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Abstract: In Bayesian nonparametric statistics, it is crucial that the sup-
port of the prior is very large. Here, we consider species sampling priors.
Such priors are widely used within mixture models and it has been shown in
the literature that a large support for the mixing prior is essential to ensure
the consistency of the posterior. In this paper, simple conditions are given
that are necessary and sufficient for the support of a species sampling prior
to be full. In particular, for proper species sampling priors, the condition is
that the maximum size of the atoms of the corresponding process is small
with positive probability. We apply this result to show that the main classes
of species sampling priors known in literature have full support under mild
conditions. Moreover, we find priors with a very simple construction still
having full support.
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1. Introduction

The main motive of Bayesian nonparametrics is to avoid restrictive parametric
assumptions about the distribution generating the data. This is done construct-
ing instead random probability measures whose distributions to be used as priors
have a large support (see, for instance, Ghosal [10]).

This paper considers the support (with respect to the weak topology) of the
distribution of species sampling processes, which are a relevant class of discrete
random probability measures. Species sampling models, which have been devel-
oped by Pitman [31], Hansen and Pitman [14], have been extensively studied
in Bayesian nonparametric statistical literature. See for instance Ishwaran and
James [17], Ongaro [26], Navarrete, Quintana and Mueller [24], Jang, Lee and
Lee [19], Hjort et al. [15] and citations provided therein.

So, the large support is an essential requirement for any Bayesian nonpara-
metric model to be appropriate. Moreover, the support of species sampling pro-
cesses plays a relevant role for the consistency of mixed models. Indeed, these
processes are often used as mixing distributions in Bayesian mixture models for
density estimation. Ghosal, Ghosh and Ramamoorthi [11] find sufficient condi-
tions for the weak consistency of posteriors for normal mixture models. Their
only requirement for the prior of the mixing distribution is to contain the true
mixing distribution. More generally, the large support is usually the basic and
unique assumption about the mixing prior in the literature about Bayesian con-
sistency of Bayesian mixture models. Such assumption is made, for instance, by
Datta [4], who considers a general mixture model and proves the consistency
of the predictive distribution and the estimator of the mixing distribution un-
der mild conditions. This is also the case of Wu and Ghosal [39], who obtain
sufficient conditions, under which a prior obtained by mixing a wide range of
kernels ensures weak consistency of the posterior. The same assumption is made
by De Blasi, James and Lau [5], who consider mixed multinomial logit models,
and by Bhattacharya and Dunson [1], who study consistency for a more general
mixture models.

In spite of the amount of literature regarding species sampling priors, their
support has not generally received much attention. To the best of our knowledge,
this generally is the case of the most known priors in such class, apart from the
Dirichlet prior. Furthermore, one might wonder if it is possible to consider other
discrete random probability measures with a much simpler structure, still having
a prior with large support.

The most well-known species sampling prior is the Dirichlet prior introduced
and studied by Ferguson [8]. Ferguson [8] states that the topological support
(with respect to the topology of weak convergence) of a Dirichlet prior is the
set of all probability measures whose topological supports are contained in that
one of the parameter measure of the Dirichlet prior, which is the marginal
distribution of one observation. Later on, it will be shown that the support of
a prior with the same marginal cannot be larger. For this reason, if a prior has
the same support of the Dirichlet prior with the same marginal, then we can
say that that prior has full support. Indeed, the support of the Dirichlet prior
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contains essentially all probability measures on the relevant sample space, as it
will be clear later on.

Ferguson’s [8] statement about the support of the Dirichlet prior on the real
line has been extended to broader classes of prior distributions. Majumdar [23]
generalizes it replacing the real line with an arbitrary separable metric space.
Ongaro and Cattaneo [27] find sufficient conditions for species sampling pri-
ors to have full support. The present paper provides two much weaker and
simple conditions that are sufficient and necessary for such result. In partic-
ular, for proper species sampling priors, one such condition is that the max-
imum size of the atoms of the corresponding process is small with positive
probability. We shall also show that if such condition is not satisfied, then the
support is remarkably poor, not including for instance continuous probability
measures.

Verifying this condition, it will be proved that the support is full under mild
conditions for the most relevant species sampling priors, such as the stick–
breaking priors and the Poisson–Kingman priors, which in turn include the
normalized random measures with independent increments, the Pitman–Yor
process priors and the Gibbs–type priors with infinitely many species. In partic-
ular, for the Poisson–Kingman model, this condition cannot be verified directly
as there is not a closed expression for the distribution of the maximum atom
size. A proof is given based on specific properties of non–homogeneous Poisson
processes.

By means of our results, we shall find priors with full support that have a
very simple construction and are expected to be easier to implement than the
more complex Bayesian nonparametric models. This is the direction pointed by
Fuentes-Garćıa, Mena and Walker [9], who consider the species sampling prior
with geometric weights. Namely, they assess the random sizes of the atoms as
Pj = W (1−W )j−1 (j ≥ 1). They use such prior for density estimation showing
that its inferential performance is at least as good as the usual nonparametric
models, the estimation algorithm being more efficient. We prove that for this
prior to have full support, the only condition is that zero belongs to the support
of the random variable W . Another simple way to construct a species sampling
prior with full support consists of taking Pj = 1/K, for j = 1, . . . ,K, where K
is an unbounded positive random variable valued into the natural numbers.

The outline of the paper is the following. Section 2 presents the general
results, Section 3 shows that the support is full for different priors, including
the most important nonparametric priors among the species sampling models.
The Appendix contains the proof of Theorem 2 and Proposition 6.

2. General results

Let X be separable metrizable space and X its Borel σ–field. Let P be the set of
all probability measures on (X,X ). Recall that P equipped with the topology of
weak convergence is metrizable as a separable metric space [see 28] and let B(P)
be its Borel σ-field. Moreover, for every µ in P, an open base of neighborhoods



864 P. G. Bissiri and A. Ongaro

of µ for the topology of weak convergence on P is the class of sets

Uε1,...,εk(µ;A1, . . . , Ak) := ∩k
j=1{ν ∈ P : |ν(Aj)− µ(Aj)| < εj},

where k is a positive integers, (ε1, . . . , εk) belongs to (0,∞)k, and (A1, . . . , Ak)
is a k–tuple of µ–continuity sets in X . Let (Ω,F ,P) be a probability space
on which all the random variables considered through the present paper are
defined. A random probability measure is a measurable map from (Ω,F ,P)
into (P,B(P)).

