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Bayesian Indirect Inference Using
a Parametric Auxiliary Model

Christopher C. Drovandi, Anthony N. Pettitt and Anthony Lee

Abstract. Indirect inference (I1) is a methodology for estimating the param-
eters of an intractable (generative) model on the basis of an alternative para-
metric (auxiliary) model that is both analytically and computationally easier
to deal with. Such an approach has been well explored in the classical liter-
ature but has received substantially less attention in the Bayesian paradigm.
The purpose of this paper is to compare and contrast a collection of what
we call parametric Bayesian indirect inference (pBIl) methods. One class of
pBII methods uses approximate Bayesian computation (referred to here as
ABC II) where the summary statistic is formed on the basis of the auxil-
iary model, using ideas from II. Another approach proposed in the literature,
referred to here as parametric Bayesian indirect likelihood (pBIL), uses the
auxiliary likelihood as a replacement to the intractable likelihood. We show
that pBIL is a fundamentally different approach to ABC II. We devise new
theoretical results for pBIL to give extra insights into its behaviour and also
its differences with ABC II. Furthermore, we examine in more detail the as-
sumptions required to use each pBII method. The results, insights and com-
parisons developed in this paper are illustrated on simple examples and two
other substantive applications. The first of the substantive examples involves
performing inference for complex quantile distributions based on simulated
data while the second is for estimating the parameters of a trivariate stochas-
tic process describing the evolution of macroparasites within a host based on
real data. We create a novel framework called Bayesian indirect likelihood
(BIL) that encompasses pBII as well as general ABC methods so that the
connections between the methods can be established.

Key words and phrases: Approximate Bayesian computation, likelihood-
free methods, Markov jump processes, quantile distributions, simulated like-
lihood.

1. INTRODUCTION

Approximate Bayesian computation (ABC) now
plays an important role in performing (approximate)
Bayesian inference for the parameter of a proposed sta-
tistical model (called the generative model here) that
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has an intractable likelihood. Despite the intense at-
tention ABC has recently received, the approach still
suffers from several drawbacks. An obvious disadvan-
tage is the usual necessity to reduce the data to a low
dimensional summary statistic. This leads to a loss
of information that is difficult to quantify. The sec-
ond, often less severe but sometimes related, drawback
is the computational challenge of achieving stringent
matching between the observed and simulated sum-
mary statistics.

In situations where an alternative parametric model
(referred to as an auxiliary model) can be formulated
that has a tractable likelihood, the methodology known
as indirect inference (II) (see, e.g., Gourieroux, Mon-
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fort and Renault, 1993 and Heggland and Frigessi,
2004) is applicable. II has been thoroughly examined
in the classical framework. Most methods differ in the
way that observed and simulated data are compared via
the auxiliary model. We expand on this later in the arti-
cle. For the moment, we note that some key references
are Gourieroux, Monfort and Renault (1993), Smith
(1993) and Gallant and Tauchen (1996).

However, II has been far less studied in the Bayesian
paradigm. Drovandi, Pettitt and Faddy (2011) devel-
oped an ABC approach that uses II to obtain sum-
mary statistics. In particular, the estimated parameter
of the auxiliary model fitted to the data becomes the
observed summary statistic. We adopt a similar naming
convention to Gleim and Pigorsch (2013) and refer to
this method as ABC IP where “T” stands for “indirect”
and “P” stands for “parameter”. Gleim and Pigorsch
(2013) also list another method, ABC IL (where “L”
stands for “likelihood”), which is essentially an ABC
version of Smith (1993). This approach follows ABC
IP in the sense that the parameter estimate of the aux-
iliary model is again the summary statistic. However,
the ABC discrepancy is based on the auxiliary likeli-
hood, rather than a direct comparison of the auxiliary
parameters.

Gleim and Pigorsch (2013) advocate a slightly dif-
ferent approach to ABC with II, which is effectively
an ABC version of the classical approach in Gallant
and Tauchen (1996). Here, Gleim and Pigorsch (2013)
use the score vector based on the auxiliary model as the
summary statistic, which is referred to as ABC IS (here
“S” stands for “score”). The parameter value used in
the score is given by the MLE of the auxiliary model
fitted to the observed data. This approach can be far
cheaper from a computational point of view since it
avoids an expensive fitting of the auxiliary model to
each dataset simulated from the generative model re-
quired in ABC IP and ABC IL.

Throughout the paper, the collection of approaches
that use the parametric auxiliary model to form sum-
mary statistics is referred to as ABC II methods. An
advantage of this approach over more traditional sum-
mary statistics is that some insight can be gained on the
potential utility of the II summary statistic prior to the
ABC analysis. Additionally, if the auxiliary model is
parsimonious, then the summary statistic can be low-
dimensional.

Gallant and McCulloch (2009) (see also Reeves and
Pettitt, 2005) suggest an alternative approach for com-
bining II with Bayesian inference. This method has
similar steps to ABC IP and ABC IL but essentially

uses the likelihood of the auxiliary model as a replace-
ment to the intractable generative model likelihood.
We note here that this is a fundamentally different ap-
proach as it is not a standard ABC method. In partic-
ular, there is no comparison of summary statistics and
no need to choose an ABC tolerance. Here, we refer
to this method as parametric Bayesian indirect likeli-
hood (pBIL). The focus of this paper is the application
of a parametric auxiliary model for the full data, which
we refer to as pdBIL (where “d” stands for “data”).
However, the ideas in this paper are equally applica-
ble if a parametric model is applied at the summary
statistic (not necessarily obtained using ABC II tech-
niques) level (i.e., some data reduction technique has
been applied; see Blum et al., 2013, for a review). This
is referred to as psBIL (where “s” stands for “summary
statistic””). We show that the Bayesian version of the
synthetic likelihood method of Wood (2010) is a psBIL
method. In the paper, we refer to the collection of ABC
II and pBIL approaches as pBII methods (“Bayesian”
“Indirect” “Inference” using a “parametric” auxiliary
model).

In the process of reviewing these pBII methods, we
create a novel framework called Bayesian indirect like-
lihood (BIL) which encompasses pBII as well as ABC
methods generally. In particular, if a specific nonpara-
metric auxiliary model is selected (npBIL) instead of a
parametric one (pBIL), then the general ABC method
is recovered. A nonparametric kernel can be applied ei-
ther at the full data (npdBIL) or summary statistic (nps-
BIL) level. The ABC II approaches are thus a special
type of npsBIL method where the summary statistic is
formed on the basis of a parametric auxiliary model.
This framework is shown in Figure 1, which also high-
lights the methods that this paper addresses.

This article does not develop any new algorithms for
pBIIL. However, this paper does make several interest-
ing and useful contributions. Firstly, we explore the
pdBIL method in more detail theoretically, and recog-
nise that it is fundamentally different to ABC II. The
behaviour of this method is also substantially differ-
ent. A technique sometimes applied with classical II
methods is to increase the simulated dataset size be-
yond that of the observed data in order to reduce the
variability of the estimated quantities under the auxil-
iary model (see, e.g., Smith, 1993; Gourieroux, Mon-
fort and Renault, 1993; Gallant and McCulloch, 2009).
We demonstrate that pdBIL and ABC II behave dif-
ferently for increasing size of the simulated data. Our
second contribution is to compare the assumptions re-
quired for each pBII approach. Our theoretical and em-
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The general BIL framework. Here, the rounded rectangles indicate particular instances of methods. The dashed arrows indicate

that there are multiple instances of that class of method in the literature that are not placed on this diagram. The dashed larger rounded
rectangles indicate the methods that this paper focusses on. That is, BII methods that make use of, in some way, a parametric auxiliary model

(so-called pBII methods).

pirical results indicate that the pBIL method will pro-
vide good approximations if the auxiliary model is suf-
ficiently flexible to estimate the likelihood of the true
model well based on parameter values within regions
of non-negligible posterior probability. ABC II meth-
ods rely on the parameter estimate or the score of the
auxiliary model to provide a near-sufficient summary
statistic. Finally, our creation of the general BIL frame-
work provides a clear way to see the connections be-
tween pBII and other methods.

The paper is organised as follows. In Section 2, the
notation used throughout the paper is defined. The
ABC II methods are reviewed in Section 3. The pBIL
approach is presented in Section 4. The theoretical
developments in this section, which offer additional
insight into the pBIL approximation, are new. In addi-
tion, this section demonstrates how the synthetic like-
lihood approach of Wood (2010) is a pBIL method on
the summary statistic level. Section 5 shows how ABC

can be recovered as a BIL method via a nonparamet-
ric choice of the auxiliary model. Section 6 provides a
comparison between ABC II and pdBIL. The contribu-
tions of this article are demonstrated on examples with
varying complexity in Section 7. The highlights of this
section include improved approximate inferences for
quantile distributions and a multivariate Markov jump
process explaining the evolution of parasites within a
host. The article concludes with a discussion in Sec-
tion 8.

