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1. Introduction

We report on an investigation into the extension of mean field variational Bayes
methodology to accommodate various continuous sparse signal shrinkage distri-
butions. Our findings are two-pronged. Firstly, MFVB can possess pitfalls when
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applied näıvely – that is, when using natural auxiliary variable representations
of continuous sparse signal distributions. Natural auxiliary variable representa-
tions are those that allow conjugate Gibbs sampling updates. The root cause is
strong posterior dependence among auxiliary variables. Secondly, remedies are
developed based on alternative auxiliary variable representations that remove
the posterior dependence problem. These remedies involve a new MFVB tool:
continued fraction approximations via Lentz’s Algorithm.

Mean field approximation is a versatile and principled approach to approxi-
mate Bayesian inference in graphical models (e.g. Wainwright and Jordan [31]).
Over the past decade or so it has become increasingly popular as a fast al-
ternative to Markov chain Monte Carlo (MCMC) for inference in hierarchical
Bayesian models, where it has become known as variational Bayes or, more de-
scriptively, mean field variational Bayes (MFVB). Much of the early MFVB
literature treated models with standard distributions such as the Dirichlet,
Gamma and Normal families (e.g. Attias [6]; Teschendorff et al. [29]; Flandin
and Penny [12]; McGrory and Titterington [23]; Consonni and Marin [10]). More
recently efforts have targeted effective incorporation of more elaborate distri-
butions into the MFVB framework such as the t, Laplace and Generalized Ex-
treme Value distributions (e.g. Archambeau and Bach [2]; Armagan [3]; Wand,
Ormerod, Padoan and Frürwirth [34]). An earlier reference on MFVB for an
elaborate distribution is Tipping and Lawrence [30], who treated the t distribu-
tion with fixed degrees of freedom.

Continuous sparse signal shrinkage distributions are a topical class of elabo-
rate distributions that, to date, have received little or no attention with regard
to MFVB methodology. The primary motivation for their development is regres-
sion analysis for wide data (“p ≫ n”) settings, but they can also be contem-
plated for Bayesian approaches to wavelet nonparametric and semiparametric
regression (e.g. Wand and Ormerod [32]). Examples of continuous sparse signal
distributions are:

• the Horseshoe distribution (Carvalho, Polson and Scott [9]),
• the Normal-Exponential-Gamma and Normal-Gamma distributions (Grif-
fin and Brown [15]), and
• the Generalized Double Pareto distribution (Armagan, Dunson and Lee [5]).

Several other examples are given in Polson and Scott [26]. In each of these
references, the estimation properties of such distributions, when used as priors
on coefficients in sparse signal regression models, are established. They rep-
resent purely continuous alternatives to so-called “slab-and-spike” priors such
as Laplace-Zero mixtures (e.g. Johnstone and Silverman [17, 18]). The relative
merits of the several options now available for coefficient priors in sparse signal
models are not studied here. Rather, we devise MFVB algorithms and assess
their quality once the shrinkage distribution has been chosen. Whilst we focus
on the three classes of distributions listed above, we expect that the lessons
apply generally to distributions of this type.

The current study is motivated by various versions of sparse signal regression,
where it is desirable to force many of the estimated regression coefficients to be
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zero or effectively zero. In the past two decades, several Bayesian and non-
Bayesian fitting methods for sparse regression have been developed. Given our
focus on MFVB fitting, our discussion here is confined to Bayesian approaches
to sparse regression. A generic form satisfied by many Bayesian sparse regression
models is

g(E(y|β0,β)) = 1β0 +Xβ

where y is vector of response variables, 1 is a vector of ones and X is an
n× p fixed design matrix and g is a link function. Situations for which a sparse
estimate of β is desirable include:

• the columns of X correspond to wavelet basis functions of the observed
values of a continuous predictor variable,
• X is very wide, in that p≫ n; i.e. there are many more candidate predic-
tors than observations.

Sparseness may be achieved within the Bayesian paradigm via a prior specifica-
tion of the form

βj
ind.∼ p(βj)

where p is a “slab-and-spike” density function:

p(x) = wpcts.(x) + (1 − w)δ0(x), 0 < w < 1,

with pcts. denoting a continuous density function. Johnstone and Silverman
[17, 18], for example, make a compelling case for use of such priors. As men-
tioned earlier, several purely continuous alternatives to “slab-and-spike” density
functions have been proposed in the last few years, and the versions studied here
are defined in Appendix A. They do not lead to exactly sparse posterior distri-
butions, but rather to “effectively” sparse results in that the posterior density
function of βj is very close to a point mass at zero. Despite this supposed
drawback, purely continuous priors have been shown to have good properties in
sparse signal contexts when p < n. For example, Carvalho, Polson and Scott [9]
prove that the Horseshoe prior has tail robustness and super-efficient conver-
gence properties. MCMC is the most common approach to Bayesian inference.
However, X can be extremely wide in certain areas of application such as ge-
nomics. This can cause MCMC to be unacceptably slow and recent research has
been concerned with fast MFVB alternatives in sparse signal regression (e.g.
Logsdon, Hoffman and Mezey [21]; Carbonetto and Stephens [8]; Wand and
Ormerod [32]).

Section 2 is this article’s centerpiece. We confine attention to simple uni-
variate models involving continuous sparse signal shrinkage distributions. This
means that the essence of MFVB for continuous sparse signal shrinkage can
be delved into with minimal structure and notation. The locality property of
MFVB (e.g. Wand et al. [34], Section 3) means that the lessons and method-
ology apply to other Bayesian models containing distributions of this type. We
provide theory and numerical studies that point to serious pitfalls when MFVB
is used näıvely, and then describe remedies. Some brief remarks on implications
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for sparse signal regression are made in Section 3. Appendix A contains nec-
essary backgound material on special functions, distributional definitions and
results. Some background on MFVB is also given. The derivations of the article’s
MFVB algorithms are given in Appendix B. Appendix C contains a proof of our
main theoretical result, Theorem 1, concerning pitfalls of MFVB for continuous
sparse signal shrinkage.

2. Univariate scale models

In a vein similar to Wand et al. [34], we now concentrate on simple univariate
scale models involving continuous sparse signal shrinkage distributions. These
allow a deeper understanding of the issues, with a minimal amount of notational
overhead. Unlike Wand et al. [34], the location parameter is taken to be zero –
which is in keeping with the use of such distributions in sparse signal regression.
Definitions and results needed for this section are given in Appendix A.

2.1. Horseshoe distribution

Consider the following Bayesian location-scale model for a univariate random
sample from the Horseshoe distribution:

xi|σ ind.∼ Horseshoe(0, σ), σ ∼ Half-Cauchy(A), (2.1)

where A > 0 is a hyperparameter.
Table 1 lists three new models that are equivalent to (2.1). The equivalences

are due to Results 1a, 1b and 4 given in Appendix A. Model I introduces the
single auxiliary variable a. Model II adds the b = (b1, . . . , bn) vector of auxiliary
variables. In Model III a third set of auxiliary variables, corresponding to the
vector c = (c1, . . . , cn), is added. Figure 1 shows the directed acyclic graphs
corresponding to Models I, II and III.

An attraction of Model III is that each of the conditional distributions belong
to the Normal and Gamma families. This translates to the full conditional dis-
tributions being standard distributions and Gibbs sampling being exact. Such
is not the case for Models I and II.

Table 1

Three auxiliary variable models that each give rise to the Horseshoe model (2.1)

Model I Model II Model III

xi|σ ind.∼ Horseshoe(0, σ) xi| σ, bi ind.∼ N(0, σ2/bi) xi|σ, bi ind.∼ N(0, σ2/bi)

σ2| a ∼ IG( 1
2
, a−1) σ2| a ∼ IG( 1

2
, a−1) σ2| a ∼ IG( 1

2
, a−1)

a ∼ IG( 1
2
, A−2) a ∼ IG( 1

2
, A−2) a ∼ IG( 1

2
, A−2)

p(bi) = π−1b
−1/2
i (bi + 1)−1, bi > 0 bi| ci ind.∼ Gamma( 1

2
, ci)

ci
ind.∼ Gamma( 1

2
, 1)
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Fig 1. Directed acyclic graphs corresponding to the three models listed in Table 1.

Now consider MFVB approximation of the joint posterior density functions
of σ and the auxiliary variables, according to the following product assumptions:

p(σ, a|x) ≈ q(σ) q(a) for Model I,

p(σ, a, b|x) ≈ q(σ) q(a, b) for Model II,

p(σ, a, b, c|x) ≈ q(σ, c) q(a, b) for Model III.