Recall that the topological support Sµ of a finite Borel measure µ on a second
countable topological space is defined as the intersection of all closed set F such
that µ(F c) = 0. As usual, the support of a random variable is defined to be the
support of its probability distribution. It is known that s belongs to Sµ if and
only if µ is positive on every neighborhood of s. So, a probability measure µ in
P belongs to the support of a random probability measure P if and only if

P(P ∈ Uε1,...,εk(µ;A1, . . . , Ak)) > 0,

for every k–tuple (A1, . . . , Ak) of µ–continuity subsets of X and every integer
k ≥ 1.

Majumdar [23] proves that the topological support of the Dirichlet prior with
parameter α is the class of all probability measures µ such that Sµ ⊂ Sα.

Species sampling processes are discrete random probability measures that
generalize the Dirichlet Process. A species sampling process is a random discrete
probability measure of the following form:

∞
∑

j=1

Pj δZj
+
(

1−

∞
∑

j=1

Pj

)

α, (1)

where α is a probability measure on X which is diffuse (that is α{x} = 0 for
every x in X), (Pj)j≥1 and (Zj)j≥1 are two independent sequences of random
variables such that Pj ≥ 0 for every j ≥ 1 and

∑∞
j=1 Pj ≤ 1, P–a.s., and (Zj)j≥1

is an i.i.d. sequence whose common distribution is α.
If
∑∞

j=1 Pj = 1, P–a.s., then (1) becomes

∞
∑

j=1

Pj δZj
. (2)

To be consistent with Pitman’s terminology, here a species sampling process
that admits a representation of the form (2) is called proper.

The Dirichlet Process is a proper species sampling process as shown by Fer-
guson [8] and Sethuraman [36]. The support of a Dirichlet prior is essentially as
big as possible, as shown in the next Proposition.

Proposition 1. Let Q be a random probability measure on (X,X ) such that
α(A) = E(Q(A)), for every A in X . If µ is a probability measure on (X,X )
belonging to the support (in the weak topology) of the distribution of Q, then
Sµ ⊂ Sα.
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Proof. We need to show that the set C := {µ ∈ P : Sµ ⊂ Sα} is closed and
that Q belongs to C almost surely. To prove the second claim, consider that
Q(Sc

α) ≥ 0 a.s. and 0 = α(Sc
α) = E(Q(Sc

α)), where E denotes the expectation
w.r.t. P. Hence, Q(Sc

α) = 0 a.s. and therefore, SQ ⊂ Sα a.s.
To prove closeness, we assume that (Qn)n≥1 is a sequence of elements of C

such that Qn weakly converges to some Q∞ in P and we show that Q∞ belongs
to C. To this aim, note that Qn(Sα) is equal to one a.s. since Qn belongs to C,
for every n ≥ 1. Moreover, being Sα a closed set, we can apply the Portmanteau
theorem to obtain that

Q∞(Sα) ≥ lim sup
n→∞

Qn(Sα) = 1.

Hence,Q∞(Sα) is equal to one a.s., i.e. SQ∞
⊂ Sα, and the proof is complete.

Proposition 1 leads to the following definition:

Definition. Let Π be a prior distribution on P, let P be a random probability
measure with distribution Π and let α the measure on (X,X ), such that α(A) =
E(P (A)) for every A in X . Π (or equivalently P ) is said to have full support if
and only if the support (in the weak topology) of Π is the set of all measures µ
on (X,X ) such that Sµ ⊂ Sα.

To make clearer the sense of the previous definition, let X be an observation
from P , i.e. P is the conditional distribution of X given P . Then, X is the
sample space for X and, in the most natural case, X is also the support of the
marginal distribution α of X . In this case, the support of P is full if it coincides
with the whole class of probability measures on X.

Our aim is to find necessary and sufficient conditions for a species sampling
prior to have full support. Ongaro and Cattaneo [27] have essentially shown
that a sufficient condition for a proper species sampling prior is that for every
n, the support of the law of (P1, . . . , Pn) is full, i.e. is equal to the n-dimensional
simplex

{(p1, . . . , pn) :
∑n

j=1 pj ≤ 1, pj ≥ 0, 1 ≤ j ≤ n}.

The next theorem identifies two much weaker conditions that are necessary
and sufficient for the distribution of a species sampling process to have full
support.

Theorem 2. Consider a prior distribution Π on P that is the distribution of
the process (1).

The following facts are equivalent:

i. The prior Π has full support,
ii. For every ε > 0, P(maxj≥1 P̄j < ε,

∑

l≥1 Pl > 1 − ε) > 0, where P̄j =
Pj/

∑

l≥1 Pl (j ≥ 1),
iii. For every ε > 0 there is an integer m ≥ 1 such that

P(Pj < ε, j = 1, . . . ,m,
∑m

l=1 Pl > 1− ε) > 0. (3)
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Clearly, condition iii. improves the sufficient condition given by Ongaro and
Cattaneo [27]. Moreover, it is a convenient alternative when it is difficult to deal
with the distribution of maxj≥1 P̄j . Theorem 2, which is proved in the Appendix,
yields the following corollary:

Corollary 3. If
∑

j≥1 Pj = 1, P–a.s. then the corresponding (proper) species
sampling prior has full support if and only if

P

(

max
j≥1

Pj < ε
)

> 0, (4)

for every ε > 0.

In other words, for a proper species sampling prior to have full support is
necessary and sufficient that zero belongs to the support of the maximum atom
size. It will be now shown that if such condition is not satisfied then the support
of the prior, besides being not full, is substantially smaller. Indeed, if this is
the case, then neither continuous distributions nor discrete distributions whose
atoms have too small sizes belong to the support of the prior, as shown in the
following proposition:

Proposition 4. Given a proper species sampling prior, if (4) is not satisfied
for some ε > 0 and µ is a probability measure on X such that µ({x}) < ε, for
every x ∈ X, then µ does not belong to the support of the prior.

Proof. To begin with, recall that, for every µ in the space P of probability
measures on (X,X ), a base of neighborhoods of µ generating the topology of
weak convergence is made of the sets of the form

{ν ∈ P : ν(Fi) < µ(Fi) + ε, i = 1, . . . ,m},

where ε > 0 and {F1, . . . , Fm} is an m–tuple of measurable closed subsets of
X [see 2, p. 236]. Therefore, to prove the statement we need to find a set of
such form with zero prior probability under the assumption that µ({x}) < ε,
for every x ∈ X.

