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Abstract: In this article we survey properties of mixed Poisson distri-
butions and probabilistic aspects of the Stirling transform: given a non-
negative random variable X with moment sequence (μs)s∈N we determine
a discrete random variable Y , whose moment sequence is given by the Stir-
ling transform of the sequence (μs)s∈N, and identify the distribution as a
mixed Poisson distribution. We discuss properties of this family of distri-
butions and present a new simple limit theorem based on expansions of
factorial moments instead of power moments. Moreover, we present several
examples of mixed Poisson distributions in the analysis of random discrete
structures, unifying and extending earlier results. We also add several en-
tirely new results: we analyse triangular urn models, where the initial con-
figuration or the dimension of the urn is not fixed, but may depend on the
discrete time n. We discuss the branching structure of plane recursive trees
and its relation to table sizes in the Chinese restaurant process. Further-
more, we discuss root isolation procedures in Cayley trees, a parameter in
parking functions, zero contacts in lattice paths consisting of bridges, and a
parameter related to cyclic points and trees in graphs of random mappings,
all leading to mixed Poisson-Rayleigh distributions. Finally, we indicate
how mixed Poisson distributions naturally arise in the critical composition
scheme of Analytic Combinatorics.
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1. Introduction

In combinatorics the Stirling transform of a given sequence (as)s∈N, see [12, 75],
is the sequence (bs)s∈N, with elements given by

bs =

s∑
k=1

{
s

k

}
ak, s ≥ 1. (1.1)

The inverse Stirling transform of the sequence (bs)s∈N is obtained as follows:

as =

s∑
k=1

(−1)s−k

[
s

k

]
bk, s ≥ 1. (1.2)
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Here
{
s
k

}
denote the Stirling numbers of the second kind, counting the number

of ways to partition a set of s objects into k non-empty subsets, see [73] or [30],
and

[
s
k

]
denotes the unsigned Stirling numbers of the first kind, counting the

number of permutations of s elements with k cycles [30]. These numbers appear
as coefficients in the expansions

xs =

s∑
k=0

{
s

k

}
xk, xs =

s∑
k=0

(−1)s−k

[
s

k

]
xk, (1.3)

relating ordinary powers xs to the so-called falling factorials xs = x(x−1) . . . (x−
(s − 1)), s ∈ N0. On the level of exponential generating functions A(z) =∑

s≥1 asz
s/s! and B(z) =

∑
s≥1 bsz

s/s!, the Stirling transform and the rela-
tions (1.1) and (1.2) turn into

B(z) = A
(
ez − 1

)
, A(z) = B

(
log(1 + z)

)
. (1.4)

This definition is readily generalized: given a sequence (as)s∈N the generalized
Stirling transform with parameter ρ > 0 is the sequence (bs)s∈N with

bs =

s∑
k=1

ρk
{
s

k

}
ak, such that as =

1

ρs

s∑
k=1

(−1)s−k

[
s

k

]
bk, s ≥ 1. (1.5)

On the level of exponential generating functions: B(z) = A
(
ρ(ez − 1)

)
and

A(z) = B
(
log(1 + z

ρ )
)
. The aim of this work is to discuss several probabilistic

aspects of a generalized Stirling transform with parameter ρ > 0 in connection
with moment sequences and mixed Poisson distributions, pointing out applica-
tions in the analysis of random discrete structures. Given a non-negative random
variable X with power moments E(Xs) = μs ∈ R

+, s ≥ 1, we study the prop-
erties of another random variable Y , given its sequence of factorial moments
E(Y s) = E

(
Y (Y − 1) . . . (Y − (s− 1))

)
, which are determined by the moments

of X,
E(Y s) = ρsE(Xs) = ρsμs, s ≥ 1, (1.6)

where ρ > 0 denotes an auxiliary scale parameter. Moreover, we discuss relations
between the moment generating functions ψ(z) = E(ezX) and ϕ(z) = E(ezY ) of
X and Y , respectively.

1.1. Motivation

Our main motivation to study random variables with a given sequence of facto-
rial moments (1.6) stems from the analysis of combinatorial structures. In many
cases, amongst others the analysis of inversions in labelled tree families [64],
stopping times in urn models [51, 53], node degrees in increasing trees [49], block
sizes in k-Stirling permutations [51], descendants in increasing trees [47], ances-
tors and descendants in evolving k-tree models [65], pairs of random variables X
and Y arise as limiting distributions for certain parameters of interest associated
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to the combinatorial structures. The random variable X can usually be deter-
mined via its (power) moment sequence (μs)s∈N, and the random variable Y in
terms of the sequence of factorial moments satisfying relation (1.6). An open
problem was to understand in more detail the nature of the random variable Y .
In [53, 64] a few results in this direction were obtained. The goal of this work is
twofold: first, to survey the properties of mixed Poisson distributions, and sec-
ond to discuss their appearances in combinatorics and the analysis of random
discrete structures, complementing existing results; in fact, we will add several
entirely new results. It will turn out that the identification of the distribution
of Y can be directly solved using mixed Poisson distributions, which are widely
used in applied probability theory, see for example [20, 42, 59, 60, 77]. In the
analysis of random discrete structures, mixed Poisson distributions have been
used mainly in the context of Poisson approximation, see e.g. [31]. In this work
we point out the appearance of mixed Poisson distributions as a genuine limiting
distribution, and also present closely related phase transitions. In particular, we
discuss natural occurrences of mixed Poisson distributions in urn models of a
non-standard nature – either the size of the urn, or the initial conditions are
allowed to depend on the discrete time.

1.2. Notation and terminology

We denote with R
+ the non-negative real numbers. Here and throughout this

work we use the notation xs = x(x−1) . . . (x− (s−1)) for the falling factorials,
and xs = x(x+ 1) . . . (x+ s− 1) for the rising factorials.1 Moreover, we denote

with
{
s
k

}
the Stirling numbers of the second kind. We use the notation U

L
= V

for the equality in distribution of random variables U and V , and Un
L−→ V

denotes the convergence in distribution of a sequence of random variables Un

to V . The indicator variable of the event A is denoted by 1A. Throughout this
work the term “convergence of all moments” of a sequence of random variables
refers exclusively to the convergence of all non-negative integer moments. Given
a formal power series f(z) =

∑
n≥0 anz

n we denote with [zn] the extraction
of coefficients operator: [zn]f(z) = an. Furthermore, we denote with Ev the
evaluation operator of the variable v at the value v = 1, and with Dv the
differential operator with respect to v.

1.3. Plan of the paper

In the next section we state the definition of mixed Poisson distributions and dis-
cuss its properties. In Section 3 we collect several examples from the literature,
unifying and extending earlier results. Furthermore, in Section 4 we present a
novel approach to balanced triangular urn models and its relation to mixed Pois-
son distributions. Section 5 is devoted to new results concerning mixed Poisson

1The notation xs and xs was introduced and popularized by Knuth; alternative nota-
tions for the falling factorials include the Pochhammer symbol (x)s, which is unfortunately
sometimes also used for the rising factorials.
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distributions with Rayleigh mixing distribution; in particular, we discuss node
isolation in Cayley trees, zero contacts in directed lattice paths, and also cyclic
points in random mappings. Finally, in Section 6 we discuss multivariate mixed
Poisson distributions.

2. Moment sequences and mixed Poisson distributions

2.1. Discrete distributions and factorial moments

In order to obtain a random variable Y with a prescribed sequence of factorial
moments, given according to Equation (1.6) by E(Y s) = ρsμs, a first ansatz
would be the following. Let Y denote a discrete random variable with support
the non-negative integers, and p(v) its probability generating function,

p(v) = E(vY ) =
∑
�≥0

P{Y = �}v�.

The factorial moments of Y can be obtained from the probability generating
function by repeated differentiation,

E(Y s) =
∑
�≥0

�s P{Y = �} = EvD
s
vp(v), s ≥ 0. (2.1)

Consequently, we can describe the probability mass function of the random
variable Y as follows:

p(v) =
∑
s≥0

E(Y s)
(v − 1)s

s!
=
∑
s≥0

(v − 1)s
μsρ

s

s!
=
∑
�≥0

v�
∑
s≥�

(
s

�

)
(−1)s−�μsρ

s

s!
.

This implies that

P{Y = �} = [v�]p(v) =
∑
s≥�

(
s

�

)
(−1)s−�μsρ

s

s!
, � ≥ 0. (2.2)

Up to now the calculations have been purely symbolic, no convergence issues
have been addressed. In order to put the calculations above on solid grounds,
and to identify the distribution, we discuss mixed Poisson distributions and their
properties in the next subsection.

2.2. Properties of mixed Poisson distributions

Definition 1. Let X denote a non-negative random variable, with cumulative
distribution function Λ(.), then the discrete random variable Y with probability
mass function given by

P{Y = �} =
1

�!

∫
R+

X�e−XdΛ, � ≥ 0,

has a mixed Poisson distribution with mixing distribution X, in symbol Y
L
=

MPo(X).
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The boundary case X
L
= 0 leads to a degenerate distribution with all mass

concentrated at zero. A more compact notation for the probability mass function
of Y is sometimes used instead of the one given above, namely P{Y = �} =
1
�!E(X

�e−X). One often encounters a slightly different definition, which includes
a scale parameter ρ ≥ 0:

P{Y = �} =
ρ�

�!

∫
R+

X�e−ρXdΛ, � ≥ 0,

or P{Y = �} = ρ�

�! E(X
�e−ρX). This corresponds to a scaling of the mixing dis-

tribution, Y
L
= MPo(ρX). Here and throughout this work we call Y

L
= MPo(ρX)

a mixed Poisson distributed random variable with mixing distribution X and
scale parameter ρ.

Example 1. The ordinary Poisson distribution Y
L
= Po(ρ) with parameter

ρ > 0,

P{Y = �} =
ρ�

�!
e−ρ, � ≥ 0,

arises as a mixed Poisson distribution with degenerate mixing distribution X
L
=

1.

Example 2. The negative binomial distribution Y
L
= NegBin(r, p) with param-

eters p ∈ [0, 1) and r > 0,

P{Y = �} =

(
�+ r − 1

�

)
p�(1− p)r, � ≥ 0,

arises as a mixed Poisson distribution with a Gamma mixing distribution X
L
=

Gamma(r, θ) scaled by ρ ≥ 0, such that the parameters θ and ρ satisfy θ · ρ =
p/(1 − p). In particular, for θ = 1 the parameter p is given by p = ρ/(1 + ρ).
A special instance of this class of distributions is the geometric distribution
Geom(p) = NegBin(1, p).

Note that a Gamma distributed r.v. X
L
= Gamma(r, θ) has the probability

density function

f(x; r, θ) =
xr−1e−

x
θ

θrΓ(r)
, x > 0.

Example 3. A Rayleigh distributed r.v. X
L
= Rayleigh(σ) with parameter σ

has the probability density function

f(x;σ) =
x

σ2
e−

x2

2σ2 , x ≥ 0,

and is fully characterized by its (power) moment sequence:

E(Xs) = σs 2
s
2 Γ
(s
2
+ 1
)
.
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A discrete random variable Y with probability mass function

P{Y = �} =
ρ�

�!

∫ ∞

0

x�+1e−ρx−x2

2 dx, � ≥ 0,

arises as a mixed Poisson distribution Y
L
= MPo(ρX) with mixing distribution

X
L
= Rayleigh(1) and scale parameter ρ. We call Y a Poisson-Rayleigh distri-

bution with parameter ρ. Note that for ρ < 1 we can expand e−ρx and obtain a
series representation of P{Y = �}. Another representation valid for all ρ > 0 can
be stated in terms of the incomplete gamma function Γ(s, x) =

∫∞
x

ts−1 e−t dt:

P{Y = �} =
ρ�

�!
e

ρ2

2

�+1∑
i=0

(
�+ 1

i

)
(−ρ)�+1−i 2

i−1
2 Γ
( i+ 1

2
,
ρ2

2

)
.

Example 4. The Neyman Type A Distribution is a discrete probability dis-
tribution often used in biology and ecology [59, 60]. It is a mixed Poisson dis-

tribution with mixing distribution X
L
= Po(λ) given by an (ordinary) Poisson

distribution with parameter λ, scaled by ρ:

P{Y = �} =
ρ�

�!

∑
m≥0

m�e−ρm
(
e−λλ

m

m!

)
=

ρ�

�!
e−λ+λe−ρ

�∑
j=0

{
�

j

}(
λe−ρ

)j
.

For a very comprehensive list of examples of mixed Poisson distributions
we refer the reader to the article of Willmot [77]. Since by (1.3) the factorial
moments E(Y s) are related to the ordinary moments in terms of the Stirling
numbers of the second kind, the moment sequence of Y is the (scaled) Stirling
transform of the moment sequence of X. Next we collect similar basic properties
of mixed Poisson distributions.

Proposition 1. Let Y
L
= MPo(ρX) denote a mixed Poisson distributed random

variable with mixing distribution X and scale parameter ρ > 0.

(a) The factorial moments of Y are given by the scaled power moments of its
mixing distribution, E(Y s) = ρsE(Xs), s ≥ 1.

(b) The power moments of Y and X are related by the generalized Stirling
transform with parameter ρ, and its inverse, respectively:

E(Y s) =

s∑
j=0

{
s

j

}
ρjE(Xj), E(Xs) =

1

ρs

s∑
j=0

(−1)s−j

[
s

j

]
E(Y j).

Similarly, the cumulants of Y and X are related by the generalized Stirling
transform with parameter ρ, and its inverse, respectively.

(c) The moment generating functions ϕ(z) = E(ezY ) and ψ(z) = E(ezX) are
related by the (generalized) Stirling transform of functions and its inverse,
respectively:

ϕ(z) = ψ
(
ρ(ez − 1)

)
, ψ(z) = ϕ

(
log
(
1 +

z

ρ

))
. (2.3)
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(d) Let Y1
L
= MPo(ρ1X1) and Y2

L
= MPo(ρ2X2) denote two independent mixed

Poisson distributed random variables. Then, the sum Y = Y1⊕Y2 is again
mixed Poisson distributed,

Y
L
= MPo(ρ1X1 ⊕ ρ2X2).

Proof. (a) First we derive the factorial moments E(Y s) = E
(
Y (Y − 1) . . . (Y −

s+ 1)
)
of Y by a direct computation:

E(Y s) =
∑
�≥0

�s P{Y = �} =
∑
�≥s

�s
ρ�

�!

∫
R+

X�e−ρXdΛ

= ρs
∑
�≥s

ρ�−s

(�− s)!
E
(
X�e−ρX

)
= ρsE

(
Xse−ρX

∑
�≥0

ρ�X�

�!

)
= ρsE(Xs).

(b) By converting Y s into ordinary powers (1.3) the sequence of ordinary power
moments (E(Y s))s∈N of a mixed Poisson distributed random variable Y is given
by the Stirling transform of the moments of the mixing distribution in the
following way:

E(Y s) = E

( s∑
j=0

{
s

j

}
Y j
)
=

s∑
j=0

{
s

j

}
E(Y j) =

s∑
j=0

{
s

j

}
ρjE(Xj), s ≥ 1. (2.4)

The result concerning the moment generating function in (c) can be shown
similar to (1.4) by directly computing E(ezY ), interchanging integration and
summation:

E(ezY ) =
∑
�≥0

ez�P{Y = �} =

∫
R+

∑
�≥0

(
ezρX

)�
�!

e−ρXdΛ =

∫
R+

eρ(e
z−1)XdΛ.

By definition, the latter expression is exactly ψ
(
ρ(ez−1)

)
, where ψ(z) = E(ezX)

denotes the moment generating function of the mixing distribution X. If the
cumulative distribution function ofX is not known, we can compute the moment
generating function ϕ(z) of Y utilizing only the moment sequences:

ϕ(z) = E(ezY ) =
∑
s≥0

E(Y s)
zs

s!
=
∑
s≥0

s∑
j=0

{
s

j

}
ρjμj

zs

s!
=
∑
j≥0

ρjμj

∑
s≥j

{
s

j

}
zs

s!
.

Using the bivariate generating function identity of the Stirling numbers of the
second kind (see Wilf [76])

∑
s≥0

∑
j≥0

{
s

j

}
zs

s!
uj = eu(e

z−1), (2.5)
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we obtain further

ϕ(z) =
∑
j≥0

μj
ρj(ez − 1)j

j!
.

The latter expression is exactly the Stirling transform of ψ(z) =
∑

j≥0 μj
zj

j! - in

other words, of the moment generating function of X evaluated at ρ(ez−1). The
relation for the cumulants now follows readily from (c), since the cumulant gen-
erating functions kX(z) and kY (z) of X and Y are given by kX(z) = log(ψ(z))
and kY (z) = log(ϕ(z)). For a proof of part (d) we refer the reader to Johnson,
Kotz and Kemp [41].

In the applied probability literature, see [42, 77], given Y
L
= MPo(ρX) it is

usually assumed that the cumulative distribution function of the mixing dis-
tribution of X is known. However, in many cases in the analysis of random
discrete structures the mixing distribution X is solely determined by the se-
quence of moments E(Xs) = μs ∈ R

+, s ≥ 1. Hence, it is beneficial to express
the probability mass function of a mixed Poisson distributed random variable
solely in terms of the moments of X, justifying (2.2). Note that for specific
mixed Poisson distributions different simpler formulas may exist (compare with
Corollary 2).

Proposition 2. Let X denote a random variable with moment sequence given by
(μs)s∈N such that ψ(z) = E(ezX) exists in a neighbourhood of zero, including the
value z = −ρ. A random variable Y with factorial moments given by E(Y s) =

ρsμs has a mixed Poisson distribution Y
L
= MPo(ρX) with mixing distribution

X and scale parameter ρ > 0, and the sequence of power moments of Y is
the Stirling transform of the moment sequence (μs)s∈N. The probability mass
function of Y is given by

P{Y = �} =
∑
s≥�

(−1)s−�

(
s

�

)
μs

ρs

s!
, � ≥ 0.

Proof. By our assumption on the existence of ψ(z) in a neighbourhood of zero,
it follows that ϕ(z) is also analytic around z = 0, and the random variable Y is
uniquely determined by its (factorial) moments. Consequently, Y has a mixed
Poisson distribution. Moreover, the probability mass function of Y is obtained
by

P{Y = �} =
ρ�

�!
E(X�e−ρX) =

ρ�

�!

(
D�

zψ(z)
)∣∣∣

z=−ρ
=

ρ�

�!

(
D�

z

∑
s≥0

zs
μs

s!