(2.2)

Under Model I, the optimal q-densities satisfy

q∗(σ2) ∝ (σ2)−
1
2 (n+3) exp

{
−µq(1/a)/σ

2 +

n∑

i=1

log pHS(xi/σ)

}
.

The normalizing factor and moments of q∗(σ2) require numerical integration
methods. The integrands involve n evaluations of the exponential integral func-
tion. This makes Model I quite challenging for MFVB and full assessment of
the feasibility of such an approach is omitted here.

The appeal of Models II and III is the closed-form q-density for σ2:

q∗(σ2) ∼ IG

(
1
2 (n+ 1), µq(1/a) +

1
2

n∑

i=1

x2i µq(bi)

)
. (2.3)

We work with σ2, rather than σ, due to q∗(σ2) being in a standard density
function family.

The derivation of (2.3), as well as required optimal q-densities and relevant
moments of the auxiliary variables, are given in Appendix B. These results give
rise to Algorithm 1 for MFVB-approximate Bayesian inference for σ2. We note
that the Model III branch of Algorithm 1 is, to some degree, a special case of a
procedure given in Section 4.1 of Armagan, Dunson and Clyde [4].

Model II requires repeated evaluation of the function Q, defined by (A.3) in
Appendix A. Lentz’s Algorithm (Lentz [19]; Press et al. [27], pp. 169–171) is an
effective method for continued fraction approximation of Q(x) to a prescribed
accuracy. Algorithm 2 provides the details. Figure 2 shows that convergence is
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Algorithm 1 Mean field variational Bayes algorithm for determination of
q∗(σ2) from data modelled according to (2.1). The schemes differ according to
which auxiliary variable representations, Model II or Model III, from Table 1 is
used.

Initialize: µq(1/σ2) > 0.
If Model III, initialize: µq(ci)

> 0, 1 ≤ i ≤ n.
Cycle:

µq(1/a) ← A2/{A2µq(1/σ2) + 1}.
For i = 1, . . . , n:

Gi ← 1
2
µq(1/σ2) x

2
i

if Model II: µq(bi)
← {GiQ (Gi)}−1 − 1

if Model III: µq(bi)
← 1

/ {

Gi + µq(ci)

}

; µq(ci)
← 1

/ {

µq(bi)
+ 1

}

µq(1/σ2) ← (n+ 1)
/

{

2µq(1/a) +
∑n

i=1 x2
i µq(bi)

}

until the increase in p(x; q) is negligible.
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Fig 2. The number of iterations required for Lentz’s Algorithm to converge when used to
approximate Q(x). The convergence criteria correspond to the default settings in Algorithm 2.

quite rapid for x bigger than about 1. For small 0 < x ≤ 1, we recommend direct
computation of Q(x). In this case the underflow threat, described in Appendix
A.1.1, is absent since since exp(−x) is close to 1.

It remains to discuss computation of the lower bound on the marginal
log-likelihood, log p(x; q). The results in Appendix B lead to the explicit ex-
pressions:

log p(x; q) =





log p(x; q,BASE)− n log(π) for

+
∑n

i=1 [Gi µq(bi) + log{Q(Gi)}] Model II

log p(x; q,BASE)− n log(π) +∑n
i=1[µq(bi){Gi+ for

µq(ci)} − log(Gi + µq(ci))− log(µq(bi) + 1)] Model III
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Algorithm 2 Algorithm for stable and efficient computation of Q(x).

Inputs (with defaults): x > 0, ε1(10−30), ε2(10−7),

If x > 1 then (use Lentz’s Algorithm)

fprev ← ε1 ; Cprev ← ε1 ; Dprev ← 0 ; ∆ = 2 + ε2 ; j ← 1

cycle while |∆− 1| ≥ ε2:

j ← j + 1 ; Dcurr ← x+ 2j − 1− (j − 1)2Dprev

Ccurr ← x+ 2j − 1− (j − 1)2/Cprev

Dcurr ← 1/Dcurr ; ∆← Ccurr Dcurr ; fcurr ← fprev ∆

fprev ← fcurr ; Cprev ← Ccurr ; Dprev ← Dcurr

return 1/(x+ 1 + fcurr)

Otherwise (use direct computation)

return ex E1(x).

where

log p(x; q,BASE) ≡ log Γ
(
n+1
2

)
− n

2 log(2π)− log(π) − log(A)

− log(µq(1/σ2) +A−2) + µq(1/a) µq(1/σ2)

− n+1
2 log

(
µq(1/a) +

1
2

∑n
i=1 x

2
i µq(bi)

)
.

(2.4)

2.1.1. Simplicity comparison of Models II and III

Perusal of Algorithm 1 shows that Model III produces the simplest MFVB
scheme since it involves only standard algebraic calculations such as taking
square-roots.

Model II is obviously not as simple as Model III because of the requirement to
compute Q for each 1 ≤ i ≤ n and for each coordinate ascent iteration. However,
as indicated by Figure 2, Q evaluations are relatively cheap, and stable, for
arguments exceeding 1. Special function software such as the R (R Development
Core Team [28]) function expint E1() in the package gsl allows efficient and
stable computation of Q for small x.

2.1.2. Simulation comparison of Models II and III

Models II and III were compared via simulation. We generated 1000 data-sets
according to

xi ∼ Horseshoe(0, 1), 1 ≤ i ≤ n,
and sample sizes n = 100 and n = 1000. Hence σ2 has a “true value” of 1. The
accuracy of each MFVB approximation q∗(σ2) was assessed using

accuracy ≡ 1− 1
2

∫
∞

0

∣∣ q∗(σ2)− pMCMC(σ
2|x)

∣∣ d(σ2)
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Table 2

Average (standard deviation) accuracy and percentage coverage of true σ2 value by
approximate 95% credible intervals based on MFVB for a simulation of size 1000 from (2.1)

n = 100 n = 1000
accuracy coverage accuracy coverage

Model II 54.3 (1.4) 55% 56.8 (0.9) 58%
Model III 6.3 (0.9) 4% 0.0 (0.0) 0%
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Fig 3. Comparison of pMCMC(σ2|x) and two q∗(σ2) densities, based Model II and Model
III MFVB, for four replications from the simulation study corresponding to Table 2 with
n = 1000.

where pMCMC(σ
2|x) is an accurate MCMC-based approximation to p(σ2|x), ob-

tained using WinBUGS (Lunn et al. [22]) with R interfacing via the BRugs pack-
age (Ligges et al. [20]). MCMC samples of size 10000 were generated, with the
first 5000 values discarded as burn-in and the remaining 5000 thinned by a factor
of 5. Kernel density estimation, with direct plug-in bandwidth selection using the
R package KernSmooth (Wand and Ripley [35]), was used to obtain pMCMC(σ

2|x)
over a fine grid of σ2 values. Note that 0 ≤ accuracy ≤ 1, with an accuracy score
of 1 implying perfect correspondence between the MFVB and MCMC approxi-
mations. We also kept track of coverage of the MFVB-approximate 95% credible
intervals.

Table 2 summarizes the accuracy and coverage percentages for Model II and
Model III MFVB. The Model III results are abysmal. In particular, none of the
n = 1000 credible intervals include the true value of σ2 and each of the q∗(σ2)
densities has 0% accuracy. Model II has reasonably acceptable accuracy and
interval coverage.

Figure 3 provides graphical comparison between pMCMC(σ
2|x) and q∗(σ2) for

four replications. The Model III q∗(σ2) densities have their probability mass
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Fig 4. Plot of gIII(x)/gII(x) for the functions gII and gIII defined by (2.6).

tightly centered on about 0.4, with negligible mass including the true value of 1.
However, the Model II q∗(σ2) densities tend to be centered on 1 albeit with a
lower amount of spread compared with pMCMC(σ

2|x).

2.1.3. Theoretical comparison of Models II and III

The simulation comparison of Section 2.1.2 shows that the most computation-
ally convenient MFVB scheme, that based on Model III, has poor practical
performance compared with that based on Model II. In this section we provide
some theoretical explanations for these differences.

Our first theoretical observation is that the updates for µq(bi) in Algorithm
1 may be written as:

µq(bi) ←
{

gII(Gi) for Model II

gIII(Gi) for Model III
(2.5)

where

gII(x) ≡ {xQ(x)}−1 − 1 and gIII(x) ≡
√

1

x
+

1

4
− 1

2
. (2.6)

The expression for gIII(x) follows from algebraic reduction of the two equations
in µq(bi) and µq(ci) in the Model III updates.

