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It is always interesting to see new approaches to old problems, and McMurry
and Politis have provided some very stimulating ideas in their approach to
autocovariance estimation and forecasting. I am particularly interested in the
usefulness of their results for analysing and forecasting real time series.

There are three potential uses of their methods for data analysis that I would
like to explore. First, the standard ACF plot could be replaced by a plot based
on a tapered estimate of the autocovariance matrix. Second, a corresponding
PACF plot could be obtained using the Durbin-Levinson recursions applied to
a tapered estimate of the autocovariance matrix. Third, the proposed FSO or
PSO predictors could be used for forecasting real time series (as in fact the
authors do in Section 5.4). T will reflect on each of these in turn.

1. A better ACF plot

The standard ACF plot is notoriously unreliable for large lags, and so any
improvement in these estimates would be welcomed by time series analysts. In
addition, most software produces ACF plots based on poor graphical choices
making them more difficult than necessary to interpret. Consequently, I will
propose a better ACF plot based on the tapered and banded autocovariance
estimator of McMurry and Politis, and with improved graphical presentation.
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We shall define the estimated ACF using a data-based choice of the banding
parameter, and with eigenvalue thresholding to ensure positive definiteness. For
the time series {X1,..., X, }, let ps = k(|s|/€)¥s/5o where s =0,1,2,...,n—1,

n—|s| 1 if 2] <1
o= XeXeppy,  m@)=<{2-]z| if1<|z|<2
t=1 0 otherwise;

and ¢ is the smallest positive integer such that [yeix /50| < c(logyg n/n)'/? for
k =1,...,K. The corresponding autocorrelation matrix is R with (¢, j)th ele-
ment pj;_ ;. We then use eigenvalue thresholding to define a new autocorrelation

matrix R = VDV’ where R = VAV’ is the eigendecomposition of R and D is
a diagonal matrix with (i,7)th element equal to the maximum of A;; and e/n®.
Finally, we define

R 1 n—s -

Ps = m ; Ry pts

=1

where d is the mean of the diagonals of D. Following the suggestions of McMurry
and Politis, T use c =2, K =5, ¢ =20 and g = 1.

To demonstrate the new estimator, I have applied it to the seasonally dif-
ferenced US monthly housing sales data (Makridakis et al. 1998, Chapter 3)
in Figure 1 from 1973-1995. The plot on the left uses the standard estimator
Ps = ¥s/¥o and was obtained using the default settings for the acf () function
in R (R Core Team 2014), except that I selected 100 lags. The plot on the right
uses the estimator ps defined above.

The blue lines in the left-hand panel shows the 5% critical values at +1.96n~1/2
under the null hypothesis of white noise. These are often misleading as we are
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FIG 1. Left: traditional ACF plot with 5% critical values at £1.96n~1/2. Right: Proposed new
ACF plot based on a tapered estimator of the autocorrelation with bootstrapped confidence
intervals shown as a gray shaded bars. Values significantly different from zero are shown as
large solid points.
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FIG 2. Left: traditional PACF plot with 5% critical values at £1.96n~1/2. Right: Proposed new
PACF plot based on a tapered estimator of the autocorrelation with bootstrapped confidence
intervals shown as a gray shaded bars. Values significantly different from zero are shown as
large solid points.

usually interested in whether the autocorrelations are significantly different from
zero under a null hypothesis that the data are from a stationary process (rather
than a white noise process). In particular, the long section of significant nega-
tive autocorrelations in the left-hand panel is probably not of particular interest,
and I frequently have to tell my confused students to ignore such features. The
horizontal axis is labelled “Lag” but the axis is marked in units equal to one
year rather than in lag units. It is possible to over-ride these defaults, but good
software should have good default settings.

The right-hand panel demonstrates an alternative plot. The shaded bars show
95% bootstrapped confidence intervals based on the linear process bootstrap
(McMurry & Politis 2010) obtained using the same autocovariance estimate that
is plotted. Autocorrelations that are significantly different from zero are high-
lighted using large solid circles, while insignificant autocorrelations are shown
using small open circles. The x-axis shows the number of lags with tick-marks at
multiples of years. Finally, the pointless lag 0 autocorrelation has been omitted.
This version of an ACF plot should be much easier for students to read and
interpret correctly.