)∣∣∣
z=−ρ

=
ρ�

�!

∑
s≥�

(−ρ)s−� μs

(s− �)!
=
∑
s≥�

(−1)s−�

(
s

�

)
μs

ρs

s!
.

(2.6)

Alternatively, the formula for the probability mass function can formally be
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obtained directly from the definition

P{Y = �} =
ρ�

�!

∫ ∞

0

X�e−ρXdΛ =
1

�!

∫ ∞

0

∑
s≥0

(−1)s
(ρX)s+�

s!
dΛ.

Interchanging summation and integration also leads to the stated result.

2.3. The method of moments and basic limit laws

The method of moments is a classical way of deriving limit laws (see for example
Hwang and Neininger [33] and the references therein). Given a sequence of
random variables (Xn)n∈N one first derives asymptotic expansions of the power
moments; assume that the moments satisfy the asymptotic expansion

E(Xs
n) = λs

n · μs · (1 + o(1)), s ≥ 1, (2.7)

with λn denoting non-negative scale parameters. Then, one considers the scaled
random variables Xn

λn
, and tries to prove convergence in distribution of Xn

λn
by us-

ing the Fréchet-Shohat moment convergence theorem [55]: if the power moments
of Xn

λn
converge to the moments (μs)s∈N, and the moment sequence (μs)s∈N de-

termines a unique non-degenerate distribution, then the random variable Xn

λn

converges in distribution to X. A well-known sufficient criterion for the unique-
ness of the distribution of X is Carleman’s condition: the distribution of X is
uniquely determined if ∑

s≥1

(μ2s)
− 1

2s = ∞. (2.8)

Note that (2.8) is satisfied, whenever E(ezX) exists in a neighbourhood of zero.
We obtain the following new result concerning mixed Poisson distributions.

Lemma 1 (Uniqueness of mixed Poisson distributions). The moments of a

mixed Poisson distributed random variable Y
L
= MPo(ρX), with ρ ≥ 0 and non-

negative mixing distribution X, satisfy Carleman’s criterion if and only if the
moments of X do so. Moreover, the moment generating function ψ(z) = E(ezX)
exists in a neighbourhood of zero, if and only if ϕ(z) = E(ezY ) exists in a
neighbourhood of zero.

Proof. Note first that the second part follows directly from Proposition 1 part
(c). Assume now that the moments of Y satisfy Carleman’s condition. We ob-
serve that the moments (μs)s∈N of X are bounded by the scaled power moments
of Y , μs ≤ 1

ρsE(Y
s) =

∑s
j=0

{
s
j

}
ρs−jμj . Consequently, the distribution of X is

also uniquely determined by its moment sequence:∑
s≥1

(μ2s)
− 1

2s ≥ ρ
∑
s≥1

(E(Y 2s))−
1
2s = ∞.

Conversely, assume that the moments of X satisfy Carleman’s condition:∑
s≥1

(μ2s)
− 1

2s = ∞.
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The sth power moment of Y can be estimated using the sth factorial moment
of Y in the following way

E(Y s) =
∑
�≥0

�s P{Y = �} =

2s−1∑
�=0

�s P{Y = �}+
∑
�≥2s

�s P{Y = �}

≤ (2s)s · 1 +
∑
�≥2s

2s�s P{Y = �} ≤ (2s)s + 2sE(Y s).

This implies that

E(Y s) ≤ 2s(ss + E
(
Y s)
)
≤ 2s(ss + ρsμs

)
≤ 4s(1 + ρ)s ·max{ss, μs}.

Consequently,

(
E(Y 2s)

)− 1
2s ≥ 1

4(1 + ρ)
·min{ 1

2s
, (μ2s)

− 1
2s },

such that ∑
s≥1

(
E(Y 2s)

)− 1
2s ≥ 1

4(1 + ρ)

∑
s≥1

min{ 1

2s
, (μ2s)

− 1
2s }.

By Hölder’s inequality, the moments ofX ≥ 0 satisfy for 0 < r < s the inequality

E(Xr) ≤
(
E(Xs)

) r
s .

Hence, for integers 0 < r < s we have

μ
1
2r
2r ≤ μ

1
2s
2s ,

and sequence (ms)s∈N, defined by ms := μ
− 1

2s
2s , is monotonically decreasing. It

remains to show that ∑
s≥1

min{1
s
,ms} = ∞, (2.9)

which immediately implies the required result; note that we omitted the addi-
tional factor 1

2 for the sake of simplicity. If ms is bounded away from zero this
is immediately true. Hence, in the following we assume that (ms)s∈N is a null
sequence. Let N = I1 ∪ I2, with I1 ∩ I2 = ∅, such that for all s ∈ I1 we have
1
s ≤ ms, and for s ∈ I2 we have 1

s > ms. We obtain

∑
s≥1

min{1
s
,ms} =

∑
s∈I1

1

s
+
∑
s∈I2

ms.

By our initial assumption
∑

s≥1 ms = ∞, equation (2.9) is directly satisfied if
either I1 or I2 is finite. Hence, we assume that both sets are infinite. Assume
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further that
∑

s∈I1
1
s is finite. We can write the set I1 as the disjoint union of

infinitely many finite length intervals

I1 =
⋃
�≥1

[a�, b�],

with [a�, b�] := {a�, a� + 1, . . . , b�} and a�, b� ∈ N for all � ∈ N. If all but
finitely many intervals are of length one, such that a� = b�, the values s with
min{ 1

s ,ms} = 1
s are essentially isolated. In this case we note that � ∈ I1 and

�− 1 ∈ I2 and use for � ≥ 2 the inequality

a� ≤ a�−1 ≤ 1

�− 1
≤ 2

�
.

This implies that also
∑

s∈I1
ms is finite too, such that

∑
s∈I2

ms is infinite.
Finally, we assume that infinitely many intervals are of length greater or equal
two. By our earlier assumption

∑
s∈I1

1
s is finite and satisfies

∑
s∈I1

1

s
=
∑
�∈N

∑
s∈[a�,b�]

1

s
>
∑
�∈N

∫ b�

a�

1

x
dx =

∑
�∈N

ln
( b�
a�

)
> 0.

Furthermore, ln
(

b�
a�

)
< ε for all sufficiently large �, such that b� < eεa�. This

implies that for k ∈ [a�, b�] and sufficiently large �

mk
1
k

≤ ma�

1
b�

<
ma�

1
eεa�

≤ ma�−1
1

eεa�

≤ eε
1

a�−1

1
a�

≤ 2eε.

Hence, mk ≤ 2eε

k . Combining this with our previous argument for the essentially
isolated values we deduce that

∑
s∈I1

ms is finite too, such that
∑

s∈I2
ms =

∞.

Concerning random discrete structures one usually encounters non-negative
discrete random variables Xn. As mentioned before in (2.1) the factorial mo-
ments are readily obtained from the probability generating function p(z) =
E
(
zXn
)
by repeated differentiation:

E(Xs
n) = Ez D

s
z p(z), s ≥ 1.

In contrast, the ordinary moments require the usage of the so-called theta dif-
ferential operator Θz = zDz: E(X

s
n) = Ez Θ

s
z p(z). Mixed Poisson distributions

and a related phase transition naturally occur if the factorial moments sat-
isfy asymptotic expansions similar to (2.7) instead of the power moments. We
present a new characterization based on factorial moments.

Lemma 2 (Factorial moments and limit laws of mixed Poisson type). Let
(Xn)n∈N denote a sequence of random variables, whose factorial moments are
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asymptotically of mixed Poisson type satisfying for n tending to infinity the
asymptotic expansion

E(Xs
n) = λs

n · μs · (1 + o(1)), s ≥ 1,

with μs ≥ 0, and λn > 0. Furthermore assume that the moment sequence (μs)s∈N

determines a unique distribution X satisfying Carleman’s condition. Then, the
following limit distribution results hold:

(i) if λn → ∞, for n → ∞, the random variable Xn

λn
converges in distribution,

with convergence of all moments, to X.
(ii) if λn → ρ ∈ (0,∞), for n → ∞, the random variable Xn converges in dis-

tribution, with convergence of all moments, to a mixed Poisson distributed

random variable Y
L
= MPo(ρX).

Moreover, the random variable Y
L
= MPo(ρX) converges for ρ → ∞, after

scaling, to its mixing distribution X: Y
ρ

L−→ X, with convergence of all moments.

Remark 1. It may be possible to unify cases (i) and (ii) to arbitrary sequences
λn by a suitable result for the distance between random variables Xn and Yn =
MPo(λnX).

Remark 2. The results above complement the standard case when the distribu-
tion of X degenerates, X = 1. The random variables Xn are then asymptotically
Poisson distributed with parameter λn. Thus, the distribution of Xn

λn
degener-

ates for λn → ∞, since we expect a central limit theorem for (Xn − λn)/
√
λn.

It might also be necessary for non-degenerate X to consider centered random
variables similar to X∗

n = Xn − λn, and its (factorial) moments, instead of Xn.

Remark 3. The result above can be strengthened to also include the degenerate

case λn → 0, such that Xn
L−→ 0. By Markov’s inequality it suffices to prove

that E(Xn) → 0. In order to obtain additional moment convergence one has to
show E(X

s
n) → 0 for every s ∈ N.

Remark 4 (Moment generating functions and limit laws of mixed Poisson
type). Let ψ(z) = E(ezX) denote the moment generating function of X. If the
moment generating function ϕ(z) = E(ezXn) satisfies for n → ∞ the asymptotic
expansion

ϕ(z) = ψ
(
λn

(
ez − 1

))
· (1 + o(1)),

then the conclusion of the lemma above - convergence in distribution - still holds,
but a priori without moment convergence. On the other hand, if the moments of
(μs)s∈N do not determine a unique distribution, one still obtains by the Lemma
above convergence of integer moments, but one cannot deduce convergence in
distribution.

Remark 5. In the analysis of random discrete structures the random variables
Xn often depend on an additional parameter describing or measuring a certain
local aspect of the combinatorial structure, such that Xn = Xn,j . Moreover, the
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expansion of the factorial moments often depend on this parameter in a crucial
way. A quite common situation (see [47, 49, 53, 65] and also [21, 37]) is the
following dichotomy for the asymptotic expansion of the factorial moments:

E(Xs
n) =

{
λs
n,0 · μs,j · (1 + o(1)), s ≥ 1, j fixed,

λs
n,1 · μs · (1 + o(1)), s ≥ 1, j → ∞,

where λn,0 is independent of j, but λn,1 = λn,1(j) also depends on the growth
of this additional parameter j compared to n. Consequently, one encounters
one additional family of limit laws when j is fixed, determined by the moment
sequence (μs,j)s∈N. Note that in all presented examples the following additional
property holds for s ≥ 1:

Λs
jμs,j → μs, j → ∞,

where Λj denotes an additional scale parameter; compare with the Remarks 6,
7, and 13.

Proof of Lemma 2. By (1.3) the power moments of Xn satisfy the following
asymptotic expansion

E(Xs
n) =

s∑
j=0

{
s

j

}
E(X

j
n) =

s∑
j=0

{
s

j

}
λj
n μj(1+o(1)) =

( s∑
j=0

{
s

j

}
λj
n μj

)
(1+o(1)).

If λn → ∞ for n → ∞, we obtain further the expansion

E(Xs
n) =

( s∑
j=0

{
s

j

}
λj
n μj

)
(1 + o(1)) =

({s
s

}
λs
n μs +O(λs−1

n )
)
(1 + o(1))

= λs
n μs +O(λs−1

n ) + o(λs
n).

Consequently, the moments of Xn

λn
converge to the moments μs of the mixing dis-

tribution. Since the moments of X satisfy Carleman’s condition, this proves by
the Fréchet-Shohat moment convergence theorem convergence in distribution.

Furthermore, for λn → ρ for n → ∞, we directly obtain

E(Xs
n) =

( s∑
j=0

{
s

j

}
λj
n μj

)
(1 + o(1)) =

s∑
j=0

{
s

j

}
ρjμj + o(1).

Consequently, the moments of Xn converge to the moments of a mixed Poisson

distributed random variable Y
L
= MPo(ρX), which is uniquely determined by its

moment sequence, according to Lemma 1, and our assumption on the moments
of X. Finally, an identical argument proves that a mixed Poisson distributed

random variable Y
L
= MPo(ρX) converges to its mixing distribution for ρ →

∞.
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3. Examples and applications

We present several appearances of mixed Poisson distributions in the analysis
of random discrete structures, in particular various families of random trees,
k-Stirling permutations, and urn models. We discuss several families of random
trees where a mixed Poisson law arises as the limit law of a discrete random
variableXn,j . The parameter n ∈ N usually measures the size of the investigated
trees, and j denotes an additional parameter measuring or marking a certain
aspect of the combinatorial structure, i.e., a node with a certain label j of
interest, often satisfying a natural constraint of the type 1 ≤ j ≤ n, see [47,
49, 51, 64]. In the limit n → ∞, with j = j(n), phase transitions were observed
according to the relative growth of j with respect to n, e.g., j = 1, 2, . . . being a
constant independent of n, j → ∞ but with j = o(n), or j ∼ ρ ·n, for fixed ρ. As
mentioned in the introduction, in this section we will unify and simplify earlier
arguments by starting from explicit formulas for the factorial moments occurring
in various works. These explicit formulas directly lead to mixed Poisson laws,
using Lemmas 1 and 2, and Stirling’s formula for the Gamma function

Γ(x) = xx− 1
2 e−x

√
2π
(
1 +O

(
x−1
))

, for x → ∞. (3.1)

Besides that, whenever possible we give an interpretation of the random vari-
ables occurring in terms of urn models.

3.1. Block sizes in k-Stirling permutations

Stirling permutations were defined by Gessel and Stanley [29]. A Stirling per-
mutation is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that, for each
i, 1 ≤ i ≤ n, the elements occurring between the two occurrences of i are larger
than i. E.g., 1122, 1221 and 2211 are Stirling permutations, whereas the per-
mutations 1212 and 2112 of {1, 1, 2, 2} aren’t. The name of these combinatorial
objects is due to relations with the Stirling numbers, see [29] for details and
[44] for bijections with certain tree families. A straightforward generalization
of Stirling permutations is to consider permutations of a more general multiset
{1k, 2k, . . . , nk}, with k ∈ N (we use in this context j� := j, . . . , j︸ ︷︷ ︸

�

, for � ≥ 1),

such that for each i, 1 ≤ i ≤ n, the elements occurring between two occurrences
of i are at least i. Such restricted permutations on the multiset {1k, 2k, . . . , nk}
are called k-Stirling permutations of order n; they have already been considered
by Brenti [13, 14], Park [66, 67, 68], and Janson et al. [38, 40]. These k-Stirling
permutations can be generated in a sequential manner: we start with 1k = 1 . . . 1
and insert the string (n+1)k at any position (anywhere, including first or last)
in a given k-Stirling permutation of {1k, 2k, . . . , nk}, n ≥ 1. In the case k = 3,
we have for example one permutation of order 1: 111; four permutations of order
2: 111222, 112221, 122211, 222111; etc.

A block in a k-Stirling permutation σ = σ1 · · ·σs is a substring σa · · ·σb,
with σa = σb, that is maximal, i.e., which is not contained in any larger such
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substring. There is obviously at most one block for every j ∈ {1, 2, . . . , n},
extending from the first occurrence of j to the last one; we say that j forms
a block if this substring is indeed a block, i.e., when it is not contained in a
string j′ · · · j′, for some j′ < j. It can be shown easily by induction that any
k-Stirling permutation has a unique decomposition as a sequence of its blocks.
For example, the 3-Stirling permutation σ = 112233321445554777666, has block
decomposition
[112233321][445554][777][666].

Of course, the size of a block in a k-Stirling permutation is always a multiple
of k. The number of blocks of size k · � in a random k-Stirling permutation of
order n was studied in [51]. There, a simple exact expression for the factorial
moments was derived:

E(X
s
n,�) =

s!

(k�)s

(
�− 1− 1

k

�− 1

)s

·
(n−�s+ s+1

k −1
n−�s

)
(
n−1+ 1

k
n

) .

Depending on the growth of � = �(n) as n → ∞, two random variables X and
Y arose as limiting distributions of Xn,�. The random variable X with moment
sequence

E(Xs) = (s+ 1)!
Γ(1 + 1

k )

Γ(1 + s+1
k )

(3.2)

could be characterized using observations by Janson et al. [40], and Janson [37].
It has a density function f(x) that can be written as

f(x) =
Γ( 1k )

π

∞∑
j=1

(−1)j−1Γ(
j
k + 1) sin jπ

k

j!
xj , for x > 0. (3.3)

However, the characterization of the random variable Y was incomplete, only
the (factorial) moments were known:

E(Y s) = (s+ 1)!
Γ(1 + 1

k )

Γ(1 + s+1
k )

ρs, s ≥ 1. (3.4)

Using Lemma 2, we can fill this gap, extending the results of [51].

Corollary 1. The factorial moments of the random variable Xn,�, counting the
number of blocks of size k · � in a random k-Stirling permutation of order n,
are for n → ∞ asymptotically of mixed Poisson type, with mixing distribution
X, determined by its moments and density given by (3.2) and (3.3) and scale

parameter λn,� =
1
k�

(�−1− 1
k

�−1

)
n

1
k :

E(X
s
n,�) = λs

n,�(s+ 1)!
Γ(1 + 1

k )

Γ(1 + s+1
k )

(1 + o(1)),

(i) for � = �(n), such that λn,� → ∞, the random variable
Xn,�

λn,�
converges in

distribution, with convergence of all moments, to X.
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(ii) for � = �(n), such that λn,� → ρ ∈ (0,∞), the random variable Xn,�

converges in distribution, with convergence of all moments, to a mixed

Poisson distributed random variable Y
L
= MPo(ρX). Its probability mass

function is given by

P{Y = i} =
∑
s≥i

(
s

i

)
(−1)s−iρs

Γ(1 + 1
k )

Γ(1 + s+1
k )

, i ≥ 0.

Moreover, for ρ → ∞, the random variable Y/ρ converges in distribution to X,
with convergence of all moments.