The interpretation of (2.5) is that use of the ci auxiliary variables induces
the approximation of gII by the simpler gIII. But, as shown in Figure 4, the
functions differ considerably for low positive arguments. This helps explain the
poor performance of the Model III MFVB algorithm exhibited in Table 2 and
Figure 3.

The root cause of this discrepancy is the strong posterior dependence between
the bi and ci auxiliary variables, whereas MFVB assumes that there is no such
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Fig 5. MCMC samples of size 1000 from the distribution {(log(1/b), log(c))|x = x0} for
x0 = 1, 0.1, 0.01, 0.001. The corresponding sample correlations are also shown.

dependence. This dependence can be described in simple terms by considering
random variables x, b and c such that

x| b ∼ N(0, 1/b), b | c ∼ Gamma(12 , c), c ∼ Gamma(12 , 1). (2.7)

Figure 5 shows samples of {(log(1/b), log(c))|x = x0} for x0 = 1,0.1,0.01,0.001,
along with corresponding sample correlation values. As x0 approaches 0, the
sample correlations are seen to get closer to 1.

The behavior exhibited in Figure 5 is described by Theorem 1, which uses
Corr(u, v|w) to denote the conditional correlation between two random variables
u and v, given w:

Theorem 1. Consider random variables x, b and c such that

x| b ∼ N(0, 1/b), b | c ∼ Gamma(12 , c), c ∼ Gamma(12 , 1).

Then
lim
x0→0

Corr(log(1/b), log(c)|x = x0) = 1.
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Table 3

Three auxiliary variable models that each give rise to the Negative-Exponential-Gamma
model (2.8)

Model I Model II Model III

xi|σ ind.∼ NEG(0, σ, λ) xi|σ, bi ind.∼ N(0, σ2/bi) xi|σ, bi ind.∼ N(0, σ2/bi)

σ2| a ∼ IG( 1
2
, a−1) σ2| a ∼ IG( 1

2
, a−1) σ2| a ∼ IG( 1

2
, a−1)

a ∼ IG( 1
2
, A−2) a ∼ IG( 1

2
, A−2) a ∼ IG( 1

2
, A−2)

p(bi) = λ bλ−1
i (1 + bi)

−λ−1, bi > 0 bi|ci ind.∼ IG(1, ci)

ci
ind.∼ Gamma(λ, 1)

A proof of Theorem 1 is given in Appendix C. Theorem 1 verifies the behav-
ior exhibited in Figure 5 and reinforces the inappropriateness of Model III for
MFVB.

2.2. Normal-Exponential-Gamma distribution

As in Section 2.1, we consider the model for a univariate random sample, this
time arising from the Normal-Exponential-Gamma distribution:

xi|σ ind.∼ NEG(0, σ, λ), σ ∼ Half-Cauchy(A). (2.8)

Table 3 lists three models that are equivalent to (2.8). The directed acyclic
graphs in Figure 1 also convey the conditional dependence structure of Models
I, II and III in Table 3.

Again we consider MFVB approximation of the joint posterior density func-
tion of σ2, according to product restrictions (2.2). We eliminate Model I imme-
diately since, as for the Horseshoe distribution, the MFVB equations are very
computationally challenging.

Models II and III representations lead to q∗(σ2) having an Inverse-Gamma
distribution of the form (2.3). The q-density can be determined from Algo-
rithm 3. Note that, as for Algorithm 1, the Model III branch of Algorithm 1 is,
to some degree, a special case of a procedure given in Section 4.1 of Armagan,
Dunson and Clyde [4].

Derivation of the updates in Algorithm 3 is given in Appendix B. The lower
bounds on the marginal log-likelihood can be shown to have explicit expressions

log p(x; q) =





log p(x; q,BASE) + n log(λ)

+n(λ+ 1
2 ) log(2) + n log{Γ(λ+ 1

2 )} for

+
∑n

i=1 [{µq(bi) +
1
2}Gi + log{D−2λ−1(

√
2Gi)}] Model II

log p(x; q,BASE) + n log(λ) + n
2 {1 + log(π)} for

−∑n
i=1

[
1
2 log{µq(ci)}+ (λ+ 1) log{µq(1/bi) + 1}

]
Model III

where log p(x; q,BASE) is given by (2.4).
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Algorithm 3 Mean field variational Bayes algorithm for determination of
q∗(σ2) from data modelled according to (2.8). The schemes differ according to
which auxiliary variable representations, Model II or Model III, from Table 3 is
used.

Initialize: µq(1/σ2) > 0.
If Model III, initialize: µq(ci)

> 0, 1 ≤ i ≤ n.
Cycle:

µq(1/a) ← A2/{A2µq(1/σ2) + 1}.
For i = 1, . . . , n:

Gi ← 1
2
µq(1/σ2) x

2
i

if Model II: µq(bi)
← (2λ + 1)R2λ

(√
2Gi

)

/√
2Gi

if Model III: µq(bi)
←

√

µq(ci)
/Gi ; µq(1/bi)

← 1/µq(bi)
+ 1/{2µq(ci)

}
µq(ci)

← (λ+ 1)/{µq(1/bi)
+ 1}

µq(1/σ2) ← (n+ 1)
/

{

2µq(1/a) +
∑n

i=1 x2
i µq(bi)

}

until the increase in p(x; q) is negligible.

Algorithm 4 Algorithm for stable and efficient computation of Rν(x).

Inputs (with defaults): x ≥ 0, λ > 0, ε1(10−30), ε2(10−7),

If (ν > 20) or (x > 0.2) then (use Lentz’s Algorithm)

fprev ← ε1 ; Cprev ← ε2 ; Dprev ← 0 ; ∆ = 2 + ε2 ; j ← 1

cycle while |∆− 1| ≥ ε2:

j ← j + 1 ; Dcurr ← x+ (ν + j)Dprev ; Ccurr ← x+ (ν + j)/Cprev

Dcurr ← 1/Dcurr ; ∆← Ccurr Dcurr ; fcurr ← fprev ∆

fprev ← fcurr ; Cprev ← Ccurr ; Dprev ← Dcurr

return 1/(x+ fcurr)

Otherwise (use direct computation)

return D−ν−2(x)/D−ν−1(x).

In the case of Model II, Algorithm 3, with ν = 2λ, should be accompanied
by Algorithm 4 to handle the R2λ evaluations. Note that Rν is defined in Ap-
pendix A.

2.2.1. Simplicity comparison of Models II and III

The comments that we made in Section 2.1.1 for the Horseshoe distribution also
apply to MFVB for models containing Negative-Exponential-Gamma distribu-
tions.

Model II requires repeated evaluation of R2λ, defined in Appendix A, via
Algorithm 4. Note the algorithm uses direct evaluation of the ratio D−2λ−2(x)/



1126 S. E. Neville et al.

λ

a
c
c
u
ra

c
y

20

40

60

80

●

●

●

●

●

Model III

n=100

●

●

●

●

●

Model II

n=100

0.1 0.2 0.4 0.8 1.6
● ●

●

●

●

Model III

n=1000

0.1 0.2 0.4 0.8 1.6

20

40

60

80

●

●

●

●

●

Model II

n=1000

Fig 6. Side-by-side boxplots of accuracy values for the simulation study described in the text.

D−2λ−1(x) only for x ≤ 0.2 and λ < 40. Otherwise Lentz’s Algorithm is used.
Careful checking of Lentz’s Algorithm, via plots similar to Figure 2, found con-
vergence to be quite rapid with these cut-offs. In the case of R implemen-
tation, direct evaluation for low x and λ can be handled using the function
whittakerW() in the package fAsianOptions, as explained in Appendix A.

2.2.2. Simulation comparison of Models II and III

Models II and III were compared via a simulation study analogous to that
described in Section 2.1.2. We generated 500 data-sets for sizes n = 100 and
n = 1000 according to

xi ∼ NEG(0, 1, λ), 1 ≤ i ≤ n,

and with
λ ∈ {0.1, 0.2, 0.4, 0.8, 1.6}.

Figure 7 compares the various approximations to p(σ2|x) for four replications
from the simulation study that produced Figure 6 for λ = 0.1. The q∗(σ2) den-
sity based on Model III is seen to suffer from a pronounced locational shift to the
right of pMCMC(σ

2|x). On other hand, the Model II q∗(σ2) tends to have its cen-
tral location matching that of pMCMC(σ

2|x), although its spread is considerably
lower.

