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Abstract: When computing a confidence interval for a binomial propor-
tion p one must choose between using an exact interval, which has a cover-
age probability of at least 1−α for all values of p, and a shorter approximate
interval, which may have lower coverage for some p but that on average
has coverage equal to 1−α. We investigate the cost of using the exact one
and two-sided Clopper–Pearson confidence intervals rather than shorter ap-
proximate intervals, first in terms of increased expected length and then in
terms of the increase in sample size required to obtain a desired expected
length. Using asymptotic expansions, we also give a closed-form formula
for determining the sample size for the exact Clopper–Pearson methods.
For two-sided intervals, our investigation reveals an interesting connection
between the frequentist Clopper–Pearson interval and Bayesian intervals
based on noninformative priors.
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1. Introduction

Inference for a binomial proportion p is one of the most commonly encountered
statistical problems, with important applications in areas such as clinical trials,
risk analysis and quality control. Consequently, a large number of two-sided
confidence intervals and one-sided confidence bounds for p have been proposed
by different authors. These are of two different types: exact methods, that have
a coverage at least equal to 1 − α for all p ∈ (0, 1), and approximate methods,
that may have coverage less than 1 − α for some values of p, but that have a
coverage that in some sense is approximately equal to 1− α.

Research on confidence intervals and bounds for a binomial proportion has
mostly focused on approximate intervals. In the methodological literature, exact
intervals have often been deemed to be too conservative [2, 5, 21], as they tend
to be quite wide and have actual coverage levels that often are noticeably greater
than 1− α. Nevertheless, the use of exact intervals for proportions is abundant
among practitioners: see e.g. Abramson et al. [1], Ibrahim et al. [13], Ward et al.
[31] and Sullivan et al. [26] for some recent examples. By far the most widely
used exact interval is the Clopper–Pearson interval, introduced by Clopper &
Pearson [9].

The benefit of using an exact interval is obvious: one does not risk that the
actual coverage falls below 1 − α. For this reason, some regulatory authori-
ties require that exact intervals be used. Moreover, the binomial distribution
is unusual in that we often can be sure that it is an accurate description of
that which we are modelling and not just an approximation to the true dis-
tribution, as is often the case when continuous distributions are used for mod-
elling. In such a situation, using an exact method seems reasonable. But there
are also costs associated with the use of such an interval. When choosing be-
tween approximate and exact confidence methods, there is a trade-off in that
exact intervals and bounds by construction are wider than the best approxi-
mate intervals, or equivalently, require a larger sample size in order to obtain
a certain expected length. If one is unwilling to accept intervals and bounds
with undercoverage for some values of p, there is a cost to pay in terms of
expected length or required sample size. This paper seeks to quantify these
costs.

In planned experiments, it is always important to determine a suitable sample
size. Sample size determination for binomial confidence intervals has received
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much attention in recent years [15, 22, 17, 18, 12, 32], with different authors
studying different intervals and methods for sample size calculations, the latter
often of a computer-intensive nature. The first main contribution of this paper
is closed-form formulas for computing the sample size required for the Clopper–
Pearson methods to obtain a given expected length. This eliminates the need
for computer-intensive methods for computing sample sizes and gives a better
understanding of how the desired length and the parameters p and α affect the
sample size.

The second main contribution is closed-form expressions for the excess length
and increase in required sample size that comes from using the exact Clopper–
Pearson methods instead of approximate methods. We obtain these expres-
sions by deriving asymptotic expansions for the exact Clopper–Pearson meth-
ods, extending the work of Brown et al. [6], Cai [7] and Staicu [24] on the
asymptotics of approximate binomial confidence methods to exact intervals and
bounds.