2. A better PACF plot

It is possible to obtain a corresponding estimate of the partial autocorrelation
function using the Durbin-Levinson recursions (Morettin 1984) applied to the
autocorrelation estimates {po, p1,- .., Pn—1}-
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Figure 2 shows the traditional and proposed PACF plots for the same hous-
ing sales data as shown in Figure 1. While the same improvements are evident,
the new plot obscures some potentially important information. In the left-hand
panel, there are significant autocorrelations near lags 12, 24 and 36 indicating
some seasonality in the data. Because they decline geometrically, this is sug-
gestive of a seasonal MA(1) process. The tapering and shrinkage applied to the
autocovariances has meant the corresponding autocorrelations near lags 24 and
36 in the right-hand plot are insignficant.

It appears that the parameter choices for ¢, K, € and 8 may need refinement,
especially with seasonal data, to prevent important information being obscured.
In other examples (not shown here), the partial autocorrelations increased in
size for very large lags (and even became greater than one in absolute value).
These problems are due to insufficient shrinkage of the eigenvalues, and provide
further indication that better selection of the values of € and S is required before
these estimators could be routinely used in real data analysis.

3. Forecasting performance

One surprising aspect of the results presented by McMurry and Politis is that
their proposed forecasting methods do relatively well in the simulations. I had
expected that with n observations, it would be impossible to satisfactorily fore-
cast with an AR(p) model where p = O(n), but they have demonstrated oth-
erwise. This is interesting, and deepens our understanding of the nature of the
problem, but it does not help forecasters in practice.

Even for the simulations with low-order stationary AR and MA processes, the
proposed methods never give much improvement, and are usually worse than
the benchmark AR method. In these ideal circumstances, one would expect the
proposed methods to perform at their best.

For the real (M3) data, the reported results in Table 5 show that their Rect-
SSBC-Raw method does slightly worse than the simple benchmark AR approach
(with an RMSE of 0.8572 compared to 0.8356). The benchmark AR approach
uses the ar () function in R with default settings (which employs Yule-Walker
estimates and uses the AIC to select the order).

By way of comparison, I tried using the auto.arima() function from the fore-
cast package (Hyndman & Khandakar 2008) with maximum likelihood estima-
tion and AR order selection using the AICc (Hurvich & Tsai 1997). I restricted
the models to purely autoregressive models in order to ensure comparability
with the results of McMurry and Politis. The resulting RMSE was 0.7821, sub-
stantially and significantly better than any of the results from McMurry and
Politis. The corresponding result for the reversed series was 0.7470. So even if
we restrict the models to pure autoregressions, it is easy to get much better
results than any of those obtained by McMurry and Politis.

It seems that for forecasting purposes, the methods proposed by McMurry
and Politis perform poorly compared to the relatively simple algorithms al-
ready available. While their results appear to be very useful in estimating high-
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dimensional autocovariance matrices and autocorrelation functions, they do not
provide “optimal linear prediction” as claimed.

References

HurvicH, C. & Tsal, C. (1997), ‘Selection of a multistep linear predictor for
short time series’, Statistica Sinica 7, 395-406. MR1466688

HyNDMAN, R. J. & KHANDAKAR, Y. (2008), ‘Automatic time series forecast-
ing: The forecast package for R’, Journal of Statistical Software 26(3), 1-22.

MAKRIDAKIS, S. G., WHEELWRIGHT, S. C. & HyNDMAN, R. J. (1998), Fore-
casting: Methods and Applications, 3rd edition edn, John Wiley and Sons,
New York.

McMurry, T. L. & Pouitis, D. N. (2010), ‘Banded and tapered estimates
for autocovariance matrices and the linear process bootstrap’, J. Time Series
Analysis 31(6), 471-482. MR2732601

MORETTIN, P. A. (1984), ‘The Levinson algorithm and its applications in time
series analysis’, International Statistical Review 52(1), 83-92. MR0967203

R Core TEAM (2014), R: A Language and Environment for Statistical Com-
puting, Vienna, Austria. http://www.r-project.org


http://www.ams.org/mathscinet-getitem?mr=1466688
http://www.ams.org/mathscinet-getitem?mr=2732601
http://www.ams.org/mathscinet-getitem?mr=0967203
http://www.r-project.org

	A better ACF plot
	A better PACF plot
	Forecasting performance
	References