To this aim, let B the union of a countable dense subset of X, which exists by
separability of X, and the set of the atoms of µ. So, B is countable and we denote
by (xj)j≥1 an arrangement of the elements of B. Now, let d be a metric on X

which induces the Borel sigma–field X and set B̄j = {x ∈ X : d(x, xj) ≤ rj}
where rj is small enough to ensure that µ(B̄j) < ε, for j ≥ 1. Such rj exists since
∩n≥1{x ∈ X : d(x, xj) ≤ 1/n} = {xj} and µ{xj} < ε, for every j ≥ 1. Denote
by Bj the open ball {x ∈ X : d(x, xj) < rj}, for every j ≥ 1. Clearly, the sets in
the sequence (Bj)j≥1 cover the space X. In fact, B contains a dense subset of X,
say D, and therefore for every r > 0 and every x in X, d(x, xj) < r for some xj

in D. So, limm→∞ µ(∪m
j=1Bj) = 1, and therefore there is an integer k ≥ 1 such

that µ(∪k
j=1Bj) > 1 − ε. Set B̄0 = X \ (∪k

j=1Bj) and η = max0≤j≤k µ(B̄j) < ε.

Hence, the (k + 1)–tuple {B̄0, . . . , B̄k} is a measurable cover of X, where B̄j is
closed and µ(B̄j) ≤ η, for j = 0, . . . , k. Therefore,

0 = P(Pl ≤ ε, l ≥ 1) ≥ P(
∑

l≥1:Zl∈B̄j
Pl < ε, 0 ≤ j ≤ k)

= P(P (B̄j) < ε, 0 ≤ j ≤ k) ≥ P(P (B̄j) < µ(B̄j) + ε− η, 0 ≤ j ≤ k).
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So, there is a neighborhood of µ with zero P–probability and the proof is com-
plete.

We now state the following proposition, which shows a connection between
proper and not proper species sampling priors related to their supports.

Proposition 5. Let P be a species sampling process defined by (1) and let
Q =

∑

j≥1 P̄jδZj
, where P̄j = Pj/

∑

l≥1 Pl, for every j ≥ 1, if
∑

l≥1 Pl > 0.

If P(
∑

j≥1 Pj > w) > 0 for every w < 1 and the conditional distribution of

Q given
∑

l≥1 Pl has full support almost surely, then the distribution of P has
full support, too.

We do not report the proof of this proposition, which is an immediate conse-
quence of Lemma 10 in the Appendix. Proposition 5 suggests a simple way to
construct a not–proper species sampling prior with full support from a proper
species sampling prior with full support. In fact, if Q is a proper species sam-
pling process, its prior has full support and its marginal is α, then one can
take WQ+ (1−W )α, where W is a (0, 1)–valued random variable with 1 in its
support and Q and W are independent.

3. Illustrations

We now apply Theorem 2 and Corollary 3 to show that several species sampling
priors have full support. We shall consider the two most general and studied
priors among the species sampling models, namely the Poisson–Kingman and
the stick–breaking model, but also two priors with a very simple construction,
one based on geometric frequencies and the other one on a finite number of
species.

3.1. Poisson–Kingman models

The class of Poisson–Kingman priors was introduced and studied by Pitman [32]
and it includes as special cases another known class, such as the homogeneous
normalized random measures with independent increments [see 34]. Moreover,
Poisson–Kingman models are related to the Gibbs–type random probability
measures with infinitely many species [see 13, 22, 7]. Normalized random mea-
sures with independent increments and Gibbs–type priors are two of the most
studied and used for applications.

To properly define the class of Poisson–Kingman priors, let us introduce some
notation. Let ρ be a measure on R

+ such that

ρ(1,∞) < ∞,

∫

(0,1)

sρ(ds) < ∞, (5)

and

ρ(0,∞) = ∞. (6)
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Moreover, let α be a probability measure on X, let (Tj)j≥1 be the decreasing
arrangement of the points of a Poisson process Π with mean measure ρ, and let
(Zj)j≥1 be a sequence of independent and identically distributed random vari-
ables with common distribution α. Set S =

∑

j≥1 Tj and assume that the prob-
ability distribution of S is absolutely continuous with respect to the Lebesgue
measure on R

+. Denote by Qρ,s the regular conditional distribution of the se-
quence (Tj/S)j≥1 given S = s as constructed by Pitman [32]. Let (Pj)j≥1 be a
sequence of nonnegative random variables with distribution

∫

R+

Qρ,s µ(ds), (7)

where µ is a probability measure on R
+. Then (7) is termed a Poisson–Kingman

distribution with Lévy intensity ρ and mixing distribution µ and denoted by
PK(ρ, µ). Moreover, the random probability measure

∑∞
j=1 PjδZj

is termed a
Poisson–Kingman random probability measure with Lévy intensity ρ and mixing
distribution µ.

Condition (5) is required to ensure that S is finite almost surely [see 20, p. 28],
and (6) to ensure that S is positive almost surely. To show this last statement,
one can just apply Campbell’s theorem to obtain that

E(e−uS) = exp{− ∫(0,∞)(1− e−ux)ρ(dx)}

for every u > 0, and then apply the monotone convergence theorem, letting u
diverge to infinite, to obtain that P(S = 0) = e−ρ(0,∞).

An important class of priors related to the Poisson–Kingman priors is that one
of Gibbs–type priors with infinitely many species. In fact, as proved by Gnedin
and Pitman [13], a Gibbs–type prior with infinitely many positive frequencies is
either a mixture of Dirichlet priors or a Poisson–Kingman prior with stable Lévy
density ρσ(x) = σx−σ−1/(Γ(1− σ)), for some 0 < σ < 1, and arbitrary mixing
distribution µ. Another relevant prior belonging to the Poisson–Kingman class
is the Pitman–Yor process prior, also known as two parameter Poisson–Dirichlet
prior, introduced by Perman, Pitman and Yor [29] and further studied by Pit-
man [30], Pitman and Yor [33] and Ishwaran and James [17]. In fact, a Pitman–
Yor process prior with parameters 0 < σ < 1 and θ > −σ is a PK(ρσ, µσ,θ),
and therefore a Gibbs–type prior, where µσ,θdt = σΓ(θ)/Γ(θ/σ)t−θfσ(t)dt, and
fσ is a density of a σ–stable random variable. The Pitman–Yor process prior is
widely used in applications. See, for instance, Teh and Jordan [38] and citations
provided therein.

We are now ready to state and prove the following proposition:

Proposition 6. If µ is absolutely continuous with respect to the Lebesgue mea-
sure, then the PK(ρ, µ) prior has full support.

