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Abstract: We consider the likelihood ratio test (LRT) process related to
the test of the absence of QTL (i.e. a gene with quantitative effect on a
trait) on a chromosome. We consider two different recombination models.
We prove that even if the LRT is constructed from the false recombination
model (i.e. the model which does not correspond to the one of the data), the
maximum of the LRT process converges asymptotically to the maximum of
the LRT process constructed from the true recombination model. We also
prove that under some conditions, the arg max of the LRT processes will
be different.
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1. Introduction

We study a backcross population: A × (A × B), where A and B are purely
homozygous lines and we address the problem of detecting a Quantitative Trait
Locus, so-called QTL (a gene influencing a quantitative trait which is able to
be measured) on a given chromosome. The trait is observed on n individuals
(progenies) and we denote by Yj , j = 1, . . . , n, the observations, which we will
assume to be Gaussian, independent and identically distributed (i.i.d.). The
mechanism of genetics, or more precisely of meiosis, implies that among the two
chromosomes of each individual, one is purely inherited from A while the other
(the “recombined” one), consists of parts originated from A and parts originated
from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance on
[0, T ] is called the genetic distance, it is measured in Morgan (see for instance Wu
et al. [24] or Siegmund and Yakir [20]). K genetic markers are located at fixed
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locations t1 = 0 < t2 < · · · < tK = T . These markers will help us to find the
QTL. X(tk) refers to the genetic information at marker k. For one individual,
X(tk) takes the value +1 if, for example, the “recombined chromosome” is
originated from A at location tk and takes the value −1 if it is originated from B.

We use the Haldane [10] modeling for the genetic information at marker
locations. It can be represented as follows: X(0) is a random sign and X(tk) =
X(0)(−1)N(tk) whereN(.) is a standard Poisson process on [0, T ]. A QTL is lying
at an unknown position t⋆ between two genetic markers. U(t⋆) is the genetic
information at the QTL location. In the same way as for the genetic information
at marker locations, U(t⋆) takes value +1 if the “recombined chromosome” is
originated from A at t⋆, and −1 if it is originated from B. Due to Mendel law,
U(t⋆) takes value +1 and −1 with equal probability. We assume an “analysis of
variance model” for the quantitative trait:

Y = µ+ U(t⋆) q + σε (1.1)

where ε is a Gaussian white noise. Indeed, it is well known that there is a finite
number of loci underlying the variation in quantitative traits (e.g. in aquaculture
and livestock, see Hayes [11]). In this study, we will focus only on one locus
(so-called QTL) and on only one quantitative trait. We will study the concept
of QTL mapping: we will look for associations between allele variation at the
QTL and variation in the quantitative trait of interest.

The originality of this paper is that, inside the marker interval which con-
tains the QTL, we consider two different recombination models. Indeed, it is
always difficult for geneticists to know which model to use when they analyze
real data. Obviously, for a given data set, geneticists usually try to use the
most appropriate recombination model. However, it can happen that we do not
choose the correct recombination model. As a consequence, the main question
is: how does it affect QTL detection? This way, in this paper, the focus is on
the robustness of statistical tests in QTL detection. For the following, we will
call “true recombination” model, the recombination model of the data whereas
we will call “false recombination” model, the recombination model which is not
the one of the data.

In particular, we will consider that our true recombination model, inside the
marker interval which contains the QTL, is the Haldane model (i.e. the same
model as the one at marker locations). Due to the independence of increments of
the Poisson process, this model allows double recombinations between the QTL
and its flanking markers. For instance, if the QTL is lying between the first
two markers (i.e. t⋆ ∈ ]t1, t2[, we can have the scenario X(t1) = 1, U(t⋆) = −1
and X(t2) = 1, which means that there has been a recombination between
the first marker and the QTL, and also a recombination between the QTL
and the second marker. Obviously, in the same way, we can have the scenario
X(t1) = −1, U(t⋆) = 1 and X(t2) = −1.

The false recombination model that we use in this paper (and which is cho-
sen by geneticists) is the one proposed by Rebäı et al. [19] for which double
recombination between the QTL and its flanking markers is not allowed (see
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in particular their Section 2). With this model, the focus is on the interference
phenomenon: a recombination event inhibits the formation of another recombi-
nation event nearby. This phenomenon was noticed by geneticists working on
the Drosophila (Sturtevant [22], Muller [16]). In McPeek and Speed [15], the
authors study several interference models and also mention the importance of
modeling interference. I refer to the introduction of my recent study Rabier [17]
for more details on the relevance of the interference model. Note that in order
to model the interference phenomenon, we could have focused on other models
present in the literature (e.g. Karlin and Liberman [12], Stam [21], King and
Mortimer [13], Foss et al. [7]). However, we will see that the model considered
in Rebäı et al. [19] leads to interesting mathematical results.

Let Ũ(t⋆) be the analogue of U(t⋆) of formula (1.1) but for the interference
model. Due to Mendel law, Ũ(t⋆) still takes value +1 and −1 with equal prob-
ability. The “analysis of variance model” for the quantitative trait is now:

Y = µ+ Ũ(t⋆) q + σε . (1.2)

So, under the interference model, if the QTL is lying between the first two
markers (i.e. t⋆ ∈ ]t1, t2[), we can not have the scenario X(t1) = 1, Ũ(t⋆) = −1
and X(t2) = 1, which would have supposed that there had been a recombination
between the first marker and the QTL, and also a recombination between the
second marker and the QTL. In particular, the model considers that if we have
a recombination between the QTL and one of its flanking marker, we could not
have a recombination between the QTL and the other flanking marker. In other
words, if X(t1) = 1 and Ũ(t⋆) = −1, then we have automatically X(t2) = −1.
In the same way, if X(t2) = 1 and Ũ(t⋆) = −1, then we have automatically
X(t1) = −1. We will explain in details this model in Section 2 and present the
law of Ũ(t⋆), given its flanking markers. Note that in Rebäı et al. [19], the focus
is only on one marker interval. In Rebäı et al. [18], this model was extended to
a whole chromosome.