The result above can also be interpreted in terms of a suitable urn model.
First we recall the definition of Pólya-Eggenberger urn models. We start with
an urn containing n white balls and m black balls. The evolution of the urn
occurs in discrete time steps. At every step a ball is drawn at random from
the urn. The color of the ball is inspected and then the ball is returned to the
urn. According to the observed color of the ball there are added/removed balls
due to the following rules. If a white ball has been drawn, we put into the urn
α white balls and β black balls, but if a black ball has been drawn, we put
into the urn γ white balls and δ black balls. The values α, β, γ, δ ∈ Z are fixed
integer values and the urn model is specified by the 2×2 ball replacement matrix
M =

( α β
γ δ

)
. This definition readily extends to higher dimensions, leading to r×r

ball replacement matrices, if balls of r different colours are involved. Note that
we may consider α, β, γ, δ ∈ R, defining the urn process as a Markov process; see
Remark 1.11 of Janson [37]. One usually assumes that the urns are tenable: the
process of drawing and adding/removing balls can be continued ad infinitum,
never having to remove balls which are not present in the urn. Starting with
W0 = w0 white balls and B0 = b0 black balls, one is then interested in the
composition (Wn, Bn) of the urn after n draws. For a few recent results we refer
the reader to [10, 21, 22, 34, 37, 70].

In order to describe the growth of the r.v. Xn,i, 1 ≤ i ≤ �, by means of a
Pólya-Eggenberger urn model, we consider the simple growth process of random
k-Stirling permutations: in order to generate a random k-Stirling permutation
of order n+1, we select uniformly at random a k-Stirling permutation of order
n and insert the substring (n + 1)k uniformly at random at one of the kn + 1
insertion positions. In the urn model description, each ball in the urn will cor-
respond to an insertion position in the k-Stirling permutation. We will require
�+ 2 different colours of balls. Balls of colours i, with 1 ≤ i ≤ �, correspond to
insertion positions within blocks of size ki, balls of colour � + 1 correspond to
insertion positions within blocks of size ≥ k(�+ 1), and balls of colour 0 corre-
spond to insertion positions between two consecutive blocks, or before the first
or after the last block. When inserting a new substring the following situations
can occur, which then describe the evolution of the urn:

(i) When inserting the string (n+ 1)k into a block of size ki, 1 ≤ i ≤ �, then
this block changes to a block of size k(i+1). In the urn model this means
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that if a ball of colour i is drawn, ki−1 balls of colour i have to be removed
and k(i+ 1)− 1 balls of colour i+ 1 have to be added.

(ii) When inserting the string (n+ 1)k into a block of size ≥ k(�+ 1), then it
remains a block of size ≥ k(� + 1), but its size increases by k. In the urn
model this means that if a ball of colour �+ 1 is drawn, k balls of colour
�+ 1 have to be added.

(iii) When inserting the string (n+1)k between two consecutive blocks, or be-
fore the first or after the last block, then a new block of size k appears; fur-
thermore an additional insertion position between two consecutive blocks
occurs. In the urn model this means that if a ball of colour 0 is drawn,
k − 1 balls of colour 1 and one ball of colour 0 have to be added.

The initial k-Stirling permutation 1k contains one block of size k · 1 with k − 1
insertion positions; furthermore there are one insertion position before the first
and one insertion position after the last block, which describes the initial configu-
ration of the urn. Thus the following urn model description follows immediately.

Urn I. Consider a balanced urn (i.e., each row of the ball replacement matrix
has the same row sum) with balls of � + 2 colours and let the random vector
(Un,0, . . . , Un,�+1) count the number of balls of each colour at time n with the
(�+ 2)× (�+ 2) ball replacement matrix M given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 k−1 0 ··· 0 0 0 0

0 −(k−1) 2k−1
. . .

. . .
. . . 0 0

0 0 −(2k−1) 3k−1
. . .

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .
... 0...

. . .
. . .

. . .
. . .

. . .
... 0

0
. . .

. . .
. . . 0 −((�−1)k−1) �k−1 0

0
. . .

. . .
. . . 0 0 −(�k−1) (�+1)k−1

0 0 0 ··· 0 0 0 k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The initial configuration of the urn (it is here convenient to start at time 1)
is given by (U1,0, . . . , U1,�+1) = (2, k − 1, 0, . . . , 0). It holds that the random
variables Un,i, with 1 ≤ i ≤ �, described by the urn model are related to the
random variables Xn,i, 1 ≤ i ≤ �, which count the number of blocks of size ki
in a random k-Stirling permutation of order n, as follows:

Un,i = (ki− 1)Xn,i, 1 ≤ i ≤ �.

By Theorem 1 and the results of [51] this implies that the random variables
Un,i occurring in the urn model undergo a phase transition according to the
growth of � with respect to n, from continuous to discrete, where the moments
of the appearing random variablesX and Y are related by the Stirling transform.

3.2. Diminishing Pólya-Eggenberger urn models

A classical example of a non-tenable urn model is the sampling without replace-
ment urn with ball replacement matrix given by

(−1 0
0 −1

)
. The process of drawing
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and replacing balls ends after n +m steps, starting with n white and m black
balls. Here, one is interested in the number of white balls remaining in the urn,
after all black balls have been drawn. Several urn models of a similar non-tenable
nature have recently received some attention under the name diminishing urn
models, see [53] and the references therein.

Urn II. Consider a possibly unbalanced generalized sampling without replace-
ment urn model with ball replacement matrix

M =

(
−α 0
0 −δ

)
, a, δ ∈ N.

The initial configuration of the urn consists of α · n white balls and δ ·m black
balls. The random variable Xδm,αn counts the number of white balls remaining
in the urn, after all black balls have been drawn.

It was shown in [53] that the factorial moments of the random variable
X̂δm,αn = Xδm,αn/α are given by

E

(
X̂

s
δm,αn

)
=

ns(
m+αs

δ
m

) , s ≥ 1.

Moreover, a random variable Y arises in the limit, whose factorial moments are
given by

E(Y s) = ρs Γ
(
1 +

αs

δ

)
, s ≥ 1. (3.5)

Using a special case of Theorem 2 it was shown that Y has a discrete distribution.
However, the result of [53] contains a small gap: the moments (Γ(1 + αs

δ ))s∈N

only determine a unique distribution for α/δ ≤ 2, see [32]. Hence, only in this
case the (factorial) moments of Y determine a unique distribution. Since a

Weibull distributed random variable X
L
= Wδ/α,1, with shape parameter δ

α ,

scale parameter 1, and density f(t) = δ
α t

δ
α−1e−t

δ
α , t ≥ 0, has moments E(Xs) =

Γ(1 + αs
δ ), we obtain the following characterization of Y , extending the result

of [53].

Corollary 2. The random variable X̂δm,αn, counting the number of white balls
remaining in the urn, after all black balls have been drawn in a generalized
sampling without replacement urn, starting with α ·n white balls and δ ·m black
balls, has for min{n,m} → ∞ factorial moments of mixed Poisson type with a

Weibull mixing distribution X
L
= Wδ/α,1, and scale parameter λn,m = n

m
α
δ
:

E

(
X̂

s
δm,αn

)
= λs

n,mΓ
(
1 +

αs

δ

)
(1 + o(1)).

Assume that α/δ ≤ 2:

(i) for λn,m → ∞, the random variable
X̂δm,αn

λn,m
converges in distribution, with

convergence of all moments, to X.
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(ii) for λn,m → ρ ∈ (0,∞), the random variable X̂δm,αn converges in distri-
bution, with convergence of all moments, to a mixed Poisson distributed

random variable Y
L
= MPo(ρX). Its probability mass function is given as

follows:

P{Y = �} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j≥�

(−1)j−�

(
j

�

)
ρj

Γ(1 + αj
δ )

j!
, for α

δ < 1,

1

1 + ρ

( ρ

1 + ρ

)�
, for α

δ = 1,

δ

α

∑
j≥0

(−1)j
(
j + �

�

)
ρ−

δ
α (j+1)Γ(

δ(j+1)
α + �)

(j + �)!
, for α

δ > 1.

Remark 6. As shown in [53], for fixed m the random variable X̂δm,αn/n con-

verges to the power B
1
α of a beta-distributed random variable B, with moments

E(Bs) = 1/
(
m+αs

δ
m

)
. The Weibull mixing distribution X

L
= Wδ/α,1 can be recov-

ered by considering the limit m → ∞ of B = Bm:

m
α
δ Bm → X, for m → ∞,

with convergence of all moments. Note that the results above can be extended
to all α, δ ∈ N; however, for α/δ ≥ 2 the method of moments cannot be used
anymore. Instead, has to directly analyse the probability generating function
hn,m(v), which can be derived using stochastic processes [52].

Proof of Corollary 2. According to the definition of a mixed Poisson distributed

random variable Y
L
= MPo(ρX), it has factorial moments given by (3.5). In order

to derive the integral-free series representation we proceed as follows. In the
first case α/δ < 1 we can directly use Theorem 2, since the moment generating
function of the mixing Weibull distribution X exists at −ρ. In the remaining
cases α/δ ≥ 1 we use the definition and the density function of the Weibull
distribution to get first

P{Y = �} =
ρ�

�!

∫ ∞

0

δ

α
t

δ
α+�−1 exp

(
−t

δ
α − ρt

)
dt.

The case α/δ = 1 readily leads to the stated geometric distribution after using
the obvious simplification

δ

α
t

δ
α+�−1 exp

(
−t

δ
α − ρt

)
= t�e−t(ρ+1).

Finally, for α/δ > 1 we expand e−t
δ
α =

∑
j≥0(−1)j t

jδ
α

j! and obtain

P{Y = �} =
δ

α · �!
∑
j≥0

(−1)j

j!

∫ ∞

0

t
(j+1)δ

α +�−1e−ρtdt.

The Gamma-function type integrals are readily evaluated and the stated result
follows.
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3.3. Descendants in increasing trees.

Increasing trees are labelled trees, where the nodes of a tree of size n are labelled
by distinct integers of the set {1, . . . , n} in such a way that each sequence of
labels along any branch starting at the root is increasing. They have been intro-
duced by Bergeron et al. [11], and can be described combinatorially as follows.
Given a so-called degree-weight sequence (ϕk)k≥0, the corresponding degree-
weight generating function ϕ(t) is defined by ϕ(t) :=

∑
k≥0 ϕkt

k. The simple
family of increasing trees T associated with a degree-weight generating function
ϕ(t), can be described by the formal recursive equation

T = ©1 ×
(
ϕ0 ·{ε} ∪̇ ϕ1 ·T ∪̇ ϕ2 ·T ∗T ∪̇ ϕ3 ·T ∗T ∗T ∪̇ · · ·

)
= ©1 ×ϕ(T ), (3.6)

where ©1 denotes the node labelled by 1, × the Cartesian product, ∪̇ the disjoint
union, ∗ the partition product for labelled objects, and ϕ(T ) the substituted
structure (see, e.g., the books [24, 28]). Note that the elements of T are increas-
ing plane trees, and that such a tree of size n, whose nodes have outdegrees
d1, . . . , dn, has the weight

∏n
i=1 ϕdi . When speaking about a random tree of size

n from the family T , we always use the random tree model for weighted trees,
i.e., we assume that each tree of size n from T can be chosen with a probability
proportional to its weight.

Let Tn be the total weight of all trees from T of size n. It follows from
(3.6) that the exponential generating function T (z) :=

∑
n≥1 Tn

zn

n! of the total
weights satisfies the autonomous first order differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (3.7)

From now on we consider tree families T having degree-weights of one of
the following three forms, as studied by [63], where we use the abbreviations
Rect for recursive trees,Gport for generalized plane recursive trees (also called
generalized plane-oriented recursive trees), and d-Inct for d-ary increasing trees.

ϕ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ec1t, for c1 > 0, for Rect,

ϕ0

(1+
c2t
ϕ0

)
− c1

c2
−1

, for ϕ0 > 0, 0 < −c2 < c1, for Gport,

ϕ0

(
1 + c2t

ϕ0

)d
, for ϕ0, c2 > 0, d := c1

c2
+ 1 ∈ N \ {1}, for d-Inct.

(3.8)
Consequently, by solving (3.7), we obtain the exponential generating function
T (z),

T (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
log
(

1
1−c1z

)
, for Rect,

ϕ0

c2

(
1

(1−c1z)
c2
c1

− 1
)
, for Gport,

ϕ0

c2

(
1

(1−(d−1)c2z)
1

d−1
− 1
)
, for d-Inct,

(3.9)
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and the total weights Tn,

Tn = ϕ0c
n−1
1 (n− 1)!

(
n− 1 + c2

c1

n− 1

)
. (3.10)

Note that changing ϕk to abkϕk for some positive constants a and b will affect
the weights of all trees of a given size n by the same factor anbn−1, which
does not affect the distribution of a random tree from the family. Hence, when
considering random trees from these three classes, ϕ0 is irrelevant and c1 and
c2 are relevant only through the ratio c1/c2. (We may thus, if we like, normalize
ϕ0 = 1 and either c1 or |c2|, but not both.) It is convenient to set c1 = 1 for
(random) recursive trees, to use the parameter α := −1− c1

c2
> 0 for (random)

generalized plane recursive trees, and d := c1
c2

+ 1 ∈ 2, 3, . . . for (random) d-
ary increasing trees, i.e., it suffices to consider the degree-weight generating
functions

ϕ(t) =

⎧⎪⎨
⎪⎩
et, for Rect,

1
(1−t)α , with α > 0, for Gport,

(1 + t)d, with d = 2, 3, 4, . . . , for d-Inct.

(3.11)

Fig 1. Two recursive trees of size three - ϕ(t) = et (no left-to-right order); three plane
recursive trees of size three - ϕ(t) = 1

1−t
; six binary increasing trees - ϕ(t) = (1 + t)2.

As shown by Panholzer and Prodinger [63], random trees in the three classes
of families given in (3.11) can be generated by an evolution process in the fol-
lowing way. The process, evolving in discrete time, starts with the root labelled
by 1. At step i+ 1 the node with label i+ 1 is attached to any previous node v
(with outdegree d(v)) of the already grown tree of size i with probabilities p(v)
given by

p(v) =

⎧⎪⎨
⎪⎩

1
i , for Rect,
d(v)+α

(α+1)i−1 , for Gport,
d−d(v)

(d−1)i+1 , for d-Inct.

(3.12)

Moreover, it has been shown in [63] that only random trees from simple families
of trees T given in (3.8) can be generated by such a tree evolution process, i.e.,
only for these tree families exist suitable attachment probabilities p(v).
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Let Dn,j denote the random variable, counting the number of descendants,
i.e., the size of the subtree rooted at node j, of a specific node j, with 1 ≤ j ≤ n,
in a tree of size n. In [47] this random variable has been studied for the three
tree families mentioned beforehand using a generating functions approach. In
the following we collect and somewhat simplify these earlier results. One obtains
a simple exact formula for the factorial moments of D̂n,j = Dn,j − 1 directly
from the results of [47]:

E(D̂
s
n,j) = s!

(
n−j
s

)(
s+

c2
c1
s

)
(
j−1+

c2
c1

+s
s

) ,
with c1, c2 as given in (3.8). Hence, by using Stirling’s formula for the Gamma
function (3.1), for n → ∞ and j = j(n) → ∞, the factorial moments of D̂n,j

are of mixed Poisson type and Lemma 2 can be applied.

Corollary 3. The random variable D̂n,j, counting the number of descendants
minus one of node j in a random increasing tree of size n, has for n → ∞ and
j = j(n) → ∞, factorial moments of mixed Poisson type with a Gamma mixing

distribution X
L
= γ(1, 1 + c2

c1
), and scale parameter λn,j =

n−j
j :

E(D̂
s
n,j) = λs

n,j

Γ(s+ 1 + c2
c1
)

Γ(1 + c2
c1
)

(1 + o(1)).

(i) for λn,j → ∞, the random variable
D̂n,j

λn,j
converges in distribution, with

convergence of all moments, to X.
(ii) for λn,j → ρ ∈ (0,∞), the random variable D̂n,j converges in distribution,

with convergence of all moments, to a mixed Poisson distributed random

variable Y
L
= MPo(ρX), which has a negative binomial distribution.

Remark 7. Note that for fixed n the random variable D̂n,j/n
L−→ Bj , where

Bj
L
= β(1 + c2

c1
, j − 1), is asymptotically beta-distributed (see [47]). One readily

recovers the mixing distribution X from Bj by taking the limit j → ∞, using a
well known result for beta-distributed random variables:

jBj → X, for j → ∞,

with convergence of all moments.

Remark 8. Panholzer and Seitz [65] studied labelled families of evolving k-
tree models, generalizing simple families of increasing trees. An identical phase
change and factorial moments of mixed Poisson type with a Gamma mixing dis-
tribution can be observed when studying the number of descendants of specific
nodes in labelled families of evolving k-tree models.

The parameter “descendants of node j” can be modelled also via urn models:
we encounter classical Pólya urns with non-standard initial values, depending
on the number of draws. Note that Mahmoud and Smythe [56] used a similar
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approach to study the descendants of node j in recursive trees, for j fixed and
n → ∞.

In order to get an urn model description of the number of descendants of node
j one considers the tree evolution process generating random trees of the tree
families studied. The probabilities p(v) given in (3.12) can then be translated
into the ball replacement matrix of a two-colour urn model. Alternatively, for
this task one can use combinatorial descriptions of these tree families, which
we will here only figure out for the case d-Inct, i.e., d-ary increasing trees; the
other cases can be treated similarly.

Consider such a d-ary increasing tree of size j: there are 1+ (d− 1)j possible
attachment positions (often drawn as external nodes), where a new node can
be attached. Exactly d such attachment positions are contained in the subtree
rooted j, whereas the other (d− 1)(j − 1) are not. In the urn model description
we will use balls of two colours, black and white. Each white ball will correspond
to an attachment position contained in the subtree rooted j, whereas each black
ball will correspond to an attachment position that is not contained in the
subtree rooted j, which we call here “remaining tree”. This already describes
the initial conditions of the urn.

Moreover, during the tree evolution process, when attaching a new node to a
position in the subtree of j, then there appear d−1 new attachment positions in
this subtree, whereas when attaching a new node to a position in the remaining
tree, then there appear d − 1 new attachment positions in the remaining tree.
In the urn model description this simply means that when drawing a white ball
one adds d− 1 white balls and when drawing a black ball one adds d− 1 black
balls to the urn. After n− j draws, which correspond to the n− j attachments
of nodes in the tree, the number of white balls in the urn is linearly related to
the size of the subtree rooted j in a tree of size n. Thus, the following urn model
description follows immediately.