2. NOTATION

Consider an observed dataset y taking values in Y
of dimension N assumed to have arisen from a genera-
tive model with an intractable likelihood p(y|@), where
0 € O is the parameter of this model. Intractability here
refers to the inability to compute p(y|@) pointwise as
a function of #. We assume that there is a second sta-
tistical model that has a tractable likelihood function.
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We denote the likelihood of this auxiliary model by
pA(Y|9), where ¢ € ® denotes the parameter of this
auxiliary model. There does not necessarily need to be
any obvious connection between @ and ¢. The auxil-
iary model could be purely a data analytic model that
does not offer any mechanistic explanation of how the
observed data arose. The parameter estimate of the
auxiliary model when fitted to the observed data is
given by ¢(y). Assuming a prior distribution on the pa-
rameters of the generative model, p(@), our interest is
in sampling from the posterior distribution, p(@]y), or
some approximation thereof.

We denote data simulated from the model as x € Y.
In this paper, we also consider the effect of using
n independent replicates of data simulated from the
model, which we denote x;., = (X1,...,X;) and de-
fine p(x1.,10) =[1'_, p(x;|0). Therefore the total size
of X1., is nN. Note that this could also relate to a sta-
tionary time series simulation of length nN (see, e.g.,
Gallant and McCulloch, 2009). In the case of a sta-
tionary time series or independent and identically dis-
tributed (i.i.d.) data it is not a requirement for the sim-
ulated dataset size to be a multiple of the observed data
size. However, for the sake of simplicity we restrict n
to be a positive integer.

Since the likelihood of the auxiliary model is tracta-
ble, we can potentially consider richly parameterised
statistical models to capture the essential features of the
data. We assume throughout the paper that the dimen-
sionality of the auxiliary model parameter is at least as
large as the dimensionality of the generative model pa-
rameter, that is, dim(¢p) > dim(#). Jiang and Turnbull
(2004) note that it still may be possible to obtain useful
estimates of a subset of the parameters when this as-
sumption does not hold. We do not consider this here.

3. APPROXIMATE BAYESIAN COMPUTATION WITH
INDIRECT INFERENCE

3.1 Approximate Bayesian Computation

ABC is widely becoming a standard tool for per-
forming (approximate) Bayesian inference on statisti-
cal models with computationally intractable likelihood
evaluations but where simulation is straightforward.
ABC analyses set n = 1 so that the simulated dataset
is the same size as the observed. However, for the pur-
poses of this paper, we relax this commonly applied
restriction for the moment.

In ABC, a summary statistic is defined by a collec-
tion of functions s, :Y" — S, for each n € N. Hence-
forth, the subscript n is omitted to ease presenta-

tion. Proposed parameter values that produce a sim-
ulated summary statistic, s(X1.,), “close” to the ob-
served summary statistic, s(y), are given more weight.
Here, we define “close” by the discrepancy func-
tion p(s(X1:), s(y)) and a kernel weighting function,
K:(p(s(X1:n), s(y))), where ¢ is a bandwidth referred
to as the ABC tolerance. The ABC target distribution
is given by

)] Pen(0ly) < p(0)pe n(y0),

where
Pea(y10) ¢ [ p01nI0)Ke(p (s X120 59)) i

is referred to here as the ABC likelihood. It can be
shown that if s(-) is a sufficient statistic and n = 1 then
Pe.1(@)y) — p(@ly) as € — 0 (Blum, 2010). Unfor-
tunately, ABC cannot be trusted when the value of n
is increased in the sense that the target p. ,(f]y) can
move further away from p(0|y). In the simple example
in Appendix A of the supplemental article (Drovandi,
Pettitt and Lee, 2014), the posterior distribution for a
univariate 6 converges to a point mass centred on the
single observation y as n — oo and ¢ — 0 (see also
Drovandi, 2012, pages 28-29, for a similar example).
We also verify this behaviour empirically on a toy ex-
ample. This suggests that whilst it is tempting to in-
crease the simulated dataset size to reduce the vari-
ability of the simulated summary statistic, such an ap-
proach is fraught with danger.

Standard ABC procedures can make use of n simu-
lated datasets but in a different way. Here the ABC like-
lihood is estimated via n~! Y Ke(p(s(x:), s(y))).
However, we note that this is an unbiased estimate (re-
gardless of n) of a more standard ABC likelihood, and
thus this process does not alter the ABC approxima-
tion (Andrieu and Roberts, 2009). Therefore, for the
remaining presentation in this section we set n = 1.
However, increasing n may improve the performance
of ABC algorithms and allow a smaller value of ¢ for
the same computational cost. We do not investigate this
here.

How the parameter value is proposed depends on the
chosen ABC algorithm. Here, we use Markov chain
Monte Carlo (MCMC ABC, Marjoram et al., 2003)
with the proposal distribution g chosen carefully, and
sometimes based on previous ABC analyses. The ap-
proach is shown in Algorithm 1 for completeness. In
the algorithm, 7 is the number of iterations. We choose
00, the initial value of the chain, so that it is well sup-
ported by the target distribution. This initial value may
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Algorithm 1 MCMC ABC algorithm of Marjoram et al. (2003).

1: Set §°

2: Simulate x° ~ p(-|00)
3: fori=1to T do

4:  Draw 0% ~g(-|6'" 1)

5. Simulate x* ~ p(-|0*) |
. . 00" 10 Ke (0 (s(x*),5(¥))
6 Compute r =min(l, G T ey
7. if uniform(0, 1) < r then
8: 0" =0* and x' = x*
9: else
10: 0 =6'""and x' =x~!
11:  end if
12: end for

)

come from a previous analysis or by performing some
preliminary runs. This algorithm is mainly used for
simplicity, although it is important to note that other
ABC algorithms could be applied.

One difficult aspect in ABC is that often some form
of data reduction is required, to avoid the curse of di-
mensionality associated with comparing all the data at
once (Blum, 2010). This choice of summary statistic is
therefore crucial for a good approximation, even when
¢ can be reduced to practically 0. In some applications,
it is possible to propose another model that provides
a good description of the data. The summary statistic
used in ABC can be formulated based on this auxiliary
model. These approaches are summarised below.

3.2 ABCIP

Drovandi, Pettitt and Faddy (2011) suggest using the
parameter estimate of the auxiliary model as the sum-
mary statistic to use in ABC. Data are simulated from
the generative model based on a proposed parameter
value, then the auxiliary model parameter is estimated
based on this simulated data. The way the auxiliary pa-
rameter is estimated provides a mapping between the
generative model and the auxiliary model parameters.
The ABC algorithm uses a noisy mapping between 6
and ¢ through the simulated data, x, generated on the
basis of 0, ¢ (0, x). For this purpose (explained below),
we use the maximum likelihood estimate (MLE) of the
auxiliary model

é0,x) = arggleag pa(X|@),

where x ~ p(-|@). ABC IP relies on the following as-
sumption:

ASSUMPTION 1 (ABC IP Assumptions). The esti-
mator of the auxiliary parameter, ¢ (6, x), is unique for
all @ with positive prior support.

It is important to note that ABC IP (as well as other
ABC approaches below) use n = 1 so the approxima-
tion quality of the method can depend on the statis-
tical efficiency of the estimator ¢(#, x) based on this
finite sample. Additionally, the MLE is asymptotically
sufficient (Cox and Hinkley, 1979, page 307). For this
reason, we advocate the use of the MLE in general
as it is typically more efficient than other estimators
like sample moments (for the auxiliary model). Sam-
ple moments may be computationally easier to obtain,
but are likely to result in a poorer ABC approxima-
tion if the statistical efficiency is lower than the MLE.
We note that the optimal choice of auxiliary estimator
(trading off between computational effort and statisti-
cal efficiency) may be problem dependent. An addi-
tional complication is that the auxiliary model is fit-
ted based on data generated from a different model,
x ~ p(-|0). Therefore, the efficiency of ¢(x, #) should
be based on p(x|#) not p4(x|¢) (see, e.g., Cox, 1961).
This can be investigated by simulation.

In Section 7.2, we provide an example where the
auxiliary model does not satisfy Assumption 1, creat-
ing difficulties for ABC IP. The ABC II methods (and
the pdBIL method) that follow do not necessarily re-
quire unique auxiliary parameter estimates.

An advantage of the II approach to obtaining sum-
mary statistics is that the summary statistic will likely
be useful if the auxiliary model fits the observed data
(see Section 3.5 for more discussion). In the case of
ABC IP, the (approximate) covariance matrix of the
auxiliary parameter estimate based on the observed
data can be estimated by the inverse of the observed
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information matrix [we denote this information ma-
trix by J(¢(y))]. Intuitively, we expect this discrepancy
function to be more efficient than a Euclidean distance,
as it can take into account the variability of summary
statistics and the correlations between summary statis-
tics. Denoting the observed summary statistic as ¢(y)
and the simulated summary statistic as ¢(x) (dropping
0 for notational convenience), we use the following
discrepancy for ABC IP:

p(s(x), s(y))
= / (X — ) JBX) (X — d(¥)).

