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Abstract: Recent years have seen a growing body of literature on the anal-
ysis of length-biased data. Much of this literature adopts the accelerated
failure time or proportional hazards models as the basis of study. The over-
whelming majority of the existing work also assumes independence between
the censoring variable and covariates. In this paper, we develop a varying-
coefficient quantile regression approach to model length-biased data. Our
approach does not only allow the direct estimation of the conditional quan-
tiles of survival times based on a flexible model structure, but also has the
important appeal of permitting dependence between the censoring variable
and the covariates. We develop local linear estimators of the coefficients us-
ing a local inverse probability weighted estimating equation approach, and
examine these estimators’ asymptotic properties. Moreover, we develop a
resampling method for computing the estimators’ covariances. The small
sample properties of the proposed methods are investigated in a simulation
study. A real data example illustrates the application of the methods in
practice.
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1. Introduction

In prevalent sampling, when the probability of selecting an observation from the
population is proportional to the time from the initiation event to the failure
event, the sample is said to be length-biased. As the cohort can only include
subjects that survive to the examination time, the observed time interval from
initiation to failure of the subjects within the prevalent cohort is longer than
that arising from the distribution of the general population. Length-biasedness
is therefore due to the way the data are available and not by choice. In technical
terms, length-biased sampling is usually understood to refer to the situation
where the event initiation time follows a stationary Poisson process such that
the failure time is left-truncated by a uniformly distributed truncation time.
Length-biased data are typically also right-censored because in a prevalent co-
hort, the observed subjects are followed forward until death, withdrawal, or the
termination of study, whichever is the earliest.

A large amount of work has been done on developing methods for estimating
the unbiased distribution of the target population under length-biased sampling
(e.g. [41, 42, 3, 4]). There is also a growing body of literature on regression
modeling of the association between the length-biased failure times and risk
factors. This literature invariably focuses on semi-parametric methods. Some
better known examples include [39], who study the covariate effects on failure
times using the semi-parametric transformation and accelerated failure time
(AFT) models; [37] develop estimating equation methods for estimating covari-
ate effects under the semi-parametric proportional hazards (PH) model, while
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[35] propose a Buckley-James type estimator for estimating the covariate effects
under the AFT model. It should be noted that these studies all assume inde-
pendence of the censoring variable and the covariates; when the latter assump-
tion does not hold, the validity of the proposed methods cannot be guaranteed.
Moreover, the PH and AFT models are limited by their inability to examine the
covariate effects on the shape of the survival distribution as they assume that
the covariates only affect the location of the survival times ([32]). To overcome
this difficulty, a substantial literature has investigated the use of quantile re-
gression (QR) methods for modeling the conditional quantiles of survival times
directly (e.g., [48, 46, 32, 28, 5, 47]). The majority of these studies account for
data censoring and assume that censoring times are independent of either or
both of the covariates and failure times. None of these studies consider length-
biased sampling because they all implicitly or explicitly assume that the data
are obtained from an incident follow-up study.

To date, [43] and [14] (WW and CZ hereafter) are the only existing stud-
ies that have considered QR for length-biased data. These two studies have
much in common in terms of the approaches taken for parameter estimation,
namely, methods based on inverse probability weighting. They share the com-
mon strength of allowing censoring to depend on the covariates, but have the
same disadvantage of restricting the functional relationship between the survival
time and the covariates to linearity. While similar in many respects, WW and
CZ differ in the ways they model the dependence between the censoring variable
and the covariates – CZ uses a semi-parametric PH model, while WW uses a
method that involves replacing the integral of the conditional survival function
of the censoring variable by the integral of a local Kaplan-Meier estimator. WW
also develops a goodness of fit test which is unexplored in CZ.

In this paper we use a varying-coefficient QR approach to model length-
biased survival data. This model framework is more flexible than the linear
framework of WW and CZ. The varying-coefficient model has been widely ap-
plied since the seminal contributions of [15] and [26]. An important appeal of the
varying-coefficient model is that by allowing the coefficients to vary as smooth
functions of other variables, the curse of dimensionality can be avoided. Due
to this advantage the varying-coefficient approach has experienced rapid devel-
opment in theory and methodology in recent years. We refer to the articles by
[13, 11] and [10] for novel applications of the varying-coefficient approach to
time series analysis; [29, 23] and [21] for longitudinal data analysis; [22] and
[7, 8, 9] for survival analysis; and [45] for functional linear regression. For more
references, see [20] and [24]. The varying-coefficient approach to estimating con-
ditional quantiles has been considered by [27, 30] and [12] use local polynomials
to estimate conditional quantiles with varying coefficients, while [30] propose
an estimation methodology based on polynomial splines. [18] also examine the
connection between quantile autoregression and varying-coefficient models. To
the best of our knowledge, no previous study under length-biased sampling,
whether the focus is on conditional mean or quantile estimation, has considered
the varying-coefficient approach, and the purpose of this study is to take steps
in this direction.
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Like other studies on length-biased sampling, we assume that the initiation
times follow a stationary Poisson process (hereinafter referred to as the station-
arity assumption), but unlike the majority of the existing studies, we do not
require the censoring variable to be distributed independently of the covariates
or failure times. We consider the latter an important strength that underlies our
analysis besides the advantage offered by the flexibility of the varying-coefficient
model. We adopt a local inverse probability weighting approach to estimation,
and establish the consistency and asymptotic normality of the QR-based local
linear estimators obtained by this estimation approach. Furthermore, a resam-
pling method is developed for the computation of estimator variance.

The layout of this paper is as follows. The next section introduces the model
framework, and develops the inverse probability weighting estimation procedure.
Section 3 presents the main theoretical results on the consistency and asymptotic
normality of estimators, along with the development of a resampling method
for covariance estimation. Simulation findings on the properties of estimators
in small samples are reported in Section 4. Section 5 considers an application
of the proposed methods to real data, and the Appendix provides the proofs of
our technical results.

2. Model framework and a weighted estimating equation approach

2.1. Model framework

Let T̃ be the time from the initiation event to the failure event. The initiation
and failure events could be, for example, the onset of a disease and death re-
spectively. Further, let A, V and C be the times from the initiation event to
recruitment, from recruitment to failure, and from recruitment to censoring re-
spectively. When the data are length-biased, only T̄ , the subset of T̃ such that
T̃ > A, can be observed. For this reason, A is also known as the truncation
variable. The variable V is the residual survival time because V = T̄ −A, and C
is the censoring variable. Note that A is common to the survival time T̄ = A+V
and the total censoring time A + C. Hence, the survival and censoring times
are dependent. This also means that T̄ is subject to informative censoring. We
assume that conditional on the covariates (X, U), C and (A, V ) are indepen-
dent and the stationarity assumption holds. Further, denote fT̃ as the density

function of T̃ given X = x and U = u. Then the conditional density function g
of the length-biased data T̄ given T̃ > A is

g(t|x,u) = tfT̃ (t|x,u)
µ(x,u)

,

where µ(x,u) =
∫∞

0
sfT̃ (s|x,u)ds < ∞.