As said previously, only the quantitative trait and the genetic information at
marker locations are available. As a consequence, one observation will be

(Y, X(t1), . . . , X(tK)) .

We observe n observations (Yj , Xj(t1), . . . , Xj(tK)) i.i.d. Under the model with-
out interference (cf. formula 1.1), and conditionally onX(t1), . . . , X(tK), Y sobeys
to a mixture model with known weights:

p(t⋆)f(µ+q,σ)(.) + {1− p(t⋆)} f(µ−q,σ)(.), (1.3)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the
function p(t⋆) is the probability P {U(t⋆) = 1} conditionally on the flanking
markers (see Azäıs et al. [2] and in particular their formula 3). Note that the
mixture model has two components since we focus on the backcross design.

Furthermore, under the interference model (cf. formula 1.2) and conditionally
on X(t1), . . . , X(tK), Y obeys to a mixture model with known weights:

p̃(t⋆)f(µ+q,σ)(.) + {1− p̃(t⋆)} f(µ−q,σ)(.), (1.4)
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where the function p̃(t⋆) is the probability P{Ũ(t⋆) = 1} conditionally to the
flanking markers (see Section 2).

A challenge in QTL detection is that the true location t⋆ is not known.
So, we test the presence of a QTL at each position t ∈ [0, T ]. For the model
without interference, Λn(t) and Sn(t) are respectively the likelihood ratio test
(LRT) statistic and the score test statistic of the null hypothesis “q = 0” in
formula (1.3). In the same way, for the interference model, Λ̃n(t) and S̃n(t) are
respectively the likelihood ratio test (LRT) statistic and the score test statistic
of the null hypothesis “q = 0” in formula (1.4). When t⋆ is unknown, considering
the maximum of Λn(.) (resp. Λ̃n(.)) still gives the LRT of “q = 0” for the model
without (resp. with) interference. Note that arg supΛn(.) and arg sup Λ̃n(.) are
natural estimators of the QTL location.

If t⋆ = t were known, we would perform only one test at location t = t⋆. As
a result, the model would be a regular model. In this case, it is well known that

Λn(t) = S2
n(t) + oP (1), Λ̃n(t) = S̃2

n(t) + oP (1)

and that Sn(t) and S̃n(t) are asymptotically Gaussian. Recall that oP (1) denotes
a sequence of random vectors which tend to 0 in probability.

However, since t⋆ is unknown, the focus is on the test statistics supΛn(.) and
sup Λ̃n(.). Besides, since under the null hypothesis, the QTL location is unde-
fined, the Fisher information relative to t is zero. As a consequence, the model
is not regular and standard techniques can not be used in order to compute the
asymptotic distribution of the LRT.

Under the model without interference, the distributions of the LRT, supΛn(.),
have been given using some approximations by Cierco [6], Azäıs and Cierco [1],
Azäıs and Wschebor [4], Chang et al. [5]. Recently, Azäıs et al. [2] have given
the exact distribution under the null hypothesis and contiguous alternatives:
the distribution of the LRT statistic is asymptotically that of the maximum of
the square of a “non linear normalized interpolated Gaussian process”. Under
the interference model, I have proved in Rabier [17] that the distribution of the
LRT statistic, sup Λ̃n(.), is asymptotically that of the maximum of the square of
a “linear normalized interpolated process”. It is a generalization of the results
obtained by Rebäı et al. [19], Rebäı et al. [18], where the authors focused only
on the null hypothesis and characterized the process only by its covariance
function.

In this paper, we propose to study the distribution of sup Λ̃n(.) under the
model without interference. In other words, we focus on a test statistic con-
structed from the false recombination model (i.e. with interference), and we
study its distribution under the true recombination model (i.e. without interfer-
ence). The goal is to compare its distribution with the distribution of supΛn(.)
(given in Azäıs et al. [2]), constructed from the true recombination model.

The main result of the paper (Theorems 2.1 and 3.1) is that, under the true
model (i.e. without interference), the distribution of the LRT statistic, sup Λ̃n(.),
is asymptotically that of the maximum of the square of a “linear normalized
interpolated process”. The second important result (Theorems 2.2 and 3.2) is
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that, under the null hypothesis and contiguous alternatives, the maximum of
the square of this “linear normalized interpolated process” is the same as those
of the square of the “non linear normalized interpolated process” obtained by
Azäıs et al. [2]. That is to say, under the model without interference, we have
the following relationship:

sup Λ̃n(.) = supΛn(.) + oP (1). (1.5)

As a consequence, there is “an asymptotic robustness of the likelihood ratio
test”: even if we choose the false model in order to construct our LRT statistic,
we will get asymptotically the optimal power for the detection of the QTL. On
the other hand, Lemma 2.1 gives asymptotic results about arg sup Λ̃n(.) and
arg supΛn(.). According to Lemma 2.1, under some conditions, if we choose the
false model, the location of the QTL will be estimated differently.

In Section 4, the focus is on the reverse configuration: now the true recom-
bination model is the model with interference and the false model is the one
without interference. We prove that formula (1.5) is still true under the in-
terference model. As a result, we can really use the terminology “asymptotic
robustness of the likelihood ratio test” in QTL detection. This is a result which
could be of interest for geneticists.

At the end of the paper, we will illustrate the robustness on simulated data,
using different genetic maps. We refer to the book of Van der Vaart [23] for
elements of asymptotic statistics used in proofs.

2. Main results: Two genetic markers

To begin with, we suppose that there are only two markers (K = 2) located at 0
and T : 0 = t1 < t2 = T . Furthermore, a QTL is lying between these two markers
at t⋆ ∈ ]t1, t2[. Note that in order to make the reading easier, we consider that
the QTL is not located on markers. However, the result can be extended by
continuity at marker locations. Let’s suppose that we are under the interference
model (cf. Section 1).

Let r(t1, t2) be the probability that there is a recombination between the two
markers. Calculations on the Poisson distribution show that:

r(t1, t2) = P{X(t1)X(t2) = −1} = P{|N(t1)−N(t2)| odd} =
1

2
(1− e−2|t1−t2|).