By Proposition 6, the whole class of NRMII’s and Pitman–Yor process pri-
ors have full support. In fact, if µ coincides with the probability distribution
of S, then the corresponding Poisson–Kingman random probability measure is
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a normalized random measure with independent increments. To prove Proposi-
tion 6, it is convenient to split the half line of positive real numbers into two
intervals and to consider separately the restriction of Π to each interval. By
an asymptotic argument, it is possible to deal with the infinitely many jumps
around zero, letting the interval containing zero decrease to the singleton {0}.
Then, one can deal with the interval which does not contain zero converting the
Poisson process Π into a Bernoulli process by conditioning. The details of the
proof of Proposition 6 are deferred to the Appendix.

3.2. Stick–breaking priors

The class of stick–breaking priors is a relevant one in Bayesian nonparamet-
rics [see 16, 17, 18, 6]. A stick–breaking prior is such that P1 = V1 and Pj =

Vj

∏j−1
l=1 (1 − Vl), j > 1, being (Vj)j≥1 a sequence of [0, 1]–valued random vari-

ables. In this way,
∑m

l=1 Pl = 1−
∏m

j=1(1− Vj), (8)

for every integer m ≥ 1, and therefore
∑∞

j=1 Pj = 1−
∏∞

j=1(1 − Vj) is between
zero and one. Stick breaking priors have full support under minimal assumptions
as shown in the next proposition.

Proposition 7. If (Vj)j≥1 is a sequence of independent random variables and
for every ε > 0 there is δ > 0 such that P(δ < Vj < ε) is positive for every
integer j ≥ 1, then the corresponding stick–breaking prior has full support.

Proof. Fix 0 < ε < 1 and 0 < w < 1. Being P(δ < Vj < ε) > 0 for every j ≥ 1
and recalling the identity (8), one obtains that

0 <
∏m

j=1 P(δ < Vj < ε) = P(δ < V1 < ε, δ < V2 < ε, . . . , δ < Vm < ε)

≤ P(P1 < ε, . . . , Pm < ε(1− δ)m−1,
∑m

l=1 Pl > 1− (1− δ)m)

≤ P(P1 < ε, . . . , Pm < ε,
∑m

l=1 Pl > 1− (1− δ)m),

(9)

for every integer m ≥ 1. At this stage, fix m bigger than log(ε)/ log(1 − δ) so
that (1− δ)m < ε. In this way, (9) implies (3), and condition iii. of Theorem 2
is therefore satisfied.

Corollary 8. If (Vj)j≥1 is a sequence of independent random variables and
for some ε > 0, the support of each Vj includes the interval (0, ε), then the
corresponding stick–breaking prior has full support.

Generally, for each j ≥ 1, Vj has a Beta distribution with parameters aj
and bj , where (aj)j≥1 and (bj)j≥1 are two sequences of positive numbers [see for
instance 16]. Clearly, in this case the support of each Vj is the whole unit interval
and Corollolary 8 can be applied.

The sequence (Vj)j≥1 is often taken i.i.d., which yields, by the way, a proper
species sampling model. This is the most common case, which is considered in
the following corollary:
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Corollary 9. Let (Vj)j≥1 be a sequence of independent and identically dis-
tributed random variables. Then, P(0 < V1 < ε) is positive for every ε > 0 if
and only if the corresponding stick–breaking prior has full support.

Proof. To prove the “only if” part, consider that limc→0 P(c < V1 < ε) = P(0 <
V1 < ε) > 0. This implies that P(δ < V1 < ε) is positive for some δ > 0 and then
it is sufficient to apply Proposition 7. To prove the “if” part, we can just show
that P(V1 ∈ {0} ∪ (c,∞)) = 1 implies that the support of the corresponding
stick–breaking prior is not full. To this aim, denote by φ the map from [0, 1]∞

into itself such that φ((vj)j≥1) is the sequence obtained from (vj)j≥1 removing
the zeroes and let (Wj)j≥1 = φ((Vj)j≥1). Clearly, substituting (Vj)j≥1 with
(Wj)j≥1, one obtains the same stick–breaking prior. Moreover, P(W1 > c) = 1.
Being W1 = Pj for some j ≥ 1 a.s., we have that Pj > c for some j ≥ 1 a.s. By
Corollary 3, this implies that the corresponding stick–breaking prior does not
have full support.

3.3. Geometric frequencies

Let us now introduce an example of a proper species sampling prior with a very
simple structure still having the full support. Let

Pj = W (1−W )j−1 (10)

for j ≥ 1, where W is a random variable such that 0 < W < 1 with probability
one and zero belongs its support. This prior has been proposed and used by
Fuentes-Garćıa, Mena and Walker [9], letting W having a Beta distribution. To
apply Corollary 3 it is sufficient to note that (Pj)j≥1 is a decreasing sequence
almost surely and P(0 < W < ε) > 0 for every ε > 0. For this prior, all the
weights Pj , j ≥ 1, are obtained from a real valued random variable W and
the support of (P1, . . . , Pn) is not full, for n ≥ 1, i.e. the condition for the
full support given by Ongaro and Cattaneo [27] is not satisfied. As shown by
Fuentes-Garćıa, Mena and Walker [9], such model is easier to implement than
standard models and performs well at least in the density estimation context.
In the following subsection, other examples are given of priors with a simple
structure and full support, whose inferential behaviour are worth exploring.

3.4. Finite number of species

Let us consider a finite number of species, in other words a proper species
sampling process (2) such that the number of Pj ’s which are positive is finite.
Define the random variable K = max{j : Pj > 0} with the convention that
K = ∞ if Pj is infinitely often positive. When K is finite, (2) can be equivalently
and more conveniently expressed as

K
∑

j=1

Pj,K δZj
, (11)
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where (P1,k, . . . , Pk,k) is a random vector whose distribution coincides with the
conditional distribution of (P1, . . . , PK) given K = k, for every positive inte-
ger k. So, (P1,k, . . . , Pk−1,k) takes values into the (k − 1)–dimensional simplex,
for every k ≥ 1. This formulation is the one used for instance by Ongaro [26]. It
is reasonable that K is finite almost surely, i.e. the number of species is finite.
This model is used within Bayesian nonparametric mixture models Richardson
and Green [35]. See also Stephens [37] and Nobile and Fearnside [25]. Moreover,
a model of this kind has been studied by Gnedin [12]. Priors which arise from
processes of the form (11) are considered by Bissiri, Ongaro and Walker [3]. This
family of priors includes the Gibbs–type priors with finitely many species, which
are obtained if (P1,k, . . . , Pk−1,k) has a symmetric finite–dimensional Dirichlet
distribution. This is proved by Gnedin and Pitman [13].