The rest of the paper is organised as follows. In Section 2 we introduce the
Clopper–Pearson methods along with other exact and approximate confidence
methods. In Section 3 we give an asymptotic expression for the expected length
of the Clopper–Pearson interval. This allows us to give a formula for computing
the sample size, and to determine the cost of using an exact interval rather than
an approximate interval, in terms of expected length and sample size. In Section
4 we discuss the one-sided Clopper–Pearson bound and give expressions for its
expected distance to p and the cost of using an exact bound. In Section 5 we
discuss costs associated with approximate intervals and state some conclusions.
All proofs and technical details are deferred to an appendix.

2. Binomial confidence methods

2.1. The Clopper–Pearson interval and bounds

The two-sided Clopper–Pearson interval for a proportion p is an inversion of
the equal-tailed binomial test: the interval contains all values of p that aren’t
rejected by the test at confidence level α. Given an observation X , the lower
limit is thus given by the value of pL such that

n
∑

k=X

(

n

k

)

pkL(1− pL)
n−k = α/2 (1)

and the upper limit is given by the pU such that

X
∑

k=0

(

n

k

)

pkU (1− pU )
n−k = α/2. (2)

As is well-known, the computation of pL and pU is simplified by the following
equality from Johnson et al. [14]. Let f(t, a, b) be the density function of a
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Beta(a, b) random variable. Then

n
∑

k=X

(

n

k

)

pk(1− p)n−k =

∫ p

0

f(t,X, n−X + 1)dt. (3)

When (3) is plugged into (1) and (2), the problem of finding pL and pU reduces
to inverting the distribution functions of two beta distributions. Consequently,
the endpoints of the Clopper–Pearson interval are given by quantiles of beta
distributions:

(pL, pU ) =
(

B(α/2, X, n−X + 1), B(1 − α/2, X + 1, n−X)
)

. (4)

When X is either 0 or n, closed-form expressions for the interval bounds are
available. When X = 0 the interval is (0, 1 − (α/2)1/n) and when X = n it
is ((α/2)1/n, 1). For other values of X , (4) must be evaluated numerically. The
interval is implemented in most statistical software packages; it can for instance
be found in the PropCIs package in R and computed using the PROC FREQ

command in SAS.
Some authors [2, 5] have argued that when choosing between confidence in-

tervals, it is often preferable to use an interval with a simple closed-form formula
rather than one that requires numerical evaluation, as the former is easier to
present and to interpret. Next, we give asymptotic expansions of pL and pU ,
that function as good approximations when n ≥ 40, and can be used if a closed-
form formula for the Clopper–Pearson interval is desired. As an example, when
n = 50 the upper bound is accurate up to two decimal places forX /∈ {0, 1, 2, n}.
Theorem 1. Let X ∈ {1, 2, . . . , n − 1} be fixed. Let p̂ = X/n, q̂ = 1 − p̂ and

zα/2 be the upper α/2 quantile of the standard normal distribution.

The bounds of the Clopper–Pearson interval are, up to O(n−3/2),

pL = p̂− n−1/2zα/2(p̂q̂)
1/2 + (3n)−1

(

2(1/2− p̂)z2α/2 − (1 + p̂)
)

and

pU = p̂+ n−1/2zα/2(p̂q̂)
1/2 + (3n)−1

(

2(1/2− p̂)z2α/2 + 1 + q̂
)

.

Similar in construction to the two-sided interval, the one-sided Clopper–
Pearson bounds are obtained by inverting one-sided binomial tests. Thus the
1− α Clopper–Pearson upper bound pU is given by the pU such that

X
∑

k=0

(

n

k

)

pkU (1− pU )
n−k = α. (5)

In the following, we limit our study to upper bounds. For symmetry reasons,
the results are however equally valid for lower bounds, as for the bounds under
consideration, a lower bound pL for p is equivalent to an upper bound for q, as
qU = 1− pL.

If a closed-form expression for pU is desired, it can be obtained in the form
of an asymptotic expansion by replacing α/2 with α in Theorem 1 above.
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2.2. Other exact intervals

In much of the medical literature, as well as the rest of the present paper,
the Clopper–Pearson interval is refered to as the exact confidence interval for a
binomial proportion. Despite this terminology, several other exact intervals have
been proposed throughout the years. These alternative intervals do not admit
closed-form expressions and are, to varying extents, computer-intensive.