Now, let (Yi, Ai, δi, Ui,Xi) be a random sample, where Yi = min(T̄i, Ai+Ci),
T̄i = Ai + Vi, δi = I(Vi ≤ Ci), and Ui and Xi are one-dimensional and p-
dimensional covariates for individual i respectively, i = 1, 2, . . . , n. We assume
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that T̃ (or its transformation such as log) follows the varying-coefficient quantile
regression model

T̃i = a(Ui, τ)
TXi + ǫi, (2.1)

where a(u, τ) = (a1(u, τ), . . . , ap(u, τ))
T is a p × 1 vector of unknown coef-

ficient functions, τ ∈ (0, 1) is a given quantile level, the random errors ǫi’s
are independent, and covariates Ui and Xi, i = 1, 2, . . . n, are i.i.d; further-
more, it is assumed that P (ǫi < 0|Xi, Ui) = τ . In the notation that fol-
lows, we will suppress the argument τ and write a(u, τ) as a(u) whenever
there is no confusion. Also, we assume that P (C > tx,u|X, U) > 0, where
0 < tx,u = sup{t : P (V ≥ t|X, U) > 0}, such that the support of C also
covers that of V for any covariate value. We make this assumption to avoid
the technical complications regarding the tail behavior of the limiting distribu-
tion. Additionally, in order for all of the regression parameters to be estimable,
we restrict inference to the time interval [0, t0], where t0 is chosen such that
infx,u P (V ≥ t0|X, U) > 0.

Now, if the complete data that are neither length-biased nor right-censored
can be observed, then the estimator of a(U) = (a1(U), . . . , ap(U))T is the min-
imizer of the objective function

n
∑

i=1

{

ρτ

(

T̃i − a(Ui)
TXi

)}

,

where ρτ (ǫ) := ǫ(τ − I(ǫ < 0)).

2.2. A local linear inverse probability weighted estimator

In this subsection, we will construct the local asymptotically unbiased estimating
equation to derive the local linear estimator of the coefficient function a(u),
taking into account the length-biased and right-censored characteristics of the
data. Similar to the approach of [39], we obtain the local linear estimator of
the unknown coefficient functions from the local inverse probability weighted
estimating equation by redistributing the mass of the censored observations to
the uncensored observations. The survival function of the censoring variable C
is SC(t|W) = P (C > t|W), where W is (X, U) or a subset of it.

Under the stationarity assumption (i.e., the initiation times follow a station-
ary Poisson process), from the results of [4], the joint distribution of (A, V ) and
(A, T ) conditional on X and U has the form

fA,V (a, v|X = x, U = u) = fT̃ (a+ v|x, u)I(a > 0, v > 0)/µ(x, u).

Similar to [39], the probability of observing the failure data can be written as

P (A = a, V = y − a, C ≥ y − a|X = x, U = u)

= fT̃ (y|x, u)SC(y − a|w)/µ(x, u). (2.2)
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Now, based on (2.2) and the joint distribution of (A, V ), we have

E

[

δ

π0w(Y |W)
ρτ (Y − a(U)TX)

]

= E

{

E

[(

δ

π0w(Y |W)
ρτ (Y − a(U)TX)

)∣

∣

∣

∣

X, U

]}

= E

{
∫ ∞

0

1

µ(X, U)
fx,U (t)ρτ (T − a(U)TX)dt

}

= E

{

1

µ(X, U)
E
[

ρτ (T̃ − a(U)TX)|X, U
]

}

,

where π0w(t|W) =
∫ t

0
SC(u|W)du.

To proceed with the estimation of a(u), we approximate aj(U) as aj(U) ≈
aj(u0) + a′j(u0)(U − u0) for U in the neighborhood of a given point u0. Write

b0(u0)= (a1(u0), . . . , ap(u0))
T , c0(u0)= (a′1(u0), . . . , a

′
p(u0))

T , b=(b1, . . . , bp)
T ,

c=(c1, . . . , cp)
T ,β0(u0)= (bT

0 (u0), c
T
0 (u0))

T , β=(bT , cT )T ,H= diag(1, h)⊗Ip,

and X∗
i =(XT

i ,X
T
i (Ui − u0)/h)

T . Furthermore, we let θ =: Hβ=H(bT , cT )T ,
θ0 =: Hβ0(u0)=H(bT

0 (u0), c
T
0 (u0))

T , Kh(·) = K(·/h)/h, with K(·) being a

kernel function and h = hn > 0 a bandwidth. The estimator θ̂ =: Hβ̂ =

H(b̂
T
, ĉT )T of θ0 is obtained by minimizing the loss function

Ln(θ, π0w) =

n
∑

i=1

δiKh(Ui − u0)

π0w(Yi|Wi)
ρτ (Yi − θTX∗

i ), (2.3)

and replacing π0w(t|W) in the solution to (2.3) by a consistent estimator π̂w(t|W)
of π0w(t|W).

The task of obtaining π̂w(t|W) can be accomplished by seeking a consis-

tent estimator of SC(t|W) since π0w(t|W) =
∫ t

0
SC(u|W)du. When censoring

depends on the covariates, SC(t|W) can be estimated semi-parametrically or
non-parametrically. Semi-parametric methods are based on a regression model
specified for the censoring time (e.g., the Cox proportional hazards model), while
non-parametric methods usually involve using the local Kaplan-Meier estimator
to estimate the survival function directly. When censoring is independent of the
covariates, the same modeling method can be applied with π0(t) =

∫ t0
0 SC(u)du

used as the weight function. In this paper, we adopt the semi-parametric method
to estimate the weight function. More details are given in the next subsection.

2.3. Covariate-dependent censoring

We assume that the dependence of the censoring time on the covariates can be
described by the Cox proportional hazards model

λ(t|Wi) = λ0(t) exp(α
T
0 Wi), (2.4)
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where λ(t|W) = lim∆t→0 P [(t ≤ C ≤ t + ∆t)|C ≥ t,W]/∆t is the hazard
function, α0 is a r-dimensional parameter, Wi is a r-dimensional covariate
vector, and λ0(t) is an unspecified baseline hazard function. The possibility
of (2.4) being a mis-specified representation can be tested using the method
proposed by [34].