It is important to note that this is essentially an ABC
version of the classical approach in Gourieroux, Mon-
fort and Renault (1993). A more appropriate weight-
ing matrix may involve considering the variance of
¢(x, #) when the data are generated under an alterna-
tive model, x ~ p(-|#) (Cox, 1961 provides a result,
the so-called sandwich estimator).

3.3 ABCIL

Gleim and Pigorsch (2013) also describe an ap-
proach that uses the auxiliary likelihood to set up an
ABC discrepancy. Here, the ABC discrepancy is

p(s(x), s(y)) =log pa(yle(y)) —log pa(yl$(x)).

This is effectively an ABC version of the classical
approach of Smith (1993). We note that p4(y|¢(y))
will remain unchanged throughout the algorithm and
provides an upperbound for values of p4(y|¢(x)) ob-
tained for every simulated dataset. ABC IL uses the
same summary statistic as ABC IP but uses a discrep-
ancy based on the likelihood rather than the Maha-
lanobis distance. Note that the discrepancy function
for ABC IP appears in the second-order Taylor series
approximation of log p 4 (y|¢(x)) about log pa (y|$(y))
(Davison, 2003, page 126) assuming standard regular-
ity conditions for p4(y|¢(y)) and ¢(y). The ABC tol-
erance could be viewed here as a certain cut-off value
of the auxiliary log-likelihood. The ABC IL approach
relies on the following assumption.

ASSUMPTION 2 (ABC IL Assumptions). The aux-
iliary likelihood evaluated at the auxiliary estimate,
A9 (x,0)), is unique for all @ with positive prior
support.

We note that this assumption can still be satisfied
even when the auxiliary model does not have a unique
MLE (see Section 7.2 for an example).

The ABC IP and ABC IL methods use parameter es-
timates of the auxiliary model as summary statistics
and can thus be expensive as it can involve a numer-
ical optimisation every time data is simulated from the
generative model. The next approach to obtaining sum-
mary statistics from II avoids this optimisation step.

3.4 ABCIS

Gleim and Pigorsch (2013) advocate the use of the
score vector of the auxiliary model evaluated at the
auxiliary MLE, ¢(y), as the summary statistic. We de-
note the score vector of the auxiliary model as

dlog pa (yl¢))T
0ddim(¢) ’

dlog pa(yld)
e

where ¢ = (¢1, ..., ddim@))” -

Each component of the summary statistic involv-
ing the observed data and the MLE, S4(y, ¢(y)), is
assumed to be numerically 0 under standard regular-
ity assumptions (see below, Assumption 3). Thus, the
search is for parameter values of the generative model
that lead to simulated data, x, that produces a score
close to 0. Noting that the approximate covariance ma-
trix of the observed score is given by the observed in-
formation matrix J(¢(y)), the following ABC discrep-
ancy is obtained for ABC IS

p(5®). 5(¥) = VS (x. 63) IS®) ' Sa(x. ().

This is essentially an ABC version of Gallant and
Tauchen (1996).

This approach is fast relative to ABC IP when the
MLE of the auxiliary model is not analytic whilst the
score is analytic since no numerical optimisation is re-
quired every time data are simulated from the genera-
tive model. Of course, it may be necessary to estimate
the score numerically, which would add another layer
of approximation and may be slower. In the examples
of this paper, we are able to obtain the score analyti-
cally. ABC IS relies on the following assumptions.

ASSUMPTION 3 (ABC IS Assumptions). The MLE
of the auxiliary model fitted to the observed data, ¢(y),
is an interior point of the parameter space of ¢ and
J(@(y)) is positive definite. The log-likelihood of the
auxiliary model, log p4(+|¢), is differentiable and the
score, SA(X, ¢(y)), is unique for any x that may be
drawn according to any @ that has positive prior sup-
port.

SA(y. $) =(

We note that Assumption 3 is generally weaker than
Assumption 1 (ABC IP), since it may still hold even if
the MLE of the auxiliary model is not unique.
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3.5 Discussion on ABC Il Summary Statistics

Only models in the exponential family possess a
minimal sufficient statistic with dimension equal to that
of dim(#). For other models, under suitable conditions,
the Pitman—Koopman—Darmois theorem states that the
dimension of any sufficient statistic increases with the
sample size. For many complex models, such as those
considered in the ABC setting, the minimal sufficient
statistic will be the full dataset (or the full set of or-
der statistics if the data are i.i.d.). The summary statis-
tic produced by ABC II will always have dimension
dim(¢p), and thus will not produce sufficient statistics
in general (this argument of course carries over to any
ABC method that uses some data reduction technique;
see Blum et al., 2013, for a review). Intuitively, our
suggestion is that the summary statistic produced by
ABC II should carry most of the information contained
in the observed data provided that the auxiliary model
provides a good description of the data. Unfortunately,
this is difficult to verify since it is usually not possi-
ble to quantify the amount of information lost in data
reduction. Despite this, by conducting goodness-of-fit
tests and/or residual analysis on the auxiliary model
fit to the data will at least provide some guidance on
the usefulness of the summary statistic produced by
ABC II. This is in contrast to the more traditional ap-
proach of summarising based on simple functions of
the data (e.g., Drovandi and Pettitt, 2011), whose util-
ity is difficult to assess prior to running an ABC analy-
sis without performing an expensive simulation study.
Furthermore, ABC II methods provide natural discrep-
ancy functions between summary statistics as shown
above. Selecting the discrepancy function and deter-
mining appropriate weighting of the summary statistics
in traditional ABC can be problematic.

It is well known that the choice of summary statis-
tic in ABC involves a compromise between sufficiency
and dimensionality (Blum et al., 2013). A low-
dimensional and near-sufficient summary statistic rep-
resents an optimal trade-off. Another advantage of
ABC II over usual ABC is the dimensionality of the
ABC II summary statistic can be controlled by select-
ing parsimonious auxiliary models and using standard
model choice techniques to choose between a set of
possible auxiliary models [e.g., the Akaike information
criterion (AIC) and the Bayesian information criterion
(BIO)].

4. PARAMETRIC BAYESIAN INDIRECT
LIKELIHOOD (pBIL)

4.1 Parametric Bayesian Indirect Likelihood for the
Full Data (pdBIL)

Reeves and Pettitt (2005) and Gallant and McCul-
loch (2009) propose a method that has similar steps to
ABC IP and ABC IL but is theoretically quite different,
as we show below. After data are simulated from the
generative model, the auxiliary parameter is estimated.
This auxiliary estimate is then passed into the auxiliary
likelihood of the observed data. This likelihood is then
treated in the usual way and fed into a Bayesian algo-
rithm, for example, MCMC. One first defines a collec-
tion of functions ¢, : ® x Y' — &. The artificial like-
lihood is then defined as follows:

Pan®10)= [ palyidy®.x1.) [T pCx:16) 1

i=1
and the target distribution of this approach is given by

PAn(01y) X pan(yl0)p(8),

where the subscripts A and n denote the dependence of
the target on the auxiliary model choice and the num-
ber of replicate simulated datasets, respectively. This
approach is effectively a Bayesian version of the sim-
ulated quasi-maximum likelihood approach of Smith
(1993). Smith (1993) proposes to maximise pa ,(y|9)
with respect to 6. Instead of applying this as an ABC
discrepancy as in the ABC IL method above, Reeves
and Pettitt (2005) and Gallant and McCulloch (2009)
treat this auxiliary likelihood as a replacement to the
likelihood of the generative model in the same way that
Smith (1993) does.

It is important to note that this approach does not
perform a comparison of summary statistics, and hence
there is no need to choose an ABC tolerance. Thus, it
is not a standard ABC algorithm. We refer to this ap-
proach simply as pdBIL, since we apply a “parametric”
auxiliary model for the full “data”. When the full data
have been summarised as a summary statistic, s(y), an
alternative approach is to apply a parametric auxiliary
model for the summary statistic likelihood, p(s(y)|9)
(see Section 4.2 for more details). In Figure 1, these
methods fall under the pBIL class. Within this class,
the focus of this paper is on the pdBIL method.

4.1.1 The pdBIL approximation. The theoretical as-
pects of this approach are yet to be investigated in the
literature. Some clues are offered in Reeves and Pettitt
(2005) and Gallant and McCulloch (2009), but we for-
malise and extend the theory here. The subscript 7 is
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used to denote that this target remains an approxima-
tion to the true posterior distribution and that the ap-
proximate target may change with n (we show below
that in general the target does depend on n). However,
because it is not an ABC algorithm, it is unclear how
pdBIL behaves as n increases. Gallant and McCulloch
(2009) use a very large simulation size (n ~ 700), with-
out a theoretical investigation.

With y fixed, we consider a potential limiting likeli-
hood p4(y|¢(#)) with associated posterior

pa®ly) < pa(yl$(8)) p(6).

Note that the parameter of p4 ,(y|0) is @ € ® but the
parameter of p(y|¢(0)) is ¢(0) € . We emphasise
that the results below all assume that y is a fixed value
inY.