Urn III. Consider a Pólya urn with ball replacement matrix

M =

(
κ 0
0 κ

)
, κ =

⎧⎪⎨
⎪⎩
1, Rect,

1 + α, Gport,

d− 1, d-Inct,

and initial conditions

W0 =

⎧⎪⎨
⎪⎩
1,

α,

d,

B0 =

⎧⎪⎨
⎪⎩
j − 1, Rect,

(j − 1)(1 + α), Gport,

(j − 1)(d− 1), d-Inct,

for 1 ≤ j ≤ n. The number Dn,j of descendants of node j in an increasing tree
of size n has the same distribution as the (shifted and scaled) number of white
balls Wn−j in the Pólya urn after n− j draws,

Dn,j
L
=

⎧⎪⎨
⎪⎩
Wn−j , Rect,

(Wn−j + 1)/κ, Gport,

(Wn−j − 1)/κ, d-Inct.
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This implies that the number of white balls in the standard Pólya urn model
exhibit a phase transition according to the growth of the initial number of black
balls present in the urn compared to the discrete time.

3.4. Node-degrees in plane recursive trees.

Let Xn,j denote the random variable counting the outdegree of node j in a
generalized plane recursive tree of size n, i.e., a size-n tree from the increasing
tree family Gport defined in Section 3.3.

Fig 2. A size 15 plane recursive tree, where the root node j = 1 has outdegree five.

It has been shown in [49] using a generating functions approach that the
factorial moments of the random variable Xn,j are given by

E(X
s
n,j) =

Γ(s+ α)

Γ(α)

s∑
k=0

(
s

k

)
(−1)k

Γ
(
n+ s−1−k

1+α

)
Γ
(
j − 1

1+α

)
Γ
(
j + s−1−k

1+α

)
Γ
(
n− 1

1+α

) ,
for j ≥ 2, with α given in definition (3.11) of the degree-weight generating
function ϕ(t). Lemma 2 and an application of Stirling’s formula for the Gamma
function (3.1) leads to the following result.

Corollary 4. The random variable Xn,j, counting the outdegree of node j in a
random generalized plane recursive tree of size n, 2 ≤ j ≤ n, has for n → ∞ and
j = j(n) → ∞, falling factorial moments of mixed Poisson type with a Gamma

mixing distribution X
L
= γ(1, α), and scale parameter λn,j =

(
n
j

)1/(α+1)

− 1:

E(X
s
n,j) = λs

n,j

Γ(s+ α)

Γ(α)
(1 + o(1)).

(i) for λn,j → ∞, the random variable
Xn,j

λn,j
converges in distribution, with

convergence of all moments, to X.
(ii) for λn,j → ρ ∈ (0,∞), the random variable Xn,j converges in distribution,

with convergence of all moments, to a mixed Poisson distributed random

variable Y
L
= MPo(ρX), which has a negative binomial distribution.
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Remark 9. For fixed j, independent of n, a different limit law arises (compare
with Remark 5): the random variable Xn,j/n

1/(α+1) converges for n → ∞ in
distribution to a random variable Zj characterized by its moments or by its
density function; see [49] and also Corollary 5 for details.

The random variable Xn,j also allows an urn model description. To get it we

consider the tree evolution process for the family Gport, with p(v) = d(v)+α
(α+1)i−1 ,

where p(v) gives the probability that the new node i + 1 will be attached to
node v in a tree of size i, depending on the outdegree d(v) of v. We see that
the probability p(v) is proportional to d(v) + α. Thus let us think about the
quantity d(v) + α as the affinity of node v attracting a new node. The total
affinity of all nodes vk in a tree T of size i is then given by

∑
1≤k≤i(d(vk)+α) =

i− 1+αi = (α+1)i− 1 giving an interpretation of the denominator of p(v). In
the two-colour urn model we use white balls describing the affinity of node j to
attract new nodes, whereas the black balls describe the affinity of all remaining
nodes in the tree to attract new nodes. When considering a tree of size j, it
holds d(j) = 0 and thus that node j has affinity α, whereas all remaining nodes
have total affinity (α+1)j − 1−α = (α+1)(j − 1) to attract a new node. This
already yields the initial conditions of the urn.

Each time a new node is attached during the tree evolution process the total
affinity of all nodes increases by α+ 1: α is the affinity of the new node (which
has outdegree 0) and by attaching this node the outdegree and thus affinity of
one node increases by one. In particular, when a new node is attached to node
j the affinity of j increases by one, whereas the total affinity of the remaining
nodes increases by α, but if a new node is attached to another node the affinity
of j remains unchanged. Thus in the urn model description, when drawing a
white ball, one white ball and α black balls are added, and when drawing a
black ball, α + 1 black balls are added to the urn. The following description is
then immediate.

Urn IV. Consider a balanced triangular urn with ball replacement matrix

M =

(
1 α
0 1 + α

)
, W0 = α, B0 = (α+ 1)(j − 1),

for 1 ≤ j ≤ n. The outdegree Xn,j of node j in a generalized plane recursive tree
of size n has the same distribution as the shifted number of white balls Wn−j

in the Pólya urn after n− j draws,

Xn,j
L
= Wn−j − α.

This implies that the number of white balls in the standard Pólya urn model
exhibit several phase transitions according to the growth of the initial number
of black balls present in the urn with respect to the total number of draws; this
will be discussed in detail in a more general setting in Section 4.
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3.5. Branching structures in plane recursive trees

Let Xn,j,k denote the random variable, which counts the number of size-k
branches (= subtrees of size k) attached to the node labelled j in a random
increasing tree of size n. The random variables Xn,j,k are thus related to the
random variable Xn,j studied in Section 3.4, counting the outdegree of node
labelled j, via

Xn,j =

n−j∑
k=1

Xn,j,k.

Fig 3. A size 15 plane recursive tree, where the root node has one size-one, one size-two, one
size three and two size-four branches.

This parameter was studied in Su et al. [74] for the particular case of the
root node j = 1 and the instance of random recursive trees: they derived the
distribution of Xn,1,k and a limit law for it. Furthermore they stated results for
joint distributions. The analysis was extended in [48] to increasing tree families
generated by a natural growth process (see Section 3.3). In particular, for the
family Gport of generalized plane recursive trees with parameter α given in
(3.11), the following result for the factorial moments of Xn,j,k was obtained:

E(X
s
n,j,k) =

( (k− 1
α+1

k−1

)
(α+ 1)k

)s

· Γ(s+ α)

Γ(α)

(j−1− 1
α+1

j−1

)(n−ks−1+ s−1
α+1

n−j−ks

)
(
n−1
j−1

)(n−1− 1
α+1

n−1

) .

In [48] only the case of fixed k was considered. We can easily use Lemma 2
and Stirling’s formula for the Gamma function (3.1) to extend the studies given
there and to obtain the following result.

Corollary 5. The random variable Xn,j,k, counting the number of size-k
branches attached to node j in a random generalized plane recursive tree of size
n, has for j fixed, n → ∞ and 1 ≤ k ≤ n− j, falling factorial moments of mixed
Poisson type with mixing distribution Zj supported on [0,∞), uniquely defined

by its moment sequence (μs)s∈N =
(

Γ(s+α)Γ(j− 1
α+1 )

Γ(α)Γ(j+ s−1
α+1 )

)
s∈N

, and scale parameter
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λn,j,k =
n

1
α+1 (

k− 1
α+1

k−1
)

(α+1)k :

E(X
s
n,j,k) = λs

n,j,k ·
Γ(s+ α)Γ(j − 1

α+1 )

Γ(α)Γ(j + s−1
α+1 )

(1 + o(1)).

(i) for λn,j,k → ∞, the random variable
Xn,j,k

λn,j,k
converges in distribution, with

convergence of all moments, to Zj.
(ii) for λn,j,k → ρ ∈ (0,∞), the random variable Xn,j,k converges in distri-

bution, with convergence of all moments, to a mixed Poisson distributed

random variable Y
L
= MPo(ρZj).

Remark 10. The results above can be generalized to growing j = j(n), leading
to results similar to our earlier findings for the ordinary outdegree Xn,j . The
random variable Zj is exactly the limit law of Xn,j/n

1/(α+1) for fixed j as
discussed in Remark 9. The density functions fj(x) of the Zj , j ∈ N, are known
explicitly, see [49].

We can interpret our findings in terms of an urn model reminiscent to the
urn model for block sizes in k-Stirling permutations. To do this we can extend
the description given in Section 3.4 leading to Urn IV. Namely, we require a
refinement of describing the affinities of the nodes in a tree to attract new
nodes during the tree evolution process.

For doing that we use balls of k+2 different colours. Balls of colour 0 describe
the affinity of node labelled j attracting a new node to become attached at j.
Furthermore, balls of colour i, with 1 ≤ i ≤ k, describe the affinity of attracting
a new node of nodes that are contained in branches of size i attached to node
j, whereas balls of colour k+1 describe the affinity of attracting a new node of
all remaining nodes, i.e., of nodes that are not contained in the subtree rooted
j or nodes contained in a branch of size ≥ k + 1 attached to j. Consider a
generalized plane recursive tree of size j: node j has affinity α to attract a new
node, whereas the total affinity of all remaining nodes is (α + 1)(j − 1); this
characterizes the initial configuration of the urn.

The ball replacement matrix of the urn can be obtained as follows. When
drawing a ball of colour 0, i.e., when attaching a new node to j, the node degree
of j increases by one and there appears a new branch of size 1 attached to node
j, which means that we add one ball of colour 0 and α balls of colour 1. When
drawing a ball of colour i, with 1 ≤ i ≤ k, i.e., when attaching a new node to
a size-i branch attached to j, this branch transforms into a size-(i + 1) branch
attached to j, which means that we remove (α+1)i− 1 balls of colour i (which
corresponds to the affinity of a size-i branch) and add (α + 1)(i + 1) − 1 balls
of colour i + 1 (which thus correspond to the affinity of a size-(i + 1) branch).
Furthermore, when drawing a ball of colour k + 1, i.e., when attaching a new
node to node not contained in the subtree rooted j or when attaching a new
node to a node contained in a branch of size ≥ k+1 attached to node j, this does
neither affect the affinity of node j nor of its branches of sizes ≤ k, which means
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that we add α + 1 balls of colour k + 1. The following urn model description
immediately follows.

Urn V. Consider a balanced urn with balls of k+ 2 colors and let the random
vector (Un,0, Un,1, . . . , Un,k+1) count the number of balls of each color at time
n with (k + 2)× (k + 2) ball replacement matrix M given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α 0 ··· 0 0 0 0

0 −α 2(α+1)−1
. . .

. . .
. . . 0 0

0 0 −(2(α+1)−1) 3(α+1)−1
. . .

. . . 0 0
...
. . .

. . .
. . .

. . .
. . .

... 0...
. . .

. . .
. . .

. . .
. . .

... 0

0
. . .

. . .
. . . 0 −((α+1)(k−1)−1) (α+1)k−1 0

0
. . .

. . .
. . . 0 0 −((α+1)k−1) (α+1)(k+1)−1

0 0 0 ··· 0 0 0 1+α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The initial configuration of the urn (it is convenient to start here at time 0)
is given by (U0,0, U0,1, . . . , U0,k+1) = (α, 0, . . . , 0, (α + 1)(j − 1)). The random
variables Un,i, with 1 ≤ i ≤ k, described by the urn model are related to the
random variables Xn,j,i, 1 ≤ i ≤ k, which count the number of size-i branches
attached to the node labelled j in a random generalized plane recursive tree of
size n, as follows:

Un−j,i = ((α+ 1)i− 1)Xn,j,i, 1 ≤ i ≤ k.

Moreover, Un−j,0 is related to the outdegree Xn,j via Un−j,0 = Xn,j + α.

This implies that the random variables Un,i occurring in the urn model un-
dergo a phase transition according to the growth of k with respect to n, from
continuous to discrete.

3.6. Distribution of table sizes in the Chinese restaurant process

The Chinese restaurant process with parameters a and θ is a discrete-time
stochastic process, whose value at any positive integer time n is one of the
Bn partitions of the set [n] = {1, 2, 3, . . . , n} (see Pitman [69]). The parameters
a and θ satisfy 0 < a < 1 and θ > −a. Here Bn denotes the Bell number count-
ing the number of partitions of an n-element set B0 = B1 = 1, B2 = 2, B3 = 5,
etc.2 One imagines a Chinese restaurant with an infinite number of tables, and
each table has an infinite number of seats. In the beginning the first customer
takes place at the first table. At each discrete time step a new customer arrives
and either joins one of the existing tables, or he takes place at the next empty
table in line. Each table corresponds to a block of a random partition. In the
beginning at time n = 1, the trivial partition {{1}} is obtained with probability
1. Given a partition T of [n] with |T | = k parts ti, 1 ≤ i ≤ k ≤ n, of sizes |ti|. At

2See sequence A000110 in OEIS.

http://oeis.org/A000110
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time n+ 1 the element n+ 1 is either added to one of the existing parts ti ∈ T
with probability

P{n+ 1 <c ti} =
|ti| − a

n+ θ
, 1 ≤ i ≤ k,

or added to the partition T as a new singleton block with probability

P{n+ 1 <c t|T |+1} =
θ + k · a
n+ θ

.

This model thus assigns a probability to any particular partition T of [n]. We are
interested in the distribution of the random variable Cn,j , counting the number
of parts of size j in a partition of [n] generated by the Chinese restaurant process.

We will not directly study the Chinese restaurant process, but in order to
analyse the number of tables of a certain size we study instead a variant of the
growth rule for generalized plane recursive trees as introduced in Section 3.3.
Combinatorially, we consider a family Tα,β of generalized plane recursive trees,
where the degree-weight generating function ϑ(t) = 1

(1−t)β
, β > 0, associated

to the root of the tree, is different to the one for non-root nodes in the tree,
ϕ(t) = 1

(1−t)α , α > 0. Then, the family Tα,β is closely related to the correspond-

ing family T of generalized plane recursive trees with degree-weight generating
ϕ(t) = 1

(1−t)α , α > 0, via the following formal recursive equations:

Tα,β = ©1 × ϑ(T ), T = ©1 × ϕ(T ). (3.13)

The weight w(T ) of a tree T ∈ Tα,β is then defined as

w(T ) := ϑd(root)

∏
v∈T\{root}

ϕd(v),

where d(v) denotes the outdegree of node v. Thus, the generating functions
Tα,β(z) =

∑
n≥1 Tα,β;n

zn

n! and T (z) =
∑

n≥1 Tn
zn

n! of the total weight of size-n
trees in Tα,β and T , respectively, satisfies the differential equations

T ′
α,β(z) = ϑ(T (z)), T ′(z) = ϕ(T (z)).

Moreover, the tree evolution process to generate a random tree of arbitrary
given size in the family T described in Section 3.3 can be extended in the
following way to generate a random tree in the family Tα,β . The process, evolving
in discrete time, starts with the root labelled by zero. At step n+1, with n ≥ 0,
the node with label n+1 is attached to any previous node v with outdegree d(v)
of the already grown tree with probabilities p(v), which are given for non-root
nodes v by

P{n+ 1 <c v} =
d(v) + α

β + (α+ 1)n
,
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and for the root by

P{n+ 1 <c root} =
d(root) + β

β + (α+ 1)n
.

This growth process is similar to the Chinese restaurant process considered
before. Indeed, if we remove the root labelled zero, the remaining branches
contain the nodes with labels given by [n] = {1, . . . , n}.

Fig 4. A size 15 plane recursive tree, where the root node labelled zero has one size-one, one
size-two, one size three, two size-four branches and the corresponding table structure in the
Chinese restaurant model.

Proposition 3 (Chinese restaurant process and generalized plane recursive
trees). A random partition of {1, . . . , n} generated by the Chinese restaurant
process with parameters a and θ can be generated equivalently by the growth
process of the family of generalized plane recursive trees Tα,β when generating
such a tree of size n + 1. The parameters a, θ and α, β > 0, respectively, are
related via

a =
1

1 + α
, θ =

β

1 + α
.

Remark 11. In above relation, θ cannot be negative, since β is assumed to
be positive. The above correspondence can be extended to the full range β >
−1 using a different degree-weight generating function ϑ(t) for the root node.
Assume that −1 < β ≤ 0. Then, we cannot directly use ϑ(t) = (1 − t)−β =
1 + βt + . . . due to the negative or zero weight. Since the root connectivity is
similar to the choice β �→ 1+ β for an outdegree of the root larger than one, we
use a shifted connectivity of the root node:

ϑ(t) = 1 +

∫ t

0

1

(1− x)1+β
dx = 1 +

1

β

( 1

(1− t)β
− 1
)
= 1 +

∑
k≥1

(
β + k

k − 1

)
tk

k
,

for −1 < β < 0, and

ϑ(t) = 1− log(1− t) = 1 +
∑
k≥1

tk

k
,
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for β = 0.

Proof of Proposition 3. Assume that a size-n tree T of the family Tα,β with la-
bels {0, 1, . . . , n} has k branches ti, 1 ≤ i ≤ k, of sizes |ti|. By the considerations
of [63], at time n+ 1 the element n+ 1 is either attached to one of the existing
non-root nodes v with probability

P{n+ 1 <c v} =
d(v) + α

β + (α+ 1)n
,

or to the root of the tree with probability

P{n+ 1 <c root} =
d(root) + β

β + (α+ 1)n
=

k + β

β + (α+ 1)n
=

β
α+1 + k · 1

α+1

n+ β
α+1

.

Consequently, element n + 1 is attached to one of the branches ti ∈ T with
probability

P{n+ 1 <c ti} =
∑
v∈ti

P{n+ 1 <c v} =
∑
v∈ti

d(v) + α

β + (α+ 1)n

=
|ti| − 1 + |ti|α
β + (α+ 1)n

=
|ti| − 1

α+1

n+ β
α+1

,

Thus, setting a = 1
1+α and θ = β

1+α proves the stated result.

Theorem 3.1. The random variable Cn,j, counting the number of parts of
size j in a partition of {1, . . . , n} generated by the Chinese restaurant process
with parameters a and θ, is distributed as Xn+1,j, which counts the number of
branches of size j attached to the root of a random size-(n+1) generalized plane
recursive tree of the family Tα,β, with a = 1

1+α and θ = β
1+α :

Cn,j
L
= Xn+1,j .

Assume that β > 0. Then, Xn+1,j has falling factorial moments of mixed Pois-
son type with mixing distribution Z supported on [0,∞), and scale parameter

λn,j =
n

1
α+1 (

j−1− 1
α+1

j−1
)

(α+1)j :

E(X
s
n+1,j) = λs

n,j ·
Γ(s+ β)Γ( β

α+1 )

Γ(β)Γ( β+s
α+1 )

(1 + o(1)).