The following gives the procedure for estimating the weight function
π0w(Y |W). Now, recognizing that π0w(t|W) =

∫ t

0
SC(s|W)ds, a consistent es-

timator of π0w(t|W) is π̂w(t|W) =
∫ t

0
ŜC(s|W)ds, where

ŜC(s|W) = exp{− exp(α̂T
W)Λ̂0(s)}

is a commonly used consistent estimator of SC(s|W) (see, for example, [25]).
Let α̂ be the maximum partial likelihood estimator of α0, obtained by solving
the estimating equation

Un(α) =

n
∑

i=1

∫ t0

0

{Wi − W̄(t;α)}dNC
i (t) = 0,

where NC
i = I(Yi − Ai ≤ t, δi = 0) is a counting function, and W̄(t;α) =

S(1)(t;α)/S(0)(t;α), with

S(k)(t;α) =
1

n

n
∑

i=1

Yi(t)W
⊗k
i exp(αTWi), k = 0, 1, 2,

Yi(t) = I(Yi −Ai ≥ t), and v⊗0 = 1,v⊗1 = v and v⊗2 = vvT for any arbitrary
vector v. Further, let

Λ̂0(t) =

n
∑

i=1

∫ t

0

dNC
i (u)

∑n
j=1 Yj(u) exp(α̂

T
Wj)

be the [6] estimator of the cumulative hazard function Λ0(t) =
∫ t

0
λ0(u)du. See

[33] for a discussion of Bresolw estimator in survival analysis. Let

Ω̂ =
1

n

n
∑

i=1

∫ t0

0

{

S(2)(t; α̂)

S(0)(t; α̂)
− W̄

⊗2
(t; α̂)

}

dNC
i (t),

and denote w̄(t), s(0)(t;α0) and Ω as the limits of W̄(t;α0), S
(0)(t;α0) and Ω̂

respectively.
These notations facilitate the derivation of the asymptotic martingale repre-

sentation of π0w(Y |W)− π̂w(Y |W), which will be used to prove the asymptotic
normality of the local linear estimator. The latter is the minimizer of the loss
function

Ln(θ, π̂w) =
1

n

n
∑

i=1

δiKh(Ui − u0)

π̂w(Yi|Wi)
ρτ (Yi − θTX∗

i ), (2.5)

where π̂w(t|W) =
∫ t

0 ŜC(s|W)ds.
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3. Large sample properties and variance estimation

3.1. Large sample properties

This subsection is devoted to an analysis of the large sample properties of the
local linear estimator. In order to apply the counting process and martingale
theory, let us define the filtration

F(t)=σ{I(Yi−Ai ≤ u, δi=0), I(Yi−Ai ≥ u+),Xi, Ui, i=1, 2, . . . , n, 0 ≤ u ≤ t}.

Then the martingale with respect to the censoring variable is

Mi(t) = NC
i (t)−

∫ t

0

I(Yi −Ai ≥ u) exp{αT
0 Wi}λ0(u)du.

For notational simplicity, write ηi(u,X) = a(u)TXi, µk =
∫

ukK(u)du, νk =
∫

ukK2(u)du, fU (.) as the marginal density of U , fǫi(.|X, U) as the conditional
density of random error,

An(u0) = fU (u0)

(

1
µ2

)

⊗ Γn(u0), A(u0) = lim
n→∞

An(u0),

Γn(u0) =
1

n

n
∑

i=1

E

[

XiX
T
i

µ(Xi, u0)
fǫi(0|Xi, Ui)

∣

∣

∣

∣

Ui = u0

]

,

and

V = lim
n→∞

fU (u0)

(

ν0 ν1
ν1 ν2

)

⊗ 1

n

n
∑

i=1

E

{

XiX
T
i φ

2
τ (Yi − ηi(u0,X))

µ(Xi, u0)π0w(Yi|Wi)

∣

∣

∣

∣

Ui = u0

}

,

where φτ (ǫ) = I(ǫ ≤ 0)− τ .
The theorems below show that the local linear estimator is consistent as well

as asymptotically normal.

Theorem 3.1 (Consistency). Assume that conditions (A1)–(A12) in the Appen-
dix hold, and as n → ∞, h = hn → 0, nh → ∞, and n2δ−1h → ∞ for
3/5 < δ < 1− s−1 with s > 2 being a positive integer. Then

H(β̂(u0)− β0(u0))
P−→ 0.

Theorem 3.2 (Asymptotic Normality). Assume that conditions of Theorem 1
hold. Then

√
nh

[

H(β̂(u0)− β0(u0)) −
h2

2

(

µ2a
′′(u0)
0

)

+ o(h2)

]

D−→ N(0,Σ),

where Σ = A−1(u0)V A−1(u0), and a′′(u) is the second derivative of coefficient
function vector a(u).
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3.2. Asymptotic variance estimation

It is difficult to estimate the asymptotic variance by the direct plug-in method
as this method involves the computation of the estimator of an unknown den-
sity function which is cumbersome. For this reason we use an alternative boot-
strap method based on Efron’s non-parametric bootstrap ([16, 17]). It works
as follows. Select B random samples each of size n with replacement from

(Yi, Ai, δi, Ui,Xi), i = 1, 2, . . . , n. Let the j-th bootstrapped sample be (Y
(j)
i ,

A
(j)
i , δ

(j)
i , U

(j)
i ,X

(j)
i ), i = 1, 2, . . . , n, j = 1, 2, . . . , B. For each bootstrapped sam-

ple, compute π̂
(j)
w (Y

(j)
i |W(j)

i ), and let θ̂
(j)

be the solution to the following boot-
strapped estimating equation:

L̄n(θ, π̂
(j)
w ) =

1

n

n
∑

i=1

δ
(j)
i Kh(U

(j)
i − u0)

π̂w(Y
(j)
i |W(j)

i )
ρτ (Y

(j)
i − θTX

∗(j)
i ). (3.1)

Then we use the empirical variance of (θ̂
(1)

, . . . , θ̂
(B)

) as the estimator of the

asymptotic variance of θ̂. Note that local linear approximation has the effect
of reducing the dimension of the original parameters a(u) to a finite one point-
wisely, and transforming the estimation problem from being non-parametric to
parametric. Along the lines of [16, 17], it is not difficult to show that this pro-
cedure can result in a consistent estimator of the variance. Clearly, the value B
has to be reasonably large for this method to be effective.

4. A simulation study

In this section, we evaluate the finite sample performance of the proposed
method by simulations. Our generation of length-biased data follows the method
of [39]. The method works as follows. We generate independent pairs of (Ai, T̃i)
from A ∼ U(b, ω), where b is an arbitrary constant, and ω is chosen such that
it is larger than the upper bound of T̃ for the stationarity assumption to hold.
We then select the pairs such that Ai < T̃i. For all cases in the study, we set
the sample size n to 300, the number of replications to 500, and B, the number
of bootstrapped samples for the estimation of the asymptotic variance, to 500.