We will call rt1(t
⋆) (resp. rt2(t

⋆)) the probability of recombination between the
first (resp. second) marker and the QTL. So,

rt1(t
⋆) = P

{
X(t1)Ũ(t⋆) = −1

}
, rt2(t

⋆) = P

{
X(t2)Ũ(t⋆) = −1

}
.

As explained in Section 1, only one recombination is allowed between the QTL
and the two markers. We have:

{X(t1)X(t2) = −1} ⇔
{
X(t1)Ũ(t⋆) = −1

}
∪
{
X(t2)Ũ(t⋆) = −1

}
.
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Indeed, X(t1)Ũ(t⋆) = −1 means that there has been a recombination between
the first marker and the QTL, so the second marker is not allowed to recombine
with the QTL. As a consequence, X(t2) = Ũ(t⋆) and we have X(t1)X(t2) = −1.
Same remark for X(t2)Ũ(t⋆) = −1 but this time, it is the first marker which is
not allowed to recombine with the QTL.

Note that since {X(t1)Ũ(t⋆) = −1} ∩ {X(t2)Ũ(t⋆) = −1} = ⊘, we have

r(t1, t2) = rt1(t
⋆) + rt2(t

⋆). (2.1)

In the same way as in Rebäı et al. [19], we consider:

rt1(t
⋆) =

t⋆ − t1
t2 − t1

r(t1, t2), rt2 (t
⋆) =

t2 − t⋆

t2 − t1
r(t1, t2).

This way, the probability of recombination between the marker and the QTL is
proportional to the probability of recombination between the two markers, and
also proportional to the distance between the QTL and the marker. Note that
formula (2.1) stands with these expressions of rt1(t

⋆) and rt2(t
⋆).

Let’s define now

p̃(t⋆) = P

{
Ũ(t⋆) = 1

∣∣X(t1), X(t2)
}
.

Obviously, since Ũ(t⋆) takes value +1 or −1, we have

1− p̃(t⋆) = P

{
Ũ(t⋆) = −1

∣∣X(t1), X(t2)
}
.

Since only one recombination is allowed between the QTL and its flanking mark-
ers, we have

P

{
Ũ(t⋆) = 1

∣∣X(t1) = 1, X(t2) = 1
}
= 1,

P

{
Ũ(t⋆) = 1

∣∣X(t1) = −1, X(t2) = −1
}
= 0.

Besides, according to the Bayes rules

P

{
Ũ(t⋆) = 1

∣∣X(t1) = 1, X(t2) = −1
}

=
P

{
X(t1) = 1

∣∣Ũ(t⋆) = 1, X(t2) = −1
}
P

{
Ũ(t⋆) = 1, X(t2) = −1

}

P {X(t1) = 1, X(t2) = −1}

=
rt2(t

⋆)/2

r(t1, t2)/2
=

rt2(t
⋆)

r(t1, t2)
=

t2 − t⋆

t2 − t1
.

In the same way, we have

P

{
Ũ(t⋆) = 1

∣∣X(t1) = −1, X(t2) = 1
}
=

rt1(t
⋆)

r(t1, t2)
=

t⋆ − t1
t2 − t1

.
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As a consequence, we get

p̃(t⋆) = 1X(t1)=11X(t2)=1 +
t2 − t⋆

t2 − t1
1X(t1)=11X(t2)=−1 +

t⋆ − t1
t2 − t1

1X(t1)=−11X(t2)=1.

(2.2)

Note that, using properties of conditional expectation, it is easy to check that
we have P{Ũ(t⋆) = 1} = 1/2, so Ũ(t⋆) takes values +1 and −1 with equal
probability (as explained in Section 1).

As explained previously, since the location t⋆ of the QTL is unknown, we will
have to perform tests at each position t between the two genetic markers. We
will consider only positions t distinct of the marker locations and the result can
be extended by continuity on markers. Let θ = (q, µ, σ) be the parameter of the
model at a fixed t. The likelihood of the triplet (Y,X(t1), X(t2)) with respect to
the measure λ⊗N⊗N , λ being the Lebesgue measure, N the counting measure
on N, is ∀t ∈ ]t1, t2[:

L̃t(θ) =
[
p̃(t) f(µ+q,σ)(y) + {1− p̃(t)} f(µ−q,σ)(y)

]
g(t) (2.3)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}

+
1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}

can be removed because it does not depend on the parameters. Note that, for
t = t⋆ we find our formula (1.4) of the introduction where p̃(t⋆) is described in
formula (2.2). As explained in Section 1, for the interference model, Λ̃n(t) and
S̃n(t) are respectively the likelihood ratio test (LRT) statistic and the score test
statistic at t of the null hypothesis “q = 0” in formula (2.3).

Our main result is the following:

Theorem 2.1. Suppose that the parameters (q, µ, σ2) vary in a compact and
that σ2 is bounded away from zero. Let H0 be the null hypothesis q = 0 and
define the following local alternative

Hat⋆ : “the QTL is located at the position t⋆ with effect q = a/
√
n where a 6= 0”.

With the previous defined notations and under the model without interference

S̃n(.) ⇒ Z̃(.), Λ̃n(.)
F.d.−→ Z̃2(.), sup Λ̃n(.)

L−→ sup Z̃2(.)

as n tends to infinity, under H0 and Hat⋆ where:

• ⇒ denotes the weak convergence,
F.d.→ the convergence of finite-dimensional

distributions and
L−→ the convergence in distribution
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• Z̃(.) is the Gaussian process with unit variance given by:

Z̃(t) =
α̃(t)Z̃(t1) + β̃(t)Z̃(t2)√

V

{
α̃(t)Z̃(t1) + β̃(t)Z̃(t2)

}

where

Cov
{
Z̃(t1), Z̃(t2)

}
= ρ(t1, t2) = exp(−2|t1 − t2|),

α̃(t) =
t2 − t

t2 − t1
, β̃(t) =

t− t1
t2 − t1

and with expectation:

– under H0, m̃(t) = 0

– under Hat⋆

m̃t⋆(t) =
α̃(t) m̃t⋆(t1) + β̃(t) m̃t⋆(t2)√
V

{
α̃(t)Z̃(t1) + β̃(t)Z̃(t2)

}

where
m̃t⋆(t1) = aρ(t1, t

⋆)/σ, m̃t⋆(t2) = aρ(t⋆, t2)/σ.