It is not hard to verify that this prior has full support if and only if for every
ε > 0, there is a positive integer k such that P(K = k) > 0 and P(Pj,k < ε, 1 ≤
j ≤ k | K = k) > 0. In fact,

P

(

max
j≥1

Pj < ε
)

=

∞
∑

k=1

P(K = k) · P(Pj,k < ε, 1 ≤ j ≤ k | K = k)

is positive if and only if at least one term of the sum is positive and one can
just apply Corollary 3. Therefore, being the support of the Dirichlet distribu-
tion the whole simplex, Gibbs–type priors have full support provided that K is
unbounded. A remarkably simple example where the prior has full support is ob-
tained taking Pj,K = 1/K whereK is a random variable such that P(K > k) > 0
for every positive integer k.

4. Discussion and conclusions

A large support is clearly an essential requirement for any Bayesian nonpara-
metric model to be appropriate. In particular, it is an important requirement
for species sampling priors that are used as mixing distributions in Bayesian
mixtures models for density estimation to ensure consistency for such models.
For instance, if the support (in the weak topology) of the mixing distribution
is full and the true density to be estimated satisfies some mild conditions, then
consistency is satisfied for a wide range of mixing location scale kernels (see Wu
and Ghosal [39]).

This paper provides necessary and sufficient conditions for a species sampling
prior to have full support (Theorem 2). In particular, for proper species sampling
priors, it turns out to be a very simple condition (Corollary 3). These results can
be apply to show that the most relevant classes of species sampling priors have
full support, but they are also useful to construct species sampling priors with
a much simpler structure still having full support. This is the case of the prior
based on geometric weights (10), which has full support as shown in Section 3.3
and was used by Fuentes-Garćıa, Mena and Walker [9] within a Bayesian mixed
model for density estimation. Namely, the prior for the unknown density is
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assessed as the distribution of the following random density function:

f(x) =

∫

h(x, θ)P (dθ)

=

∞
∑

j=1

Pjh(x, Zj),

where P is a proper species sampling process with geometric weights (10), the
distribution of W is Beta, and h(·, z) is a density function for each z.

The simple structure of this prior for P sets it apart from the priors mostly
studied for Bayesian nonparametric mixture modeling, which are generalizations
of the Dirichlet process model and in most cases yield complex models hard to
implement and to apply in real situations. See Lijoi, Mena and Prünster [21]
for an example of how complex these generalizations can be. Fuentes-Garćıa,
Mena and Walker [9] propose a relatively easy Gibbs sampler algorithm for the
model based on the prior with geometric weights, which results in a simpler
alternative to those typically used for Bayesian nonparametric mixtures, but
with similar inferential performance. To this aim, they consider the following
alternative representation for f :

f(x) =

∞
∑

m=1

1

m

m
∑

j=1

h(x, Zj)qW (m),

where qW (m) = mW 2(1 − W )m−1 for m ≥ 1. This representation suggests to
write the model in hierarchical form:

• W is Beta distributed;
• the Zj ’s are i.i.d. with a given density function and are independent of W ;
• K1, . . . ,Kn are conditionally i.i.d. given W with common probability mass
function qW and are independent of the Zj ’s;

• the observations X1, . . . , Xn are conditionally i.i.d. given K1, . . . ,Kn,W
and the Zj ’s, and the conditional density of Xi is

1

Ki

Ki
∑

j=1

h(·, Zj),

for i = 1, . . . , n.

Fuentes-Garćıa, Mena and Walker [9] derive the full conditionals of the random
variables defined in each level of the hierarchy to construct a Gibbs sampler for
the model.

In Section 3.4, another prior is considered with an even simpler structure,
namely with finitely many species, and equal weights Pj,K = 1/K, for j =
1, . . . ,K. Indeed, this is probably the simplest Bayesian nonparametric model.
When it is used within mixed models, the random variables K1, . . . ,Kn in the
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above representation are replaced by a single one, that is K. In this case, the
random density takes the form:

f(x) =
1

K

K
∑

j=1

h(x, Zj).

This model resembles the form of the basic classical kernel density estimator.
In spite of its semplicity, for an appropriate choice of the class of densities h, it
approximates a large variety of densities, ensuring posterior consistency within
mixed models. To our knowledge, this model has not been studied for Bayesian
mixture modeling and it would deserve furhter investigation.

In general, we believe that for many applicative purposes, such as density
estimation, a sophisticated modelization for the weights does not always provide
a real gain in terms of inferential performance, implying on the other hand an
heavy computational cost.
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Appendix A: Proof of Theorem 2

In order to prove Theorem 2, the three following lemmas are useful.

Lemma 10. Let P be a species sampling process defined by (1) and let Q =
∑

j≥1 P̄jδZj
, where P̄j = Pj/

∑

l≥1 Pl, for every j ≥ 1, if
∑

l≥1 Pl > 0. If µ is a

probability measure on (X,X ) such that

P(Q ∈ Uδ1,...,δk(µ;A1, . . . , Ak),
∑

l≥1 Pl > w) > 0, (12)

for every k–tuple (A1, . . . , Ak) of µ–continuity subsets of X and every (δ1, . . . ,
δk, w) in (0, 1)k+1, then µ belongs to the support of P .

Proof. Clearly, P =
∑

l≥1 Pl · Q + (1 −
∑

l≥1 Pl) · α. So, if A ∈ X , w >

1− ε/|α(A)− µ(A)| and |Q(A)− µ(A)| < ε/w − |α(A) − µ(A)|(1/w − 1), then
|P (A)− µ(A)| < ε (P–a.s.). Therefore, for every integer k ≥ 1, every k–tuple
(A1, . . . , Ak) of µ–continuity subsets of X and every (ε1, . . . , εk) ∈ (0,∞)k,

P(P ∈ Uε1,...,εk(µ;A1, . . . , Ak))

≥ P(Q ∈ Uδ1,...,δk(µ;A1, . . . , Ak),
∑

l≥1 Pl > w) > 0

if w > max{0, 1 − εj/2} (for every 1 ≤ j ≤ k), and δj = εj/w −
|α(Aj)− µ(Aj)|(1/w − 1) (1 ≤ j ≤ k), and the proof is complete.
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Lemma 11. Let k be a positive integer and let (p1, . . . , pk) be a k–tuple of
non–negative real numbers that sum up to one.

For every ε > 0, there is ε > 0 such that

{ ∞
∑

h=1

Ph = 1, 0 ≤ Pl < ε : l ≥ 1

}

⊂
⋃

n1≥1,...,nk≥1

k
⋂

j=1

{∣

∣

∣

∣

pj −

nj
∑

h=1

Pmj+h

∣

∣

∣

∣

<
ε

k + 1

}

,

(13)

where m1 = 0 and mj =
∑j−1

l=1 nl for 2 ≤ j ≤ k + 1.