Our experiment is based on the following data generating process:

log T̃i = a1(Ui)X1i + a2(Ui)X2i + (1 + γX2i)ǫi, (4.1)

where X1i ∼ N(0, 1) is a continuous covariate, X2i is a binary (0,1) covariate
with P (X2i = 1) = 0.5, and Ui ∼ U(0, 3) is the effect modifier. We let the
varying-coefficient functions be a1(Ui) = sin(2Ui) and a2(Ui) = 0.5Ui(2 − Ui).
The censoring variable Ci is assumed to depend on X2i through the Cox pro-
portional hazards model

λ(t) = λ0(t) exp(α0X2i)

described in (2.4). Here, we let α0 = −1 and λ0(t) = 0.35. Now, under model
(4.1), the τ -conditional quantile of log T̃ is
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Qτ (log T̃ |X1i, X2i) = a1(Ui, τ)X1i + a2(Ui, τ)X2i,

where a1(Ui, τ) = a1(Ui) + Qǫ(τ), a2(Ui, τ) = a2(Ui) + γQǫ(τ), and Qǫ(τ) is
τ -quantile of ǫi. We consider τ = 0.25, 0.50 and 0.95, and the following three
cases of specifications of γ and ǫi: Case 1: γ = 0 and ǫi ∼ N(0, 0.25); Case 2:
γ = 1 and ǫi ∼ U(−0.5, 0.5); Case 3: γ = 1 and ǫi ∼ N(0, 0.25).

Case 1 corresponds to a homoscedastic model, while Cases 2 and 3 corre-
spond to heteroscedastic models. Note that for the latter two cases, as γ = 1,
the coefficient function a2(U, τ) has different behaviour for different τ . The cen-
soring ratios for Cases 1, 2 and 3 are about 27.5%, 26% and 35.7% respectively.
We adopt the Epanechnikov kernel, K(u) = 3

4 (1 − u2)I(|u| ≤ 1) in all kernel
estimation, and set the bandwidth h to 0.25, 0.15 and 0.3 when τ = 0.25, 0.50
and 0.95 respectively.

Table 1 presents the results of variance estimation based on the QR method
for the three quantiles at u0 = 0.5, 1.0, 1.5, 2.0, 2.5. In the table, “sd” is the
standard deviation of âj(U) based on 500 replications, and “se” is the average
of the standard errors of the 500 estimated standard deviations based on the
resampling method. Hence “sd” may be viewed as an indicator of the efficiency
of the QR estimates; it also provides the basis for evaluating the accuracy of the
resampling method. Table 1 shows that se is always very close to sd, suggesting
that the resampling method is effective. We also observe from Table 1 that the
variances are generally not large, suggesting that our method performs well.
There is also a general tendency for the estimators of the first coefficient to be
more efficient than the corresponding estimators of the second coefficient.

Figures 1–3 provide the plots of the estimated coefficient functions of a1(U)
and a2(U) for the three cases. In each figure, the true coefficient is shown by
the black solid curve, the estimated functions for τ = 0.25, 0.5 and 0.95 are
represented by the green dashed-dotted, blue dotted and the green dashed curves
respectively, and the 95% point-wise confidence intervals of the coefficients are
shown for the case of τ = 0.5 by the red dashed curves. The figures show that
all the estimated functions are very close to the true coefficient function. As
well, the true values are always enclosed by the 95% confidence intervals. The
QR method thus appears to perform well.

Some insights on the effect of ignoring the length-biasedness of the data (i.e.,
treat the data as if it were only right censored) are provided in Figure 4. We use
Case 1 as an illustration but the effects under the other two cases are similar.
A comparison of Figure 4 with Figure 1 reveals that when length-biasedness is
ignored, the three QR estimators of a2(U) are all biased and the 95% point-
wise confidence interval based on the median estimator does not always contain
the true coefficient. On the other hand, the effects of neglecting length-biased
sampling appears to be minimal for a1(U).

We also compare the estimator’s performance under different bandwidths by
the following mean square error (MSE) measure

MSE =
1

ngrid

2
∑

j=1

ngrid
∑

k=1

[âj(uk)− aj(uk)]
2,
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Fig 1. (Case 1) The estimated coefficient function for three quantiles: τ=0.25 (green dashed
dotted curve), τ=0.50 (blue dotted curve) and τ=0.95 (green dashed curve). The red dashed
curves are the 95% pointwise confidence bands of the median regression curve. The black solid
curve represents the true coefficient function.
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Fig 2. (Case 2) The estimated coefficient function for three quantiles: τ=0.25 (green dashed
dotted curve), τ=0.50 (blue dotted curve) and τ=0.95 (green dashed curve). The red dashed
curves are the 95% pointwise confidence bands of the median regression curve. The black solid
curve represents the true coefficient function.

where uk, k = 1, . . . , ngrid, are the grid points at which the functions aj(.)
′s are

estimated.

Figure 5(a)–(c) depict the box-plots of the MSEs of the QR estimators for τ
= 0.25, 0.5, 0.95 under Case 1 (Boxes 1, 2 and 3), Case 2 (Boxes 4, 5 and 6) and
Case 3 (Boxes 7, 8 and 9) based on 500 replications and bandwidth values of
h = 0.15, 0.2, 0.25. From the figures, we observe that under Case 1, the results
for estimating the median are the best, followed by those for the estimating the
25-th quantile, and the results for estimating the 95-th quantile are the worst.
This is quite reasonable because under normal errors, data sparsity increases
as one moves away from the center of the distribution. However, for Cases 2
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Fig 3. (Case 3) The estimated coefficient function for three quantiles: τ=0.25 (green dashed
dotted curve), τ=0.50 (blue dotted curve) and τ=0.95 (green dashed curve). The red dashed
curves are the 95% pointwise confidence bands of the median regression curve. The black solid
curve represents the true coefficient function.
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Fig 4. (Case 1 when ignoring length-biased sampling) The estimated coefficient func-
tion for three quantiles: τ=0.25 (green dashed dotted curve), τ=0.50 (blue dotted curve) and
τ=0.95 (green dashed curve). The red dashed curves are the 95% pointwise confidence bands
of the median regression curve. The black solid curve represents the true coefficient function.

and 3, the box-plots show that the estimation results are better for the higher
than the lower quantiles. This arises because length-biasedness is a special case
of left truncatedness, and hence data become sparse at lower quantiles. The
heteroscedastic structure of the data may also exacerbate the bad effect of left
truncation on the quantile estimates.

5. A real data example

Our real data example is based on the Oscar data set that contains 1668 obser-
vations of actors and actresses between 1929 (the inaugural year of the Academy
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Fig 5. Box-plots of the MSEs of the QR estimators for τ = 0.25, 0.5, 0.95 under Case 1
(Boxes 1, 2 and 3), Case 2 (Boxes 4, 5 and 6) and Case 3 (Boxes 7, 8 and 9).

