEMMA 1

Part (i) is immediate and hence it is omitted. Part (ii)
follows by first making the change of variables y =
exp[−n/(2g)] in the integral in (3). The Jacobian of
the inverse transformation is

J = dg

dy
= n

2y logy2

and, thus, the integral in (3) now becomes∫ 1

0

(
1 − n

2 logy

)(n−j−1)/2(
1 − nBj0

2 logy

)(−n+1)/2

·
(
− n

2 logy

)−3/2

yJ dy.

The first factor in this integral can be approximated by(
1 − n

2 logy

)(n−j−1)/2

≈ y−1+(j/n)

(
− n

2 logy

)(n−j−1)/2

and the second by(
1 − nBj0

2 logy

)(−n+1)/2

≈ B(1−n)/2
j0 y1/Bj0

(
− n

2 logy

)(1−n)/2

.

Plugging these approximations in the integral, and after
some simplifications, we obtain that the original Bayes
factor can be approximated as

BMix
j0 (y,X)

≈ (n/2)−j/2

�(1/2)
B(−n+1)/2

j0

·
∫ 1

0
y(1/Bj0)−1+(j/n)

(
− 1

logy

)(1−j)/2

dy.
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For any j and n, the integral in this expression has
value∫ 1

0
y(1/Bj0)−1+(j/n)

(
− 1

logy

)(1−j)/2

dy

= B(j+1)/2
j0

(
1 + j

n
Bj0

)−(j+1)/2

�

(
j + 1

2

)
,

and thus the approximation of the Bayes factor is

BMix
j0 (y,X)

≈
(

n

2

)−j/2

B−(n−j−2)/2
j0

(
1 + j

n
Bj0

)−(j+1)/2

· �((j + 1)/2)

�(1/2)
.

If b < 1, we have that

lim
n→∞

(
1 + j

n
Bj0

)−(j+1)/2

= 1,

and this proves the first part of (ii). If b = 1, the proof
follows suit directly from the expression of the approx-
imation. This completes the proof of part (ii).

Part (iii) was proved in Girón et al. (2010) and hence
it is omitted.

APPENDIX B: PROOF OF THEOREM 3

1. We first prove that condition (A) holds for the
Bayes factor B

g=n
j0 , the Bernoulli model prior π(Mj |θ)

and 0 ≤ b < 12, and that it does not hold for 1/2 ≤
b ≤ 1. For, under the Bernoulli prior we have that

(A) =
k∑

j=0

∑
Mj∈Mj

Mj �=Mt

n(t−j)/2(
1 + δ∗

tj

)−n/2

· exp
{

1

2

(δ∗
tj − δ∗

t0

1 + δ∗
tj

)}(
θ

1 − θ

)j−t

.

From Lemma 3, the terms for j ≤ t go to zero as n

tends to infinity. For j > t let us split the class Mj as

Mj =Nj ∪ (Mj −Nj ),

where Nj is the class of models Mj such that Mt is
nested in Mj . From Lemma 3, it follows that δ∗

tj = 0
for any Mj ∈ Nj , and δ∗

tj > 0 for Mj ∈ Mj − Nj .
Therefore, for large n the contribution of the models
in Mj − Nj to the sum in (A) tends to zero, and we

then have for large n that

(A) ≈
k∑

j=t+1

∑
Mj∈Nj

n(t−j)/2

· exp
{

1

2

(δ∗
tj − δ∗

t0

1 + δ∗
tj

)}(
θ

1 − θ

)j−t

≈
k−t∑
i=1

(
k − t

i

)
n−i/2

(
θ

1 − θ

)i

=
(
−1 +

(
1 + θ

(1 − θ)n1/2

)k−t)

≈ exp
{
nb−1/2}

.

Then, for large n, (A) is equivalent to exp{nb−1/2} and
this proves the assertions.

2. We now prove that for the Bayes factor B
g=n
j0 and

the hierarchical uniform prior πHU(M), condition (A)
does hold for any b ≤ 1. Indeed, for large n, using
again the decomposition Mj = Nj ∪ (Mj − Nj ), the
sum (A) can be approximated for large n as

(A) ≈
k∑

j=t+1

∑
Mj∈Nj

n(t−j)/2 exp
{

1

2

(δ∗
tj − δ∗

t0

1 + δ∗
tj

)}(k
t

)
(k
j

)

=
k−t∑
i=1

n−i/2 (t + i)!
i!

<

∞∑
i=1

n−i/2 (t + i)!
i!

= t !
(
−1 + (

1 − n−1/2)−t n1/2

n1/2 − 1

)
.

The last expression tends to zero as n tends to infinity,
and this proves the assertion.

3. Let us now consider the Bayes factor BIP
j0 and the

Bernoulli prior. For simplicity we prove the assertion
for θ = 1/2, as the proof for any θ follows the same
line of reasoning. We first note that the contribution of
the models in Mj −Nj to the sum in (A) tends to zero
as n tends to infinity. Thus, we have for large n that

(A) ≈ (t + 2)−t/2
k∑

j=t+1

(
n

j + 2

)−j/2

nt/2
(

k − t

j − t

)
,

which, after the change of variables i = j − t , adopts
the form

(A) ≈ (t + 2)−t/2

·
k−t∑
i=1

ai

(k − t)(k − t − 1) · · · (k − t − i + 1)

ni/2 ,
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where

ai = (t + i + 2)(t+i)/2

i! .

It can be seen that the sequence {ai} increases as i in-
creases for i < i0(t), where i0(t) ≈ [1 + 1.65

√
t], and

decreases for i > i0(t), and thus it is bounded by some
function of t , say, a(t). Thus, the sum in (A) is upper
bounded as

(A) ≤ (t + 2)−t/2a(t)

·
k−t∑
i=1

(k − t)(k − t − 1) · · · (k − t − i + 1)

ni/2 ,

which, for b < 1/2, converges to 0 as n tends to in-
finity. A similar lower bound for (A) shows that for
b ≥ 1/2 the sum cannot converge to zero.