(i) for λn,j → ∞, the random variable
Xn+1,j

λn,j
converges in distribution, with

convergence of all moments, to Z.
(ii) for λn,j → ρ ∈ (0,∞), the random variable Xn+1,j converges in distri-

bution, with convergence of all moments, to a mixed Poisson distributed

random variable Y
L
= MPo(ρZ).
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Remark 12. A similar result holds true for −1 < β ≤ 0. The analysis is
identical, but one has to use the adapted degree-weight generating functions
stated in Remark 11.

Proof of Theorem 3.1. We can study Xn+1,j , which counts the number of
branches of size j attached to the root of a size-(n + 1) tree using the vari-
able v as a marker and the generating function

Tα,β(z, v) =
∑
n≥1

Tα,β;nE(v
Xn,j )

zn

n!
.

We have

T ′
α,β(z, v) = ϑ

(
T (z)− Tj

j!
zj(1− v)

)
, T ′(z) = ϕ(T (z)).

Solving the differential equation for T (z) leads to

T ′
α,β(z, v) =

1(
1− T (z) +

Tj

j! z
j(1− v)

)β , T (z) = 1− (1− (α+ 1)z)
1

α+1 .

We can access the sth moment of Xn+1,j as follows:

E(X
s
n+1,j) = s!

[znws]T ′
α,β(z, v)

Tα,β;n

n!

,

where we set w = v−1. Consequently, an expansion of T ′
α,β(z, v) at w = 0 gives

E(X
s
n+1,j) =

n!s!

Tα,β;n
·
(Tj

j!

)s(β − 1 + s

s

)
[zn−js]

1

(1− T (z))β+s
.

Since
Tα,β;n

n! = (α+ 1)n
( β

α+1+n−1
n

)
, we obtain the explicit result

E(X
s
n+1,j) =

((j−1− 1
α+1

j−1

)
(α+ 1)j

)s

· s!( β
α+1+n−1

n

) · (β − 1 + s

s

)(
n− js− 1 + β+s

α+1

n− js

)
.

An application of Stirling’s formula for the Gamma function yields then the
stated result.

4. Triangular urn models

During the study of node-degree in generalized plane recursive trees in Sec-
tion 3.4 we encountered a triangular urn model leading to factorial moments of
mixed Poisson type. Here we study a more general triangular urn.
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Urn VI. Consider a balanced triangular urn model with ball replacement ma-
trix

M =

(
α β
0 γ

)
, α, β, γ ∈ N, γ = α+ β ∈ N.

The initial configuration of the urn consists of w0 white balls and b0 black balls,
and the random variable Wn counts the number of white balls in the urn after
n draws.

This urn model has been studied by Puyhaubert [21, 72] who derived the
probability mass function of Wn and a limit law for n → ∞. The results
of [21, 72] were extended by Janson [37] to unbalanced triangular urn mod-
els. Here, using a simple closed formula for the rising factorial moments of Wn,
we point out several phase transitions, involving amongst others moments of
mixed Poisson type, for non-standard initial values b0 = b0(n), which may de-
pend on the discrete time n. Due to the balanced nature of the urn the total
number Tn of balls after n draws is a deterministic quantity:

Tn = T0 + n · γ, n ≥ 0, T0 = w0 + b0.

Our starting point is the analysis of the normalized number of white balls
Xn = Wn/α, such that X0 = w0/α. Let Fn denote the σ-field generated by the
first n steps. Moreover, denote by Δn = Xn −Xn−1 ∈ {0, 1} the increment at
step n. We have

E(Xn | Fn−1) = E(Xn−1 +Δn | Fn−1) = Xn−1 + E(Δn | Fn−1).

Since the probability that a new white ball is generated at step n is proportional
to the number Wn−1 = Xn−1 ·α of existing white balls (at step n−1), we obtain
further

E(Xn | Fn−1) = Xn−1 +
Xn−1 · α
Tn−1

=
Tn−1 + α

Tn−1
Wn−1, n ≥ 1.

Hence, let

Xn = Xn ·
n−1∏
k=0

Tk

Tk + α
= Xn ·

(
n−1+

T0
γ

n

)
(
n−1+

T0+α
γ

n

) .
Then

E(Xn | Fn−1) =

(
n−1+

T0
γ

n

)
(
n−1+

T0+α
γ

n

) · Tn−1 + α

Tn−1
Wn−1 = Xn−1, n ≥ 1.

Consequently, Xn is a positive martingale. By taking the unconditional expec-
tation, this implies that the expected value of Xn is given by

E(Xn) =

(
n−1+

T0+α
γ

n

)
(
n−1+

T0
γ

n

) · E(X0) =

(
n−1+

T0+α
γ

n

)
(
n−1+

T0
γ

n

) ·X0.
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More generally, we similarly have for any positive integer s

E

((
Xn + s− 1

s

) ∣∣∣∣ Fn−1

)
=

(
Xn−1 + s− 1

s

)
+

(
Xn−1 + s− 1

s− 1

)
αXn−1

Tn−1

=

(
Xn−1 + s− 1

s

)
Tn−1 + sα

Tn−1
.

Hence, this implies that the sth binomial moment is given by

E

((
Xn + s− 1

s

))
=

(
n−1+

T0+sα
γ

n

)
(
n−1+

T0
γ

n

) ·
(
X0 + s− 1

s

)

=
Γ(n+ w0+b0+sα

γ )Γ(w0+b0
γ )Γ(w0

α + s)

Γ(w0+b0+sα
γ )Γ(n+ w0+b0

γ )Γ(w0

α )Γ(s+ 1)
.

Theorem 4.1. The sth rising factorial moment of the random variable Xn =
Wn/α, where Wn counts the number of white ball in a balanced triangular urn

with ball replacement matrix given by
(

α β
0 γ

)
, α, β, γ ∈ N, γ = α + β, is given

by the exact formula

E
(
Xs

n

)
=

Γ(n+ w0+b0+sα
γ )Γ(w0+b0

γ )Γ(w0

α + s)

Γ(w0+b0+sα
γ )Γ(n+ w0+b0

γ )Γ(w0

α )
,

where w0, b0 denote the initial number of white and black balls, respectively. The
factorial moments of X̂n = Xn − w0

α are for min{n, b0} → ∞ asymptotically of

mixed Poisson type with a gamma mixing distribution X
L
= γ(w0

α , 1), and scale

parameter λn,b0 =
(

n+
b0
γ

b0
γ

)α
γ − 1,

E(X̂s
n) = (λn,b0)

s ·
Γ(w0

α + s)

Γ(w0

α )
(1 + o(1)).

(i) for λn,b0 → ∞, the random variable X̂n

λn,b0
converges in distribution, with

convergence of all moments, to X.
(ii) for λn,b0 → ρ ∈ (0,∞), the random variable X̂n converges in distribution,

with convergence of all moments, to Y
L
= MPo(ρX).

Remark 13. It is well known from the works of Puyhaubert [21, 72] and Jan-
son [37], that for fixed b0 the random variableXn/n

α
γ tends to a random variable

Z, depending on the initial condition w0, b0 and also α and γ. Its power moments
are given by

E(Zs) =
Γ(w0+b0

γ )Γ(w0

α + s)

Γ(w0+b0+sα
γ )Γ(w0

α )
, s ≥ 1;

for more details about the nature of this random variable we refer the reader
to [21, 37]. This result can easily be re-obtained using the explicit expression
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for the rising factorial moments of Xn and the method of moments. We obtain

the gamma mixing distribution X
L
= γ(w0

α , 1) from Z = Zb0 as follows:

b
α
γ

0 Zb0
L−→ X, for b0 → ∞,

with convergence of all moments.

Proof of Theorem 4.1. Let Y denote a random variable with rising factorial
moments E(Y s) = E(Y (Y +1) . . . (Y + s− 1)) satisfying an expansion of mixed
Poisson type, E(Y s) = ρs · μs, for s ≥ 1, with μs ≥ 0. We obtain the (falling)
factorial moments using the binomial theorem for rising factorials (see [30]):

xs = (x− s+ 1)s =

s∑
�=1

(
s

�

)
· x� · (−s+ 1)s−�

=
s∑

�=1

(
s

�

)
x�(−1)s−�(s− 1)s−�, s ≥ 1.

Moreover, we can obtain the rising factorial moments of the shifted random
variable X̂n = Xn − w0

a by using again the binomial theorem

(x+ c)� =

�∑
j=0

(
�

j

)
· xj · c�−j , � ≥ 0.

This implies that we can express the factorial moments of X̂n in terms of the
rising factorial moments of Xn by combining the two identities above in the
following way.

E(X̂s
n) =

s∑
�=1

(
s

�

)
E(X̂�

n)(−1)s−�(s− 1)s−�

=

s∑
�=1

(
s

�

)
(−1)s−�(s− 1)s−�

�∑
j=0

(
�

j

)
E
(
X�

n

)
(−w0/α)

�−j .

Next we use the asymptotic expansion of the rising factorial moments of Xn,

E
(
Xs

n

)
= (λn,b0 + 1)s

Γ(w0

α + s)

Γ(w0

α )
(1 + o(1)), s ≥ 1,

where λn,b0 =

(
n+

b0
γ

b0
γ

)α
c

− 1. Interchanging summations, and collecting powers

of λn,b0 leads to the expansion

E(X̂s
n) = s!

s∑
i=0

λi
n,b0

[ s∑
j=i

(
j

i

)
(−1)j

(w0

α + j − 1

j

)
×

×
s∑

�=j

(
�− 1

�− j

)(
−w0

α

s− �

)
(−1)�

]
(1 + o(1)).
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Next, using the hypergeometric form of the Vandermonde convolution, see [30,
p. 212], we obtain for the inner sum

s∑
�=j

(
�− 1

�− j

)(
−w0

α

s− �

)
(−1)� =

(−w0
α

s−j

)(j−s−w0
α

j

)
(−w0

α +j−1
j

) .

We get further

s!

s∑
j=i

(
j

i

)(
−w0

α

s− j

)(
j − s− w0

α

j

)
(−1)j = δs,i · s!(−1)s

(
−w0

α

s

)

= δs,i ·
Γ(w0

α + s)

Γ(w0

α )
,

where δs,i denotes the Kronecker-delta function. This proves the stated result.

5. Mixed Poisson-Rayleigh laws

In the analysis of various combinatorial objects as, e.g., lattice paths, trees and
mappings, the Rayleigh distribution occurs frequently. In this section we give
several examples, where during the study of such objects, a mixed Poisson dis-
tribution with Rayleigh mixing distribution occurs in a natural way. Apart from
the first example, the occurrence and proof of the mixed Poisson distribution is
novel, best to our knowledge.

5.1. The number of inversions in labelled tree families

Consider a rooted labelled tree T , where the nodes of T are labelled with distinct
integers (usually of the set {1, 2, . . . , |T |}, with |T | the size, i.e., the number of
vertices, of T ). An inversion in T is a pair (i, j) of vertices (we may always
identify a vertex with its label), such that i > j and i lies on the unique path
from the root node of T to j (thus i is an ascendant of j or, equivalently, j
is a descendant of i). Given a tree family, we introduce the r.v. In,j , which
counts, for a random tree of size n, the number of inversions induced by the
node labelled j, 1 ≤ j ≤ n, i.e., it counts the number of inversions of the kind
(i, j), with i > j an ancestor of j. See Figure 5 for an illustration of the quantity
considered.

Panholzer and Seitz [64] studied the r.v. In,j for random trees of so-called
labelled simply generated tree families (see, e.g., [24]; note that in the proba-
bilistic literature such tree models are more commonly called Galton-Watson
trees), which contain many important tree families as, e.g., ordered, unordered,
binary and cyclic labelled trees as special instances.

Formally, a class T of labelled simply generated trees is defined in the follow-
ing way: One chooses a sequence (ϕ�)�≥0 (the so-called degree-weight sequence)
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Fig 5. A binary labelled tree of size 7 with a total number of 6 inversions, namely (3, 1),
(6, 1), (3, 2), (6, 2), (6, 4), (7, 5). Thus two inversions each are induced by the nodes 1 and 2,
whereas one inversion each is induced by the nodes 4 and 5.

of nonnegative real numbers with ϕ0 > 0. Using this sequence, the weight w(T )
of each labelled ordered tree (i.e., each labelled rooted tree, in which the children
of each node are ordered from left to right) is defined by w(T ) :=

∏
v∈T ϕd(v),

where by v ∈ T we mean that v is a vertex of T and d(v) denotes the num-
ber of children of v (i.e., the outdegree of v). The family T associated to the
degree-weight sequence (ϕ�)�≥0 then consists of all trees T (or all trees T with
w(T ) �= 0) together with their weights. We let Tn :=

∑
|T |=n w(T ) denote the

the total weight of all trees of size n in T ; for many important simply gener-
ated tree families, (Tn)n≥1 is a sequence of natural numbers, and then the total
weight Tn can be interpreted simply as the number of trees of size n in T .

When analysing parameters in a simply generated tree family T it is common
to assume the random tree model for weighted trees, i.e., when speaking about a
random tree of size n one assumes that each tree T in T of size n is chosen with
a probability proportional to its weight w(T ), i.e., is chosen with probability
w(T )
Tn

. Under mild conditions on the degree-weight sequence (ϕ�)�≥0 of a family
T of labelled simply generated trees and assuming the random tree model, in
[64] the following asymptotic formula for the factorial moments of In,j has been
obtained:

E(I
s
n,j) = Γ

(s
2
+ 1
)( 2

κ

) s
2 (n− j)s

n
s
2

·
(
1 + o(1)

)
,

where the constant κ depends on the particular tree family, i.e., on the degree-
weight sequence, and is given in [64]. Consequently, an application of Lemma 2
and taking into account Example 3 yields the following result, which adds to
the results of [64] the characterization of the limiting distribution as a mixed
Poisson distribution.

Corollary 6. The random variable In,j, which counts the number of inversions
induced by node j in a random labelled simply generated tree of size n has for
n → ∞ and arbitrary 1 ≤ j = j(n) ≤ n asymptotically factorial moments of
mixed Poisson type with a Rayleigh mixing distribution X and scale parameter

λn,j =
√

1
κ

n−j√
n

(with constant κ given in [64]),

E(I
s
n,j) = λs

n,j 2
s
2 Γ
(s
2
+ 1
)
·
(
1 + o(1)

)
.
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Fig 6. A labelled tree of size 7 with three min-records: nodes 1, 3, and 4. This decomposes the
original tree into three record subtrees, one of them is of size 3 and two of them are of size 2.

(i) for λn,j → ∞, the random variable
In,j

λn,j
converges in distribution, with

convergence of all moments, to X.
(ii) for λn,j → ρ ∈ (0,∞), the random variable In,j converges in distribution,

with convergence of all moments, to a mixed Poisson distributed random

variable Y
L
= MPo(ρX).

Moreover, the random variable Y
L
= MPo(ρX) converges for ρ → ∞, after

scaling, to its mixing distribution X: Y
ρ

L−→ X, with convergence of all moments.

Remark 14. Considering λn,j , the critical phase occurs at j = n − Θ(
√
n):

E(In,j) → ∞, for n− j � √
n, whereas E(In,j) → 0, for n− j � √

n.

5.2. Record-subtrees in Cayley trees

Given a rooted labelled tree T , a min-record (or simply record, for short) is a
node x ∈ T , which has the smallest label amongst all nodes on the (unique)
path from the root-node of T to x. Let us assume that {r1, . . . , rk} is the set
of records of T ; then this set naturally induces a decomposition of the tree
T into what is called here record-subtrees {S1, . . . , Sk}: Si, 1 ≤ i ≤ k, is the
largest subtree rooted at the record ri not containing any of the remaining
records r1, . . . , ri−1, ri+1, . . . , rk. In other words, a record-subtree S is a maximal
subtree (i.e., it is not properly contained in another such subtree) of T with the
property that the root-node of S has the smallest label amongst all nodes of S.
See Figure 6 for an illustration of these quantities.

In the following we will study the occurrence of record-subtrees of a given size
for one of the most natural random tree models, namely random rooted labelled
unordered trees, often called random Cayley trees. A Cayley tree is a rooted
tree T , where the nodes of T are labelled with distinct integers of {1, 2, . . . , |T |}
and where the children of any node x ∈ T are not equipped with any left-to-
right ordering (i.e., we may think that each node in T has a possibly empty
set of children). Combinatorially, the family T of Cayley trees can be described
formally via the Set construction as

T = ©∗ Set(T ). (5.1)

Note that Cayley trees are a particular family of labelled simply generated trees
as described in Section 5.1, where the degree-weight sequence (ϕ�)�≥0 is given
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by ϕ� =
1
�! . It is well-known that there are exactly Tn = nn−1 different Cayley

trees of size n (see, e.g., [24, 73]) and in the random tree model, which we will
always assume here, each of these trees may occur with the same probability
when considering a size-n tree.

The r.v. Rn, counting the number of records in a random size-n Galton-
Watson tree (i.e., in a simply generated tree), has been studied by Janson [36]
showing (after a suitable scaling by 1√

n
) a Rayleigh limiting distribution result;

in particular, for Cayley trees it holds Rn√
n

L−→ Rayleigh(1). Here we introduce

the r.v. Rn,j , which counts the number of record-subtrees of size j in a random
Cayley tree of size n. Of course, the random variables Rn,j , 1 ≤ j ≤ n, are a
refinement of Rn and are related by the identity

Rn =

n∑
j=1

Rn,j .

As has been pointed out already in [36], records in trees are closely related to
a certain node removal procedure for trees. Starting with a tree T one chooses
a node x ∈ T at random and cuts off the subtree T ′′ of T rooted at x, and
iterates this cutting procedure with the remaining subtree T ′ until only the

empty subtree remains. The r.v. C
[v]
n counting the number of (vertex) cuts

required to cut-down the whole tree by this cutting procedure when starting

with a random Cayley tree of size n is then distributed as Rn, i.e., Rn
L
= C

[v]
n .

We can extend this relation by considering the r.v. C
[v]
n,j counting the number

of subtrees of size j, which are cut-off during the (vertex) cutting procedure

when starting with a random Cayley tree of size n, where it holds Rn,j
L
= C

[v]
n,j .

This can be seen easily by means of coupling arguments given in [36]: consider
the node-removal procedure, where, starting with a tree T , in each step the
node with smallest label amongst all nodes in the remaining tree is selected and
together with all its descendants detached from the tree. Then it holds that
node x is a min-record in the tree T if and only if node x is selected as a vertex
cut during this node-removal procedure and in this case the record-subtree (and
thus its size) rooted at x corresponds to the subtree (with its respective size),
which is removed in this cut.