Award (AA)) and 2001 given in [38] and [40]. Among these observations of data
are 238 individuals who won at least one AA, 528 individuals who received one
or more nominations for AA but never won, and 902 individuals who never re-
ceived any nomination during the said period. The data set contains personal
as well as professional information of the actors and actresses including their
gender, country of birth, years of birth and death, ethnicity, genre, the number
of movies acted, and so on. The variable of interest is T̃i, the age of individual
i at death or in 2001 when the study ended. We are mainly interested in the
difference between the life spans of AA winners and non-AA winners, and how
the first AA nomination affects the subsequent life span of the nominee. Results
of [1] stationary test indicate the subset of data that contains only those who
have been nominated for AA (including the nominees who eventually won the
award) would satisfy the stationary assumption. It means that the subset is a
length-biased and right censored data set. The data are length-biased because
only those individuals who survived to the first nominated year would be in-
cluded in the subset, and right censored because some individuals of the study
were still alive in 2001. This subset comprises 766 observations. Accordingly, we
base our study on this subset. Our stationary test results also concur with the
conclusion of [44] who used the same data set in a related study. The censor-
ing rate is 57.31% as 329 of these 766 individuals died before the end of the
study.

Our analysis is based on the quantile varying-coefficient model

Q(T̃i|Xi) = a0(Ui, τ) + aT (Ui, τ)Xi,

where T̃ is the survival time defined above, a(u, τ) = (a1(u, τ), . . . , a7(u, τ))
T ,

U is the age of the nominee when (s)he was first nominated for AA, X =
(X1, . . . , X8), with X1, X2, X3, X4, X5, and X7 being indictor variables repre-
senting, respectively, gender (1 = male, 0 = female), country of birth (1 = U.S.,
0 = others), ethnicity (1 = Caucasian, 0 = others), name change (1 = yes,
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0 = no), genre (1 = drama, 0 = others), and AA winner (1 = yes, 0 = no), X6

being the number of 4-star movies in which the actor or actress had acted, and
X8 being the number of nomination received for an AA.

We treat the relationship between the censoring variable C andX2, X3, X5, X7

andX8 as independent as the correlation between them is found to be very weak.
On the other hand, the correlation between C and X1, X4 and X6 is stronger,
and we model this relationship by the Cox model

λ(t|X̃i) = λ0(t) exp(α
T
0 X̃i),

where X̃ = (X1, X3, X6). All estimated quantiles are based on the uniform
kernel with bandwidth h = 0.2 ∗ (maxi(Ui)−mini(Ui)).

Figures 6 (a)–(i) present the various estimated functional coefficients for the
three quantiles, τ = 0.25, 0.5 and 0.95, and the 95% pointwise confidence in-
tervals based on the τ = 0.5 quantile estimator. Figure 6(a) shows that the
estimated intercept functions a0(U) are non-negative and increasing as U in-
creases for all three quantiles. This means that those who received their first
nomination at an older age tend to live longer than those nominated at a
younger age. As shown in Figures 6(b) and (c), the estimated functions a1(U)
and a2(U) have similar behavior; these functions mostly lie below 0 and tend
to increase as U increases. This suggests that actresses generally live longer
than actors, and those born in the U.S. tend to have shorter lives than their
non-U.S. born counterparts, but the differences decrease as U increases. The
difference in life span between the two genders is statistically significant only
when the first nomination is received at an age younger than 26. Figure 6(d)
shows that a3(U)’s are nearly always above 0, and are close to 0 only when
U is large, suggesting that Caucasian actors and actresses tend to live longer
but this race advantage decreases as U , the age at which first nomination is
received, increases. From Figure 6(e), the estimated functions a4(U)’s are neg-
ative when U < 50, increase rapidly to about 0 when U is between 50 and 65,
then decrease to under zero again for U > 65. This is an interesting result as
it implies that other things being equal, name change leads to a shorter life.
Figure 6(f) and (h) show that the coefficient functions a5(U) and a7(U) are
both very close to 0, suggesting that there is no significant difference in life
span between AA winners and non-winners, and between those acting for the
drama-genre and non-drama-genre. The results of Figure 6(g) suggest that the
actor or actress’ life span has a positive association with the number of 4-star
movies s(he) acted in, as a6(U)’s are invariably non-negative. However, this
positive association is statistically significant only when U < 21.5. Moreover,
as U increases, all three a6(U) functions quickly decrease towards zero. Fig-
ure 6(i) shows that the three a8(U)’s estimated functions generally do not share
a common pattern, and the coefficient is not significantly different from zero.
This suggests that other things being equal, there is no difference in life span
between AA winners and non-winners. This is consistent with the conclusion
of [40].
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Fig 6. The estimated coefficient functions for the three quantiles: τ = 0.25 (blue dotted curve),
τ = 0.50 (black solid curve), and τ = 0.95 (green dash-dotted curve). The red dashed curve
represents the 95% pointwise confidence intervals based on the τ = 0.5 quantile estimator.

Appendix: Proofs of theorems

This section provides the proofs of the main results in the paper. For notational
convenience, let us define

gi(θ, πw)=
δiX

∗
i

πw(Yi|Wi)
φτ (Yi − θTX∗

i )Kh(Ui − u0), Gn(θ, πw)=
1

n

n
∑

i=1

gi(θ, πw),

where φτ (x) = I(x ≤ 0) − τ . Let α0 belong in a compact nuisance parameter
space Θ̃, Θ ∈ R2p be the compact parameter space of θ, and θ0 belong in the
interior of Θ. Our proofs of results require the following technical conditions:
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(A1) aj(u) is twice continuously differentiable in a neighborhood of u0, j =
1, 2, . . . , p.

(A2) The density function fU (u) of U is positive, and has a continuous second
derivative on its bounded support U .

(A3) The covariate X has bounded support.
(A4) K(.) is a symmetric density function with bounded support, and satisfies

the Lipschitz condition.
(A5) The conditional density function of the random errors fǫi(.|X, U), i =

1, . . . , n are continuous, and bounded away from zero.
(A6) There exist A(u) and V (u) such that An(u) → A(u) and Vn(u) → V (u).

Moreover, A(u) is nonsingular and continuous in Nu0
, and V (u) is contin-

uous in Nu0
.

(A7)
∫ t0
0 λ0(t)dt < ∞.

(A8) Let Nα0
be a neighborhood of α0, and s(0), s(1), and s(2) be scalar, vector

and matrix functions respectively defined on Nα0
× [0, t0] for S(k)(t;α)

(defined in Section 2.3). As n → ∞,

sup
t∈[0,t0],α∈Nα0

‖S(k)(t;α)− s(k)(t;α)‖ P−→ 0,

for k = 0, 1, 2.
(A9) There exists δ > 0 such that as n → ∞,

n− 1
2 sup
1≤i≤n,0≤t≤t0

|Zi|Yi(t)I{αT
0
Wi>−δ|Wi|}

P−→ 0.