The proof is given in Appendix A. Before interpreting this theorem, recall that
the LRT statistic, sup Λ̃n(.) is constructed from the false recombination model
(i.e. with interference). Theorem 2.1 gives the asymptotic distribution of the
LRT statistic under the null hypothesis H0 and under the local alternative Hat⋆

of one QTL located at t⋆ without interference (cf. formula 1.1). So, according
to Theorem 2.1, the LRT statistic, sup Λ̃n(.), converges to the maximum of the
square of a “linear normalized interpolated process” called Z̃(.).

In Theorem 2.1 of Azäıs et al. [2], the asymptotic distribution of the LRT
statistic, supΛn(.), constructed from the true recombination model (i.e. without
interference), is presented. It converges in distribution to the maximum of the
square of a “non linear normalized interpolated process” called Z(.):

Z(t) =
α(t)Z(t1) + β(t)Z(t2)√
V {α(t)Z(t1) + β(t)Z(t2)}

. (2.4)

We refer to Theorem 2.1 of Azäıs et al. [2] for the expressions of α(.) and β(.).
Note that α(t1) = 1, β(t1) = 0, α(t2) = 0, β(t2) = 1. Besides, since the models
are exactly the same for the the genetic information at marker locations, we
have Z̃(t1) = Z(t1) and Z̃(t2) = Z(t2).

Let’s define the following quantity:

h(t1, t2) =
Z̃2(t1) + Z̃2(t2)− 2ρ(t1, t2)Z̃(t1)Z̃(t2)

1− ρ2(t1, t2)
1 Z̃(t2)

Z̃(t1)
∈]ρ(t1,t2),

1
ρ(t1,t2)

[
.

Another important result of this paper is the following:
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Theorem 2.2. With the previous defined notations, under H0 and Hat⋆ , we
have

max
t∈[t1,t2]

Z̃2(t) = max
t∈[t1,t2]

Z2(t) = max
{
Z̃2(t1), h(t1, t2), Z̃

2(t2)
}
.

In other words, under the null hypothesis and under the alternative, the max-
imum of the square of the “non linear normalized interpolated process”, Z(.), is
the same as the maximum of the square of the “linear normalized interpolated
process”, Z̃(.). As a consequence, sup Λ̃n(.) = supΛn(.) + oP (1), where oP (1)
denotes a sequence of random vectors which tend to 0 in probability. In other
words, there is “an asymptotic robustness of the Likelihood Ratio Test”: even
if we choose the false model in order to construct our LRT statistic, we will get
asymptotically the optimal power for the detection of the QTL. This result pro-
vides new tools to be used in the data analysis for geneticists. Let us introduce
now the following lemma which focuses on the argmax of our processes:

Lemma 2.1. With the previous defined notations, under H0 and Hat⋆ , we get

• argmax Z̃2(.) = argmaxZ2(.) = t1
when Z̃(t2)/Z̃(t1) ∈ ]−∞, 0] ∩ |Z̃(t1)| > |Z̃(t2)|

• argmax Z̃2(.) = argmaxZ2(.) = t2
when Z̃(t2)/Z̃(t1) ∈ ]−∞, 0[ ∩ |Z̃(t2)| > |Z̃(t1)|

• argmax Z̃2(.) = argmaxZ2(.) = t2 when Z̃(t2)/Z̃(t1) ∈ [1/ρ(t1, t2),+∞[
• argmax Z̃2(.) = argmaxZ2(.) = t1 when Z̃(t2)/Z̃(t1) ∈ ]0, ρ(t1, t2)]
• argmax Z̃2(.) = ξ̃ and argmaxZ2(.) = ξ when Z̃(t2)/Z̃(t1) ∈ ]ρ(t1, t2),
1/ρ(t1, t2)[ with

ξ̃ =
(t2 − t1)

{
ρ(t1, t2)Z̃(t1)− Z̃(t2)

}

{ρ(t1, t2)− 1}
{
Z̃(t1) + Z̃(t2)

} + t1,
(t2 − t1)β(ξ)

α(ξ) + β(ξ)
+ t1 = ξ̃.

According to Lemma 2.1, when the ratio Z̃(t2)/Z̃(t1) belongs to the interval
]1/ρ(t1, t2),+∞[, the arg max of Z2(.) and Z̃2(.) are the same: t2. That is to say,
in both cases, the estimated QTL location is on the second marker. Note that
the arg max of both processes is also t2, when Z̃(t2) and Z̃(t1) have different
signs provided that |Z̃(t2)| > |Z̃(t1)|. In the same way, under a few conditions
given in Lemma 2.1, the estimated QTL location is on the first marker. However,
when the ratio Z̃(t2)/Z̃(t1) belongs to the interval ]ρ(t1, t2), 1/ρ(t1, t2)[, the arg
max ξ of Z2(.) and ξ̃ of Z̃2(.) are not the same anymore. In this case, the QTL
location is not estimated at the same location.

To sum up Theorem 2.2 and Lemma 2.1, if we choose the false recombination
model in order to construct our LRT statistic, we will keep asymptotically the
optimal power, but the location of the QTL can be estimated differently than if
we used the true recombination model. The proofs of Theorem 2.2 and Lemma
2.1 are given in Appendix B.

Last, we would like to highlight the fact that the asymptotic robustness of
the LRT is due to multiple testing. Indeed, as said in introduction, if the QTL
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location were known, we would perform only one statistical test at t = t⋆. Ac-
cording to the proof of Theorem 2.1, under the model without interference,
we have the relationship Λ̃n(t

⋆) 6= Λn(t
⋆) + oP (1) as soon as t⋆ is not a marker

location. However, we have proved that sup Λ̃n(.) = supΛn(.)+oP (1). As a con-
sequence, there is an asymptotic robustness of the LRT since the QTL location
is unknown.