We will show that Rn,j and thus also C
[v]
n,j has factorial moments of mixed

Poisson type yielding the following theorem.

Theorem 5.1. The random variable Rn,j , counting the number of record-sub-
trees of size j in a random Cayley tree of size n, has, for n → ∞ and arbitrary
1 ≤ j = j(n) ≤ n, asymptotically factorial moments of mixed Poisson type with

a Rayleigh mixing distribution X and scale parameter λn,j =
√
njj−1

j!ej :

E(R
s
n,j) = λs

n,j 2
s
2 Γ
(s
2
+ 1
)
·
(
1 + o(1)

)
, for j = o(n), E(R

s
n,j) = O

(
λs
n,j

)
.

(i) for λn,j → ∞, the random variable
Rn,j

λn,j
converges in distribution, with

convergence of all moments, to X.
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(ii) for λn,j → ρ ∈ [0,∞), the random variable Rn,j converges in distribution,
with convergence of all moments, to a mixed Poisson distributed random

variable Y
L
= MPo(ρX).

Moreover, the random variable Y
L
= MPo(ρX) converges, for ρ → ∞, after

scaling, to its mixing distribution X: Y
ρ

L−→ X, with convergence of all moments.

Remark 15. Stirling’s formula for the Gamma function gives λn,j =
√
njj−1

j!ej ∼√
n

2πj3 , for j, n → ∞, thus the critical phase occurs at j = Θ(n
1
3 ): E(Rn,j) → ∞,

for j � n
1
3 , whereas E(Rn,j) → 0, for j � n

1
3 . In all succeeding examples in

this section the critical phase behaviour also occurs at j = Θ(n
1
3 ).

Proof of Theorem 5.1. We consider the description of the problem via the node
removal procedure. This immediately yields the following stochastic recurrence

for the r.v. Rn,j
L
= C

[v]
n,j :

Rn,j
L
= RKn,j + 1{n−Kn=j}, for 1 ≤ j ≤ n, (5.2)

with Rn,j = 0, for 0 ≤ n < j, and where the r.v. Kn measures the size of
the subtree remaining after selecting a random node and removing the subtree
rooted at it from a randomly selected size-n Cayley tree.

In the following we will compute the splitting probabilities pn,k := P{Kn =
k}, with 0 ≤ k ≤ n−1, and by doing this we also show that the recurrence (5.2)
is indeed valid, i.e., that the subtree T ′ (let us assume of size k ≥ 1) remaining
after removing the subtree containing the selected node x of a random size-
n Cayley tree T is (after an order-preserving relabelling of the nodes) again a
random Cayley tree of size k (the so-called random preservation property holds).

This can be done by simple combinatorial reasoning. Consider a pair (T, x)
of a size-n Cayley tree T and a node x ∈ T . When detaching the subtree
rooted at x from T , we obtain a pair (T ′, T ′′) of subtrees with T ′′ containing
x and T ′ the possibly empty remaining subtree. Of course, T ′ is the empty
subtree exactly if x is the root-node of T and thus there are exactly Tn pairs
(T, x) yielding |T ′| = k = 0. Let us now assume that 1 ≤ |T ′| = k ≤ n − 1.
After an order-preserving relabelling of T ′ and T ′′ with labels {1, . . . , k} and
{1, . . . , n− k}, respectively, both subtrees are Cayley trees of size k and n− k,
respectively. Consider now a particular pair (T̃ ′, T̃ ′′) of Cayley trees of size
|T̃ ′| = k and |T̃ ′′| = n − k, respectively, and let us count the number of pairs
(T, x), with T a size-n Cayley tree and x ∈ T , yielding the pair (T̃ ′, T̃ ′′) of
subtrees after cutting. By constructing such pairs (T, x), one obtains that there
are exactly k

(
n
k

)
possibilities (k possible ways of attaching T̃ ′′ to a node in T̃ ′

and
(
n
k

)
possibilities of distributing the labels {1, . . . , n} order-preserving to the

subtrees), independent of the chosen pair of trees; thus the random preservation
property holds.

Moreover, one obtains that there are exactly k
(
n
k

)
TkTn−k pairs (T, x) splitting

after a cut into a pair (T ′, T ′′) of subtrees with respective sizes k and n− k, for
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1 ≤ k ≤ n − 1. Of course, in total there are nTn pairs (T, x) and thus we get
the following result for the splitting probabilities pn,k:

pn,k = P{Kn = k} =

{
kT̃kT̃n−k

nT̃n
, 1 ≤ k ≤ n− 1,

1
n , k = 0,

where we use throughout this section the abbreviation

T̃n :=
Tn

n!
=

nn−1

n!
. (5.3)

In order to treat the stochastic recurrence (5.2) and to compute the asymp-
totic behaviour of the (factorial) moments of Rn,j we find it appropriate to
introduce the generating function

F (z, v) := Fj(z, v) =
∑
n≥1

T̃nE(v
Rn,j )zn =

∑
n≥1

∑
m≥0

T̃nP{Rn,j = m}znvm.

Starting with (5.2), straightforward computations (which are omitted here) yield
then the following differential equation

Fz(z, v) = T (z)Fz(z, v) +
T (z)

z
+ T̃jz

j−1(v − 1) + T̃jz
jFz(z, v)(v − 1),

where the so-called tree function (the exponential generating function of the
number of size-n Cayley trees) appears:

T (z) =
∑
n≥1

T̃nz
n =

∑
n≥1

nn−1

n!
zn. (5.4)

Simple manipulations and using the well-known functional equation of the tree
function (which is thus closely related to the Lambert-W function),

T (z) = zeT (z),

give then the following explicit formula for the derivative of F (z, v) w.r.t. z:

Fz(z, v) =
eT (z) + (v − 1)T̃jz

j−1

1− T (z)− (v − 1)T̃jzj
. (5.5)

To get the (factorial) moments of Rn,j we use the substitution w := v − 1

and introduce F̃ (z, w) := F (z, w + 1). Extracting coefficients [ws], s ≥ 1, from

F̃z(z, w) =
eT (z) + wT̃jz

j−1

1− T (z)− wT̃jzj
=

1

z

( 1

1− T (z)− wT̃jzj
− 1
)
,

easily gives

[ws]F̃z(z, w) =
T̃ s
j z

js−1

(1− T (z))s+1
.
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We further obtain

[znws]F̃ (z, w) =
1

n
[zn−1ws]F̃z(z, w) =

T̃ s
j

n
[zn−js]

1

(1− T (z))s+1
. (5.6)

It is not difficult to extract coefficients from (5.6) and stating an explicit for-
mula for [znws]F̃ (z, w) and the factorial moments of Rn,j ; however, for asymp-
totic considerations it is easier to use well-known analytic properties of the tree
function T (z) and deduce from it the desired asymptotic growth behaviour of
E(R

s
n,j). Namely, we use standard applications of so-called singularity analy-

sis, see [24], to transfer the local behaviour of a generating function in a com-
plex neighbourhood of the dominant singularity (i.e., the singularity of smallest
modulus; we are here only concerned with functions with a unique dominant
singularity) to the asymptotic behaviour of its coefficients. It holds (see, e.g.,
[24]) that the tree function T (z) has a unique dominant singularity (a branch
point) at z = e−1, where the function evaluates to T (e−1) = 1 and where it
admits the following local expansion:

T (z) = 1−
√
2
√
1− ez +O(1− ez). (5.7)

Thus the function (1 − T (z))−s−1 also has a unique dominant singularity at
z = e−1 with the following local bound:

1

(1− T (z))s+1
= O

( 1

(1− ez)
s+1
2

)
.

Singularity analysis yields then

[zn]
1

(1− T (z))s+1
= O

(
enn

s−1
2

)
.

Therefore, (5.6) yields

[znws]F̃ (z, w) = O
(( T̃j

ej
)s
enn

s−3
2

)
.

This, together with Stirling’s formula for the Gamma function (3.1), shows the
following bound for the s-th moments of Rn,j , which holds uniformly for all
1 ≤ j ≤ n:

E(R
s
n,j) =

s!

T̃n

[znws]F̃ (z, w) = O
(( T̃j

ej
)s enn s−3

2

T̃n

)
= O

((√n T̃j

ej
)s)

. (5.8)

To get the mixed Poisson behaviour for j = o(n) we use the refined expansion

1

(1− T (z))s+1
=

1

2
s+1
2 (1− ez)

s+1
2

·
(
1 +O

( 1√
1− ez

))
,
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locally around z = e−1, which can be obtained from (5.7). Singularity analysis
gives then the expansion

[zn]
1

(1− T (z))s+1
=

enn
s−1
2

2
s+1
2

(
s−1
2

)
!
·
(
1 +O

( 1√
n

))
. (5.9)

Thus we get for j = o(n) the stated behaviour of the the s-th factorial moments
of Rn,j :

E(R
s
n,j) =

s!

T̃n

[znws]F̃ (z, w) =
s!T̃ s

j e
n−js(n− js)

s−1
2

T̃nn2
s+1
2

(
s−1
2

)
!

·
(
1 +O

( 1√
n− js

))

=
(√n T̃j

ej

)s s!
√
π

2
s
2

(
s−1
2

)
!
·
(
1 + o(1)

)
=
(√n T̃j

ej

)s
2

s
2 Γ
(s
2
+ 1
)
·
(
1 + o(1)

)
,

(5.10)

where we used in the final step the duplication formula of the factorials:

(s− 1

2

)
! =

√
π (s− 1)!

2s−1
(
s
2 − 1

)
!
. (5.11)

The mixed Poisson limit law with Rayleigh mixing distribution as stated in
Theorem 5.1 follows then from (5.8) and (5.10) by applying Lemma 2.

5.3. Edge-cutting in Cayley trees

The following prominent edge-cutting procedure for trees is closely related to
the node removal procedure considered in Section 5.2. Starting with a tree T one
chooses an edge e ∈ T and removes it from T . After that T decomposes into two
subtrees T ′ and T ′′, where we assume that T ′ contains the original root of T . We
discard the subtree T ′′ and continue the edge-cutting procedure with T ′ until we
have isolated the root-node of the original tree T . This cutting-down procedure
has been introduced in [57], where the number of random cuts Cn to isolate the
root-node of a random Cayley tree of size n, where in each cutting-step an edge
from the remaining tree is chosen uniformly at random, has been studied yielding
asymptotic formulæ for the first two moments of Cn. The Rayleigh limiting
distribution of Cn for Cayley trees and other families of simply generated trees
has been obtained in [61, 62] and in a more general setting by Janson [36]; in

particular, for Cayley trees one obtains Cn√
n

L−→ Rayleigh(1). Moreover, in [36]

it was shown in general that for Galton-Watson tree families (thus containing

Cayley trees) the random variables Cn and C
[v]
n (as introduced in Section 5.2) for

the edge-cutting procedure and the node-removal procedure, respectively, have
the same limiting distribution behaviour. A number of works have analysed
the edge-cutting procedure and related processes using the connection between
Cayley trees and the so-called continuum random tree, in particular see the
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Fig 7. Cutting-down a tree of size 7 with three edge-cuts. The respective sizes of the subtrees
cut-off during this procedure are 3, 2, and 1.

work of Addagio-Berry, Broutin and Holmgren [1], and the recent works of
Bertoin [5, 9].

In this section we consider a refinement of the r.v. Cn for Cayley trees, namely
we study the behaviour of the r.v. Cn,j , counting the number of subtrees of size j
cut-off during the random edge-cutting procedure when starting with a random
size-n Cayley tree until the root-node is isolated. Of course, it holds

Cn =

n−1∑
j=1

Cn,j .

Before continuing we want to remark that an alternative description of the
problem can be given via edge-records in edge-labelled trees: given a size-n tree
T we first distribute the labels {1, . . . , |T | − 1} randomly to the edges of T . An
edge-record in T is then an edge e = (x, y), where y is a child of x, with smallest
label amongst all edges on the path from the root-node of T to y. Analogous

to Section 5.2 (and stated already in [36]) one gets that the r.v. R
[e]
n counting

the number of edge-records in a random size-n Cayley tree is distributed as Cn,

i.e., R
[e]
n

L
= Cn. Moreover, the edge-records e1, . . . , ek of an edge-labelled tree T

naturally decompose T into the root-node and k edge-record subtrees S1, . . . , Sk,
obtained from T by removing the root-node of T and all edges e1, . . . , ek. Again

we can introduce the r.v. R
[e]
n,j , which counts the number of edge-record subtrees

of size j in a random edge-labelled Cayley tree of size n. It is then immediate

to see that R
[e]
n,j

L
= Cn,j .

In Figure 7 we illustrate the edge-cutting procedure for a particular tree.

In the following theorem we state that Cn,j (and thus also R
[e]
n,j) has facto-

rial moments of mixed Poisson type with a Rayleigh mixing distribution. The
method of proof is analogous to the one presented in Section 5.2, but due to the
less explicit nature of the formulæ occurring, the proof steps are more technical
and a bit lengthy.

Theorem 5.2. The random variable Cn,j, counting the number of subtrees of
size j, which are cut-off during the edge-cutting procedure starting with a random
Cayley tree of size n, has, for n → ∞ and arbitrary 1 ≤ j = j(n) ≤ n − 1,
asymptotically factorial moments of mixed Poisson type with a Rayleigh mixing

distribution X and scale parameter λn,j =
√
njj−1

j!ej :

E(C
s
n,j) = λs

n,j 2
s
2 Γ
(s
2
+ 1
)
·
(
1 + o(1)

)
, for j = o(n), E(C

s
n,j) = O

(
λs
n,j

)
.
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(i) for λn,j → ∞, the random variable
Cn,j

λn,j
converges in distribution, with

convergence of all moments, to X.
(ii) for λn,j → ρ ∈ [0,∞), the random variable Cn,j converges in distribution,

with convergence of all moments, to a mixed Poisson distributed random

variable Y
L
= MPo(ρX).

Remark 16. According to Theorems 5.1 and 5.2 the r.v. Cn,j and C
[v]
n,j (and

thus also R
[e]
n,j) and Rn,j , for the edge- and vertex-versions of the cutting pro-

cedures as considered in Section 5.2-5.3, have the same limiting distribution
behaviour. Janson [36] was able to bound the difference between the random

variables Rn and R
[e]
n (i.e., between the number of node- and edge-records) in a

suitable metric and thus to show directly the same limiting behaviour of these
r.v. It would be interesting to extend his proof technique to the refined quantities
studied here.

Proof of Theorem 5.2. Decomposing a tree according to the first cut of the edge-
cutting procedure immediately yields the following stochastic recurrence for the
r.v. Cn,j :

Cn,j
L
= C

K
[e]
n ,j

+ 1{n−K
[e]
n =j}, for 1 ≤ j < n, (5.12)

with Cn,j = 0, for 1 ≤ n ≤ j, and where the r.v. K
[e]
n measures the size of

the subtree containing the root of the original tree after cutting a random edge
from a randomly selected size-n Cayley tree. It is well-known [57] (and can be
shown completely analogous to the computations in the proof of Theorem 5.1)
that the random preservation property of Cayley trees also holds for the edge-
cutting procedure (thus implying correctness of (5.12)) and that the splitting

probabilities p
[e]
n,k (i.e., the distribution of K

[e]
n ) are given as follows (we recall

the definition T̃n = nn−1

n! given in (5.3)):

p
[e]
n,k := P{K [e]

n = k} =
kT̃kT̃n−k

(n− 1)T̃n

, for 1 ≤ k ≤ n− 1 and n ≥ 2.

Again, in order to treat the stochastic recurrence (5.12) we introduce suitable
generating functions:

Gj(z, v) :=
∑
n≥1

T̃nE(v
Cn,j )zn =

∑
n≥1

∑
m≥0

T̃nP{Cn,j = m}znvm.

Straightforward computations give then the differential equation

z
∂

∂z
Gj(z, v)−Gj(z, v) = zT (z)

∂

∂z
Gj(z, v) + (v − 1)T̃jz

j+1 ∂

∂z
Gj(z, v),

where again the tree function T (z) =
∑

n≥1 T̃nz
n as defined in (5.4) appears.

Solving this linear differential equation yields the following solution satisfying
the initial condition Gj(0, v) = 0:

Gj(z, v) = T (z) · exp
(∫ z

0

(v − 1)T̃jt
j−1

(1− T (t))(1− T (t)− (v − 1)T̃jtj)
dt
)
. (5.13)
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To study the moments of Cn,j we apply in (5.13) the substitution w := v − 1

and introduce the function G̃j(z, w) := Gj(z, w+ 1), which yields the following
expansion w.r.t. w:

G̃j(z, w) = T (z) · exp
(∑

�≥1

w�αj,�(z)
)
= T (z) ·

(
1 +
∑
r≥1

1

r!

(∑
�≥1

w�αj,�(z)
)r)

,

where we use the abbreviation

αj,�(z) := T̃ �
j ·
∫ z

0

tj�−1

(1− T (t))�+1
dt.

This leads to the following explicit formula for the generating function of the
s-th integer moments of Cn,j , which will be the starting point of the asymptotic
considerations:

G
[s]
j (z) := [ws]G̃j(z, w) =

∑
n≥1

T̃nE
(
C

s
n,j

)
s!

zn

= T (z) ·
s∑

r=1

1

r!

∑
�1+···+�r=s,
�q≥1,1≤q≤r

r∏
q=1

αj,�q (z), for s ≥ 1. (5.14)

The following bounds on the growth of the coefficients of the functions ap-
pearing, which all can be obtained in a straightforward way by applying standard
techniques as singularity analysis or approximating sums by integrals (we omit
here some of the details), will play a key rôle in the asymptotic evaluation of the
moments. First, it holds, for � arbitrary but fixed and uniformly for 1 ≤ j ≤ n
and n → ∞:

[zn]αj,�(z) =
T̃ �
j

n
[zn−j�]

1

(1− T (z))�+1
= O

( T̃ �
j e

nn
�−3
2

ej�

)
.