To ease presentation, we define the random variable
9., = $,(0,X1,) where (X;) is a sequence of i.i.d.
random variables distributed according to p(:|#), and
we can write

Pan(y10) =E[pa(yldg.)].

where E is expectation with respect to the distribution
of Xi.,.

The results below provide sufficient conditions under
which, as n — 00, pa »(-ly) = pa(-|y) pointwise and

[ 1 ®pan@ias — [ ®paolyas.
® ®

where f is some function of § whose posterior ex-
pectation is of interest. This does not assume that
pA(Cly) = p(ly), which in general will not be the case.
A useful tool to allow us to answer both questions is
provided by Billingsley (1999).

THEOREM 1 (Billingsley, 1999, Theorem 3.5). If
X, is a sequence of uniformly integrable random vari-
ables and X, converges in distribution to X then X is
integrable and EX,, — EX.

REMARK 1. A simple sufficient condition for uni-
form integrability is that for some § > 0,

sup E(|Xn|1+5) < 00.
n

RESULT 1. Assume that pa ,(y|0) — pa(yl$(6))
as n — oo for all @ with positive prior support,

infy, [o pan(y10)p(0)d6 > 0 and supg e, pa(yle) <
oo. Then

Jim pan(01y) = pa(@ly).

Furthermore, if f : ® — R is a continuous function sat-
isfying sup,, [ | £(0)|'*° pa . (0]y)dd < oo for some
3 > 0 then

Jim [ 7 ®)prnG1y)1d0= [ 1©)pa@ly)ds.

PROOF. The first part follows from the fact that the
numerator of

pan(yl0)p@)
Jo Pan(y10)p(8)do

converges pointwise and the denominator is positive
and converges by the bounded convergence theorem.
For the second part, if for each n € N, 0,, is distributed
according to p4 ,(-ly) and @ is distributed according
to pa(-ly) then @, converges to @ in distribution as
n — oo by Scheffé’s lemma (Scheffé, 1947). Since f
is continuous, f(#,) converges in distribution to ()
as n — oo by the continuous mapping theorem and we
conclude by application of Theorem 1. [

Pan(@ly) =

A simple condition for pa ,(y|0) — pa(ylé(8)) as
n — oo to hold is provided by the following result.

RESULT 2. Assume that p4(y|@g ,) converges in
probability to p4 (y|¢(#)) as n — oo. If

sup EHPA(Y|¢0,n)’1+8] <0
n

for some § > 0 then pa ,(y|0) = pa(yl¢p(0)) asn —
Q.

PROOF.
rem1. O

The result follows by application of Theo-

Although the results above hold under conditions on
the fixed, observed data y, they will often hold for a
range of possible values of y.

The function ¢ (@) is often referred to as the mapping
or binding function in the II literature. In Gallant and
McCulloch (2009), it is assumed that this function is
1-1 but the results above demonstrate that this is not a
necessary condition for Result 2 to hold. The following
example where the auxiliary model is a mixture model
demonstrates this principle.

Assume that the true model is N(y; 8, 1) while the
auxiliary model is a mixture of normals, wN(y; 61,
D+ (1 —w)N(y; 62,1) so that ¢ = (01, 62, w). As-
suming an infinite sample from the true model, there
are an infinite number of MLEs of the auxiliary model;
¢O) =(0,0,w) where 0 <w <1, ¢(9) =(0,62,1)
where —oo0 < 6 < oo or ¢(0) = (01,6,0) where
—00 < 61 < 00. All of these possible mappings pro-
duce the same value of the auxiliary likelihood, which
coincides with the value of the generative likelihood.
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It is straightforward under the assumptions of Re-
sults 1-2 to show that pdBIL will target the true pos-
terior as n — oo if the true model is contained within
the auxiliary model. When the generative model is a
special case of the auxiliary model, using the notation
of Cox and Wermuth (1990), the auxiliary and gen-
erative parameter can be written as ¢ = (6., y) and
0 = (0,, y,) where e and r denote “extended” and “re-
duced” respectively and y is fixed. The proof of this
result is straightforward. It involves demonstrating that
¢(0,x1.,) is consistent also for the parameter of the
generative (reduced) model. Therefore, when n — oo
the generative and auxiliary likelihoods will coincide.

This theoretical result cannot typically be realised
in practice since a model which incorporates an in-
tractable model as a special case is likely to also be
intractable. However, it does suggest that the auxiliary
model be chosen to be adequately flexible to give a
good approximation of the generative likelihood for @
values with positive prior support. In practice, our em-
pirical evidence indicates that it is only necessary for
the auxiliary likelihood to mimic the behaviour of the
generative likelihood for the values of # with nonnegli-
gible posterior support and for the auxiliary likelihood
to be negligible in regions of the parameter space with
little posterior support. If this is not the case, it is likely
that the pdBIL method will lead to poor approxima-
tions (as we demonstrate in Section 7.1).

If the binding function, ¢(@), were known, the
pdBIL method would proceed straightforwardly. Since
it will not be available in practice, it can be estimated
indirectly through the simulated data x;.,. From the
above, it is desirable for the pdBIL method if the aux-
iliary likelihood is as close as possible to the true like-
lihood. Gallant and McCulloch (2009) show, for a par-
ticular choice of the auxiliary model, that choosing the
MLE for ¢(0, x;.,) minimises the Kullback-Leibler
divergence between the generative and auxiliary likeli-
hoods. Furthermore, this choice will often lead to Re-
sults 1-2 holding. Therefore, we advocate the use of
the MLE with this method. When the MLE of the auxil-
iary model is used, Cox (1961) provides an expression
which defines ¢(0) [see equation (25) of Cox, 1961].

It remains to be seen what the target of pa ,(0y)
is relative to p4(@|y). From an intuitive perspective,
increasing n leads to a more precise determination
of the mapping ¢(#), and thus should lead to a bet-
ter approximation. A more theoretical argument is as
follows. The approximations will coincide with each
other provided E[pa(¥l¢y )] = pa(y|¢(6)) (Andrieu
and Roberts, 2009). Unfortunately, even if one uses an

unbiased estimator for the auxiliary parameter, that is
El¢g ,] = ¢#(0) for any value of n, this result will still
rarely hold in general. The likelihood can be viewed
here as a nonlinear function of the auxiliary parameter
estimate, and so E[pa(yl¢g )1 # pa(y|¢(0)) in gen-
eral. Our empirical evidence (see Section 7) suggests
that p4 ,(@]y) typically becomes less precise relative
to pa(@ly) as the likelihood estimate becomes more
noisy, that is, when n is reduced. The message of Re-
sults 1-2 is that, provided the auxiliary model is suit-
ably chosen, a better approximation can be anticipated
by taking n as large as possible, which has the effect of
reducing the bias of pa(y|¢g ).

4.1.2 MCMC pdBIL. As an example, MCMC can
be used to sample from the pdBIL target (referred to
here as MCMC pdBIL, see Gallant and McCulloch,
2009). This approach is presented in Algorithm 2.

As Results 1-2 suggest, the aim with pdBIL is to
select n as large as possible. We demonstrate in the
examples that it is desirable to consider values of n
greater than one due to the improved statistical effi-
ciency of MCMC pdBIL (and potentially other algo-
rithms that implement pdBIL) when increasing n. Of
course, the method will become computationally infea-
sible for very large n.

4.2 Parametric Bayesian Indirect Likelihood for a
Summary Statistic (psBIL)

Wood (2010) proposes a method called synthetic
likelihood when it is convenient to perform inference
on the basis of a set of summary statistics rather than
the full data. Considering Bayesian inference, the tar-
get distribution when the data have been reduced to a
summary statistic is given by

p(01s(y)) x p(s(y)|0)p(0).

The major issue with this construction is that there is
no analytical form for the likelihood function of the
summary statistic, p(s(y)|#). Wood (2010) overcomes
this by applying, based on the terminology in this pa-
per, a parametric auxiliary model for this probability
distribution, p4(s(y)|¢(#)). In our framework, an ap-
proach that applies a parametric auxiliary model to
form the likelihood of the summary statistic rather than
the likelihood of the full data (as is presented in Sec-
tion 4.1) is referred to here as psBIL (where “s” denotes
“summary statistic”). Therefore the Bayesian version
of Wood (2010) is a psBIL approach. For the auxil-
iary likelihood, pa(s(y)|¢(0)), Wood (2010) consid-
ers using the likelihood of a multivariate normal distri-
bution, N (u(9), X(0)), where ¢p(0) = (u(0), X(0)) is
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Algorithm 2 MCMC pdBIL algorithm (see also Gallant and McCulloch, 2009).