Finally, we compared q∗(σ2) for Models II and III in terms of 95% credible
interval coverage of the known true value of σ2. Table 4 shows the resulting
coverage percentages.
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Fig 7. Comparison of pMCMC(σ2|x) and two q∗(σ2) densities, based on Model II and Model
III MFVB, for four replications from the simulation study described in the text, with λ = 0.1
and n = 1000.

Table 4

Percentage coverage of true σ2 value by approximate 95% credible intervals based on MFVB
approximate posterior density functions with n = 1000

value of λ 0.1 0.2 0.4 0.8 1.6
Model II 31 47 56 64 74
Model III 0 0 1 6 21

Table 4 reveals that Model III can lead to very poor approximate inference
when λ is low.

2.2.3. Theoretical comparison of Models II and III

Note that the update for µq(1/bi) in Algorithm 3 may be written as:

µq(1/bi) ←
{

gIIλ (Gi) for Model II

gIIIλ (Gi) for Model III
(2.9)

where

gIIλ (x) ≡
(2λ+ 1)R2λ(

√
2x)√

2x
and gIIIλ (x) ≡

√
2λ+ 1

2x
+

1

4
− 1

2
.

The expression for gIIIλ (x) follows from algebraic reduction of the three equa-
tions in µq(bi), µq(ci) and µq(1/bi) corresponding to the Model III updates. The
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Fig 8. Plots of gIIIλ (x)/gIIλ (x) for λ ∈ {0.1, 0.2, 0.4, 0.8, 1.6}.

gIIIλ expression is quite similar to that for gIII in Section 2.1.3 for the Horseshoe
theoretical comparison and its interpretation as an approximation to gIIλ is anal-
ogous to the one described there. In Figure 8 these ratios of the two functions
are compared across different values of λ. It is apparent that the gap between
gIIλ and gIIIλ widens as λ becomes small. This transfers to worse comparative
performance of Method III for lower values of λ.

Figure 9 shows MCMC-based samples from the posterior distribution of
(log(bi), log(ci)) for simulated data generated according to (2.8) with n = 5
and the same values of λ as Figure 8. Note that the posterior correlation is
quite strong for λ = 1.6, and increases to be near perfect correlation as λ de-
creases. Such behavior is directly at odds with the q(b, c) = q(b) q(c) product
restriction on which Model III MFVB is based.

It is conjectured that analogues of Theorem 1 also hold for Model III in
the NEG case. Numerical corroboration of such conjectures are provided in
Neville [24].

2.3. Generalized Double Pareto distribution

The univariate location-scale model that we consider is:

xi|σ ind.∼ GDP(0, σ, λ), σ ∼ Half-Cauchy(A). (2.10)

Table 5 lists three alternative representations of this model. The directed acyclic
graph structure depicted in Figure 1 applies to these models as well.

Algorithm 5 sets out the MFVB algorithms corresponding to Models II
and III. Justification is given in Appendix B. Note that Algorithm 5 uses the
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Fig 9. MCMC samples from the posterior distributions of (log(bi), log(ci)) for simulated data
generated according to (2.8) with varying values of λ and x0. The sample correlations are
also shown.

Table 5

Three auxiliary variable models that each give rise to the Generalized Double Pareto
model (2.10)

Model I Model II Model III

xi| σ ind.∼ GDP(0, σ, λ) xi| σ, bi ind.∼ N(0, σ2/bi) xi| σ, bi ind.∼ N(0, σ2/bi)

σ2| a ∼ IG( 1
2
, a−1) σ2| a ∼ IG( 1

2
, a−1) σ2| a ∼ IG( 1

2
, a−1)

a ∼ IG( 1
2
, A−2) a ∼ IG( 1

2
, A−2) a ∼ IG( 1

2
, A−2)

p(bi) =
1
2
(λ + 1)λλ+1 b

(λ−2)/2
i bi|ci ind.∼ IG(1, 1

2
c2i )

× eλ
2 bi/4D

−λ−2(λ
√
bi), bi > 0 ci

ind.∼ Gamma(λ, λ)

result

D−λ−4(x)/D−λ−2(x) = {1− xRλ+1(x)}/(λ+ 3), λ > 0,

which follows from the recurrence formula for parabolic cylinder functions (Grad-
shteyn and Ryzhik [14]).
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Algorithm 5 Mean field variational Bayes algorithm for determination of
q∗(σ2) from data modelled according to (2.10). The schemes differ according
to which auxiliary variable representations, Model II or Model III, from Table 5
is used.

Initialize: µq(1/σ2) > 0.
If Model III, initialize: µq(ci)

> 0, 1 ≤ i ≤ n.
Cycle:

µq(1/a) ← A2/{A2µq(1/σ2) + 1}.
For i = 1, . . . , n:

Gi ← 1
2
µq(1/σ2) x

2
i

if Model II: µq(bi)
← λ+1√

2Gi(λ+
√

2Gi)

if Model III: µq(bi)
←

√

µq(c2
i
)/(2Gi) ; µq(1/bi)

← 1/µq(bi)
+ 1/µq(c2

i
)

µq(c2
i
) ← (λ+ 2)[1− {λ/√µq(bi)

}Rλ+1(λ/
√
µq(bi)

)]/µq(bi)

µq(1/σ2) ← (n+ 1)
/

{

2µq(1/a) +
∑n

i=1 x
2
i µq(bi)

}

until the increase in p(x; q) is negligible.

log p(x; q) =





log p(x; q,BASE) + n
2 log(π)

+n(λ+ 1) log(λ)− n
2 (3λ+ 4) log(2)

+
∑n

i=1 [µq(bi)Gi − 1
2 (λ + 1) log(Gi) for

+ log{2F1(
1
2λ+ 1; 12λ+ 1

2 ;λ+ 2, 1− λ2/(2Gi))}] Model II

log p(x; q,BASE) + n[λ log(λ) + log{λ(λ+ 1)}
− log(2) + 1

2 log(π) +
1
2 ]

−∑n
i=1[

1
2 (λ+ 1) log{µq(1/bi)} − 1

4λ
2/µq(1/bi) for

− log D−λ−2(λ/
√
µq(1/bi))] Model III

where log p(x; q,BASE) is given by (2.4).

2.3.1. Comparison of Models II and III

MFVB for GDP has the unexpected feature of being simpler for Model II than
it is for Model III, since the latter involves special functions whereas the for-
mer does not. This represents a reversal of relative complexities compared with
the Horseshoe and NEG cases. There is no compelling reason for introduction
of the ci auxiliary variables and Model III does not seem worthy of further
consideration.

Fuller details, and associated numerical work, are provided in Neville [24].

2.4. Conclusion

The numerical and theoretical results presented in Sections 2.1, 2.2 and 2.3 all
point to the same conclusion: the two-level auxiliary variable representations of
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continuous sparse signal shrinkage distributions, that involve simple distribu-
tions and give rise to simple MCMC algorithms, lead to serious pitfalls when
used in MFVB algorithms. On the other hand, one-level auxiliary variable rep-
resentations are reasonably well-behaved and, hence, provide remedies to these
pitfalls.

3. Implications for sparse signal regression

The findings laid out in Section 2 have immediate implications for MFVB fitting
and inference in sparse signal regression with continuous sparse signal shrinkage
priors. Because of the locality property of MFVB, the pitfalls of high posterior
dependence among auxiliary variables can impact the quality of inference for
parameters close to those auxiliary variables on the regression model’s directed
acyclic graph.

We confine discussion here to the Horseshoe prior. Similar comments apply to
the Normal-Exponential-Gamma, Generalized Double Pareto and other similar
priors. Consider the sparse signal regression model

y|β0,β, σε ∼ N(1 β0 +X β, σ2
ε I),

β0 ∼ N(0, σ2
β0
), βj |σβ ind.∼ Horseshoe(0, σβ), 1 ≤ j ≤ p,

σε ∼ Half-Cauchy(0, Aε), σβ ∼ Half-Cauchy(0, Aβ)

(3.1)

where X is n× p and σ2
β0
, Aε, Aβ > 0 are hyperparameters. Analogously to the

univariate location-scale models, Model (3.1) has auxiliary variable representa-
tions based on Results 1a and 1b being applied to the Horseshoe distribution.
We will continue to use the Model II and Model III labeling. For example, Model

III involves replacement of βj
ind.∼ Horseshoe(0, σβ) by

βj |σβ, bi ind.∼ N(0, σ2
β/bi), bj| cj ind.∼ Gamma(12 , ci) and cj

ind.∼ Gamma(12 , 1).