There are several reasons as to why the Clopper–Pearson interval is the most
widely used exact interval. One is simply tradition and availability: it has found
its way in to classic statistical textbooks and has been implemented in almost all
statistical software packages. Compared to the computer-intensive alternatives,
the Clopper–Pearson interval is also considerably simpler computationally. Fi-
nally, it remains a natural choice in that it is the inversion of the well-known
equal-tailed binomial test.

In the two-sided case, however, there is room for improvement, at least if one
is willing to let go of some natural properties of confidence intervals. Other exact
intervals have been designed to be shorter than the Clopper–Pearson interval, by
inverting two-sided tests that need not be equal-tailed. Moreover, the coverage
probabilities of these intervals often fluctuate less from 1 − α than does the
coverage of the Clopper–Pearson interval.

The Blyth–Still–Casella interval [4, 8] is guaranteed to be the shortest exact
interval, but has the odd property that it is not nested, in the sense that the
90 % interval need not be contained in the 95 % interval [3, Theorem 2]. This
is also true for the intervals of Crow [11].

The Sterne [25] procedure yields nested intervals that are shorter than the
Clopper–Pearson interval, but will in some cases result in two separate intervals
rather than one connected interval. Blaker [3] proposed a nested exact interval
that, while wider than the Blyth–Still–Casella interval, always is contained in the
Clopper–Pearson interval. It is however sometimes a union of disjoint intervals
and its upper bound is decreasing but not strictly decreasing in α when n and
X are fixed [30]. The interval based on the inverted exact likelihood ratio test
suffers from similar problems [30].

The Clopper–Pearson interval, in contrast, is nested, is always a connected
set and has bounds that are strictly monotone in α. While it is possible to
obtain shorter exact confidence intervals for a binomial proportion, this seems
to be associated with the loss of nestedness, connectedness or monotonicity.
As we consider these properties to be of importance, we will only include the
Clopper–Pearson interval and bounds in the following sections, and will out of
convenience refer to them as the exact methods.

Implementations of some of the alternative exact intervals are readily avail-
able. The Blyth–Still–Casella interval has been implemented in StatXact and
Blaker [3] gave an S-PLUS function for his interval. A more efficient implemen-
tation of Blaker’s interval is found in the R package BlakerCI [16].

Finally, we mention that there also are exact randomized confidence intervals,
but that we do not include such intervals in the study as they suffer from
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ambiguity issues and rarely are used in practice; see Thulin [28] for a discussion
of such intervals.

2.3. Approximate confidence intervals and bounds

Throughout the text, the Clopper–Pearson methods will be compared to several
well-known approximate methods. These are described below, along with the
commonly used Wald interval. For more thorough reviews of binomial confidence
methods, see Newcombe [20], Cai [7] and Brown et al. [5, 6]. In the descriptions
below, p̂ = X/n is the sample proportion, q̂ = 1−p̂ and zα/2 is the 100(1−α/2)th
percentile of the standard normal distribution.

The Wald interval. Inversion of the large sample test |(p̂ − p)(p̂q̂/n)−1/2| ≤
zα/2 leads to the Wald interval, which is presented in virtually every introductory

statistics course: p̂ ± zα/2
√

p̂q̂/n. The Wald interval suffers from particularly
erratic coverage properties, and cannot be recommended for general use [5, 20].

The Wilson score interval. Like the Wald interval, the Wilson [33] score inter-
val is based on an inversion of the large sample normal test |(p̂−p)/d(p̂)| ≤ zα/2,
where d(p̂) is the standard error of p̂. Unlike the Wald interval, however, the
inversion is obtained using the null standard error (p(1−p)/n)1/2 instead of the
sample standard error. The solution of the resulting quadratic equation leads to
the confidence interval

X + z2α/2/2

n+ z2α/2
± zα/2

n+ z2α/2

√

p̂q̂n+ z2α/2/4.