3. Several markers: The “interval mapping” of Lander and Botstein
[14]

Assume now that there are K markers 0 = t1 < t2 < · · · < tK = T . A QTL is
lying at a position t⋆. In the same way as in Section 2, we consider that the QTL
is lying between its two flanking markers without interference (cf. formula 1.1).
In order to find the QTL, we will perform tests at every positions t on the chro-
mosome, using a model with interference (since we consider the false recombi-
nation model). We consider values t or t⋆ of the parameters that are distinct
of the markers positions, and the result will be extended by continuity at the
markers positions. For t ∈ [t1, tK ]\TK where TK = {t1, . . . , tK}, we define tℓ

and tr as:

tℓ = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (tℓ, tr).
As explained in Section 1, since we consider Haldane [10] modeling for the ge-

netic information at marker locations, we just need to keep the flanking markers
in order to infer the value of Ũ(t⋆). It is a direct consequence of the indepen-
dance of the increments of Poisson process. In others words, the information
brought by the other markers is useless. So, we have

P

{
Ũ(t⋆) = 1

∣∣X(t1), . . . , X(tK)
}
= P

{
Ũ(t⋆) = 1

∣∣X(t⋆ℓ), X(t⋆r)
}
.

As a consequence, our problem becomes the same as the one with two genetic
markers (see Section 2). In order to perform our tests at every positions t, we
simply have to consider all the different marker intervals.

Theorem 3.1. We have the same result as in Theorem 2.1, provided that we
make some adjustments and that we redefine Z̃(.) in the following way:

• in the definition of α̃(t) and β̃(t), t1 becomes tℓ and t2 becomes tr

• under the null hypothesis, the process Z̃(.) considered at marker positions
is the “squeleton” of an Ornstein-Uhlenbeck process: the stationary Gaus-
sian process with covariance ρ(tk, tk′) = exp(−2|tk − tk′ |)

• at the other positions, Z̃(.) is obtained from Z̃(tℓ) and Z̃(tr) by interpola-
tion and normalization using the functions α̃(t) and β̃(t)

• at the marker positions, the expectation is such as m̃t⋆(tk) = aρ(tk, t
⋆)/σ

• at other positions, the expectation is obtained from m̃t⋆(t
ℓ) and m̃t⋆(t

r) by
interpolation and normalization using the functions α̃(t) and β̃(t).
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Fig 1. Comparison between the square of the linear interpolated process, Z̃2(.), and the square
of the non linear interpolated process, Z2(.). One path of each process is represented under
H0 (T = 7.20M, 10 markers equally spaced every 80cM).

First, under the null hypothesis, the proof of the theorem is the same as the
proof of Theorem 2.1 since we can limit our attention to the interval (tℓ, tr) when
considering a unique instant t. On the other hand, under the alternative, the
proof is exactly the same as the proof of Theorem 2.1 when t and t⋆ belong to
the same marker interval (tℓ, tr). Besides, when t and t⋆ belong to two different
marker intervals, since we consider that the true model is the one without in-
terference, we have the relationship U(t⋆) = X(t⋆). As a result, the expectation
can be obtained in the same way as in the proof of Theorem 2.1.

Let us generalize our Theorem 2.2 to the case of several markers:

Theorem 3.2. With the previous defined notations, under H0 and Hat⋆ ,

max
t∈[0,T ]

Z̃2(t) = max
t∈[0,T ]

Z2(t)

where Z(.) is the “non linear normalized interpolated process” of Theorem 3.1
of Azäıs et al. [2].

To prove this theorem, just consider that the maximum on [0, T ] is the max-
imum of the maximums obtained for the different marker intervals. In the same
way, Lemma 2.1 can be generalized to the case of several markers. In Figure 1,
is represented one path for both processes, Z̃2(.) and Z2(.), under the null hy-
pothesis. The chromosome length is T = 7.20 Morgan (M) and 10 markers are
equally spaced every 80 centiMorgan (cM). We can notice that both processes
have the same maximum. However, their argmax is different. Note that we would
have made the same comments under the alternative hypothesis.

To sum up, we have the same conclusion as in the part of this paper dealing
with only two genetic markers: if we choose the false recombination model in
order to construct our LRT statistic, we will keep asymptotically the optimal
power, but the location of the QTL can be estimated differently than if we used
the true recombination model.
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4. The reverse configuration

In order to make the analysis developed in this paper more general, we propose
in this section to focus on the reverse configuration: now the true recombi-
nation model is the model with interference and the false model is the one
without interference. Note that as before, Haldane modeling is used for the ge-
netic information at marker locations. The main question is: do we still have an
“asymptotic robustness of the LRT”?

To begin with, let us consider only two genetic markers located at t1 = 0
and t2 = T . Recall that supΛn(.) (resp. sup Λ̃n(.)) denotes the LRT statistic for
the model without interference (resp. with interference), that is to say based on
formula (1.3) (resp. based on formula 1.4). In Rabier [17], under the interference
model, it was proved that the distribution of sup Λ̃n(.) is asymptotically that of
the maximum of the square of a “linear normalized interpolated process”. This
“linear normalized interpolated process” is the same process as our process
Z̃(.) except that the mean functions are totally different under the alternative.
In both cases, the mean functions are linear interpolated functions. However,
since the expectation at marker locations are different, the mean functions are
totally different. More precisely, according to our Theorem 2.1, the expectation
at t1 is aρ(t1, t

⋆)/σ, whereas in Rabier [17], the expectation at t1 is a[α̃(t⋆) +
β̃(t⋆)ρ(t1, t2)]/σ. In the same way, here, the expectation at t2 is aρ(t⋆, t2)/σ,
whereas in Rabier [17], the expectation at t2 is a[α̃(t⋆)ρ(t1, t2) + β̃(t⋆)]/σ. It
is due to the fact that the model for the quantitative trait Y is not the same
if the true model is without interference (cf. formula 1.1) or with interference
(cf. formula 1.2). Note also that in both cases, we have a “linear normalized
interpolated process” since we consider the weights p̃(t) of the mixture model
of formula (1.4), which verify (cf. Lemma A.1 of Appendix A):

2p̃(t)− 1 = α̃(t)X(t1) + β̃(t)X(t2).