(A10) Consider Nα0
and s(k), k = 0, 1, 2, in (A8). Define w̄ = s(1)/s(0), v(t;α) =

{s(2)(t;α)/s(0)(t;α) − w̄⊗2(t;α)}, and Ω = n−1
∑n

i=1

∫ t0
0 v(t;α)dNC

i (t).
For all t ∈ [0, t0],α ∈ Nα0

,

∂

∂α
s(0)(t;α) = s(1)(t;α), and

∂

∂α2
s(0)(t;α) = s(2)(t;α).

(A11) Consider Nα0
and s(k) in (A8). All of s

(k)’s, k = 0, 1, 2, are bounded, s(0) is
bounded away from 0 onNα0

×[0, t0], and the family of s(k)(., t), 0 ≤ t ≤ t0,
is an equicontinuous family at α0.

(A12) The matrix
∫ t0
0

v(t;α)s(0)(t;α0)λ0(t)dt is positive definite.

Some interpretations of these conditions are in order. Conditions (A1) and
(A2) are required for the smoothness of some of the functions used in the proofs.
Conditions (A3) and (A4) are standard conditions for kernel analysis, while con-
ditions (A5)–(A6) are commonly used for quantile regression. Note that (A4)
implies that µk = 0 for any odd integer k and µ0 = 1. Conditions (A7)–(A12)
are adopted from [2] – these conditions ensure the asymptotic normality and
weak convergence of α̂ and Λ̂0(t), the latter being the baseline cumulative haz-
ard function of the Cox model in Section 2.3. Readers may consult [2] or [25]
for detailed discussions of these conditions.

We introduce the following lemmas to facilitate the proofs of results.
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Lemma 1. Suppose that Ui, i = 1, 2, . . . , n are an i.i.d. random variables,
Zi, i = 1, 2, . . . , n are independent random variables. E|ϕ(Zi, U)|s < ∞ and
supz

∫

|ϕ(z, u)|sfi(z, u)du < ∞, where fi denote the joint density of Zi and Ui

for i = 1, . . . , n. Let K be a bounded positive function with a bounded support
satisfying the Lipschitz condition. Given that n2δ−1h −→ ∞ for some δ < 1 −
s−1, we have

sup
u∈U

∣

∣

∣

∣

∣

1

n

n
∑

i=1

[

Kh(Ui − u)ϕ(Zi, Ui)− E(Kh(Ui − u)ϕ(Zi, Ui))

]

∣

∣

∣

∣

∣

= Op(cn1),

where cn1 = ( log h−1

nh )1/2.

Proof. This Lemma is similar to Lemma 7.1 of [20]. Hence the result follows an
argument similar to that of Lemma 7.1 of [20].

Lemma 2. Assume that (A7)–(A12) hold. Then we have

π0w(Y |W)− π̂w(Y |W)

π0w(Y |W)

=
1

n

n
∑

i=1

∫ t0

0

exp(αT
0 W)

π0w(Y |W)s(0)(s;α0)

∫ Y

s

SC(u|W)dudMi(s)

+
BTΩ−1

π0w(Y |W)

1

n

n
∑

i=1

∫ t0

0

{Wi − w̄(s)}dMi(s) + op(n
− 1

2 ).

Proof. By [25] p. 299, we have

α̂−α0 = Ω−1 1

n

n
∑

i=1

∫ t0

0

{Wi −w(t)}dMi(t) + op(n
−1/2),

and

Λ̂0(t)− Λ0(t) =
1

n

n
∑

i=1

∫ t

0

dMi(u)

s(0)(s;α0)
−
∫ t

0

wT (s)dΛ0(s)(α̂ −α0) + op(n
−1/2).

It is straightforward to obtain Lemma 2 by these martingale representations
and the Functional Delta method.

Lemma 3. Assume that (A7)–(A12) hold. Then we have

Gn(θ, π̂w) =
1

n

n
∑

i=1

gi(θ, π0w) + op((nh)
− 1

2 ).

Proof. By noting that

Gn(θ, π̂w)

=
1

n

n
∑

i=1

gi(θ, π0w)

{

1 +
π0w(Yi|Wi)− π̂w(Yi|Wi)

π0w(Yi|Wi)
(1 + op(1))

}
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=
1

n

n
∑

i=1

gi(θ, π0w)

[

1

n

n
∑

j=1

∫ t0

0

exp(αT
0 Wi)

∫ Yi

s SC(u|Wi)du

π0w(Yi|Wi)s(0)(s;α0)
dMj(s)

]

+
1

n

n
∑

i=1

gi(θ, π0w)

[

BT
i Ω

−1

π0w(Yi|Wi)

1

n

n
∑

j=1

∫ t0

0

{Wj − w̄(s)}dMj(s)

]

+
1

n

n
∑

i=1

gi(θ, π0w) + op((nh)
− 1

2 )

=
1

n2

n
∑

i=1

n
∑

j=1

∫ t0

0

gi(θ, π0w) exp(α
T
0 Wi)

π0w(Yi|Wi)s(0)(s;α0)

∫ Yi

s

SC(u|Wi)dudMj(s)

+
1

n2

n
∑

i=1

n
∑

j=1

gi(θ, π0w)B
T
i Ω

−1

π0w(Yi|Wi)

∫ t0

0

{Wj − w̄(s)}dMj(s)

+
1

n

n
∑

i=1

gi(θ, π0w) + +op((nh)
− 1

2 )

=: In1 + In2 + In3 + op((nh)
− 1

2 ),

where

Bi =

∫ Yi

0

Sc(u|Wi) exp(α
T
0 Wi)

∫ u

0

(Wi − w̄(s))dΛ0(s)du.

To prove this lemma, we only need to prove In2 = op((nh)
− 1

2 ) and In3 =

op((nh)
− 1

2 ). To prove the former, let Si = {Yi, Ai, δi,Xi, Ui}, and define

K(Si, Sj) =
1

2

∫ t0

0

gi(θ, π0w) exp(α
T
0 Wi)

π0w(Yi|Wi)s(0)(s;α0)

∫ Yi

s

SC(u|Wi)dudMj(s)

+
1

2

∫ t0

0

gj(θ, π0w) exp(α
T
0 Wj)

π0w(Yj |Wj)s(0)(s;α0)

∫ Yj

s

SC(u|Wj)dudMi(s).

It is readily seen that K(Si, Sj) is a symmetric function. We then have

In2 =
1

n2

n
∑

i=1

K(Si, Si) +
1

n2

n
∑

i=1

∑

j 6=i

K(Si, Sj) =: In21 + In22.