Proof. Fix ε ≤ min{ε/[(k − 1)(k + 1)], pl − ε/(k + 1) : 1 ≤ l ≤ k} and without
loss of generality let

0 < ε < min{pj : 1 ≤ j ≤ k}. (14)

To prove the statement, fix ω ∈ Ω such that 0 ≤ Ph(ω) < ε (for every h ≥ 1)
and

∑∞
h=1 Ph(ω) = 1. In the rest of the proof, let Ph stand for Ph(ω) for h ≥ 1.

We shall prove that for some k–tuple (n1, . . . , nk) of positive integers and every
1 ≤ j ≤ k,

pj − ε/(k + 1) <
∑nj

h=1 Pmj+h < pj + ε/(k + 1). (15)

To this aim, we shall show by induction that

pj − ε/[2(k − 1)(k + 1)] <
∑nj

h=1 Pmj+h < pj + ε/[2(k − 1)(k + 1)], (16)

for some k–tuple (n1, . . . , nk) of positive integers and every 1 ≤ j ≤ k − 1.

For convenience, set δ = ε/[2(k− 1)(k+1)]. Let us start with the case j = 1.

Being
∑∞

h=1 Ph = 1, there is an integer l ≥ 1 such that
∑l

h=1 Ph > p1 − δ.
Therefore, we can set

n1 = min{l ≥ 1 :
∑l

h=1 Ph > p1 − ε/(k + 1)}.

Being P1 < ε ≤ p1 − ε/(k + 1) < p1 − δ, one can see that n1 ≥ 2. Clearly,
∑n1−1

h=1 Ph ≤ p1− δ, and being Pn1
< ε < ε/[(k+1)(k− 1)] = 2δ, we obtain that

∑n1

h=1 Ph < p1 + δ. Hence, (16) is true for j = 1.

At this stage, assume that (16) is true for j (1 ≤ j ≤ k − 1) and let us show
that it holds when j is replaced by j + 1. By summation, (16) yields:

∑mj+1

h=1 Ph =
∑j

l=1

∑nl

h=1 Pml+h <
∑j

l=1 pl + jδ. (17)

Being
∑∞

h=1 Ph = 1 and being
∑j+1

l=1 pl+(j+1)δ < 1 by (14), there is an integer
l > 1 such that

∑l
h=1 Ph >

∑j+1
l=1 pl + (j + 1)δ. (18)

Combination of (17) with (18) yields that
∑l

h=1 Pmj+1+h =
∑l

h=1 Ph −
∑mj+1

h=1 Ph > pj+1 − δ, for some integer l ≥ 1. So, we can set

nj+1 = min{l ≥ 1 :
∑l

h=1 Pmj+1+h > pj+1 − δ}.
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Being Pmj+1+1 < ε ≤ pj−ε/(k+1) < pj−δ, one can see that nj+1 ≥ 2. Clearly,
∑nj+1−1

h=1 Pmj+1+h ≤ pj+1 − δ, and being Pmj+1+nj+1
< ε ≤ ε/[(k− 1)(k+ 1)] =

2δ,
∑nj+1

h=1 Pmj+1+h < pj+1 + δ.

Hence, (16) is true for j + 1.
We have just proved by induction that (16) holds true for j = 1, . . . , k − 1.

This entails that (15) also holds true for j = 1, . . . , k−1. To complete the proof,
we need to show that (15) holds for j = k. To this aim, let us sum up (16) for
j = 1, . . . , k − 1 obtaining that

∑mk

h=1 Ph =
∑k−1

j=1

∑nj

h=1 Pmj+h < 1− pk + ε/[2(k + 1)]. (19)

Clearly, for some integer l ≥ 1,

∑l
h=1 Ph > 1− ε/[2(k + 1)]. (20)

Subtracting (19) from (20) yields that
∑l

h=1 Pmk+h =
∑l

h=1 Ph −
∑mk

h=1 Ph >
pk − ε/(k + 1), for some integer l ≥ 1. So, we can set:

nk = min{l ≥ 1 :
∑l

h=1 Pmk+h > pk − ε/(k + 1)}.

Being Pmk+1 < ε < pk − ε/(k + 1), one can see that nk ≥ 2. Clearly,
∑nk−1

h=1 Pmk+h ≤ pk − ε/(k + 1), and being Pmk+nk
< ε ≤ ε/[(k − 1)(k + 1)] <

2ε/(k + 1),
∑nk

h=1 Pmk+h < pk + ε/(k + 1).

Hence, (15) is true for j = k.

Lemma 12. Let P be a proper species sampling process with frequencies (Pj)j≥1

such that, for every ε > 0,

P(∩j≥1{Pj < ε} ∩ C) > 0, (21)

for some C in the sigma–algebra generated by (Pj)≥1. Then for every measur-
able partition {A1, . . . , Ak} of X with α(Aj) > 0 (1 ≤ j ≤ k), every k-tuple
(p1, . . . , pk) of positive real numbers that sum up to one and every ε > 0,

P({|P (Aj)− pj| < ε, j = 1, . . . , k} ∩ C) > 0.

Proof. If

pj − ε/(k + 1) <
∑

1≤l≤n:Yl∈Aj
Pl < pj + ε/(k + 1), (22)

for every 1 ≤ j ≤ k and some positive integer n, then, summing up each term
w.r.t. j = 1, . . . , k, the first inequality in (22) yields:

∑

l>n

Pl ≤ kε/(k + 1),



876 P. G. Bissiri and A. Ongaro

and therefore, being P (Aj) =
∑

l≥1:Yl∈Aj
Pl (for 1 ≤ j ≤ k),

pj−ε/(k+1) ≤
∑

1≤l≤n:Yl∈Aj
Pl ≤ P (Aj) ≤

∑

1≤l≤n:Yl∈Aj
Pl+

∑

l>n Pl ≤ pj+ε.

(23)

So, (22) implies (23) and therefore, denoting PC(A) = P(A ∩ C), for every
A ∈ F ,

PC(|P (Aj)− pj | < ε, j = 1, . . . , k)

≥ PC

(

⋃

n1≥1,...,nk≥1

k
⋂

j=1

{∣

∣

∣

∣

pj −

nj
∑

h=1

Pmj+h

∣

∣

∣

∣

<
ε

k + 1
,

Ymj+l ∈ Aj , l = 1, . . . , nj

}

)

, (24)

where m1 = 0 and mj =
∑j−1

l=1 nl for j = 2, . . . , k.