The Wilson score interval has favourable coverage and length properties and is
often recommended for general use [5, 20].

The Agresti–Coull interval. For 95% nominal coverage, Agresti & Coull [2]
proposed the use of the Wald interval with two successes and two failures added,
i.e. with n replaced by n + 4 and X replaced by X + 2. More generally, let
ñ = n+ z2α/2, X̃ = X+ z2α/2/2, p̃ = X̃/ñ and q̃ = 1− p̃. Brown et al. [5] dubbed

the interval p̃± zα/2
√

p̃q̃/ñ the Agresti-Coull interval. It has performance close
to that of the Wilson interval, but is somewhat simpler to use.

Bayesian Beta intervals and bounds. Let B(α, a, b) denote the α-quantile of
the Beta(a, b) distribution. An equal-tailed Bayesian credible interval based on
the Beta(a, b) prior is given by (B(α/2, X + a, n−X + b), B(1 − α/2, X + a,
n−X+b)), whereB(α, a, b) is the quantile function of the Beta(a, b) distribution.
Similarly, an upper bound is given by B(1 − α,X + a, n − X + b). As these
methods make use of beta quantiles, they are algebraically very similar to the
Clopper–Pearson interval. This connection is discussed further in Section 3.4.

The Jeffreys interval and bound. A commonly used Bayesian interval for p
is the Jeffreys interval (B(α/2, X + 1/2, n − X + 1/2), B(1 − α/2, X + 1/2,
n − X + 1/2)), which is the equal-tailed credible interval derived using the
noninformative Jeffreys prior. Both the two-sided interval and the one-sided
bound exhibit favourable frequentist properties [5, 20, 7].
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The second-order correct bound. Cai [7] proposed a coverage-corrected version
of the one-sided Wald bound, based on second-order asymptotic expansions. Cai
[7] recommended it for general use and gave a closed-form expression for the
bound.

The modified loglikelihood root bound. Staicu [24] studied the bound obtained
by inverting the modified loglikelihood root test and found it to have very
favourable coverage and length properties. It cannot be expressed in a closed
form, but Staicu [24] gave asymptotic expansions that can be used as approxi-
mations.

3. Two-sided intervals

3.1. Expected length

Let q = 1 − p and let LCP = pU − pL denote the length of the Clopper–
Pearson interval. Next, we present an asymptotic expression for the expectation
of LCP .

Theorem 2. As n → ∞ the expected length of the 1 − α Clopper–Pearson

interval is

E(LCP ) = 2zα/2n
−1/2(pq)1/2 + n−1

+ n−3/2(pq)−1/2 zα/2

18

(

z2α/2 −
5

2
− 17pq − 13pqz2α/2

)

+O(n−2).

(6)

The expansion (6) is compared to the actual expected length in Figure 1.
Even for small values of n, the approximation comes quite close to the actual
expected length over the entire parameter space.

Having an expression for the expected length of the Clopper–Pearson interval
allows us to evaluate its performance for different combinations of n, p and α.
When planning an experiment, this is extremely useful as it can be used to
determine what sample size we need in order to achieve a desired expected
length. Methods for determining sample size are discussed next.
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Fig 1. Comparison between the actual expected length and the expansion (6) for the nominal
95 % Clopper–Pearson interval.
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3.2. Sample size determination

Several different criterions can be considered when determining sample size,
as discussed e.g. by Gonçalves et al. [12]. We focus on a comparatively simple
criterion: for a fixed confidence level 1 − α we wish to find the smallest sample
size n such that the expected length of the confidence interval is some fixed
value d. As the value of n will depend on p, we require that an initial guess p0
for p is available.