1: Set §°

2: Simulate xj., ~ p(-|00)

3: Compute o' = argmaxged pa(XJ.,|d)

4 fori=1to7T do

5. Draw 0* ~q(-|6'" ")

6:  Simulate xj,, ~ p(:|6™)

7. Compute ¢(X}.,) = argmaxg pa(x],, |¢)

1 pA<y|¢<xT:n>>p<o*>qu|0*>)

e " pa(yle’Hp®6 g @*10 )
9:  if uniform(0, 1) < r then

8:  Compute r = min(

10: 0 =6*
¢ =g(xt,)
12:  else

13: 0 =0"""!
14: ¢i — ¢i—l
15:  end if

16: end for

the auxiliary parameter. As is the case with pdBIL, the
binding function ¢ (@) is rarely known but can be es-
timated via simulated data from the generative model
for a particular value of 8. Using our notation, we ob-
tain the following dataset from the true model of the
summary statistic, (s(Xp),...,s(X,)). This represents
n i.i.d. observations from s(-)|#. An advantage of se-
lecting such a simple auxiliary model is that the MLE
has the analytic form

1 n
H(X1n, 0) == 5(xi),

iz

1 n
X (X1:0,0) = ;Z(s(x» — (X120, 0))

i=1
(s(xp) — (X1, 0)) ",

where the superscript 7 denotes transpose. The aux-
iliary likelihood used is then based on N(p (X1, 0),
¥ (X1, #)). Our results indicate that the target distri-
bution of this method will depend on n, and, if the aux-
iliary model for the summary statistic likelihood is rea-
sonable, better approximations of p(@|s(y)) are likely
to be obtained for large n.

5. ABC AS A BIL METHOD WITH
NONPARAMETRIC AUXILIARY MODEL

An alternative and perhaps natural candidate for p4
is to use a kernel density estimate based on the samples

X1.;. This corresponds to choosing ¢ (0, X1.,) = X1
and we define

1 n
PA(YIBO. x1:)) = pa(yIxiz) = — 3 Ke(p(y, X)),
i=1
(Diggle and Gratton, 1984), where ¢ is the bandwidth
parameter. We have then

Pany10)= [ pa(y1#®.x1.0) [ px;10)
j=1

1 -
= /Y - _Z;Kg(p(y, X;)) 1_[1 p(x;16) dXi.n
i= J=

1 n n
== [ Kelotyx0) [T pxi16) dxi
i=17Y j=1

n'_

= /YKg(p(y, X)) p(x]0) dx

= p:(y10),

and this is exactly the form of the standard ABC like-
lihood. In addition, n» does not affect the likelihood
(although it may help computationally in some al-
gorithms) and e controls the level of approximation.
Here, we see that this is an estimate of the ABC like-
lihood where the comparison is made between the
full datasets. Here, we obtain the npdBIL approach
as presented in Figure 1 (where “d” corresponds to
full “data”). Alternatively, a nonparametric density es-
timate of the auxiliary model of the summary statistic
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likelihood, p(s(y)|¢(X1.n,8)), could be applied. Us-
ing a similar procedure to above, we obtain p(s(y)|9).
We refer to this in Figure 1 as npsBIL (npBIL based on
a “summary statistic”). This is the approach adopted
by Creel and Kristensen (2013), however, their focus
is on point estimation (posterior mean). Unfortunately,
Creel and Kristensen (2013) refer to their Bayesian es-
timator as BIL, however, under our framework BIL is
a more general class of methods. Of course, if the sum-
mary statistic is derived from some parametric auxil-
iary model, then the ABC II class of method is recov-
ered as an npsBIL method. The reader is again referred
to Figure 1 to see the connection between these meth-
ods.

By selecting a parametric model for the auxiliary
likelihood (pBIL), we can potentially overcome the
curse of dimensionality associated with the nonpara-
metric aspect of ABC. This requires further research.
Of course, finding a suitable parametric auxiliary
model may be challenging in practice.

6. COMPARISON OF ABC Il AND pdBIL

There are a few remarks to be made about the above
results in relation to theoretical comparisons between
ABC II and pdBIL.

REMARK 2. Under suitable conditions better ap-
proximations with pdBIL are obtained by increasing ».
This is in stark contrast with ABC II, which cannot be
trusted for n > 1.

REMARK 3. In the case where the true model is a
special case of the auxiliary model, the pdBIL method
will be exact in the limit as n — oo. In contrast, in
this ideal situation, ABC II still does not produce suffi-
cient statistics (see the dimensionality argument in Sec-
tion 3.5) and will not target the true posterior in the
limit as ¢ — 0. An example is where the true model is
a t-distribution with location, scale and degrees of free-
dom of u, o and 1, respectively. The auxiliary model
is a more general t-distribution with degrees of free-
dom v. In this case, the pdBIL method is exact in
the limit as n — oo as the true model is incorporated
within the auxiliary model. Unfortunately, ABC II does
not produce a sufficient statistic as the summary statis-
tic will be of dimension three whilst it is known for this
model the minimal sufficient statistic consists of all the
order statistics. Of course, finding an auxiliary model
that satisfies this condition in practice will rarely be
feasible.

REMARK 4. Even if the auxiliary parameter esti-
mate or score happen to be a sufficient statistic for the
generative model, pdBIL still will not generally target
the true posterior, as the auxiliary and generative likeli-
hoods will still not match up. In this situation, the ABC
II approaches will enjoy convergence to the true poste-
rior as ¢ — 0 whilst pdBIL will not converge to the
true posterior as n — oo. However, sufficient statistics
are rarely achieved in practice.

Remarks 3 and 4 demonstrate that pBII methods
generally will not (and rarely will) target the true
posterior distribution asymptotically. This is gener-
ally the case for other techniques in the literature
for dealing with models that have intractable likeli-
hood functions. There are some exceptions to this.
For example, exact techniques are available for so-
called doubly intractable models when perfect sim-
ulation from the generative model is possible (e.g.,
Mgller et al., 2006; Murray, Ghahramani and MacKay,
2006). Furthermore, so-called pseudo-marginal meth-
ods (Andrieu and Roberts, 2009) are applicable when
a positive and unbiased estimator of the likelihood is
available and is a current area of research. Despite not
being exact, we demonstrate that pBII methods can
produce quite good approximations in some applica-
tions.

The characteristics of a good auxiliary model differ
between the ABC II and pdBIL methods. In the context
of ABC II, we simply require a good summarisation of
the data, that is, a low-dimensional summary statistic
that hopefully carries most of the information in the
observed data. Therefore, we feel that it is useful if the
auxiliary model in this context provides a good fit to
the data and is parsimonious, so that the essential fea-
tures of the data are described well and as succinctly as
possible. This is independent of the process for select-
ing a generative model. Therefore, the same auxiliary
model should be used regardless of which generative
model is fitted to the data. For pdBIL, we require a
flexible auxiliary model that can mimic the behaviour
of the generative model for different values of § within
the posterior support. Here, it is not necessary for the
auxiliary model to provide a good fit to the data consid-
ering the fact that the generative model being proposed
might be mis-specified. The auxiliary model chosen for
pdBIL may alter depending on the generative model
being proposed. In our examples, the generative model
is either known or provides a good fit to the data. In
such cases, it would not be uncommon to choose the
same auxiliary model for the ABC II and pdBIL meth-
ods.
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The conditions required for pdBIL to produce ex-
act results are very strong and finding an auxiliary
model that is sufficiently flexible so that the auxiliary
likelihood can mimic the generative likelihood could
be difficult in practice. In some applications, an aux-
iliary model that is a simplified version of the gen-
erative model may be specified where the parameter
of each model has the same interpretation. For exam-
ple, the auxiliary model for a continuous time Markov
jump process may be its corresponding linear noise
approximation. In such situations, the pdBIL method
is unlikely to perform well whilst it remains possible
that such an approximate model could produce useful
summary statistics for ABC even though the auxiliary
model would not fit the data well. Jiang and Turn-
bull (2004) show that II can work well in the classi-
cal framework when the auxiliary model is a simpli-
fied version of the generative model. Further research
is required in the Bayesian setting.

An additional advantage of the ABC II approach
over pdBIL is the extra flexibility of being able to ac-
commodate additional summary statistics that do not
involve an auxiliary model, since this method belongs
in the more general npsBIL class (see Wood, 2010,
for an example where the summary statistic is a com-
bination of auxiliary parameter estimates and other
summary statistics). Jiang and Turnbull (2004) and
Heggland and Frigessi (2004) consider II applications
in a classical framework where the comparison of ob-
served and simulated data is made on the basis of both
an auxiliary model and supplementary summary statis-
tics.

7. EXAMPLES
7.1 Toy Example

In this example, we consider a simple model so that
exact Bayesian inferences are trivially obtained. Our
intention here is to investigate the theoretical consider-
ations in Section 4. In particular, we show that when
the auxiliary model is reasonable, pdBIL produces bet-
ter approximations as the size of simulated datasets
goes beyond that of the observed data and as a use-
ful by-product increases the acceptance probability of
the MCMC moves. We also demonstrate empirically
that unfortunately ABC approaches (including those
using II to obtain summary statistics) do not possess
this same desirable property as n is increased. Addi-
tionally, we investigate the output of pdBIL when the
auxiliary model is poorly chosen.