This implies

[zn]

r∏
q=1

αj,�q (z)

∣∣∣∣∣
�1+···+�r=s,
�q≥1,1≤q≤r

= O
(
T̃ s
j e

n

ejs
·

∑
k1+···+kr=n,
kq≥1,1≤q≤r

r∏
q=1

k
�q−3

2
q

)
. (5.15)

The sum occurring in the latter bound (5.15) can itself be bounded as follows:

∑
k1+···+kr=n,
kq≥1,1≤q≤r

r∏
q=1

k
�q−3

2
q =

⎧⎨
⎩O
(
n

s
2− r

2−1
(
log n

)Q)
, for s > r,

O
(

(logn)s−1

n

)
, for s = r,

with Q = |{q : �q = 1}|, thus yielding

[zn]

r∏
q=1

αj,�q (z)

∣∣∣∣∣
�1+···+�r=s,
�q≥1,1≤q≤r

=

⎧⎪⎨
⎪⎩
O
(

T̃ s
j e

nn
s
2
− r

2
−1
(
logn
)Q

ejs

)
, for s > r,

O
(

T̃ s
j e

n(logn)s−1

ejsn

)
, for s = r.
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Therefore, when considering the coefficients of the expression

s∑
r=1

1

r!

∑
�1+···+�r=s,
�q≥1,1≤q≤r

r∏
q=1

αj,�q (z),

the summand αj,s(z) gives the main contribution and implies the following
bound, which holds uniformly for 1 ≤ j ≤ n (with s arbitrary but fixed and
n → ∞):

[zn]

s∑
r=1

1

r!

∑
�1+···+�r=s,
�q≥1,1≤q≤r

r∏
q=1

αj,�q (z) = O
(
T̃ s
j e

nn
s−3
2

ejs

)
. (5.16)

Now we are in a position to derive the stated bound on the s-th integer
moments of Cn,j . First, by using (5.14) and (5.16) we get for s ≥ 1:

E
(
C

s
n,j

)
=

s!

T̃n

[zn]G
[s]
j (z) =

s!

T̃n

[zn]T (z) ·
s∑

r=1

1

r!

∑
�1+···+�r=s,
�q≥1,1≤q≤r

r∏
q=1

αj,�q (z)

= O
( s!

T̃n

n−1∑
k=1

T̃k

T̃ s
j e

n−k(n− k)
s−3
2

ejs

)
= O

( T̃ s
j n

3
2

ejs

n−1∑
k=1

(n− k)
s−3
2

k
3
2

)
.

Splitting the remaining sum easily gives

n−1∑
k=1

(n− k)
s−3
2

k
3
2

=

	n
2 
∑

k=1

(n− k)
s−3
2

k
3
2

+

n−1∑
k=	n

2 
+1

(n− k)
s−3
2

k
3
2

= O
(
n

s−3
2

)
+

{
O
(
n

s
2−2
)
, s ≥ 2,

O
(
logn

n
3
2

)
, s = 1

= O
(
n

s−3
2

)
, (5.17)

thus showing the bound (which holds uniformly for 1 ≤ j ≤ n)

E
(
C

s
n,j

)
= O

((√n T̃j

ej

)s)
. (5.18)

To give the refined asymptotic expansion of E
(
C

s
n,j

)
, yielding factorial mo-

ments of mixed Poisson type, one has to spot and evaluate the main contribution
of the coefficients of (5.14) in more detail and to bound the remaining contri-
butions. In order to do this we split

s∑
r=1

1

r!

∑
�1+···+�r=s,
�q≥1,1≤q≤r

r∏
q=1

αj,�q (z) = αj,s(z) +

s∑
r=2

1

r!

∑
�1+···+�r=s,
�q≥1,1≤q≤r

r∏
q=1

αj,�q (z)

︸ ︷︷ ︸
=:Qj,s(z)

,
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such that

E
(
C

s
n,j

)
=

s!

T̃n

[zn]T (z) ·
(
αj,s(z) +Qj,s(z)

)
. (5.19)

Completely analogous to the previous computations one shows for s ≥ 2 (of
course, Qj,1(z) = 0):

[zn]Qj,s(z) = O
( T̃ s

j e
nn

s
2−2 logn

ejs

)
,

and furthermore (uniformly for 1 ≤ j ≤ n) the following bound for the contri-
bution of the remainder:

s!

T̃n

[zn]T (z) ·Qj,s(z) = O
((√n T̃j

ej

)s
· log n√

n

)
. (5.20)

Now we consider the term in (5.18) yielding the main contribution, where we
assume from now on that j = o(n). We get

[zn]T (z)αj,s(z) =

n−sj∑
k=1

T̃kT̃
s
j

1

n− k
[zn−k−sj ]

1

(1− T (z))s+1
. (5.21)

We split the summation interval of (5.21) at k = �n
2 � and consider the contribu-

tions separately. Additionally, we only require the already computed asymptotic
bounds (5.9) and (5.17). The first part yields

	n
2 
∑

k=1

T̃kT̃
s
j

1

n− k
[zn−k−sj ]

1

(1− T (z))s+1

= T̃ s
j

	n
2 
∑

k=1

T̃k
1

n− k

en−k−sj(n− k − sj)
s−1
2

2
s+1
2

(
s−1
2

)
!

·
(
1 +O

( 1√
n− k − sj

))

=
T̃ s
j e

nn
s−3
2

ejs 2
s+1
2

(
s−1
2

)
!

	n
2 
∑

k=1

T̃k

ek
·
(
1 +O

(k
n

)
+O

( j
n

)
+O

( 1√
n

))
.

The main contribution comes from

	n
2 
∑

k=1

T̃k

ek
=

∞∑
k=1

T̃k

ek
−

∞∑
k=	n

2 
+1

T̃k

ek
= T (e−1) +O

( ∞∑
k=	n

2 
+1

1

k
3
2

)
= 1 +O

( 1√
n

)
,

whereas

O
( 	n

2 
∑
k=1

T̃k

ek
k

n

)
= O

( 1
n

	n
2 
∑

k=1

1√
k

)
= O

( 1√
n

)
.

Thus

	n
2 
∑

k=1

T̃kT̃
s
j

1

n− k
[zn−k−sj ]

1

(1− T (z))s+1
=

T̃ s
j e
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s−3
2

ejs 2
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2

(
s−1
2

)
!
·
(
1+O

( j
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)
+O
( 1√
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.

(5.22)
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The second part yields

n−sj∑
k=	n

2 
+1

T̃kT̃
s
j

1

n− k
[zn−k−sj ]

1

(1− T (z))s+1

= O
(
T̃ s
j

n−sj∑
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2

k
3
2 (n− k)

)
= O

( T̃ s
j e

n
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3
2

�n
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(k − sj)
s−1
2

k

)

= O
( T̃ s

j e
n

ejs n
3
2

�n
2 �−1∑
k=sj

k
s−3
2

)
=

⎧⎨
⎩O
(

T̃ s
j e

nn
s
2
−2

ejs

)
, for s ≥ 2,

O
(

T̃je
n logn

ejn
3
2

)
, for s = 1.

(5.23)

Starting with (5.21) and combining the contributions (5.22) and (5.23) finally
yields

[zn]T (z)αj,s(z) =
(√n T̃j

ej

)s en

2
s+1
2

(
s−1
2

)
!n

3
2

·
(
1 +O

( j
n

)
+O

( (log n)δs,1√
n

))
,

(5.24)
with δs,i the Kronecker-delta function. Together with Stirling’s formula for the
Gamma function we thus obtain from (5.19), (5.20) and (5.24)

E
(
C

s
n,j

)
=

s!

T̃n

[zn]G
[s]
j (z) =

√
2πs!

2
s+1
2

(
s−1
2

)
!
·
(√n T̃j

ej

)s
·
(
1 +O

( j
n

)
+O

( log n√
n

))
.

Finally, applying the duplication formula of the factorials (5.11), we get the
stated result for the asymptotic expansion of the factorial moments:

E
(
C

s
n,j

)
=
(√nT̃j

ej

)s
2

s
2 Γ
(s
2
+ 1
)
·
(
1 + o(1)

)
, for j = o(n). (5.25)

The mixed Poisson limit law with Rayleigh mixing distribution as stated in
Theorem 5.2 follows then from (5.18) and (5.25) by applying Lemma 2.

5.4. Parking functions and growth of the initial cluster

Parking functions are objects introduced by Konheim and Weiss [45], which are
of interest in combinatorics (e.g., due to connections to various other combina-
torial structures as forests, acyclic functions or hyperplane arrangements), see,
e.g., [73], and computer science (e.g., due to close relations to hashing variants),
see, e.g., [43]. A vivid description of parking functions is as follows: consider
a one-way street with n parking spaces numbered from 1 to n and a sequence
of n drivers (we will here exclusively deal with the case that the number of
parking spaces is equal to the number of drivers) with preferred parking spaces
s1, s2, . . . , sn. The drivers arrive sequentially and driver k tries to park at its
preferred parking space sk. If it is free he parks, otherwise he moves further in
the allowed direction (thus examining parking spaces sk + 1, sk + 2, . . . ) until
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Fig 8. The parking function (4, 1, 8, 1, 3, 4, 3, 1) with the respective parking positions when
carrying out the parking procedure.

he finds a free parking space, where he parks; if there is no such parking space
he leaves the street without parking. A parking function is then a sequence
(s1, . . . , sn) ∈ {1, . . . , n}n such that all drivers are able to park. It has been
shown already in [45] that there are exactly Pn = (n+ 1)n−1 parking functions
of size n. Figure 8 gives an example of a parking function.

We note that there are many alternative ways of defining parking functions
(s1, . . . , sn) ∈ {1, . . . , n}n, e.g., via the characterization |{j : sj ≤ k}| ≥ k, for
all 1 ≤ k ≤ n; however, in what follows the description given above is more
intuitive and seems to be advantageous. Namely, we may start with a parking
function (s1, . . . , sn) and consider the filling of the parking spaces during the
parking procedure, where at the beginning (step 0) we have an empty street, and
where in step k the k-th driver arrives and successfully parks, until (after step
n) eventually all parking spaces are occupied. When carrying out the parking
procedure, at each time step we may define the initial cluster as the maximum
sequence of consecutive occupied parking spaces starting with parking space 1; if
parking space 1 is empty we say that the initial cluster is empty. The size of the
initial cluster is then simply the number of consecutive occupied parking spaces
containing parking space 1. In this section we are interested in the growth of
the initial cluster during the parking procedure starting with a random parking
function: let the r.v. Xn denote the number of increments of the initial cluster
and the refinement Xn,j measure the number of increments of amount j of the
initial cluster during the parking procedure of a random parking function of size
n; of course Xn =

∑n−1
j=1 Xn,j . It turns out that the r.v. Xn and Xn,j are closely

related to Cn and Cn,j , respectively, studied in Section 5.3 during the analysis
of the edge-cutting procedure of Cayley trees. Figure 9 illustrates the parking
procedure and the growth of the initial cluster.

It is well-known [73] that the number Pn of parking functions of size n coin-
cides with the number of rooted labelled forests, i.e., forests of rooted labelled
unordered trees, of size n. There are various known bijections between these ob-
jects; however, it seems that the following bijective relation between the growth
of the initial cluster during the parking procedure and records in forests of rooted
labelled trees has not been observed earlier. We mention that a similar bijection
has been used by Chassaing and Louchard in [16], where they related the growth
of clusters in parking functions with the additive coalescent model for particle
coagulation. Analogous to the definition in Section 5.2 a max-record in a forest
F of labelled trees is a node x ∈ F , which has the largest label amongst all
nodes on the unique path from the root-node of the tree component containing
x to x.
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Fig 9. The parking procedure for the parking function (4, 1, 8, 1, 3, 4, 3, 1). There are 6 in-
crements of the initial cluster, 4 increments of amount one, and 2 increments of amount
two.

Proposition 4. There is a bijection, which maps parking functions of size n to
forests of rooted labelled unordered trees of size n, such that the number of in-
crements of the initial cluster during the parking procedure of a parking function
corresponds to the number of max-records in the forest. Moreover, the number
of increments of amount j of the initial cluster during the parking procedure
corresponds to the number of max-record subtrees of size j in the forests.

Proof. Given a parking function (s1, . . . , sn) ∈ {1, . . . , n}n of size n we describe
the mapping, i.e., the construction of the corresponding rooted labelled forest
F of size n, in an iterative way, which reflects the parking procedure of the n
drivers. In order to describe the construction we assume that after step k the
first k drivers are parked; then the “parking street” consists of a set of clusters
of parking spaces (a cluster is here a maximal sequence of consecutive occupied
parking spaces) separated by empty parking spaces. In the construction the k-
th driver of the parking function will correspond to the node labelled k in the
forest and after step k we will obtain a rooted labelled forest F (k) of size k (with
nodes labelled by {1, . . . , k}). Moreover, the forest F (k) has the property, that
each cluster of parking spaces occurring in the parking procedure after step k
corresponds to a subset of rooted labelled trees in F (k). It follows the description
of the construction of the forest F := F (n):

Step 0 We start with the empty forest F (0) = ∅.
Step k According to the parking of driver k we distinguish between two cases.

• Driver k parks at his preferred parking space s := sk: let us consider
the parking procedure after Step (k − 1) and the cluster of parking
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Fig 10. Constructing a forest of labelled rooted trees from a parking function during the
parking procedure illustrating the cases, where the preferred parking space of a driver is free
(first picture) or occupied (second picture).

spaces starting with parking space s + 1 (i.e., the cluster of parking
spaces right to the parking space of driver k); if parking space s+ 1
is empty the cluster is ∅. According to the construction this cluster
corresponds to a subset G of trees of the forest F (k−1). Let T be the
tree rooted at the new node labelled k with G its subtrees. Then the
forest F (k) is defined by F (k) := (F (k−1) \G) ∪ T .

• Driver k cannot park at his preferred parking space sk, since it is
occupied by the �-th driver (� < k), but parks at the first empty
space s > sk: let us consider the parking procedure after Step (k−1)
and the cluster of parking spaces starting with parking space s + 1
(i.e., the cluster of parking spaces right to the parking space of driver
k); if parking space s+ 1 is empty the cluster is ∅. According to the
construction this cluster corresponds to a subset G of trees of the
forest F (k−1). Furthermore, let T ′ be the tree of the forest F (k−1)

containing label � (by construction T ′ �∈ G). Then, construct the
rooted tree T by letting G be the subtrees of the (new) node labelled
k and attaching node k to node � ∈ T ′. Then the forest F (k) is defined
by F (k) := (F (k−1) \ (G ∪ T ′)) ∪ T .

Figure 10 illustrates both cases of the bijection.

It follows from the construction that node k is a max-record in the forest F iff
the first k−1 drivers occupy all parking spaces left to the parking space s, where
the k-th driver has parked, which is equivalent to the event that Step k was an
increment of the initial cluster. Moreover, in this case the subtree rooted at node
k in F (k) corresponds to a record subtree in the forest F , whose size corresponds
then to the amount of increment of the initial cluster. It is not difficult to see
that this construction is indeed a bijection from the set of parking functions of
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Fig 11. The parking function (4, 1, 8, 1, 3, 4, 3, 1) and the forest of labelled rooted trees obtained
by the mapping described in the proof of Proposition 4 as well as the edge-labelled rooted tree
described in the proof of Theorem 5.3. The increments of the initial cluster of the parking
function correspond to the max-records in the respective forest as well as to the cuts in the
respective edge-labelled rooted tree (visualized as dotted lines).

size n to the set of rooted labelled forests of size n, but we omit here to state
the inverse mapping (which could be formulated also in an iterative way).

In Figure 11 we give a parking function and the corresponding forest of
labelled rooted trees under this bijection.

Proposition 4 yields thus a coupling between records in forests of rooted
labelled unordered trees and increments in parking functions. This coupling can
be extended easily to one between increments in parking functions and edge-cuts
to isolate the root-node in Cayley trees.

Theorem 5.3. The random variable Xn, counting the number of increments of
the initial cluster in a random parking function of size n, is equally distributed
as the random variable Cn, counting the number of edge-cuts to isolate the root-

node in a random Cayley tree of size n, i.e., Xn
L
= Cn. Moreover, the number

of increments of amount j in a random parking function of size n is equally
distributed as the number of subtrees of size j cut-off during the edge-cutting

procedure when starting with a random size-n Cayley tree, i.e., Xn,j
L
= Cn,j,

1 ≤ j ≤ n− 1.

After suitable normalization Xn is asymptotically, for n → ∞, Rayleigh dis-
tributed with parameter 1:

Xn√
n

L−→ Rayleigh(1).

Xn,j has, for n → ∞ and arbitrary 1 ≤ j = j(n) ≤ n − 1, asymptotically
factorial moments of mixed Poisson type with a Rayleigh mixing distribution X
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and scale parameter λn,j =
√
njj−1

j!ej :

E(X
s
n,j) = λs

n,j 2
s
2 Γ
(s
2
+ 1
)
·
(
1 + o(1)

)
, for j = o(n), E(X

s
n,j) = O

(
λs
n,j

)
.

(i) for λn,j → ∞, the random variable
Xn,j

λn,j
converges in distribution, with

convergence of all moments, to X.
(ii) for λn,j → ρ ∈ [0,∞), the random variable Xn,j converges in distribution,

with convergence of all moments, to a mixed Poisson distributed random

variable Y
L
= MPo(ρX).

Proof. Starting with a labelled forest F of size n we get a rooted labelled tree
T of size n+1 by attaching the trees in F as subtrees of the root-node labelled
0. Next we label the edges of T by labels {1, . . . , n}, where each edge e = (x, y),
with x the parent of y, gets the label of the child y. When applying the edge-
cutting procedure to the edge-labelled tree T in a way that at each step the edge
with largest label is chosen and cut-off, each max-record of the original forest
F corresponds to a cut in T and furthermore a record-subtree of size j in F
corresponds in T to a cut-off of a branch of size j. Together with Proposition 4
this yields

Xn
L
= Cn and Xn,j

L
= Cn,j , 1 ≤ j ≤ n− 1.

The limiting distribution results for Xn and Xn,j follow thus from the corre-
sponding results for Cn and Cn,j given in [36, 62] and Theorem 5.2, respec-
tively.

5.5. Zero contacts in bridges

We consider directed lattice paths from left to right starting at (0, 0) and ending
at (2n, 0). At each horizontal unit step we can either go one unit up (step (1, 1))
or down (step (1,−1)). Such lattice paths are called bridges of length 2n starting
and ending at height zero, and the steps are stemming from so-called Dyck paths.
Of course, such lattice paths are in bijection with lattice paths on a square grid,
starting at (0, 0) and ending at (n, n), with allowed steps (1, 0) (right) and (0, 1)
(up). Apparently, there are Bn =

(
2n
n

)
such lattice paths and thus bridges of

length 2n.