We also continue to use Result 4 for auxiliary variable representation of Half
Cauchy distributions. Figure 10 shows the corresponding directed acyclic graphs.

The pitfalls caused by the high correlation between the bj and cj described
in Section 2 still apply to the Model III version of (3.1), and this can impact
the inference for nodes close to b and c on the graph — namely β and σβ.

We ran a small simulation study involving wavelet regression to see if, and to
what degree, Model II and Model III differ in terms of quality of the regression
fit. We generated 1000 samples according to

yi = fWO(xi) + εi, 1 ≤ i ≤ n,

where xi ∼ Uniform(0,1) and εi ∼ N(0, 1) and n ∈ {1000, 5000, 10000}. Here
fWO is the jagged/jumpy regression function used throughout Wand and Orme-
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Fig 10. Directed acyclic graphs corresponding to Model II and Model III representations
of (3.1).

rod [32] and defined by

fWO(x) ≡ 18
[√

x(1 − x) sin(1.6π/(x+ 0.2)) + 0.4 I(x > 0.13)

− 0.7 I(0.32 < x < 0.38) + 0.43{(1− |(x− 0.65)/0.03|)+}4

+ 0.42{(1− |(x− 0.91)/0.015|)+}4
]
, 0 < x < 1,

where I(P) = 1 if P is true and zero otherwise. Estimation of fWO involved
MFVB fitting of (3.1) with X containing 255 Daubechies 5 wavelet basis func-
tions applied to the xis using the construction described in Section 3.1 of Wand
and Ormerod [32] with L = 8 levels. The quality of the resulting estimator, f̂WO,
was measured using the average squared error:

n−1
n∑

i=1

{f̂WO(xi)− fWO(xi)}2.

Figure 11 provides a visual summary of the simulation results, with the ratios of
the average squared error values plotted as boxplots for each sample size. Model
II is the clear winner, with a superior average squared error performance across
all 1000 replications. The advantage of Model II is seen to be greater for lower
sample sizes.

We are planning to conduct a large-scale simulation to assess the fuller im-
plications of Model II versus Model III for sparse signal regression, particularly
when p is very high, but this is yet to be carried out.

Appendix A: Background

In this appendix we assemble all special function and distributional definitions
and results required for the study given in Section 2. We also provide a brief
description of mean field variational Bayes.
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A.1. Special function definitions

We now define all special functions used in later sections. We follow the con-
ventions and notation of Gradshteyn and Ryzhik [14]. Their evaluation in the
R computing environment (R Development Core Team, 2014 [28]), which is now
ubiquitous in mainstream Statistics, is also dealt with.

The exponential integral function of order 1, E1, is defined by

E1(x) ≡
∫

∞

x

e−t

t
dt, x ∈ R, x 6= 0.

Evaluation of E1 is supported by the function expint E1() in the R package gsl
(Hankin [16]), which uses the GNU Scientific Library (Galassi et al. [13]).

The parabolic cylinder function of order ν ∈ R, is denoted by Dν . The
parabolic cylinder functions of negative order admit the integral expression

Dν(x) = Γ(−ν)−1 exp(−x2/4)
∫

∞

0

t−ν−1 exp(−xt− 1
2 t

2) dt, ν < 0, x ∈ R.

Note that only such negative order members of the parabolic cylinder family
arise in the present article. Consequently, we have the relationship

∫
∞

0

xp exp(qx− rx2) dx = (2r)−(p+1)/2Γ(p+ 1) exp{q2/(8r)}
×D−p−1(−q/

√
2r) (A.1)

for p > −1, q ∈ R, r > 0. Note that

Dν(x) = 2ν/2+1/4Wν/2+1/4,−1/4(
1
2 x

2)/
√
x, x > 0, (A.2)
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where Wk,m is a confluent hypergeometric function as defined in Whittaker
and Watson [36]. Due to (A.2) and Wk,m being supported by the R function
whittakerW() within the package fAsianOptions (Wuertz et al. [37]), evaluation
of Dν(x), for ν ∈ R, x > 0, can be achieved via:

library(fAsianOptions)

2^(nu/2+1/4)*Re(whittakerW(x^2/2,nu/2+1/4,-1/4))/sqrt(x)

where nu and x denote the respective values of ν and x.
Gauss’s hypergeometric function of order (α, β, γ) has an infinite series defi-

nition (Gradshteyn and Ryzhik [14], but has the integral representation

2F1(α, β; γ;x) =
Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0

(1− tx)−αtβ−1(1− t)γ−β−1dt

for γ > β > 0. Section 9.130 of Gradshteyn and Ryzhik [14] gives conditions
under which 2F1(α, β; γ;x) converges. Evaluation of 2F1(α, β; γ; ·) is supported
by the function hyperg 2F1 in the R package gsl.

A.1.1. Additional function definitions and continued fraction representations

The following new function definitions permit convenient listing and analysis of
our MFVB algorithms in Sections 2.1–2.3:

Q(x) ≡ ex E1(x), x > 0,

and Rν(x) ≡ D−ν−2(x)

D−ν−1(x)
, ν > 0, x > 0.

(A.3)

Whilst both of these functions are simple forms involving special functions, care
needs to be taken with their computation, as we now explain.

First note that Q can be written as

Q(x) = E1(x)

exp(−x) , x > 0. (A.4)

As is well-known, the denominator on the right-hand side of (A.4) is strictly
positive, and rapidly approaches zero as x→∞. Unfortunately, the numerator
has the same properties, and accurate evaluation of the ratio is impeded by
underflow for large x. A remedy would be to work with log{E1(x)}, but we know
of no established software for accurate computation of this function for large
positive x. Fortunately, Q(x) admits the simple continued fraction expansion:

Q(x) = 1

x+ 1− 12

x+ 3−
22

x+ 5−
32

x+ 7− · · ·

(A.5)
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(Equation (14.1.23) of Cuyt et al. [11]).
Analogous underflow problems afflict direct computation of Rν(x), and for

its stable computation we call upon:

Rν(x) =
1

x+
ν + 2

x+
ν + 3

x+
ν + 4

x+ · · ·

(A.6)

(Equation (16.5.7) of Cuyt et al. [11]).
Algorithms 2 and 4 achieve practical computation of Q and Rν based on

these continued fraction representations.
A succinct summary of continued fraction enhancement of Bayesian comput-

ing is given in Wand and Ormerod [33].

A.2. Distributional definitions and results

Mean field variational Bayes for models containing continuous sparse shrink-
age distributions depend on certain special functions and distributional results,
which we give here.

A.2.1. Continuous sparse signal shrinkage density functions

The standard Horseshoe density function is

pHS(x) = (2π3)−1/2 exp(x2/2)E1(x
2/2). (A.7)

If the random variable x has density function σ−1pHS((x− µ)/σ) then we write

x ∼ Horseshoe(µ, σ).

The standard Normal-Exponential-Gamma density function, with shape pa-
rameter λ > 0, is

pNEG(x;λ) = π−1/2λ 2λΓ(λ + 1
2 ) exp(x

2/4)D−2λ−1(|x|). (A.8)

If the random variable x has density function σ−1pNEG((x − µ)/σ;λ) then we
write

x ∼ NEG(µ, σ, λ).

The standard Generalized Double Pareto density function is

pGDP(x;λ) =
1

2(1 + |x|/λ)λ+1
. (A.9)

If the random variable x has density function σ−1pGDP((x−µ)/σ) then we write

x ∼ GDP(µ, σ, λ).
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Fig 12. Left panel: the standard Horseshoe density function. Middle panel: three standard
Normal-Exponential-Gamma density functions with varying shape parameter λ. Right panel:
three standard Double Generalized Pareto density functions with varying shape parameter λ.

Figure 12 depicts standard (µ = 0, σ = 1) Horseshoe, Normal-Exponential-
Gamma and Generalized Double Pareto density functions with varying values
of corresponding shape parameters. For the Normal-Exponential-Gamma and
Generalized Double Pareto distributions a decrease of the shape parameter λ
results in a density function having higher kurtosis.

A.2.2. Related distributional results

The notation v ∼ Gamma(A,B) means that v has a Gamma distribution with
shape parameter A > 0 and rate parameter B > 0. The corresponding density
function is

p(v) = BAΓ(A)−1vA−1 exp(−Bv), v > 0.

The notation v ∼ IG(A,B) means that v has an Inverse-Gamma distribution
with shape parameter A > 0 and rate parameter B > 0. The corresponding
density function is

p(v) = BAΓ(A)−1v−A−1 exp(−B/v), v > 0.