Here, the data are N = 100 independent draws from
a Poisson distribution with a mean of A = 30, y =

Vs ey ¥100) = Po(30). The prior is A ~ ['(a, B)
(where « = 30 and 8 = 1), which results in a Ay ~
raao+ Z}g} vi, 101) posterior. For such a relatively
large value for the mean of the Poisson distribution,
a normal approximation with mean, u, and variance,
7, will be reasonable. We use this normal distribution
as the auxiliary model. Here, the auxiliary likelihood,
MLE and score are trivial to compute. The Anderson—
Darling test for normality produced a p-value of about
0.576, which indicates no evidence against the assump-
tion that the normal auxiliary model provides a good
description of the data.

The summary statistic based on this auxiliary model
includes the sample mean, y, which is a sufficient
statistic for the generative model. Thus, the ABC 1I
approaches can be expected to produce essentially ex-
act inferences (excluding Monte Carlo error) as long
as the ABC tolerance is low enough. As demonstrated
in Figure 2, this is the case. Such sufficiency is not
usually achieved in practice. However, it can be seen
that the ABC posterior is grossly over-precise when the
size of the simulated datasets is increased to 1000 (i.e.,
n =10).

In the limit as n — oo, the pdBIL method boils down
to a N (A, A) distribution approximating a Po()) distri-
bution. The central limit theorem states that the normal
approximation improves as A increases. Since A = 30,
pdBIL can never target the true posterior. The pdBIL
target distribution (for n — o0) is proportional to
MNP lexp(=(B + N/2)Mexp(—=20)~! 0Ly y7)
while the true posterior is proportional to
AetTil -l exp(—(B + N)A). Figure 2(d) demon-
strates a small amount of bias for the pdBIL method
(this is an illustration of Remark 4).

Figure 2(d) presents the results for the pdBIL. method
based on simulated dataset sizes of n =1 and n = 10
(results for n = 100 and n = 1000 are even closer to
the true posterior but are not shown on the figure). It is
evident from the figure that a more precise posterior is
achieved when using larger simulated datasets, without
necessarily over-shooting the true posterior. Addition-
ally, there was an increase in the MCMC acceptance
rate as n increased. For the n values investigated here,
the acceptance rates were roughly 46%, 67%, 72% and
73% for increasing n. These acceptance rates are very
high, especially relative to ABC algorithms which gen-
erally suffer from quite low acceptance probabilities.
This example demonstrates that better inferences using
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applied (on-line figure in colour).

pdBIL can be obtained by increasing the size of the
simulated dataset beyond that of the observed. Unfor-
tunately, ABC inferences that use a simulated data size
larger than that of the observed data cannot be trusted
in the same way (see Remark 2).

The reason for improved inferences from pdBIL as n
is increased is apparent from Figure 3. Here, it can be
seen from increasing n the log-likelihoods of the gen-
erative and auxiliary models are becoming more corre-
lated with the slope of the relationship becoming ap-
proximately one.

Figure 4(a) shows the true Po(A) and auxiliary
N (X, 1) log-likelihood values for A within the 99%
highest prior density region. The vertical lines indi-
cate the bounds of a 99% credible interval based on

(d) pdBIL

Posterior distributions for A, the parameter of the Poisson example for when (a) ABC IP, (b) ABC IS, (c) ABC IL and (d) pdBIL is

the true posterior. It can be seen that the auxiliary
log-likelihood is a poor approximation to the true log-
likelihood in regions with negligible posterior support.
This is even the case for larger A values where it would
be expected that a normal approximation would be
more appropriate. However, the normal approximation
will perform relatively poorly in the tails of the distri-
bution. It is evident that the auxiliary likelihood acts as
a useful replacement likelihood in the region of high
posterior support [see Figure 4(b)], and this is enough
to result in a good approximation of the true posterior
for large n.

Finally, we investigate the output from pdBIL when
the auxiliary model is chosen poorly. Figure 4(c)
shows the results for when the auxiliary model is



BAYESIAN INDIRECT INFERENCE 85

-310
8 -320
o
<
[
=
o
S -330 1
>
8
E
© -340f
-350 ! : :
-330 -320 -310
generative log-likelihood
(a)yn=1
=310
©
o
o
=
© ey
X N
T
()} L
ks) -320
=
8
%
]
©
-330
-330 -320 -310
generative log-likelihood
(c) n =100

F1G. 3.

N(u, 79), where tp is fixed. Here, the pdBIL poste-
rior as n — oo is proportional to A%~ !exp(—(8 —
ro_l ZlN:l Vi)\) exp(—O.SNro_l)@). Here, we consider
790 = 49 (over-dispersed) and 79 = 16 (under-
dispersed). The results show over-precise and con-
servative results in the under-dispersed and over-
dispersed case, respectively. The under-dispersed and
over-dispersed auxiliary models have thinner and fatter
tails, respectively, than the likelihood of the generative
model in the parameter space well supported by the
posterior distribution (see Figure 4). In these cases, the
auxiliary model is not providing a useful replacement
likelihood. Just by chance ABC 1I is still exact here as
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Comparison of the generative and auxiliary log-likelihoods for the toy example calculated during the MCMC pdBIL algorithm with
different values of n [(a) n =1, (b) n = 10, (c) n = 100, (d) n = 1000].

& — 0 since the parameter estimate for u is a sufficient
statistic for A.

7.2 g-and-k Example

7.2.1 Models and data. Quantile distributions (or
functions) represent a class of distributions that are de-
fined in terms of their quantile function. Such functions
can be formulated to create more flexible distributions
than other standard distributions. In this example, the
focus is on the g-and-k distribution described in, for
example, Rayner and MacGillivray (2002) (the reader
is also referred to the references therein). This quantile
function, which can also be interpreted as a transfor-
mation of a standard normal random variate, has the
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Investigating different auxiliary models for the toy example. (a) Comparison of the true and auxiliary log-likelihoods values for A

values within the 99% highest prior density region. (b) Comparison of true and auxiliary log-likelihoods for different choices of the auxiliary
model. The vertical lines in (a) and (b) indicate the bounds of a 99% credible interval based on the true posterior. (c) Comparison of the
posterior distributions for the three different auxiliary models (on-line figure in colour).

following form:

Q(z(p); ) =a+ b(l bl eXP(—gZ(p))>

1 +exp(—gz(p))
(14 2(m2)*z(p).

Here, p denotes the quantile of interest while z(p) rep-
resents the quantile function of the standard normal
distribution. The model parameter is § = (a, b, c, g, k),
though common practice is to fix ¢ at 0.8, which we do
here (see Rayner and MacGillivray, 2002, for a justifi-
cation). The likelihood function can be computed nu-
merically, although this is more expensive than model

2)

simulation which is cheaply implemented for quantile
distributions via the inversion method. Full likelihood-
based inference is more expensive than the simulation-
based approaches for the relatively large dataset con-
sidered here.

The observed dataset consists of 10,000 independent
draws from the g-and-k distribution witha =3,b =1,
c=0.8, g=2 and k = 0.5 (same as considered in
Drovandi and Pettitt, 2011). A nonparametric estimate
of the probability density function based on these sam-
ples is shown in Figure 5. The data exhibit significant
skewness and kurtosis.
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(a) Nonparametric estimate of the density function based on a dataset simulated from the g-and-k distribution together with the

density of a three component mixture of normals estimated from the data. (b) Absolute value of the difference between the theoretical c.d.f. of
the three component mixture model and the empirical c.d.f. of the data (on-line figure in colour).

We use a three component normal mixture model
with 8 parameters as the auxiliary model. A mixture
model is a suitable choice for an auxiliary distribu-
tion since it can be made arbitrarily flexible whilst
maintaining a tractable likelihood function. Therefore,
auxiliary MLEs are computationally easy to obtain
[here we use the Expectation-Maximisation (EM) al-
gorithm] and the subsequent likelihood can be evalu-
ated cheaply. On the other hand, mixture models can
he highly irregular and the MLE is not consistent
in general. The invariance of the likelihood to a re-
labelling of the components causes an immediate is-
sue for ABC IP, which requires a unique auxiliary pa-
rameter estimate. In an attempt to overcome this, we
post-process the mixture model parameter estimates
generated throughout the ABC IP algorithm by order-
ing them based on the component means. Since pdBIL
and ABC IL use the likelihood of the auxiliary model,
they more naturally overcome the label switching is-
sue. However, the mixture model can give other numer-
ical issues such as those resulting from infinite likeli-
hoods. This would create serious issues for methods
that use the auxiliary likelihood (the auxiliary likeli-
hood would not be unique). From investigations on the
dataset here, it appears that the likelihood is well be-
haved and that the modes in the likelihood correspond
only to re-labelling of components. Therefore, we pro-
ceed with ABC IL and pdBIL with caution. The ABC
IS method, based on the score vector, appeared to not

have any difficulties accommodating the auxiliary mix-
ture model.