Flajolet and Sedgewick [24, Example IX.40, page 707] considered the random
variable Xn, counting the number of visits of the x-axis in a random bridge of
size 2n, i.e., the number of k, 1 ≤ k ≤ n, with (2k, 0) contained in the bridge,
by selecting one of the Bn bridges of length 2n uniformly at random. By using
a combinatorial decomposition of bridges (the so-called arch decomposition),
they have shown that Xn follows asymptotically a Rayleigh distribution, i.e.,
Xn√
n

L−→ Rayleigh(
√
2).

We consider here a refinement of the r.v. Xn by introducing the r.v. Xn,j

counting the number of j-visits of the x-axis, where a j-visit is simply a visit
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Fig 12. A bridge of length 22 with 6 visits of the x-axis: three 1-visits, two 2-visits, and one
4-visit.

after an excursion of length 2j, i.e., a return to the x-axis after exactly 2j, j ≥ 1,
steps. Of course, Xn =

∑n
j=1 Xn,j . Figure 12 illustrates these quantities.

In order to examine the limiting behaviour of Xn,j we start with a combinato-
rial description of the problem using the before mentioned arch decomposition.
Let B be the combinatorial family of bridges of length ≥ 0 and D be the fam-
ily of positive Dyck path excursions of length ≥ 2, i.e., Dyck paths of positive
length starting and ending on the x-axis, where all points in between are above
the x-axis. Analogous, let D be the family of negative Dyck path excursions
of length ≥ 2, i.e., Dyck paths of positive length starting and ending on the
x-axis, where all points in between are below the x-axis. Then, B consists of a
sequence of positive and negative Dyck path excursions, i.e., it can be described
combinatorially by the Seq construction:

B = Seq(D ∪̇ D). (5.26)

Furthermore, the family D can be described formally as

D =↗ Seq(D) ↘ . (5.27)

Let Dn be the number of positive Dyck path excursions of length 2n and
D(z) :=

∑
n≥1 Dnz

n its generating function; of course, due to symmetry, they
coincide with the corresponding quantities for negative Dyck path excursions.
Furthermore, let B(z) :=

∑
n≥0 Bnz

n be the generating function of the num-
ber of bridges Bn of length 2n. Equations (5.26)-(5.27) immediately yield the
following equations for the generating functions,

B(z) =
1

1− 2D(z)
and D(z) =

z

1−D(z)
,

with solutions

D(z) =
1−

√
1− 4z

2
and B(z) =

1√
1− 4z

.

Of course, by extracting coefficients we reobtain Bn =
(
2n
n

)
, whereas the se-

quence Dn = 1
n

(
2(n−1)
n−1

)
is enumerated by the (shifted) Catalan numbers. But

more interestingly, the above combinatorial description (5.26)-(5.27) can be ex-
tended easily to enumerate a suitably introduced bivariate generating function
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of the distribution of Xn,j :

Bj(z, v) :=
∑
n≥0

∑
m≥0

BnP{Xn,j = m}znvm.

We get then for j ≥ 1 the solution

Bj(z, v) =
1

1− 2
(
D(z) + (v − 1)Djzj

) =
1√

1− 4z − 2(v − 1)Djzj
. (5.28)

In order to obtain the factorial moments of Xn,j we set w := v−1 and introduce

the function B̃j(z, w) := Bj(z, w + 1), thus yielding

B̃j(z, w) =
1√

1− 4z − 2wDjzj
.

Extracting coefficients by using standard singularity analysis easily gives

E(X
s
n,j) =

s!

Bn
[znws]B̃j(z, w) =

s!

Bn
[zn]

2sDs
jz

js

(1− 4z)
s+1
2

=
s! 2sDs

j

Bn
[zn−js]

1

(1− 4z)
s+1
2

∼
s! 2sDs

j4
n−js(n− js)

s−1
2

Bn Γ(
s+1
2 )

.

If j = o(n) we further get

E(X
s
n,j) ∼

s! 2sDs
j4

n−jsn
s−1
2

Bn Γ(
s+1
2 )

,

and, together with Bn ∼ 4n√
π
√
n

and the duplication formula of the factorials

(5.11), this gives

E(X
s
n,j) ∼

s! 2sDs
j4

−js
√
π n

s
2

Γ( s+1
2 )

= 2sDs
j (4

−j)sn
s
2 2sΓ

(s
2
+ 1
)

=
(2√2Dj

√
n

4j

)s
2

s
2 Γ
(s
2
+ 1
)
.

Thus, by an application of Lemma 2, we get the following characterization of
the limit law of Xn,j .

Theorem 5.4. The random variable Xn,j, counting the number of j-visits of the
x-axis in a random bridge of length 2n, has, for n → ∞ and arbitrary 1 ≤ j =
j(n) ≤ n with j = o(n), asymptotically factorial moments of mixed Poisson type

with a Rayleigh mixing distribution X and scale parameter λn,j =
2
√
2(2(j−1)

j−1 )
√
n

j 4j :

E(X
s
n,j) = (λn,j)

s 2
s
2 Γ
(s
2
+ 1
)
·
(
1 + o(1)

)
.
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(i) for λn,j → ∞, the random variable
Xn,j

λn,j
converges in distribution, with

convergence of all moments, to X.
(ii) for λn,j → ρ ∈ (0,∞), the random variable Xn,j converges in distribution,

with convergence of all moments, to Y
L
= MPo(ρX).

Moreover, the random variable Y
L
= MPo(ρX) converges, for ρ → ∞, after

scaling, to its mixing distribution X: Y
ρ

L−→ X, with convergence of all moments.

Of course, the result above can be readily adapted to obtain joint distribu-
tions for the number of j-visits and the total number of visits of the x-axis
as considered by Flajolet and Sedgewick [24]; see also Section 7.1. Our results
can be extended to other bridges with different families of steps (see [3]). One
can also study this parameter for modified excursions, as considered in [4], and
obtain similar results.

5.6. Cyclic points and trees in graphs of random mappings

We call a function f : [n] → [n] from the finite set [n] := {1, 2, . . . , n} into
itself an n-mapping (or an n-mapping function); let us denote by Fn the set of
n-mappings. When selecting one of the nn n-mappings at random (i.e., if we
assume that each of the nn n-mappings can occur equally likely) one speaks
about a random n-mapping. There exists a vast literature (see, e.g., [18, 19, 23]
and references therein) devoted to reveal the typical behaviour of important
quantities (as, e.g., the number of components, the number of cyclic nodes, etc.)
of random n-mappings and the corresponding mapping graphs, respectively.

Themapping graph, i.e., the functional digraph, of an n-mapping f ∈ Fn is the
directed graph Gf = (V,E) with set of vertices V = [n] and set of directed edges
E = {(i, f(i)), i ∈ [n]}. The structure of the mapping graph Gf of an arbitrary
mapping function f is well known [18, 23]: the weakly connected components
of Gf are cycles of rooted labelled trees, i.e., Cayley trees, which means that
each connected component consists of rooted labelled trees (with edges oriented
towards the root nodes) whose root nodes are connected by directed edges such
that they are forming a cycle.

This description allows to interpret a mapping f as a set of cycles of labelled
trees. Hence, in order to describe the family F =

⋃
n≥0 Fn of all mappings,

we can apply the combinatorial constructions Set and Cycle to the family of
rooted labelled trees T , as introduced and discussed in Section 5.2. This yields
the following combinatorial description of the family of mappings F :

F = Set(Cycle(T )).

Hence, the exponential generating function

F (z) :=
∑
n≥0

nn z
n

n!
=
∑
n≥0

F̃nz
n,
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Fig 13. The mapping graph Gf of a 19-mapping function f has 6 cyclic points, i.e., decom-
poses into 6 trees, one tree of size 1, one tree of size 2, two trees of size 3 and two trees of
size 5.

with F̃n := nn

n! , of the number of n-mappings satisfies

F (z) = exp
(
log
( 1

1− T (z)

))
=

1

1− T (z)
, (5.29)

where the tree function T (z) is defined in (5.4). Equation (5.29) suggests the
alternative combinatorial description of mappings as sequences of rooted labelled
trees: F = Seq(T ). This can be justified easily by using an analogue of the
canonical cycle representation of permutations: for each cycle of trees order
the cycle by starting with the tree having the largest root-label amongst all
these trees (let us call it the cycle leader) and then rank the different cycles in
descending order of the cycle leaders.

The random variable Xn counting the number of cyclic points in a random n-
mapping f (i.e., elements k ∈ [n], such that there exists a � > 0 with k = f �(k)),
which of course coincides with the number of rooted labelled trees in the decom-
position of the mapping graph Gf given above, has been analysed by Drmota

and Soria [18]. They have shown a Rayleigh limit law: Xn√
n

L−→ Rayleigh(1). We

are considering here a refinement of Xn, namely, we introduce the random vari-
ables Xn,j , counting the number of trees of size j occurring in the decomposition
of the mapping graph Gf of a random n-mapping f ∈ Fn; of course, it holds
Xn =

∑n
j=1 Xn,j . The quantities considered are visualized in Figure 13.

When introducing a suitable generating function of the distribution of Xn,j

via Fj(z, v) :=
∑

n≥0

∑
m≥0 F̃nP{Xn,j = m}znvm, the combinatorial decompo-

sition of the family of mappings F as given above immediately yields an explicit
formula for Fj(z, v), j ≥ 1:

Fj(z, v) =
1

1−
(
T (z)− T̃jzj + vT̃jzj

) =
1

1− T (z)− (v − 1)T̃jzj
.

Introducing w := v − 1 and F̃j(z, w) := F (z, w + 1) gives

F̃j(z, w) =
1

1− T (z)− wT̃jzj
,
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from which the factorial moments of Xn,j can be obtained easily by extracting
coefficients. This can be done completely analogous to the computations in
Section 5.2 leading for j = o(n) to the following result:

E(X
s
n,j) =

s!

F̃n

[znws]F̃j(z, w) ∼
( T̃j

√
n

ej

)s
2

s
2 Γ
(s
2
+ 1
)
,

which, together with Lemma 2, shows the theorem stated below.

Theorem 5.5. The random variable Xn,j, counting the number of trees of size
j occurring in the decomposition of the mapping graph of a random n-mapping,
has, for n → ∞ and arbitrary 1 ≤ j = j(n) ≤ n with j = o(n), asymptotically
factorial moments of mixed Poisson type with a Rayleigh mixing distribution X

and scale parameter λn,j =
jj−1√n

j!ej :

E(X
s
n,j) = (λn,j)

s 2
s
2 Γ
(s
2
+ 1
)
·
(
1 + o(1)

)
.

(i) for λn,j → ∞, the random variable
Xn,j

λn,j
converges in distribution, with

convergence of all moments, to X.
(ii) for λn,j → ρ ∈ (0,∞), the random variable Xn,j converges in distribution,

with convergence of all moments, to Y
L
= MPo(ρX).

Moreover, the random variable Y
L
= MPo(ρX) converges, for ρ → ∞, after

scaling, to its mixing distribution X: Y
ρ

L−→ X, with convergence of all moments.

6. Multivariate mixed Poisson distributions

Definition 1 readily extends to multivariate distributions, compare with [20].

Definition 2. Let (X1, . . . , Xm) denote a random vector with non-negative com-
ponents and cumulative distribution function Λ(.) and ρ1, . . . ρm > 0 scale pa-
rameters. The discrete random vector (Y1, . . . , Ym) with joint probability mass
function given by

P{Y1 = �1, . . . Ym = �m} =
ρ�11 . . . ρ�mm
�1! . . . �m!

∫
(R+)m

X�1
1 . . . X�m

m e−
∑m

j=1 ρjXjdΛ,

�1, . . . , �m ≥ 0, has a multivariate mixed Poisson distribution with mixing dis-
tribution (X1, . . . , Xm) and scale parameters ρ1, . . . , ρm.

Relation (1.6) for the moments of X and Y given there extends to the mul-
tivariate case in the following way:

E
(
Y

s1
1 . . . Y

sm
m

)
= ρs11 . . . ρsmm μs1,...,sm , (6.1)

where μs1,...,sm = E(Xs1
1 · · ·Xsm

m ), for s1, . . . , sm ≥ 0; this can readily be seen
by a direct computation.

Similar to Proposition 2 we obtain the following result, if the distribution of
the random vector (X1, . . . , Xm) is uniquely determined by the sequence of its
(mixed) moments.
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Proposition 5. Let X = (X1, . . . , Xm) denote a random vector determined by
its sequence of mixed moments (μs1,...,sm)s1,...,sm∈N0 , assuming that the moment
generating function ψ(z) = E(ezX) of X exists in a neighbourhood of 0 including
−ρ. Then, the random vector Y = (Y1, . . . , Ym) with mixed factorial moments
given by (6.1) has a multivariate mixed Poisson distribution with mixing distri-
bution X and scale parameters ρ1, . . . ρm > 0. The moment generating function
ϕ(z) = E(ezY) is given by the Stirling transform of ψ(z),

ϕ(z) =
(
ψ(z)

)∣∣∣
z1 = ρ1(e

z1 − 1), . . . , zm = ρm(ezm − 1)
,

and the probability mass function of Y satisfies

P{Y1 = �1, . . . , Ym = �m} =
∑

�1≥j1,...,�m≥jm

μj1,...,jm

m∏
i=1

(
ji
�i

)
(−1)ji−�i

ρjii
ji!

,

for �1, . . . , �m ≥ 0.

Proof. We proceed similarly to the proof of Proposition 2. Using

Y s1
1 . . . Y sm

m =

s1∑
�1=0

· · ·
sm∑

�m=0

( m∏
i=1

Y
si
i

)

and (2.5), the moment generating function of Y is readily computed:

ϕ(z) =
∑

s1,...,sm≥0

E(Y s1
1 . . . Y sm

m )
zs11 . . . zsmm
s1! . . . sm!

=
∑

�1,...,�m≥0

μ�1,...,�m

m∏
i=1

(
ρi(e

zi − 1)
)�i

.

Moreover, it coincides with the Stirling transform of ψ(z). This proves that
the random vector has a multivariate mixed Poisson law, since ϕ(z) is analytic
in a neighbourhood of 0. Moreover, the probability mass function is obtained
according to

P{Y1 = �1, . . . , Ym = �m} =
ρ�11 . . . ρ�mm
�1! . . . �m!

·
(

∂
∑m

k=1 �k

∂z�11 . . . ∂z�mm
ϕ(z)

)∣∣∣∣
z=−ρ

.

Moreover, we note that the basic limit theorem for the univariate case given
in Lemma 2 can be readily extended to limit laws for random vectors.

7. Outlook and extensions

7.1. Mixed Poisson distributions in Analytic Combinatorics -
compositions

Looking at the examples in Sections 5.2 and 5.5 leading to mixed Poisson laws
with Rayleigh mixing distribution, and the example in Section 3.1 from [51], it
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is desirable to find a unifying combinatorial scheme leading to mixed Poisson
distributions. The generating functions appearing in the examples mentioned
aforehand indicate how to do so: we can use the critical compositions (see Fla-
jolet and Sedgewick [24, Proposition IX.24, page 712], based on the pioneering
works of Soria et al. [2, 18, 19, 25, 26, 27]. Assumed that generating functions
G(z) and H(z) are the counting series of certain combinatorial families. We
are interested in compositions of generating functions of the form G(H(z)).
Combinatorially, this amounts to a substitution between structures of the form
F = G◦H, We measure the size of the so-called core Xn, and additionally taking
into account the contribution of parts of size j to the core:

F (z, u, v) = G
(
u(H(z)− (v − 1)Hjz

j)
)
.

Here the variable u marks as usual the total size of the so-called core Xn,

P{Xn = m} =
[znuk]F (z, u, 1)

[zn]G(H(z))
,

and the new variable v marks the contribution of parts of size j measured by
the random variable Xn,j to the core,

P{Xn,j = m} =
[znvj ]F (z, 1, v)

[zn]G(H(z))
,

such that Xn =
∑n

j=1 Xn,j . Using the semi-large power theorem stated in [24,
Theorem IX.16, page 709], one can study this j-part core Xn,j . More generally,
it is desirable to study the joint distributions (Xn;Xn,j1 , . . . , Xn,jk) via

F (z, u,v) = G
(
u(H(z)−

k∑
�=1

(v� − 1)Hj�z
j�)
)
.

We will report on our findings on this refined analysis of compositions else-
where [46].

7.2. Extensions and open problems

Several of the results presented in this work can be extended to a multivariate
analysis involving a random vector Xn,j = (Xn,j1 , . . . , Xn,jr) by its mixed mo-
ments. It should be possible, at least for some of the examples presented, to use
mixed Poisson approximation techniques to derive distances, i.e., the total vari-
ation distance, between the random variables of interest and the corresponding
mixed Poisson distributions, refining the results stated in this work.

A natural question is to ask for a direct explanation of the critical growth
rates of the second parameter, say j, when the limit laws of the random variables
Xn,j change from the law of the mixing distribution X to the mixed Poisson
distributions MPo(ρX).
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[31] R. Grübel and N. Stefanoski, Mixed Poisson approximation of node depth
distributions in random binary search trees, Annals of Applied Probability
15, 279–297, 2005. MR2115044

[32] A. Gut, On the moment problem, Bernoulli 8, 407–421, 2002. MR1913113

http://www.ams.org/mathscinet-getitem?mr=1609885
http://www.ams.org/mathscinet-getitem?mr=1913079
http://www.ams.org/mathscinet-getitem?mr=0007577
http://www.ams.org/mathscinet-getitem?mr=1445035
http://www.ams.org/mathscinet-getitem?mr=1337754
http://www.ams.org/mathscinet-getitem?mr=2509623
http://www.ams.org/mathscinet-getitem?mr=2135318
http://www.ams.org/mathscinet-getitem?mr=1083961
http://www.ams.org/mathscinet-getitem?mr=2483235
http://www.ams.org/mathscinet-getitem?mr=1041444
http://www.ams.org/mathscinet-getitem?mr=1090289
http://www.ams.org/mathscinet-getitem?mr=1217750
http://www.ams.org/mathscinet-getitem?mr=1127175
http://www.ams.org/mathscinet-getitem?mr=0462961
http://www.ams.org/mathscinet-getitem?mr=1397498
http://www.ams.org/mathscinet-getitem?mr=2115044
http://www.ams.org/mathscinet-getitem?mr=1913113


Moment sequences and mixed Poisson distributions 153

[33] H.-K. Hwang and R. Neininger, Phase change of limit laws in the quicksort
recurrence under varying toll functions, SIAM Journal on Computing 31,
1687–1722, 2002. MR1954876

[34] S. Janson, Functional limit theorems for multitype branching processes and
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