It is straightforward to show that EK(Si, Si) = 0 and V ar(In21) = O(n−3), and

thus In21 = op((nh)
− 1

2 ). Hence, it suffices to consider the U-statistic In22 only.
Let K(Si) = E[K(Si, Sj)|Si], we have

K(Si) =
1

2

∫ t0

0

gi(θ, π0w) exp(α
T
0 Wi)

π0w(Yi|Wi)s(0)(s;α0)

∫ Yi

s

SC(u|Wi)duE[dMj(s)]

+
1

2

∫ t0

0

E

{

gj(θ, π0w) exp(α
T
0 Wj)

π0w(Yj |Wj)s(0)(s;α0)

∫ Yj

s

SC(u|Wj)du

}

dMi(s)
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=
1

2

∫ t0

0

{

fU (u0)

(

1
µ1

)

⊗ 1

n

n
∑

j=1

E

[

Xjφτ (ǫj) exp(α
T
0 Wj)

∫ Yj

s
SC(u|Wj)du

µ(Xi, Ui)π0w(Yj |Wj)s(0)(s;α0)

∣

∣

∣

∣

Uj

]}

dMi(s),

which implies that the U-projection of In22 is

În22 =
2

n

n
∑

i=1

K(Si) =
1

n

n
∑

i=1

∫ t0

0

D1(θ, s)dMi(s),

where

D1(θ, s) = fU (u0)

(

1
µ1

)

⊗ 1

n

n
∑

j=1

E

{

Xjφτ (ǫj) exp(α
T
0 Wj)

∫ Yj

s SC(u|Wj)du

µ(Xj , Uj)π0w(Yj |Wi)s(0)(s;α0)

∣

∣

∣

∣

Uj

}

.

Note that EK(Si, Sj) = EK(Si) = 0. Recognizing that Si independent of Sj

for any i 6= j, by some calculations, we obtain

V ar(K(Si, Sj))

=
1

4
E

{
∫ t0

0

[

gi(θ, π0w) exp(α
T
0 Wi)

π0w(Yi|Wi)s(0)(s;α0)

∫ Yi

s

SC(u|Wi)du

]⊗2

× I(Yj −Aj ≥ s) exp{αT
0 Wj}λ0(s)ds

}

+
1

4
E

{
∫ t0

0

[

gj(θ, π0w) exp(α
T
0 Wj)

π0w(Yj |Wj)s(0)(s;α0)

∫ Yj

s

SC(u|Wj)du

]⊗2

× I(Yi −Ai ≥ s) exp{αT
0 Wi}λ0(s)ds

}

=
1

2

∫ t0

0

E

{[

gi(θ, π0w) exp(α
T
0 Wi)

π0w(Yi|Wi)s(0)(s;α0)

∫ Yi

s

SC(u|Wi)du

]⊗2}

× E

{

I(Yj −Aj ≥ s) exp{αT
0 Wj}

}

λ0(s)ds

=
1

2h

∫ t0

0

fU (u0)

(

ν0 ν1
ν1 ν2

)

i⊗ E

[

XiX
T
i φ

2
τ (ǫi) exp(2α

T
0 Wi)

µ(Xi, Ui)π3
0w(Yi|Wi)[s(0)(s;α0)]2

(
∫ Yi

s

SC(u|Wi)du

)2∣
∣

∣

∣

Ui

]

× E

{

SC(s|Wj) exp{αT
0 Wj}

∫ ∞

s

∫ Yj

0

fT̃ (a+ v|Xj , Uj)

µ(Xj , Uj)
dadv

}

λ0(s)ds.
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It can be shown that

E{In22 − În22}⊗2 =
V ar(K(Si, Sj))

n(n− 1)
+O(n−2).

Using these results, it is readily seen that E{In22 − În22}⊗2 = O((n2h)−1).
In other words,

√
nIn22 and its projection

√
nÎn22 are asymptotically mean

square equivalent. Hence, In22 = Op(n
−1/2) = op((nh)

−1/2). This implies In2 =
Op(n

−1/2) = op((nh)
−1/2). By a similar argument, we can show that In3 =

Op(n
−1/2) = op((nh)

−1/2). This completes the proof of this lemma.

Now, let ri(u0) = XT
i (a(Ui)− b0(u0)− c0(u0)(Ui − u0)), ηi = I(ǫi ≤ 0)− τ ,

θ∗ =
√
nh(θ − θ0), and ∆i = X∗T

i θ∗/
√
nh. Note that minimizing Ln(θ, π̂) is

equivalent to minimizing

L̃(θ, π̂w) = hLn(θ, π̂w)− hLn(θ0, π̂w),

because Ln(θ0, π̂w), where θ0 is the true value of θ, does not depend on θ.

Lemma 4. Assume that (A1)–(A5) hold, and h = hn → 0, nh → ∞ as n → ∞.
We have

L̃n(θ, π̂w) =
√
nhGT

n (θ0, π̂w)θ
∗ +

1

2
θ
∗TA(u0)θ

∗ + op(1),

uniformly for θ ∈ Θ.

Proof. Note that Yi − θTX∗
i = ǫi + ri(u0) −∆i, and Yi − θT

0 X
∗
i = ǫi + ri(u0).

Thus,

L̃n(θ, π̂w) = h[Ln(θ, π̂w)− Ln(θ0, π̂w)]

=

n
∑

i=1

δiK((Ui − u0)/h)

π̂w(Yi|Wi)
[ρτ (ǫi + ri(u0)−∆i)− ρτ (ǫi + ri(u0))].

Using the identity ([31])

ρτ (x− y)− ρτ (x) = y{I(x ≤ 0)− τ} +
∫ y

0

{I(x ≤ t)− I(x ≤ 0)}dt,

we can write

L̃n(θ, π̂w)

=

n
∑

i=1

δiK((Ui − u0)/h)

π̂w(Yi|Wi)

{

∆i[I(ǫi + ri(u0)) ≤ 0)− τ ]

}

+

n
∑

i=1

δiK((Ui − u0)/h)

π̂w(Yi|Wi)

{
∫ ∆i

0

[I(ǫi + ri(u0) ≤ t)− I(ǫi + ri(u0) ≤ 0)]dt

}

=: J0 + J1.

From the definition of Gn(·, ·), we have

J0 =
√
nhGT

n (θ0, π̂w)θ
∗ + op(1).
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Now, write J1 = E(J1) + Rn(θ), where

EJ1

=
n

n

n
∑

i=1

E

{

δiK((Ui − u0)/h)

π̂w(Yi|Wi)

∫ ∆i

0

[I(ǫi + ri(u0) ≤ t)− I(ǫi + ri(u0) ≤ 0)]dt

}

=
n

n

n
∑

i=1

E

{

δiK((Ui − u0)/h)

π0w(Yi|Wi)

∫ ∆i

0

[I(ǫi + ri(u0) ≤ t)− I(ǫi + ri(u0) ≤ 0)]dt

}

+ op(1).