From Figures 5(a) and 5(b), it can be seen that there
is a correspondence between both the densities and the
cumulative distribution functions of the mixture model
and the data. However, we performed a hypothesis test
to assess the goodness-of-fit of the three component
mixture model with a parameter given by the MLE.
The test-statistic was the Kolmogorov—Smirnov statis-
tic that computes the maximum absolute difference be-
tween the theoretical and empirical c.d.f.s. To avoid
any distributional assumption about this test-statistic,
we simulated 10,000 values of this statistic under the
assumption that the mixture model is correct. We found
that the observed test-statistic was exceeded 0.25% of
the time, indicating strong evidence against the mix-
ture providing a good fit to the data. Figure 5(b) shows
the differences between the empirical and theoretical
c.d.f’s. However, from Figure 5(a) it is evident that the
mixture model can explain several features of the true
model, and since the dataset size is large there is a high
probability of detecting a difference. Our results below
show that we are able to obtain quite accurate posterior
distributions with the pBII methods despite the lack
of fit suggested by the hypothesis test. In Appendix B
of the supplemental article (Drovandi, Pettitt and Lee,
2014), we present results from using a four component
mixture model. Unfortunately we found this was sub-
stantially more expensive to apply and resulted in some
numerical problems.
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7.2.2 Results. The proposal distribution in the
MCMC for the pdBIL algorithm was guided using the
results in Drovandi and Pettitt (2011), who analysed
the same data via a traditional ABC approach that used
robust measures of location, scale, skewness and kur-
tosis as the summary statistics.

pdBIL was run using n values of 1, 2, 4, 10, 20
and 50 for a number of iterations given by 1 million,
500,000, 500,000, 200,000, 100,000 and 75,000, re-
spectively. The MCMC acceptance probabilities ob-
tained were about 2.8%, 5%, 7.1%, 13.1%, 18.5% and
20.8%, respectively. The average effective sample size
(ESS, averaged over the four parameters) divided by
the computing time (in hours) were roughly 63, 127,
106, 124, 70 and 41, respectively. This demonstrates
how pdBIL is still feasible as n increases to a certain

point. However, for very large n the computation be-
comes unmanageable.

Figure 6 shows the results for n = 1, n = 10 and
n = 50 (the results for n = 20 and n = 50 were quite
similar). A very time consuming exact MCMC algo-
rithm was run for 10,000 iterations to obtain a gold-
standard (producing an average ESS per hour of 6). The
results show an increase in precision of the pdBIL pos-
teriors as n increases. The results for a and b are very
accurate, while the pdBIL posteriors for g and k& show
some bias (also with a loss of precision for g).

ABCIP and ABC IL were run for 1 million iterations
with a tolerance tuned to achieve an acceptance rate of
about 1%. Due to the ABC IS method being so much
faster than the other pBII approaches, we aimed for a
relatively lower ABC tolerance and ran the algorithm

= = =n=1

n=10
..... n=50
— pOSterior

301

FI1G. 6.  Posterior distributions for the parameters of the g-and-k model based on the pdBIL approach with n = 1 (dash), n = 10 (dot-dash)
and n = 50 (dot). Also shown are results based on using the true likelihood (solid) (on-line figure in colour).
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for more iterations. More specifically, 7 million itera-
tions were used and the ABC tolerance chosen resulted
in an acceptance rate of 0.3%. We also applied a regres-
sion adjustment to the (appropriately thinned) ABC 11
samples using the approach of Beaumont, Zhang and
Balding (2002) in an attempt to eliminate the effect
of the ABC tolerance. In order to apply regression ad-
justment for ABC IL, the same post-processing proce-
dure used for ABC IP was required. Without regression
adjustment [see Figure 2 of the supplemental article
(Drovandi, Pettitt and Lee, 2014)], the ABC IS method
gave slightly better results than other ABC II methods,
which could be due to the ability of ABC IS getting to a
lower ABC tolerance. The unadjusted ABC IL results
were also slightly better than the unadjusted ABC IP

results. ABC IS produced an average ESS per hour of
90 while the corresponding number was 50 and 30 for
ABC IP and ABC IL, respectively, showing that the
ABC IS method required less time to produce a bet-
ter approximation. Regression adjustment offered im-
provement to all the ABC II methods. We compared
the pBII approaches with the ABC results of Drovandi
and Pettitt (2011). It should be noted that we applied
a local regression adjustment to the ABC results here
as we found some improvement for the parameters a
and g (results were very similar for b and k relative to
those obtained in Drovandi and Pettitt, 2011). The re-
sults are shown in Figure 7. Overall, the pBII results
present a marked improvement over the ABC analysis
of Drovandi and Pettitt (2011), with g seemingly the

e ABC
A ¥ ABCIS
ABC IL
O ABCIP
----- pdBIL n=50
— pOSterior

30

oy,

F1G. 7. Posterior distributions for the parameters of the g-and-k model based on the ABC approach of Drovandi and Pettitt (2011) (dash),
ABC IS (star), ABC IL (dot-dash), ABC IP (circle) and pdBIL with n = 50 (dot) and results from using the true likelihood (solid). Note that
regression adjustment has been applied to all ABC results (on-line figure in colour).
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most difficult parameter to estimate. The ABC II meth-
ods with regression adjustment produced very simi-
lar results. Taking into account accuracy and compu-
tational efficiency, ABC IS with regression adjustment
is probably the preferred method. When a four com-
ponent auxiliary model was used [Appendix B of the
supplemental article (Drovandi, Pettitt and Lee, 2014)],
the ABC II methods with regression adjustment pro-
duced similar results and outperformed pdBIL in terms
of accuracy. Further, the ABC IS approach was able
to avoid the heavy computation associated with fitting
the four component mixture model at every iteration,
and thus also avoided other numerical issues such as
the EM algorithm converging to potentially local op-
tima. The ABC Il regression adjustment results showed
some improvement for g and k when going from the
three to four component mixture model.

7.3 Macroparasite Example

7.3.1 Models and data. Drovandi, Pettitt and Faddy
(2011) developed an ABC IP approach to estimate the
parameters of a stochastic model of macroparasite pop-
ulation evolution developed by Riley, Donnelly and
Ferguson (2003) (see also Michael et al., 1998). Data
was collected independently on 212 cats, who were ini-
tially injected with a certain number of juvenile Brugia
pahangi parasites. Some time after each cat was sac-
rificed, the number of parasites that had reached ma-
turity were counted and recorded (see Denham et al.,
1972). Drovandi, Pettitt and Faddy (2011) discovered
that a beta-binomial model provided a good description
of the data. Below provides a brief review of the gener-
ative and auxiliary models, with the reader referred to
Drovandi, Pettitt and Faddy (2011) for more details.

Attime ¢, any host is described by three random vari-
ables {M(t), L(t), I(t)}, where M (¢) is the number of
mature parasites, L(¢) is the number of larvae and 7 (¢)
is a discrete version of the host’s immunity.

It is assumed that each larva matures at a constant
rate of y per day. Larvae die at a rate puy + B1(t) per
larva where py represents the rate at which natural
death of larvae occurs and f is a rate parameter that
describes additional death of larvae due to the immune
response of the host. The acquisition of immunity is
assumed to be dependent only on the number of larvae
and occurs at rate vL(¢), and a host loses immunity at
a rate p; per unit of immunity. Mature parasites die
at a rate of uys adults per day. Parameters y and s
have been previously estimated at 0.04 (Suswillo, Den-
ham and McGreevy, 1982) and 0.0015 (Michael et al.,
1998), respectively.

The data were modelled via a continuous time dis-
crete trivariate Markov process. Given current values
of the states at time ¢, M(¢) =i, L(t) = j, M(t) =k,
and a small time increment A; the transition probabil-
ities at time ¢ + A, are given by

pi+1,j—1,k)=vjA;r+0(A;),
pl,j— 1 k)= L+ Bk)jAr+o(Ay),
3) pli—1,j,k)=pumiAy+o(Ay),
p, j,k+1)=vjA, +0(A,),
p, j. k—1)=purkA; +o(Ay),

and the probability of remaining in the same state is
one minus the sum of the above probabilities. Only
the final mature count is observed whilst the immu-
nity and larvae counts are unobserved throughout the
process. Moreover, the immune response variable 7 (¢)
is unbounded. Data generative likelihood-based ap-
proaches appear infeasible due to computational issues
(see Drovandi, Pettitt and Faddy, 2011). Simulation is
straightforward via the algorithm of Gillespie (1977).
The prior distributions are: v ~ U (0, 1), u; ~ U (0, 2),
wur ~U,1)and B~ U(0,2).

Here, we denote the observed data as y = (my, ...,
mo12) where m; is the mature count for the ith host.
Covariates for the ith host are given by /; (initial larvae
count) and ¢; (sacrifice time).