Note that v ∼ IG(A,B) if and only if 1/v ∼ Gamma(A,B).

Result 1a. Let x, b and c be random variables such that

x| b ∼ N(µ, σ2/b), b | c ∼ Gamma(12 , c) and c ∼ Gamma(12 , 1).

Then x ∼ Horseshoe(µ, σ).

Result 1b. Let x and b be random variables such that

x| b ∼ N(µ, σ2/b) and p(b) = π−1b−1/2(b+ 1)−1, b > 0.

Then x ∼ Horseshoe(µ, σ).
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Results 1a and 1b follow from results on the Horseshoe distribution given in
Carvalho, Polson and Scott [9] as well as Proposition 1 of Armagan, Dunson
and Clyde [4] or Result 5 of Wand et al. [34].

Result 2a. Let x, b and c be random variables such that

x| b ∼ N(µ, σ2/b), b | c ∼ IG(1, c) and c ∼ Gamma(λ, 1).

Then x ∼ NEG(µ, σ, λ).

Result 2b. Let x and b such that

x| b ∼ N(µ, σ2/b) and p(b) = λ bλ−1 (b+ 1)−λ−1, b > 0.

Then x ∼ NEG(µ, σ, λ).

Results 2a and 2b are related to results on the Normal-Exponential-Gamma
distribution given in Griffin and Brown [15].

Result 3a. Let x, b and c be random variables such that

x| b ∼ N(µ, σ2/b), b | c ∼ IG(1, 12 c
2) and c ∼ Gamma(λ, λ).

Then x ∼ GDP(µ, σ, λ).

Result 3b. Let x and b be random variables such that

x| b ∼ N(µ, σ2/b) and

p(b) = 1
2 (λ+ 1)λλ+1 b(λ−2)/2 eλ

2 b/4D−λ−2(λ
√
b), b > 0.

Then x ∼ GDP(µ, σ, λ).

Results 3a and 3b are related to results on the Generalized Double Pareto dis-
tribution given in Armagan, Dunson and Lee [5].

A.2.3. Half-Cauchy distribution

The notation v ∼ Half-Cauchy(A) means that v has a Half Cauchy distribution
with scale parameter A > 0. The corresponding density function is

p(x) =
2A

π(x2 +A2)
, x > 0.

We use the Half-Cauchy family to impose non-informative priors on scale pa-
rameters.

The following result, a special case of Proposition 1 in Armagan, Dunson and
Clyde [4] and Result 5 in Wand et al. [34], is useful for mean field variational
Bayes calculations for models containing Half Cauchy random variables:

Result 4. Let x and a be random variables such that

x| a ∼ IG(12 , a
−1) and a ∼ IG(12 , A

−2).

Then
√
x ∼ Half-Cauchy(A).
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A.3. Mean field variational Bayes

Consider a Bayesian model (graphical model) with observed data vector x

(evidence node), parameter θ and auxiliary variable vectors a and b. Concrete
examples of such a model are given in Sections 2.1–2.3. Typically, the joint
posterior density function p(θ,a, b|x) is intractable. A mean field variational
approach postulates an approximation such as

p(θ,a, b|x) ≈ q(θ) q(a, b) (A.10)

and chooses densities q(θ) and q(a, b) to minimize the following Kullback-Liebler
distance between the two joint density functions:

∫
q(θ) q(a, b) log

{
q(θ) q(a, b)

p(θ,a, b|x)

}
dθ da db.

The solutions can be shown to satisfy

q∗(θ) ∝ exp{Eq(a,b)p(θ|x,a, b)}
and q∗(a, b) ∝ exp{Eq(θ)p(a, b|x, θ)}.

(A.11)

These conditions gives rise to an iterative coordinate ascent algorithm which is
guaranteed to converge under mild conditions. Convergence can be monitored
using the following lower bound on the marginal log-likelihood:

log p(x; q) ≡ Eq(θ,a,b)[log p(x, θ,a, b)− log{q(θ) q(a, b)}] ≤ log p(x),

since each iteration leads to an improvement in the bound. Several illustrative
examples are given in Section 2.2 of Ormerod and Wand [25]. The number of
iterations required for convergence with strict tolerances is typically in the tens
or hundreds.

Note that it is possible that the optimal density q∗(a, b) factorizes as q∗(a)
q∗(b) even though this restriction is not imposed by (A.10). This is known as
induced factorization in the MFVB literature (e.g. Section 10.2.5 of Bishop [7]).

Ease of implementation and speed depends on the ease with which the ex-
pectations in (A.11) can be evaluated. For simple models involving common
distributions, the expectations often admit explicit forms – in which case com-
putation can be quite rapid. Models involving more complicated distributions
may be such that quadrature or Monte Carlo is required, which tends to com-
promise speed.

Description of the MFVB algorithms in the upcoming sections benefit from
notation such as

µq(v) ≡
∫

∞

−∞

v q(v) dv, µq(v2) ≡
∫

∞

−∞

v2 q(v) dv and

σ2
q(v) ≡

∫
∞

−∞

{v − µq(v)}2 q(v) dv.
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Appendix B: Mean field variational Bayes derivations

Algorithms 1, 3 and 5 depend on the following derivations of the optimal density
functions and relevant moments under product restrictions (2.2). Throughout
the derivations, the symbol ‘rest’ denotes all other random variables in the
Bayesian model at hand. Constants with respect to the function argument are
denoted by ‘const’.

The notation v ∼ Inverse-Gaussian(µ, γ) means that v has an Inverse Gaus-
sian distribution with mean µ and rate parameter γ. The corresponding density
function is

p(v) =

√
γ

2π v3
exp

{
−γ(v − µ)

2

2µ2v

}
, v > 0,

and is such that E(v) = µ and E(1/v) = 1/µ+ 1/γ.

B.1. Horseshoe models

The full conditional of a satisfies

log p(a|rest) = −2 log(a)− (σ−2 +A−2)/a+ const.

For Models II and III, the full conditional of σ2 satisfies

log p(σ2|rest) = − 1
2 (n+ 3) log(σ2)−

(
1
2

n∑

i=1

bi x
2
i + a−1

)/
σ2 + const.

For Model II, the full conditionals of the bis satisfy

log p(bi|rest) = − log(bi + 1)− bi x
2
i

2σ2
+ const.

For Model III, the full conditionals of the bis and cis satisfy

log p(bi|rest) = −
(
x2i
2σ2

+ ci

)
bi + const

and
log p(ci|rest) = − (bi + 1) ci + const.

B.1.1. Expressions for q∗(a) and µq(1/a)

q∗(a) ∼ IG
(
1, µq(1/σ2) +A−2

)

and
µq(1/a) = 1

/{
µq(1/σ2) +A−2

}
.

Derivations:

Eq{log p(a|rest)} = Eq

{
−2 log(a)−

(
σ−2 +A−2

)/
a
}
+ const
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and so
q∗(a) ∝ a−2 exp

{
−
(
µq(1/σ2) +A−2

)/
a
}
.

Standard manipulations involving the Inverse Gamma family of density func-
tions lead to the stated results.

B.1.2. Expressions for q∗(σ2) and µq(1/σ2) for Models II and III

q∗(σ2) ∼ IG

(
1
2 (n+ 1), 12

n∑

i=1

x2i µq(bi) + µq(1/a)

)

and

µq(1/σ2) =
1
2 (n+ 1)

/{
1
2

n∑

i=1

x2i µq(bi) + µq(1/a)

}
.

Derivations:

Eq{log p(σ2|rest)} = Eq

[
− 1

2 (n+ 3) log(σ2)

−
(

1
2

n∑

i=1

x2i bi + a−1

)/
σ2

]
+ const

and so

q∗(σ2) ∝ (σ2)−
1
2 (n+3) exp

[
−
{

1
2

n∑

i=1

x2i µq(bi) + µq(1/a)

}/
σ2

]
.

Standard manipulations involving the Inverse Gamma family of density func-
tions lead to the stated results.