Let us now focus on the statistic of interest: supΛn(.). In Azäıs et al. [2], under
a model without interference, the authors have proved that the distribution of
supΛn(.) is that of the maximum of the square of a “non linear normalized
interpolated process”. If we consider an interference model, the distribution
of supΛn(.) will still be that of the maximum of the square of a “non linear
normalized interpolated process” since the weights p(t) of the mixture model of
formula (1.3) verify (cf. Lemma 2.3 of Azäıs et al. [2]):

2p(t)− 1 = α(t)X(t1) + β(t)X(t2).

In the same way as before, the mean function will still be a non linear inter-
polated function but the values at marker locations will be obtained from the
true model, i.e. with interference (cf. formula 1.2). In other words, the expec-
tation at t1 will be a[α̃(t⋆) + β̃(t⋆)ρ(t1, t2)]/σ and the expectation at t2 will be
a[α̃(t⋆)ρ(t1, t2) + β̃(t⋆)]/σ.

Finally, under the interference model, supΛn(.) will converge to the square of
a “non linear normalized interpolated process” whereas sup Λ̃n(.) to the square
of a “linear normalized interpolated process”. The mean functions of these two
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Gaussian processes are exactly the same at marker locations. Using the same
kind of proof as the one of Theorem 2.2, the maximum of the square of the two
processes will be the same, and we have the relationship supΛn(.) = sup Λ̃n(.)+
oP (1) under the interference model. Note that we will still have the analogue of
Lemma 2.1.

The result can easily be generalized to several markers. The expectation at
marker locations is given in Theorem 3.1 of Rabier [17].

5. Applications

In this section, we propose to illustrate the theoretical results obtained in this
paper. For all the following applications, we will consider statistical tests at the
5% level. To begin with, let us recall the threshold (i.e. critical value) calculation
(Azäıs et al. [2]). Note that in Rabier [17], it was shown that the threshold is
the same for a model with or without interference.

Let us rewrite Theorem 3.2 in the same way as Theorem 2.2: we have the
relationship

max
t∈[0,T ]

Z̃2(t) = max
t∈[0,T ]

Z2(t)

= max
{
Z̃2(t1), h(t1, t2), Z̃

2(t2), . . . , Z̃
2(tK−1), h(tK−1, tK), Z̃2(tK)

}

where h(tk, tk+1) denotes the quantity

Z̃2(tk) + Z̃2(tk+1)− 2ρ(tk, tk+1)Z̃(tk)Z̃(tk+1)

1− ρ2(tk, tk+1)
1 Z̃(tk+1)

Z̃(tk)
∈]ρ(tk,tk+1),

1
ρ(tk,tk+1)

[
.

As a result, in order to get the threshold, we just have to compute the distribu-
tion of

max
{
Z̃2(t1), h(t1, t2), Z̃

2(t2), . . . , Z̃
2(tK−1), h(tK−1, tK), Z̃2(tK)

}
.

It can be done using the Monte-Carlo Quasi Monte-Carlo method proposed by
Azäıs et al. [2] and based on Genz [9]. (cf. Section 3.1.1. of Azäıs et al. [2] for
more details).

In Tables 1 and 2, we propose to illustrate the robustness of the LRT in prac-
tice, using different genetic maps (same maps as in Rabier [17], see our Table 3).
The focus is on the alternative hypothesis: we consider a = 4 (i.e. the constant
linked to the QTL effect) and different QTL locations t⋆. In particular, Tables
1 and 2 compare the Theoretical Power (TP) based on the true recombination
model, and the Empirical Power (EP) based on the false recombination model.
Note that the Theoretical Power relies on the asymptotic processes.

To begin with, in Table 1, the true recombination model considered is the
one without interference (same framework as in Sections 2 and 3). As a result,
the Theoretical Power was obtained by generating paths of the square of the
non linear interpolated process Z(.) of Azäıs et al. [2]. On the other hand, the
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Table 1

Comparison between the Theoretical Power (TP) under a model without interference and
the Empirical Power (EP) using the wrong interpolation (i.e. linear interpolation). Four
different genetic maps are considered (see Table 3) and t⋆ denotes the QTL location in

Morgan (a = 4, σ = 1, 100000 paths for TP, 10000 samples of size n for EP)

Genetic Map t⋆ TP EP (n = 1000) EP (n = 200) EP (n = 100) EP (n = 50)

map 1

0.10 73.35% 73.47% 70.95% 66.41% 60.14%
0.80 58.13% 57.69% 54.02% 50.65% 42.10%
1.30 74.83% 74.72% 71.55% 67.89% 61.83%
3.70 53.00% 52.63% 48.51% 45.26% 37.06%

map 2

0.20 47.02% 48.03% 45.72% 41.01% 33.80%
1.90 71.93% 72.88% 69.61% 65.86% 58.86%
3.35 38.92% 39.62% 36.06% 33.23% 27.57%
5.75 78.12% 78.95% 76.02% 73.46% 66.37%

map 3

0.25 61.77% 61.03% 57.83% 54.12% 47.53%
0.60 75.34% 75.11% 71.81% 69.65% 63.33%
2.80 64.14% 63.54% 60.26% 57.45% 50.54%
3.10 75.31% 74.96% 72.67% 69.86% 62.76%

map 4
0.18 91.61% 92.51% 92.59% 90.46% 88.41%
0.44 91.34% 91.42% 90.41% 89.53% 86.73%
0.70 89.18% 88.59% 87.70% 85.98% 83.30%

Empirical Power was computed by generating samples of different sizes (n = 50,
100, 200, 1000) and using the linear interpolation between markers. According to
the table, we can notice that for n = 200 we are already close to the asymptotic
results whatever the genetic map and the QTL location. For n = 1000, there is a
very good agreement between the Empirical Power and the Theoretical Power.