For the Bayes factor BMix
j0 the proof of the posterior

model consistency is similar and hence omitted.
4. We now prove that for BIP

j0 and πHU(Mj ) poste-
rior consistency holds for b < 1. For large n we have
that

(A) ≈ (t + 2)−t/2

·
k∑

j=t+1

(
n

j + 2

)−j/2

nt/2
(

k − t

j − t

)
j !(k − j)!
t !(k − t)! ,

which simplifies to

(A) ≈ (t + 2)−t/2
k∑

j=t+1

(
n

j + 2

)−j/2

nt/2 j !
(j − t)! .

Making the change of variable i = j − t , the expression
adopts the form

(A) ≈ (t + 2)−t/2
k−t∑
i=1

bi

ni/2 ,

where

bi = (t + i + 2)(t+i)/2 (t + i)!
i! .

Every individual term bi/ni/2 in the sum converges
to 0 as n tends to infinity, and for large values of i,
the summands bi/ni/2 can be approximated by

et/2+1 i(i+3t)/2

ni/2 .

For every t , this function of i is decreasing for all i < i0
and increasing for i > i0, where i0 is given by

i0 = − 3t

W(−3et/n)
≈ n/e − 3t.

But as k = O(nb) with b < 1, this implies that the se-
quence bi/ni/2 is decreasing in i for all i ≤ k. Then, it
follows that the sum is upper bounded as

k−t∑
i=i0+1

bi/ni/2 ≤ b1

n1/2 + (k − t)
b2

n
.

For k = O(nb) with b < 1, the limit of the right-hand
side of this equation is 0 when n tends to infinity, and
hence posterior model consistency holds.

The proof of the consistency for the Bayes factor for
the mixture of g-priors follows exactly the same pat-
tern and it is therefore omitted.

5. For b = 1, the proof of the posterior model con-
sistency for BMix

j0 and πHU(Mj ) runs as follows. For
large n, it follows that, under the alternative model Mt ,

BMix
j0

BMix
t0

≈ ((ne)/(j + 1))−j/2

((ne)/(t + 1))−t/2

· (1 + δ∗
tj − j/n)−(n−j−2)/2

(1 − t/n)−(n−t−2)/2 .

The ratio πHU(Mj )/π
HU(Mt) of the model probabili-

ties for the hierarchical uniform prior is

πHU(Mj)

πHU(Mt)
= j !(k − j)!

t !(k − t)! .

Then, reasoning as before, for large n, the double
sum (A) of Theorem 1, after some simplifications, can
be approximated as

(A) ≈ (t + 1)−t/2

·
k∑

j=t+1

(
ne

j + 1

)−j/2

nt/2

· j !
(j − t)!

(
1 − j

n

)−(n−j−2)/2

.

Making the change of variable i = j − t , some further
simplifications on the factorials yield the approximat-
ing expression

(A) ≈ e−3t/2

(t + 1)t/2

k−t∑
i=1

e−i/2 i−(i+1/2)(i + t)(3i+3t)/2

ni/2

·
(

1 − i + t

n

)−(n−i−t−2)/2

.

Letting x = i/k and s = n/k, the sum in the preceding
expression can be approximated, up to a constant, by
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the integral
∫ 1

0 fk(x|s, t) dx, where

fk(x|s, t) = k(kx)−kx−(1/2)(ks)−(kx)/2

· e−(1/2)kx(kx + t)(3kx)/2+(3t)/2+1/2

·
(

1 − kx + t

ks

)(1/2)(k(x−s)+t+2)

.

We now prove that limk→∞
∫ 1

0 fk(x|s, t) dx = 0 for
any t = 0,1,2, . . . and s ≥ 1.

For any k, t and s ≥ 1, fk(x|s, t) > 0. For t = 0,
we have that fk(x|s,0) is a decreasing function of x

for all k and s ≥ 1, and such that fk(0|s,0) = k.
Further, limk→∞ fk(x|s,0) = 0 for all x ∈ (0,1]. For
t = 1,2, . . . , even though fk(x|s, t) is not a decreasing
function of x, except for large values of x, we have that
limx→0 fk(x|s, t) = 0, and limk→∞ fk(x|s,0) = 0 for
all x ∈ (0,1].

Thus, for any t , the limit of fk(x|s, t) when k goes
to infinity is given by

lim
k→∞fk(x|s, t) =

{∞, if x = 0,
0, if x ∈ (0,1],

and thus ∫ 1

0
lim

k→∞fk(x|s, t) dx = 0.

On the other hand, fk(x|s, t) is a decreasing function
of s and, therefore, fk(x|s, t) ≤ fk(x|1, t). Moreover,
for every t = 0,1,2, . . . there exists an integrable func-
tion u(x|t), such that

fk(x|s, t) ≤ u(x|t),
for large values of k. For instance, the function u(x|
t) = 10t Ga(x|0.1,1), where Ga(x|0.1,1) denotes the
Gamma density with parameters 0.1 and 1, is an upper
bound of fk(x|s, t).

Applying the dominated convergence theorem to the
sequence {fk(x|s, t), k ≥ 1}, we have that

lim
k→∞

∫ 1

0
fk(x|s, t) dx =

∫ 1

0
limfk(x|s, t) dx = 0,

and this completes the posterior model consistency
proof for the Bayes factor based on the mixture of g-
priors and the hierarchical uniform prior.

A similar proof can be given for the Bayes factors
for g = n and for the intrinsic priors. This completes
the proof of Theorem 3.
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