B.1.3. Expressions for q∗(bi) and µq(bi) for Model II

q∗(bi) =
1

(bi + 1) exp{Gi (bi + 1)}E1(Gi)
, bi > 0

and

µq(bi) =
1

Gi exp(Gi)E1(Gi)
− 1

where
Gi ≡ 1

2 µq(1/σ2) x
2
i . (B.1)

Derivations:

Eq{log p(bi|rest)} = Eq

{
− log(bi + 1)− x2i bi

2σ2

}
+ const
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and so

q∗(bi) ∝ (bi + 1)−1 exp
[
− 1

2 µq(1/σ2){(xi − µq(µ))
2 + σ2

q(µ)} bi
]
, bi > 0

= (bi + 1)−1 exp(−Gi bi), bi > 0

where Gi is given by (B.1). The normalizing factor is
∫

∞

0

(bi + 1)−1 exp(−Gi bi) dbi = exp(Gi)E1(Gi),

which follows from 3.352(4) of Gradshteyn and Ryzhik [14].
The numerator of µq(bi) is

∫
∞

0

bi(bi + 1)−1 exp(−Gi, bi) dbi = G−1
i − exp(Gi)E1 (Gi) ,

by application of 3.353(5) of Gradshteyn and Ryzhik [14]. The stated results
then follow immediately.

B.1.4. Expressions for q∗(bi) and µq(bi) for Model III

q∗(bi) ∼ Gamma(1, Gi + µq(ci)), bi > 0,

and
µq(bi) = 1

/{
Gi + µq(ci)

}

where Gi is given by (B.1).

Derivations:

Eq{log p(bi|rest)} = Eq

[
−
{
x2i
2σ2

+ ci

}
bi

]
+ const

and so
q∗(bi) ∝ exp[−{Gi + µq(ci)} bi], bi > 0.

Standard manipulations involving the Gamma family of density functions lead
to the stated results.

B.1.5. Expressions for q∗(ci) and µq(1/ci) for Model III

q∗(ci) ∼ Gamma(1, µq(bi) + 1)

and
µq(ci) = 1

/{
µq(bi) + 1

}
.

Derivations:

Eq{log p(ci|rest)} = Eq {− (1 + bi) ci}+ const.

Hence
q∗(ci) ∝ exp[−{µq(bi) + 1} ci], ci > 0.

The stated results follow from properties of the Inverse Gamma family of dis-
tributions.
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B.2. Normal-Exponential-Gamma models

The calculations for q∗(σ2) and q(a) are identical to those for the Horseshoe
models.

For Model II, the full conditionals of the bis satisfy

log p(bi|rest) = (λ− 1
2 ) log(bi)− (λ+ 1) log(bi + 1)− bi x

2
i

2σ2
+ const.

For Model III, the full conditionals of the bis and cis satisfy

log p(bi|rest) = − 3
2 log(bi)−

bi x
2
i

2σ2
− ci
bi

+ const

and

log p(ci|rest) = λ log(ci)−
(
1

bi
+ 1

)
ci + const.

B.2.1. Expressions for q∗(bi) and µq(bi) for Model II

q∗(bi) =
b
λ−1/2
i (bi + 1)−λ−1 exp(−Gi bi)

2λ+
1
2Γ(λ+ 1

2 ) exp(Gi/2)D−2λ−1

(√
2Gi

) , bi > 0

and

µq(bi) =
(2λ+ 1)D−2λ−2(

√
2Gi )√

2GiD−2λ−1

(√
2Gi

)

where Gi is given by (B.1).

Derivations:

Eq{log p(bi|rest)} = Eq

{
(λ− 1

2 ) log(bi)

−(λ+ 1) log(bi + 1)− bi x
2
i

2σ2

}
+ const

and so

q∗(bi) ∝ bλ−1/2
i (bi + 1)−λ−1 exp(−Gi bi), bi > 0.

The normalizing factor is

∫
∞

0

b
(λ+

1
2 )−1

i (bi + 1)−(λ+
1
2 )−

1
2 exp(−Gi bi) dbi

= 2λ+
1
2Γ(λ+ 1

2 ) exp(Gi/2)D−2λ−1

(√
2Gi

)

which follows from 3.383(7) of Gradshteyn and Ryzhik [14].
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The numerator of µq(bi) is

∫
∞

0

b
(λ+

3
2 )−1

i (bi + 1)−(λ+
3
2 )+

1
2 exp(−Gi bi) dbi

= 2λ+
3
2Γ(λ+ 3

2 ) exp(Gi/2)D−2λ−2

(√
2Gi

)/√
2Gi

with the last line being an application of 3.383(6) of Gradshteyn and Ryzhik [14].
The stated result then follows from the fact that

2λ+
3
2Γ(λ + 3

2 )
/
{2λ+

1
2Γ(λ+ 1

2 )} = 2λ+ 1.

B.2.2. Expressions for q∗(bi), µq(1/bi) and µq(bi) for Model III

q∗(bi) ∼ Inverse-Gaussian

(√
µq(ci)

Gi
, 2µq(ci)

)
,

µq(bi) =

√
µq(ci)

Gi
and µq(1/bi) =

1

µq(bi)
+

1

2µq(ci)

where Gi is given by (B.1).

Derivations:

Eq{log p(bi|rest)} = Eq

{
− 3

2 log(bi)−
x2i bi
2σ2

− ci
bi

}
+ const

and so

q∗(bi) ∝ b−3/2
i exp

{
−Gi bi −

µq(ci)

bi

}
, bi > 0.

Standard manipulations involving the Inverse Gaussian family of density func-
tions lead to the stated results.

B.2.3. Expressions for q∗(ci) and µq(ci) for Model III

q∗(ci) ∼ Gamma(λ+ 1, µq(1/bi) + 1)

and

µq(ci) =
λ+ 1

µq(1/bi) + 1
.

Derivations:

Eq{log p(ci|rest)} = Eq

{
λ log(ci)−

(
1

bi
+ 1

)
ci

}
+ const.

Hence
q∗(ci) ∝ c(λ+1)−1

i exp[−{µq(1/bi) + 1} ci], ci > 0,

which is proportional to the Gamma(λ + 1, µq(1/bi) + 1) density function. The
stated results follow from properties of the Gamma family of distributions.
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B.3. Generalized Double Pareto models

The calculations for q∗(σ2) and q(a) are identical to those for the Horseshoe
models.

For Model II, the full conditionals of the bis satisfy

log p(bi|rest) = 1
2 (λ− 1) log(bi) +

(
λ2

4
− x2i

2σ2

)
bi

+ log D−λ−2

(
λ
√
bi

)
+ const.

For Model III, the full conditionals of the bis and cis satisfy

log p(bi|rest) = − 3
2 log(bi)−

x2i bi
2σ2

− c2i
2bi

and

log p(ci|rest) = (λ+ 1) log(ci)− λ ci −
c2i
2bi

+ const.

B.3.1. Expressions for q∗(bi) and µq(bi) for Model II

q∗(bi) =
2(3λ+2)/2(λ+ 1)G

(λ+1)/2
i b

(λ−1)/2
i exp{(λ2/4−Gi)bi}D−λ−2(λ

√
bi)√

π2F1

(
λ+2
2 , λ+1

2 ;λ+ 2; 1− λ2(2Gi)
)

for bi > 0, and

µq(bi) =
λ+ 1√

2Gi(λ+
√
2Gi)

.

Derivations:

Eq{log p(bi|rest)} = Eq

{
1
2 (λ− 1) log(bi) +

(
λ2

4
− x2i

2σ2

)
bi

+ log D−λ−2

(
λ
√
bi

)}
+ const

and so

q∗(bi) ∝ b(λ−1)/2
i exp

{(
1
4λ

2 −Gi

)
bi
}
D−λ−2(λ

√
bi), bi > 0.

The expression for the normalizing factor follows from 7.725(6) of Gradshteyn
and Ryzhik [14], existence of the hypergeometric function for all Gi > 0 depends
on Stieltjes integral transform theory described in Sections 5.2 and 15.2 of Cuyt
et al. [11].

Therefore

µq(bi) =

∫
∞

0
b
(λ+1)/2
i exp

{(
1
4λ

2 −Gi

)
bi
}
D−λ−2(λ

√
bi) dbi∫

∞

0 b
(λ−1)/2
i exp

{(
1
4λ

2 −Gi

)
bi
}
D−λ−2(λ

√
bi) dbi
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=

∫
∞

0
e−ztt−1+βn/2D−ν(2

√
kt) dt

∫
∞

0
e−ztt−1+βd/2D−ν(2

√
kt) dt

where

z = Gi − 1
4λ

2, βn = λ+ 3, βd = λ+ 1, ν = λ+ 2 and k = 1
4 λ

2.