In Table 2, we consider the reverse configuration (cf. Section 4): the true
recombination model is the interference model and the false model is the one
without interference. This time, the Empirical Power is obtained using the non

Table 2

Comparison between the Theoretical Power (TP) under the interference model and the
Empirical Power (EP) using the wrong interpolation (i.e. non linear interpolation). Four
different genetic maps are considered (see Table 3) and t⋆ denotes the QTL location in

Morgan (a = 4, σ = 1, 100000 paths for TP, 10000 samples of size n for EP)

Genetic Map t⋆ TP EP (n = 1000) EP (n = 200) EP (n = 100) EP (n = 50)

map 1

0.10 79.23% 78.94% 76.66% 74.83% 66.92%
0.80 73.40% 73.18% 70.58% 67.01% 59.24%
1.30 80.26% 80.39% 77.04% 75.95% 68.94%
3.70 70.35% 69.41% 66.70% 62.96% 55.98%

map 2

0.20 66.39% 66.81% 65.28% 60.41% 53.27%
1.90 75.93% 76.50% 75.49% 70.98% 64.48%
3.35 62.19% 63.05% 60.59% 55.37% 47.01%
5.75 80.26% 81.03% 79.06% 76.03% 69.43%

map 3

0.25 74.20% 73.39% 71.51% 68.12% 61.30%
0.60 82.01% 81.91% 79.85% 76.82% 71.28%
2.80 75.77% 75.31% 73.19% 69.89% 63.55%
3.10 81.87% 81.70% 79.61% 76.90% 70.91%

map 4
0.18 93.52% 93.08% 92.23% 91.80% 88.51%
0.44 92.03% 91.46% 91.01% 90.27% 88.31%
0.70 90.45% 90.64% 89.96% 88.74% 88.51%
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Table 3

The different genetic maps considered (K is the number of markers, T is the length of the
chromosome in Morgan, tk is the location of marker k in Morgan)

T K marker locations
map 1 5 11 ∀k = 1, . . . , 5 t2k = k − 0.60 and ∀k = 0, . . . , 5 t2k+1 = k

map 2 7 15 ∀k = 1, . . . , 7 t2k = k − 0.30 and ∀k = 0, . . . , 7 t2k+1 = k

map 3 4 9 ∀k = 1, . . . , 9 tk = 0.50(k − 1)
map 4 1 6 ∀k = 1, . . . , 6 tk = 0.20(k − 1)

linear interpolation (i.e. the wrong interpolation) whereas the Theoretical Power
is constructed from the linear interpolated process described in Theorems 1 and
2 of Rabier [17]. We obtain the same kind of conclusion as previously: n has to
be large enough to reach the asymptotic, and the Empirical Power is close to
the Theoretical Power.

Finally, since Tables 1 and 2 focus on the same genetic maps and on the
same QTL locations, we propose to compare results from both tables. We can
notice that if the LRT is built on the false recombination model, we get the
power associated to the true recombination model and not the Theoretical Power
associated to the model from which the LRT is built on. Indeed, in all cases
studied, the Empirical Power of Table 1 (resp. Table 2) is close to the Theoretical
Power of Table 1 (resp. Table 2) and does not match the Theoretical Power of
Table 2 (resp. Table 1).

This way, this simulation study confirms our theoretical results: there is an
“asymptotic robustness of the LRT in QTL detection”.

6. Conclusion

To conclude, in this paper, we have considered two different recombination mod-
els: a model with interference and a model without interference. We have proved
that even if we choose the false recombination model in order to construct our
statistical test, we will keep asymptotically the optimal power. However, the
location of the QTL can be estimated differently than if we had chosen the true
recombination model. This is a result which could be of interest to geneticists.
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Appendix A: Proof of Theorem 2.1

A.1. Fisher information matrix

As said previously, we consider values of t distinct of marker locations and the
result can be extended by continuity on markers. We first compute the Fisher
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information at a point θ0 that belongs to H0. Let l̃t(θ) be the log likelihood and
let define the quantity ũ(t) such as:

ũ(t) = 2p̃(t)− 1.

We have

∂l̃t
∂q

|θ0 =
y − µ

σ2
ũ(t) (A.1)

∂l̃t
∂µ

|θ0 =
y − µ

σ2
,

∂l̃t
∂σ

|θ0= − 1

σ
+

(y − µ)2

σ3

After some calculations, we find

Iθ0 = Diag

[
E
{
ũ2(t)

}

σ2
,

1

σ2
,

2

σ2

]
. (A.2)

A.2. Study of the score process under the null hypothesis

The log likelihood at t, associated to n observations will be denoted by l̃nt (θ).
Since the Fisher Information matrix is diagonal, the score statistics of the hy-
pothesis “q = 0” will be defined as

S̃n(t) =

∂l̃nt
∂q

|θ0√
V

(
∂l̃nt
∂q

|θ0
) .

The study is based on the following key lemma:

Lemma A.1.

ũ(t) = α̃(t)X(t1) + β̃(t)X(t2)

with α̃(t) = t2−t
t2−t1

and β̃(t) = t−t1
t2−t1

.

To prove this lemma, use formula (2.2) and check that both coincide whatever
the value of X(t1), X(t2) is.

Now using formula (A.1), we have

∂l̃nt
∂q

|θ0 =

n∑

j=1

Yj − µ

σ2
ũj(t) = 1/σ

n∑

j=1

εj ũj(t)

=
α̃(t)

σ

n∑

j=1

εjXj(t1) +
β̃(t)

σ

n∑

j=1

εjXj(t2) (A.3)

this proves the interpolation.
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On the other hand,

S̃n(tk) =

n∑

j=1

εjXj(tk)√
n

k = 1, 2

and a direct application of the central limit theorem implies that these two
variables have a limit distribution which is a Gaussian centered distribution
with variance (

1 exp(−2|t2 − t1|)
exp(−2|t2 − t1|) 1

)
.

This proves the expression of the covariance. The weak convergence of the
score process, S̃n(.), is then a direct consequence of (A.3), the convergence of
(S̃n(t1), S̃n(t2)) and the Continuous Mapping Theorem.