For the auxiliary model, Drovandi, Pettitt and Faddy
(2011) capture the overdispersion via a beta-binomial
regression model and take into account the effect that
t; and [; have on m;. Denote «; and B; as the beta-
binomial parameters for the ith host. More specifically,
the ith observation has the following probability distri-
bution:

k]

l; ) B(m; +a;,l; —m; + B;)
mi B(a;, Bi)

where B(-,-) denotes the beta function. Consider a
re-parameterisation in terms of a proportion, p; =
o;/(a; + Bi), and over-dispersion, & = 1/(«; + Bi), pa-
rameter. The auxiliary model relates these parameters
to the covariates via

@) p(mi|ai,ﬁi)=(

logit(p;) = fp(ti, i),
log(&) = fe(t;, i),

where

7y — N _ | moo, ifl; <100
fe ity = fe i) = { n00, ifl; > 100
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and
Tpltili) = fp(ti)
= po + B1(log(1;) — log(1))
+ Ba(log(t;) —log(1))*.

Hence, the auxiliary model has the parameter ¢ =
(Bo, B1, B2, n100, 1200) While the generative model has
the parameter 8 = (v, wy, pur, B).

Using the approach outlined in Appendix C of the
supplemental article (Drovandi, Pettitt and Lee, 2014),
we obtained goodness-of-fit p-values of 0.37 and 0.47,
indicating no evidence against the beta-binomial model
providing a good description of the data. Drovandi,
Pettitt and Faddy (2011) use the AIC to select this aux-
iliary model over competing auxiliary models.

7.3.2 Results for simulated data. For validation of
the pBII methods for this example, data was simulated
using the same experimental design as the observed
data based on the parameter configuration estimated
by Riley, Donnelly and Ferguson (2003); v = 0.00084,
wr =0.31, uy, =0.0011 and 8 = 1.1. We found that
the pBII methods were able to recover the parameters
v and py well, uy was determined less precisely and
B was not recovered. The data are not particularly in-
formative about w; and 8 (see Drovandi, Pettitt and
Faddy, 2011, for more discussion). The ABC IS gave
the most precise posterior distributions for v and py,
out of the pBII methods. For full details on the analysis
of this simulated data, see Appendix C of the supple-
mental article (Drovandi, Pettitt and Lee, 2014).

7.3.3 Results for real data. Here, we used the ABC
IP results of Drovandi and Pettitt (2011) to form an
MCMC proposal distribution. The pdBIL method with
n=1,n=20 and n = 50 was run for 1 million,
100,000 and 50,000 iterations, respectively. Accep-
tance probabilities of roughly 1.4%, 23.5% and 28.2%,
respectively, were obtained. The average ESS per hour
was 37, 79 and 58, respectively. The substantial in-
crease in acceptance probability allowed us to use
fewer iterations. The results are shown in Figure 8. The
figures suggest that we are not able to gain any addi-
tional information from the data for the parameter v
from the pdBIL approach by increasing n. However,
an increase in precision is obtained for py as n is in-
creased. The posteriors are shifted slightly for the other
two parameters, however, they are still largely uninfor-
mative, although the posterior for w; for large n may
indicate some preference for smaller values of w.

We now compare the results of pdBIL with ABC.
ABC IP and ABC IL MCMC algorithms were all run
for 1 million iterations. The ABC IP and ABC IL tol-
erances were chosen so that the acceptance rate was
about 1.5%. Due to the increased computational effi-
ciency of ABC IS, we ran this algorithm for 20 million
iterations and tuned the tolerance to obtain an accep-
tance rate of about 0.1%. ABC IP and ABC IL used
about 15 hours of computing time while ABC IS only
required 11 hours even though 20 times more iterations
were run.

The estimated posterior densities (after appropriate
thinning) for the different approaches are presented in
Figure 9. In general, the data are not informative about
the wy and B parameters, so we turn our focus to the
parameters v and ur. We note that it is difficult to
compare the approximations without having available
a gold standard. It can be seen that pdBIL produces the
most precise inferences for the parameters v and py .
Despite being able to reduce the ABC tolerance, the
ABC IS method appears to be the least precise. This is
in contrast to the results for the simulated data in Ap-
pendix C of the supplemental article (Drovandi, Pettitt
and Lee, 2014), where ABC IS produced the most pre-
cise results.

Regression adjustment was also applied to the ABC
IT methods in an attempt to reduce the effect of the
ABC tolerance. These adjustments were applied indi-
vidually to —log(v) and /i [see Appendix C of the
supplemental article (Drovandi, Pettitt and Lee, 2014)]
and the results are shown in Figure 10. The regression
adjustment does increase the precision of the ABC II
posteriors. The regression adjustment appears to shift
the modes of the ABC II results slightly for v. For
ur, the regression adjustment brings the ABC II re-
sults closer to that obtained by pdBIL for n = 50.

8. DISCUSSION

This paper has provided an extensive comparison of
pBII methods, from theoretical, practical and empiri-
cal perspectives. We discovered that the pdBIL method
of Gallant and McCulloch (2009) is fundamentally dif-
ferent to ABC II approaches developed in the litera-
ture. More specifically, we showed that pdBIL can pro-
duce better approximations by increasing the size of
the simulated datasets as long as the auxiliary model
provides a useful replacement likelihood for the gener-
ative likelihood for a variety of @ values. In contrast,
ABC methods (including those that use II to form the
summary statistic) should simulate datasets the same
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Posterior distributions for the parameters [(a) v, (b) uy, (¢) g, (d) B] of the macroparasite model based on a pdBIL approach

with n = 1 (solid), n = 20 (dot-dash) and n = 50 (dash) (on-line figure in colour).

size as the observed. The pdBIL method has the ad-
ditional advantage of not having to determine an ap-
propriate ABC tolerance. Furthermore, we found that
increasing the size of the simulated dataset beyond that
of the observed does not necessarily make computation
infeasible due to the increase in statistical efficiency.
However, it is of interest to determine the size of the
simulated dataset upon which negligible improvement
will be obtained. This requires further research.

We have also established that BIL is a rather flexible
framework since the synthetic likelihood approach of
Wood (2010) is a pBIL method that applies a paramet-
ric auxiliary likelihood to the summary statistic likeli-
hood while ABC can be recovered by selecting a spe-
cific nonparametric auxiliary model. Our focus in this

paper has been on the pBIL method where a paramet-
ric auxiliary model is proposed for the full data likeli-
hood. However, the ideas in this paper may carry over
to when the auxiliary model is applied to a summary
statistic likelihood as in Wood (2010).

For the pBIL method to have some chance of a
good approximation to the true posterior for the speci-
fied generative model, it is important that the auxiliary
model is able to well fit data simulated from the gen-
erative model for parameter values within nonnegligi-
ble posterior regions, at least in the majority of simula-
tions. It would be possible to perform a goodness-of-fit
test on the auxiliary model for every dataset generated
from the proposed model during the MCMC pBIL al-
gorithm in order to assess the usefulness of the auxil-
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FI1G. 9. Posterior distributions for the parameters [(a) v, (b) uy, (¢) ur, (d) B] of the macroparasite model based on ABC IP (dash),
ABC IS (dot), ABC IL (dot-dash) and pdBIL (solid) (on-line figure in colour).

iary model in the context of the pBIL method. This is
the subject of further research.

In this paper, we have not addressed the issue of
which ABC II method provides the best approxima-
tion. ABC IS is much faster (when the auxiliary score
vector is analytic) and requires only weak assumptions,
but did not always outperform the other ABC II meth-
ods in the examples considered in this paper. The ABC
IP and ABC IL methods differ only in their discrepancy
function and it is not clear if one discrepancy function
dominates the other across applications. Furthermore,
it remains unknown if the auxiliary parameter estimate
or auxiliary score carries the most information in the
observed data. It could be that the optimal choice of
ABC II approach is problem dependent. Until further
research is conducted, we suggest trying all three meth-

ods (assuming that ABC IP and ABC IL are computa-
tionally feasible). One approach to speed up ABC IP
and ABC IL might be to start with a computationally
simple but consistent estimator (e.g. the method of mo-
ments) and apply one iteration of a Newton—Raphson
method to produce an asymptotically efficient estima-
tor (Cox and Hinkley, 1979, page 308) in a timely man-
ner.

From a practical perspective, these methods have led
to improved approximate analyses for two substantive
problems compared with that obtained in Drovandi,
Pettitt and Faddy (2011) and Drovandi and Pettitt
(2011). Across applications considered in this paper,
ABC IS was the most computationally efficient and led
to good posterior approximations.
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Overall, pdBIL avoids having to choose an ABC dis-
crepancy function and the ABC tolerance. If an auxil-
iary model can be proposed that satisfies a rather strong
condition, more precise inferences can be obtained by
taking n large, which we showed is still computation-
ally feasible with MCMC pdBIL up to a point. How-
ever, ABC II appears to provide a more general frame-
work for pBII problems, due to the extra flexibility of
being able to incorporate additional summary statistics
outside the set formed from the auxiliary model and
potentially providing better approximations when the
auxiliary model is a simplified version of the genera-
tive model. It is this extra flexibility that may see ABC
II as the method of choice as ever-increasingly com-
plex applications are encountered.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian Indirect Inference Us-
ing a Parametric Auxiliary Model” (DOI: 10.1214/
14-STS498SUPP; .pdf). This material contains a sim-
ple example to supplement Section 3.1 and additional
information and results to supplement the examples in
Sections 7.2 and 7.3.
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