Application of 7.725(6) of Gradshteyn and Ryzhik [14] to the numerator and
denominator results in the expression

µq(bi) =
(λ+ 1) 2F1

(
1
2λ+ 1, 12λ+ 3

2 ;λ+ 3 ; 1− λ2/(2Gi)
)

4Gi 2F1

(
1
2λ+ 1, 12λ+ 1

2 ;λ+ 2 ; 1− λ2/(2Gi)
) . (B.2)

Results 15.1.1 and 15.1.13 of Abramowitz & Stegun [1] are, respectively,

2F1(a, b; c;x) = 2F1(b, a; c;x)

and

2F1

(
a, a+ 1

2 , 2a+ 1, x
)
= 22a

(
1 +
√
1− x

)−2a
.

These imply that

2F1

(
1
2λ+ 1, 12λ+ 3

2 ;λ+ 3;x
)
= 2λ+2

(
1 +
√
1− x

)−(λ+2)

and

2F1

(
1
2λ+ 1, 12λ+ 1

2 ;λ+ 2;x
)

= 2F1

(
1
2λ+ 1

2 ,
1
2λ+ 1;λ+ 2;x

)

= 2λ+1
(
1 +
√
1− x

)−(λ+1)
.

The stated result for µq(bi) follows immediately.

B.3.2. Expressions for q∗(bi), µq(1/bi) and µq(bi) for Model III

q∗(bi) ∼ Inverse-Gaussian

(√
µq(c2

i
)

2Gi
, µq(c2

i
)

)
,

µq(bi) =

√
µq(c2

i
)

2Gi
and µq(1/bi) =

1

µq(bi)
+

1

µq(c2
i
)

where Gi is defined by (B.1).

Derivations:

Eq{log p(bi|rest)} = Eq

{
− 3

2 log(bi)−
x2i bi
2σ2

− c2i
2 bi

}
+ const

and so
q∗(bi) ∝ b−3/2

i exp
{
−Gi bi − µq(c2

i
)/(2 bi)

}
, bi > 0.

Standard manipulations involving the Inverse Gaussian family of density func-
tions lead to the stated results.
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B.3.3. Expressions for q∗(ci) and µq(c2
i
) for Model III

q∗(ci) =
µ
(λ+2)/2
q(1/bi)

cλ+1
i exp{−λ ci − 1

2 µq(1/bi) c
2
i }

Γ(λ+ 2) exp{λ2/(4µq(1/bi))}D−λ−2(λ/
√
µq(1/bi) )

, ci > 0,

and

µq(c2
i
) =

(λ + 2)(λ+ 3)D−λ−4(λ/
√
µq(1/bi) )

µq(1/bi)D−λ−2(λ/
√
µq(1/bi) )

.

Derivations:

Eq{log p(ci|rest)} = Eq

{
(λ+ 1) log(ci)− λ ci −

c2i
2 bi

}
+ const.

Hence
q∗(ci) ∝ cλ+1

i exp{−λ ci − 1
2 µq(1/bi) c

2
i }, ci > 0.

From (A.1), the normalizing factor is

∫
∞

0

cλ+1
i exp{−λ ci − 1

2 µq(1/bi) c
2
i } dci

= µ
−(λ+2)/2
q(1/bi)

Γ(λ+ 2) exp

(
λ2

4µq(1/bi)

)
D−λ−2

(
λ/
√
µq(1/bi)

)

and the expression for q∗(ci) follows. Another application of (A.1) results in

∫
∞

0

cλ+3
i exp{−λ ci − 1

2 µq(1/bi) c
2
i } dci

= µ
−(λ+4)/2
q(1/bi)

Γ(λ+ 4) exp

(
λ2

4µq(1/bi)

)
D−λ−4

(
λ/
√
µq(1/bi)

)
,

which immediately leads to the stated result for µq(c2
i
).

Appendix C: Proof of Theorem 1

First note that

E{log(1/b) log(c)|x}

=

∫
∞

0

∫
∞

0

log(b) log(c) p(b, c|x) db dc
/
pHS(x)

=

∫
∞

0

log(1/b)p(x| b)
{∫

∞

0

log(c) p(b|c) p(c)
}
db
/
pHS(x)

where pHS is given by (A.7). The inner integral is

∫
∞

0

log(c) exp{−c(b+ 1)} dc = π−1 b−1/2 (b + 1)−1{ψ(1)− log(b+ 1)}
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where ψ(x) ≡ d
dx log Γ(x) is the digamma function. Substitution of the expres-

sions for pHS(x) and p(x|b) then leads to the univariate integral expression

E{log(1/b) log(c)|x = ±
√
2κ} =

˜̃
B2(κ)− ψ(1)B1(κ)

B0(κ)

where
˜̃
B2(κ) ≡

∫
∞

0

exp {−κ (b+ 1)} log(b) log(b+ 1)

b+ 1
db

and

Bj(κ) ≡
∫

∞

0

exp {−κ (b+ 1)} {log(b)}j
b+ 1

db, j = 0, 1.

After obtaining similar expressions for

E{{log(1/b)}j|x = ±
√
2κ} and E{{log(c)}j |x = ±

√
2κ}, j = 1, 2,

in terms of Bj(κ) and

B̃j(κ) ≡
∫

∞

0

exp {−κ (b+ 1)} {log(b+ 1)}j
b+ 1

db, (C.1)

straightforward algebraic manipulations then lead to

Corr{log(1/b), log(c)|x = ±
√
2κ}

=
B0(κ)

˜̃
B2(κ)−B1(κ)B̃1(κ)√

{B0(κ)B2(κ)−B1(κ)2}{B0(κ)B̃2(κ)− B̃1(κ)2 +
1
6π

2B0(κ)2}

=
[
1 + {B0(κ)

˜̃
∆2(κ)/D̃(κ)} + {B̃1(κ) ∆̃1(κ)/D̃(κ)}

]

×
([

1− {B0(κ) ∆̃2(κ)/D̃(κ)} + 2{B̃1(κ) ∆̃1(κ)/D̃(κ)}

− {∆̃1(κ)
2/D̃(κ)}

][
1 + 1

6{π
2B0(κ)

2/D̃(κ)}
])−1/2

where

D̃(κ) ≡ B0(κ)B̃2(κ)− B̃1(κ)
2, ∆̃1(κ) ≡ B̃1(κ)−B1(κ),

∆̃2(κ) ≡ B̃2(κ)−B2(κ) and
˜̃
∆2(κ) ≡ ˜̃B2(κ)− B̃2(κ).

We then note that

∆̃1(0) =

∫
∞

0

log(b+ 1)− log(b)

b+ 1
db = 1

6π
2,

∆̃2(0) =

∫
∞

0

{log(b + 1)}2 − {log(b)}2
b+ 1

db = 0
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and
˜̃
∆2(0) =

∫
∞

0

log(b + 1){log(b + 1)− log(b)}
b+ 1

db = −ζ(3)

where ζ(x) ≡∑∞

j=1 j
−x denotes the Riemann zeta function. From this we have,

for example, that

lim
κ→0
{∆̃1(κ)

2/D̃(κ)} = 1
36 π

4 lim
κ→0
{1/D̃(κ)}.

Next note that, via the substitution v = log(b + 1) into (C.1), we have for
j = 0, 1, 2:

B̃j(κ) =

∫
∞

0

exp(−κ ev) vj dv.

From this we have

2D̃(κ) =

{∫
∞

0

exp(−κ ev) dv
} {∫

∞

0

exp(−κ ew)w2 dw

}

+

{∫
∞

0

exp(−κ ev) v2 dv
}{∫

∞

0

exp(−κ ew) dw
}

− 2

{∫
∞

0

exp(−κ ev) v dv
}{∫

∞

0

exp(−κ ew)w dw
}

=

∫
∞

0

∫
∞

0

exp{−κ (ev + ew)}(v − w)2 dv dw

> exp
(
−2κ eM

) ∫ M

0

∫ M

0

(v − w)2 dv dw

= exp
(
−2κ eM

)
M4/6

for any M > 0. Therefore,

lim
κ→0
{1/D̃(κ)} ≤ (12/M4) lim

κ→0
exp

(
−2κ eM

)
= 12/M4.

SinceM is arbitrary we must have limκ→0{1/D̃(κ)} = 0. Hence {∆̃1(κ)
2/D(κ)}

vanishes as κ→ 0. Similar arguments can be used to show

lim
κ→0
{B0(κ)

˜̃
∆2(κ)/D̃(κ)} = lim

κ→0
{B̃1(κ) ∆̃1(κ)/D̃(κ)}

= lim
κ→0
{B0(κ)

2/D̃(κ)}
= 0

and Theorem 1 immediately follows.
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