To complete the proof, it is sufficient to show that the last term in (24) is
positive. To this aim, note that there is a set in the union in (24) with positive
PC– probability. In fact, by Lemma 11,

PC

(

⋃

n1≥1,...,nk≥1

n
⋂

j=1

{∣

∣

∣

∣

pj −

nj
∑

h=1

Pmj+h

∣

∣

∣

∣

<
ε

k + 1

}

)

> 0,

and therefore, for some k–tuple (n1, . . . , nk),

PC

(

n
⋂

j=1

{∣

∣

∣

∣

pj −

nj
∑

h=1

Pmj+h

∣

∣

∣

∣

<
ε

k + 1

}

)

> 0.

Proof of Theorem 2. The condition ii. is equivalent to the following condition:

ii’. For every ε > 0 and every w < 1, P(maxj≥1 P̄j < ε,
∑

l≥1 Pl > w) > 0.

Let us prove that i. implies ii’. Denote by P the species sampling process (1) and
let {A1, . . . , Ak} be a partition of X such that 0 < α(Aj) < 1, Aj is α-continuous
and define

αk(A) :=

k
∑

j=1

α(A ∩ Aj)

kα(Aj)

for every A ∈ X and every integer k ≥ 1. Hence, for every k ≥ 1, αk is a
probability measure such that Sαk

= Sα and belongs to the support of P by ii’.
At this stage fix ε > 0, an integer k > 1/ε, and

0 < δ < min{εα∗/(α∗ + ε), (1 − w)α∗}, (25)
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where α∗ = max
j=1,...,k

α(Aj). Hence, one can write:

0 < P(P ∈ Uδ−1/k,...,δ−1/k(αk;A1, . . . , Ak))

= P(∩k
j=1{|P (Aj)− 1/k| < δ − 1/k}) = P(∩k

j=1{P (Aj) < δ})

= P(∩k
j=1{

∑

l:Zl∈Aj
Pl + (1−

∑

j≥1 Pj)α(Aj) < δ})

≤ P(∩k
j=1{

∑

l:Zl∈Aj
Pl < δ, (1−

∑

j≥1 Pj)α(Aj) < δ})

≤ P(∩l≥1{Pl < δ} ∩ {(1−
∑

j≥1 Pj)α
∗ < δ})

≤ P(∩∞
l=1{P̄l < δ/(1− δ/α∗)} ∩ {

∑

j≥1 Pj > 1− δ/α∗}),

which by (25) yields:

P(∩j≥1{P̄j < ε} ∩ {
∑

l≥1 Pl > w}) > 0.

Let us prove that ii’. implies i. To this aim, let Sµ ⊂ Sα. By Lemma 10, we
can complete the proof showing that

P(Q ∈ Uε1,...,εk(µ;A1, . . . , Ak),
∑

l≥1 Pl > w) (26)

is positive, for every (ε1, . . . , εk, w) ∈ (0, 1)k+1, for every k–tuple (A1, . . . , Ak)
of µ–continuity subsets of X and every integer k ≥ 1.

Let {B1, . . . , B2k} be the partition generated by A1, . . . , Ak. Since Sµ ⊂ Sα

and Aj is µ–continuous (1 ≤ j ≤ k), if α(Bl) = 0, then µ(Bl) = 0 (1 ≤ l ≤ 2k).
To show this note that B1, . . . , B2k are µ–continuous, being µ–continuity closed
under intersection (as ∂(A ∩ B) ⊂ ∂A ∪ ∂B for every two sets A and B), and
therefore µ(∂Bl) = 0, for 1 ≤ l ≤ 2k. Moreover, for every 1 ≤ l ≤ 2k, the
interior of Bl (say B◦

l ) is an open set with zero α–measure, which implies that
(B◦

l )
c ⊃ Sα ⊃ Sµ, and therefore µ(B◦

l ) = 0.
So α(Bl) = 0 implies that µ(Bl) = 0 (1 ≤ l ≤ 2k), and therefore (26) is

greater than or equal to

P(
∑

l≥1 Pl > w, |Q(Bl)− µ(Bl)| < 2−kε, 1 ≤ l ≤ 2k : α(Bl) > 0),

which is positive by assumption i., in virtue of Lemma 12 with C = {
∑

l≥1Pl >w}.

Let us prove that ii’. implies iii. By definition, the series
∑

j≥1 Pj is less than

or equal to one and therefore it converges, almost surely. Hence,

P(∪m≥1{
∑

j>m Pj < ε/2}) = 1. (27)

Applying ii’. with w = 1− ε/2 and then (27), one obtains that:

0 < P(Pj ≤ ε
∑

l≥1 Pl, j ≥ 1,
∑

l≥1 Pl > 1− ε/2)

= P(∪m≥1{Pj ≤ ε
∑

l≥1 Pl, j ≥ 1,
∑

l≥1 Pl > 1− ε/2,
∑

l>m Pl < ε/2})

≤
∑

m≥1 P(Pj ≤ ε
∑

l≥1 Pl, j ≥ 1,
∑

l≥1 Pl > 1− ε/2,
∑

l>m Pl < ε/2).
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This implies that for some m ≥ 1,

P(Pj ≤ ε
∑

l≥1 Pl, j ≥ 1,
∑

l≥1 Pl > 1− ε/2,
∑

l>m Pl < ε/2) > 0 (28)

Being
∑m

l=1 Pj =
∑

l≥1 Pl −
∑

l>m Pl and
∑

l≥1 Pl ≤ 1, almost surely, (28)
implies that:

P(Pj ≤ ε, j ≥ 1,
∑m

l=1 Pl > 1− ε) > 0,

which in turn implies iii.
Let us now prove that iii. implies ii’. To this aim, fix ε > 0 and 0 < w < 1 and

set δ < min{ε/(1 + ε), 1− w}. If Pj < δ for j = 1, . . . ,m and
∑m

l=1 Pl > 1− δ,
then Pj < δ < δ/(1−δ)

∑m
l=1 Pl < δ/(1−δ)

∑

l≥1 Pl for j = 1, . . . ,m. Moreover,

for every j > m, Pj <
∑

l>m Pl =
∑

l≥1 Pl −
∑m

l=1 Pl ≤ 1 −
∑m

l=1 Pl < δ <

δ/(1 − δ)
∑m

l=1 Pl ≤ δ/(1 − δ)
∑

l≥1 Pl. Being
∑m

l=1 Pl ≤
∑

l≥1 Pl, these two
facts allow us to write the following:

{Pj ≤ δ, j = 1, . . . ,m,
∑m

l=1 Pl > 1− δ}

⊂ {Pj < δ/(1− δ)
∑

l≥1 Pl, j ≥ 1,
∑

l≥1 Pl > 1− δ}.