By the joint distribution of (A, V ), note that π0w(t|W) =
∫ t

0
SC(u|W)du, we

have

EJ1 =
n

n

n
∑

i=1

E

{

E

[

δiK((Ui − u0)/h)

π0w(Yi|Wi)

∫ ∆i

0

[I(ǫi + ri(u0) ≤ t)

− I(ǫi + ri(u0) ≤ 0)]dt

∣

∣

∣

∣

Xi, Ui

]}

+ op(1)

=
n

n

n
∑

i=1

E

{[
∫ ∞

0

∫ y

0

fT̃i
(y|x, u)SC(y − a|w)

π0w(y|w)

∫ ∆i

0

[I(ǫi + ri(u0) ≤ t)

− I(ǫi + ri(u0) ≤ 0)]dtdady

]

× K((Ui − u0)/h)

µ(Xi, Ui)

}

+ op(1)

=
n

n

n
∑

i=1

E

{

K((Ui − u0)/h)

µ(Xi, Ui)
E

[
∫ ∆i

0

[I(ǫi + ri(u0) ≤ t)

− I(ǫi + ri(u0) ≤ 0)]dt

∣

∣

∣

∣

Xi, Ui

]}

+ op(1)

=
1

2
θ
∗T 1

n

n
∑

i=1

E

{

Kh(Ui − u0)

µ(Xi, Ui)
fǫi(0|Xi, Ui)X

∗
iX

∗T
i

}

θ
∗ + op(1)

=:
1

2
θ∗TA∗

n(u0)θ
∗ + op(1), (A.1)

and Rn(θ) = J1 −E(J1). By Lemma 1, it can be readily shown that |Rn(θ)| =
Op(

log h−1

nh )1/2 = op(1). Note that µ1 = 0 and for any integer k,

E

[

Kh(
Ui − u0

h
)(
Ui − u0

h
)k
]

= fU (u0)µk+hf ′
U(u0)µk+1+O(h2)= fU (u0)µk+o(1),

where f ′
U is the first derivative of fU . Note that µ0 = 1 and µ1 = 0. Hence we

have

A∗
n(u0)

=
1

n

n
∑

i=1

E

{

E

[

Kh(Ui − u)

µ(Xi, Ui)
fǫi(0|Xi, Ui)X

∗
iX

∗T
i

]∣

∣

∣

∣

Ui

}
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=
1

n

n
∑

i=1

E

{

Kh(Ui − u)

(

1 (Ui−u0

h )

(Ui−u0

h ) (Ui−u0

h )2

)

⊗ E

[

fǫi(0|Xi, Ui)

µ(Xi, Ui)
XiX

T
i

]
∣

∣

∣

∣

Ui

}

= fU (u0)

(

µ0 µ1

µ1 µ2

)

⊗ 1

n

n
∑

i=1

E

[

XiX
T
i

µ(Xi, Ui)
fǫi(0|Xi, Ui)

∣

∣

∣

∣

Ui = u0

]

+ o(1)

= fU (u0)

(

1 0
0 µ2

)

⊗ Γn(u0) + o(1). (A.2)

Combining (A.1) and (A.2), we obtain

J1 =
1

2
θ∗TA(u0)θ

∗ + op(1).

It is readily seen that
√
nhGn(θ0, π̂w) has a bounded second moment and is

thus stochastically bounded. As the convex function L̃n(θ, π̂w) converges in
probability to the convex function (

√
nhGn(θ0, π̂w))

Tθ∗+ 1
2θ

∗TA(u0)θ
∗, by the

Convexity Lemma ([36]), for any compact set K, supθ∈K |Rn(θ)| = op(1). Hence
we have sup

θ∈Θ |Rn(θ)| = op(1). This implies that the quadratic approximation

to the convex function L̃n(θ, π̂w) holds uniformly for θ in the compact set Θ.
This completes the proof of this Lemma.

Lemma 5. Assume that (A1)–(A5) hold, and h = hn → 0, nh → ∞ as n → ∞.

For θ̂
∗
=

√
nh(θ̂ − θ0), we have

θ̂
∗
= −A−1(u0)

√
nhGn(θ0, π̂w) + op(1).

Proof. Note that θ̂
∗
is the minimizer of L̃n(θ, π̂w). By Lemma 4 and similar

argument of Theorem 2 of [19], the result of this Lemma is readily obtained.

Proof of Theorem 3.1. By Lemmas 4 and 5 and the Convexity Lemma ([36]), it

can be readily shown that θ̂
∗
= OP (1), meaning that (θ̂ − θ0) = Op((nh)

−1/2).
Hence

H(β̂(u0)− β0(u0))
P−→ 0.

This completes the proof of this theorem.

Proof of Theorem 3.2. Note that, by Lemma 3 and Lemma 5, we have
√
nh(θ̂ − θ0) = −A−1(u0)

√
nhGn(θ0, π̂w) + op(1)

= −A−1(u0)

√

h

n

n
∑

i=1

gi(θ0, π0w) + op(1).

Therefore, to obtain the desired asymptotic normality result by the Central
Limit Theorem, it suffices to examine only the mean of gi(θ0, π0w) and covari-

ance of
√

h
n

∑n
i=1 gi(θ0, π0w). Now, denote

gi(a(U), π0w) =
δiX

∗
iKh(Ui − u0)

π0w(Yi|Wi)
(I(Yi − a(Ui)

TXi < 0)− τ).
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As Egi(a(U), π0w) = 0 and µ3 = 0, we have

1

n

n
∑

i=1

Egi(θ0, π0w)

=
1

n

n
∑

i=1

E

{

gi(θ0, π0w)− gi(a(U), π0w)

}

=
1

n

n
∑

i=1

E

{

δX∗
iKh(Ui − u0)

π0w(Yi|Wi)

[

I(Yi − θT
0 X

∗
i < 0)− I(Yi − a(Ui)

TXi < 0)

]}

=
h2

2
fU (u0)Γn(u0)

(

µ2a
′′(u0)

µ3a
′′(u0)

)

(1 + o(1))

=
h2

2
fU (u0)Γn(u0)

(

µ2a
′′(u0)
0

)

(1 + o(1)).

By some calculations, we obtain

V ar

[

√

h

n

n
∑

i=1

gi(θ0, π0w)

]

= V + o(1).

Thus, by the Central Limit Theorem, we can show that the local linear esti-
mator is asymptotically normal. This completes the proof of Theorem 3.2.
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