A.3. Study under the local alternative

Let us consider a local alternative defined by t⋆ and q = a/
√
n. We consider

values of t and t⋆ distinct of marker locations and the result can be extended
by continuity on markers. Since we consider that the true model is the model
without interference, we have to consider the “analysis of variance model” for
the quantitative trait, described in formula (1.1). Under the alternative

S̃n(t) =
a

nσ

n∑

j=1

Uj(t
⋆)ũj(t)√

V {ũ(t)}
+

1√
n

n∑

j=1

εj
ũj(t)√
V {ũ(t)}

.

The second term has the same distribution as under the null hypothesis and
the first one gives the expectation. As said in Section 1, we use the Haldane
[10] modeling for the genetic information at marker locations t1 and t2. Besides,
since we consider a model without interference, we also consider Haldane [10]
modeling inside the marker interval. In other words, X(0) is a random sign
and X(t) = X(0)(−1)N(t) where N(.) is a standard Poisson process on [0, T ]
(here t1 = 0 and t2 = T ). This way, the genetic information U(t⋆) at the QTL
location t⋆ is exactly the quantity X(t⋆). We refer to Azäıs et al. [2] for more
details about Haldane [10] modeling. As a consequence, using Lemma A.1, it
comes

E

{
S̃n(t)

}
=

a E {U(t⋆)ũ(t)}
σ
√
V {ũ(t)}

=
a
[
α̃(t)E {X(t⋆)X(t1)} + β̃(t)E {X(t⋆)X(t2)}

]

σ
√
V {ũ(t)}

=
a α̃(t)ρ(t1, t

⋆)

σ
√
V {ũ(t)}

+
a β̃(t)ρ(t⋆, t2)

σ
√

V {ũ(t)}
.

This gives the result.
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A.4. About the LRT process

For the interference model, the likelihood ratio statistic at t, corresponding to
n independent observations, will be defined as

Λ̃n(t) = 2
{
l̃nt (θ̂)− l̃nt (θ̂|H0

)
}
,

where θ̂ is the maximum likelihood estimator (MLE), and θ̂|H0
the MLE un-

der H0.
Since the model with t fixed is regular, it is easy to prove that for fixed t

Λ̃n(t) = S̃2
n(t) + oP (1) (A.4)

under the null hypothesis.
Let us consider the local alternative defined by t⋆ and q = a/

√
n. Since we

consider that in reality we are under a model without interference, condition-
nally to X(t1) and X(t2), the quantitative trait Y follows the mixture model
described in formula (1.3). We refer to formula (3) of Azäıs et al. [2] for the de-
tails about the weights p(t⋆) of the mixture model. As mentioned in Azäıs et al.
[2], the model with t⋆ fixed is differentiable in quadratic mean, this implies that
the alternative defines a contiguous sequence of alternatives. By Le Cam’s first
Lemma, relation (A.4) remains true under the alternative. This gives the result
for the convergence of finite-dimensional distribution. Concerning the study of
the supremum of the LRT process, the proof is exactly the same as in Azäıs
et al. [2] which is based on results of Azäıs et al. [3] and Gassiat [8].

Appendix B: Proof of Theorem 2.2 and Lemma 2.1

We consider the process W (.) on [0, 1] such as ∀t′ ∈ [0, 1]:

W (t′) =
(1− t′) Z(t1) + t′ Z(t2)√

(1 − t′)2 + t′ 2 + 2 ρ(t1, t2) t′ (1− t′)

We can remark that W (0) = Z(t1) = Z̃(t1) and W (1) = Z(t2) = Z̃(t2).
Besides, we can apply Lemma 2.2 of Azäıs et al. [2] by taking γ1(t

′) = 1− t′,

γ2(t
′) = t′, ρ̃ = ρ(t1, t2), C1 = Z(t1), C2 = Z(t2) since γ1(t

′)
γ1(t′)+γ2(t′)

and
γ2(t

′)
γ1(t′)+γ2(t′)

take every values in [0, 1]. Then, according to Lemma 2.2 of Azäıs

et al. [2]

max
t′∈[0,1]

W 2(t′) = max
{
Z2(t1), h(t1, t2), Z

2(t2)
}
.

Besides, according to the proof of Lemma 2.2 of Azäıs et al. [2], we have:

argmaxW 2(.) = 0 when Z(t2)/Z(t1) ∈ ]−∞, 0] ∩ |Z(t1)| > |Z(t2)| ,
argmaxW 2(.) = 1 when Z(t2)/Z(t1) ∈ ]−∞, 0[ ∩ |Z(t2)| > |Z(t1)| ,
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argmaxW 2(.) = 1 when Z(t2)/Z(t1) ∈ [1/ρ(t1, t2),+∞[,

argmaxW 2(.) = 0 when Z(t2)/Z(t1) ∈ ]0, ρ(t1, t2)],

argmaxW 2(.) = ξ′ when Z(t2)/Z(t1) ∈ ]ρ(t1, t2), 1/ρ(t1, t2)[,

where

ξ′ =
ρ(t1, t2)Z(t1)− Z(t2)

{ρ(t1, t2)− 1} {Z(t1) + Z(t2)}
.

By construction, we have ∀t ∈ [t1, t2]

Z̃(t) = W

(
t− t1
t2 − t1

)
and Z(t) = W

{
β(t)

α(t) + β(t)

}
.

Besides, the functions t−t1
t2−t1

and β(t)
α(t)+β(t) take every values in [0, 1]. It comes

max
t∈[t1,t2]

Z2(t) = max
t∈[t1,t2]

Z̃2(t) = max
t′∈[0,1]

W 2(t′) = max
{
Z2(t1), h(t1, t2), Z

2(t2)
}
.

Furthermore,

W (ξ′) = Z̃(ξ̃) = Z(ξ) where ξ̃ = ξ′(t2 − t1) + t1

and ξ′ =
β(ξ)

α(ξ) + β(ξ)
.

As a consequence,

ξ̃ =
(t2 − t1)β(ξ)

α(ξ) + β(ξ)
+ t1.

It concludes the proof.
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