Therefore, being δ/(1−δ) < ε and 1−δ > w, one can see that iii. implies ii’.

Appendix B: Proof of Proposition 6

To begin with, let us point out two facts about (5) and (6) which will be useful
in the proof of Proposition 6. Being 1 − e−x < min{x, 1}, for every x > 0, (5)
implies that

∫

R+

(1 − e−us)ρ(ds) < ∞,

for every u > 0. Moreover, by the Markov inequality,
∫

(0,1]

sρ(ds) ≥ t · ρ(t, 1],

for every 0 < t ≤ 1. Therefore, (5) entails that ρ(t,∞) < ∞, for every t > 0,
which in turn by (6) implies that

ρ(0, t) = ∞, (29)

for every t > 0.

Proof of Proposition 6. Our aim is to prove that

P(T1/S < ε, a < S < b) > 0, (30)

for every triplet (ε, a, b), where ε > 0 and 0 < a < b. In fact, we can show that
(30) implies the thesis. Indeed, (30) entails that

P(T1/S < ε, S ∈ B) = E[P(T1/S < ε | S)I{S∈B}] > 0, (31)

for every Borelian B ⊂ R containing a non degenerate interval, i.e. with positive
Lebesgue measure. Hence, P(T1/S < ε | S) is positive almost everywhere on
R

+ with respect to the Lebesgue measure. So, the set {P(T1/S < ε | S) = 0}
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has zero Lebesgue measure. Being µ absolutely continuous with respect to
the Lebesgue measure, the same set has also zero µ–measure. In other words,
P(T1/S < ε | S) is positive µ– almost surely. Therefore,

P(supj≥1 Pj < ε) =

∫

R+

P(T1 < εS | S = s)µ(ds) > 0,

and Corollary 3 can be applied.
To ensure (30), it will be sufficient to prove that

P(T1 < εa, a < S < b) > 0, (32)

for every pair (a, b) where 0 < a < b.
To begin with, fix 0 < a < b, ε > 0. Moreover, let 0 < c < aε and set

q ∈ (a/b, 1). Therefore, being qb > a and (1 − q)b > 0,

P(T1 < εa, a < S < b)

≥ P(T1 < εa, a <
∑

j≥1 Tj · I{Tj>c} < qb,
∑

j≥1 Tj · I{Tj≤c} < (1− q)b)

≥ P(c < T1 < εa, a <
∑

j≥1 Tj · I{Tj>c} < qb,
∑

j≥1 Tj · I{Tj≤c} < (1 − q)b).

(33)

At this stage, note that Π|(0,c] := {Tj : Tj ≤ c, j ≥ 1} and Π|(c,∞) := {Tj : Tj >
c, j ≥ 1}, which are the the restriction of Π to the intervals (0, c] and (c,∞)
respectively, are independent (Poisson) processes. Hence,

P(c <T1 < εa, a <
∑

j≥1 Tj · I{Tj>c} < qb,
∑

j≥1 Tj · I{Tj≤c} < (1− q)b)

=P(Π|(c,∞)(c,∞) ≥ 1, Π|(c,∞)(εa,∞) = 0, a <
∫

R+ xΠ|(c,∞)(dx) < qb)

· P(
∫

R+ xΠ|(0,c](dx) < (1− q)b). (34)

Being Π|(0,c] a Poisson process with intensity ρ( · ∩ (0, c]), the Laplace trans-
form of the sum of the points of Π|(0,c] is:

E[exp{−t
∫

R+ xΠ|(0,c](dx)}] = exp{−
∫

(0,c](1 − e−tx)ρ(dx)},

which converges to one as c ↓ 0, for every t > 0. Therefore,
∫

R+ xΠ|(0,c](dx)
converges to zero in probability. Hence, the probability P(

∫

R+ xΠ|(0,c](dx) <
(1 − q)b) is positive for every c in (0, c̄), for some c̄ > 0. On the basis of this
fact, together with (33) and (34), the proof can be completed showing that

P(Π|(c,∞)(c,∞) ≥ 1, Π|(c,∞)(εa,∞) = 0, a <
∫

R+ xΠ|(c,∞)(dx) < qb) > 0,
(35)

for some c > 0 smaller than c̄ and aε.
Recall that by (29), ρ(0, x) is infinite for every x > 0. So, in particular, it is not

zero. Hence, for every x > 0, there is a point of the support of ρ inside the interval
(0, x). On the basis of this fact, we can fix a point x in the support of ρ such that
0 < x < min{aε, qb− a}. Let k > 0 be integer such that a < kx < qb. Moreover,
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fix c > 0 smaller than x and set 0 < δ < min{b/(2k)− x, x− a/k, x− c, εa− x}.
In this way,

(k(x− δ), k(x + δ)) ⊂ (a, qb) (36)

and
(x− δ, x+ δ) ⊂ (c, εa). (37)

By (36), to prove (35), it will be sufficient to show that:

P(Π(c,∞) ≥ 1, Π(εa,∞) = 0, k(x− δ) <
∫

R+ xΠ|(c,∞)(dx) < k(x+ δ)) > 0,
(38)

for some c > 0 smaller than c̄ and aε.
Recall that Π|(c,∞) is distributed as a Bernoulli process conditionally on

Π(c,∞). For every integer m > 0, let (T1,m, . . . , Tm,m) be an m–tuple of in-
dependent and identically distributed random variables on (0,∞) such that
P(T1 ∈ A) = ρ(A ∩ (c,∞))/ρ(c,∞), for every Borelian A ⊂ (0,∞). So, the
probability in (38) becomes:

∑

m≥1

e−ρ(c,∞) ·
ρ(c,∞)m

m!
· P
(

max
1≤j≤m

Tj,m≤ εa, k(x− δ)<
∑m

j=1 Tj,m<k(x+ δ)
)

≥ e−ρ(c,∞) ·
ρ(c,∞)k

k!
· P
(

max
1≤j≤k

Tj,k ≤ εa, k(x− δ) <
∑k

j=1 Tj,k <k(x+ δ)
)

,

which by (37) is greater than or equal to

≥ e−ρ(c,∞) ·
ρ(c,∞)k

k!
· P
(

(x− δ) < Tj,k < (x + δ), j = 1, . . . , k
)

= e−ρ(c,∞) ·
ρ(x− δ, x+ δ)k

k!
,

which in turn is positive since x belongs to the support of ρ. This entails (38).
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