Studying the Clopper–Pearson interval, Krishnamoorthy & Peng [17] gave
a first-order approximation of E(LCP ) in the form of beta quantiles and used
that to numerically calculate the sample size required to obtain a desired ex-
pected length d. Ignoring the higher terms of the expansion (6) we obtain
the second-order approximation E(LCP ) ≈ 2zα/2n

−1/2(pq)1/2 + n−1, which
can be evaluated analytically. Given an initial guess p0 for p, the equation
2zα/2n

−1/2(p0q0)
1/2 + n−1 = d has the solution

n =
⌈2z2α/2p0q0 + 2zα/2

√

z2α/2p
2
0q

2
0 + dp0q0 + d

d2

⌉

(7)

when rounded up to the nearest integer. This is a good approximation of the
actual required sample size, with a small positive bias. At the 95 % level it does
typically not differ by more than 4 from the solution obtained by more com-
plicated (and computer-intensive) exact numerical computations. For p close to
1/2, the Krishnamoorthy–Peng method is slightly more accurate, whereas for p
close to 0 or 1, (7) gives a better approximation. In either case, both approxima-
tions are accurate enough for most applications. As an example, when p0 = 0.05
and d = 0.05, the actual required sample size is 329, while our approximation
yields n = 331, corresponding to an actual expected length of 0.0498. In com-
parison with exact methods or the Krishnamoorthy–Peng procedure, (7) offers
greater computational ease without sacrificing much accuracy.

It is likewise possible to solve the cubic equation that results from including
the n−3/2-term of (6), but the solution does not yield a simple formula and does
not give substantially improved accuracy.

A downside to this approach to sample size determination is that the initial
guess p0 may be quite wrong. This is particularly problematic if p is closer
to 1/2 than is p0, in which case the calculated required sample size will be too
small. As a safety measure, it is sometimes recommended to use the conservative
guess p0 = 1/2, which maximizes the required sample size. More often than not,
however, this choice is needlessly conservative.

An alternative approach, with a Bayesian flavour, is to use a prior distribution
for p when determining the sample size. Beta distributions constitute a flexible
and analytically tractable class of priors for p. For p ∼ Beta(a, b), we have

E
(

2zα/2n
−1/2(pq)1/2 + n−1

)

= 2zα/2n
−1/2Γ(a+ 1/2)Γ(b+ 1/2)

(a+ b)Γ(a)Γ(b)
+ n−1.
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Fig 2. The required sample size for the Clopper–Pearson interval for different combinations
of p and α.

With R(a, b) = Γ(a+ 1/2)Γ(b+1/2)[(a+ b)Γ(a)Γ(b)]−1, this gives the required
sample size

n =
2z2α/2R

2(a, b) + 2zα/2
√

z2α/2R
4(a, b) + dR2(a, b) + d

d2
.

When applying a frequentist procedure, the prior information about p is
typically diffuse, indicating that a low-informative prior should be used so as
not to bias the sample size determination. One example is the Jeffreys prior
Beta(1/2, 1/2), which puts more probability mass close to 0 and 1 and yields
R(1/2, 1/2) = 1/π. Other examples include the uniform Beta(1, 1) prior, for
which we have R(1, 1) = π/8 and the Beta(2, 2) prior, which puts more mass
close to 1/2, yielding R(2, 2) = 9π/64.

The required sample size for different combinations of p and α is shown in
Figure 2. It is decreasing in α, increasing in p when p < 0.5 and decreasing in p
when p > 0.5.

Remark. In formulas similar to those above, some authors use d to denote the
expected half-length, or error tolerance, of a confidence interval. This may be
inappropriate in the binomial setting, since using the half-length might give the
false impression that all confidence intervals are symmetric about the unbiased
estimator p̂ = X/n. This is not the case for the Clopper–Pearson interval and
most good approximate intervals, including those presented in Section 2.3. As
an example, when n = 50 and p = 0.01, the expected length of the Clopper–
Pearson interval is 0.044. Since the interval is boundary respecting, most of its
length will be placed above p. The expected length is very much an interesting
quantity when determining sample size, but for binomial proportions it should
not be interpreted in terms of error tolerances.

3.3. The cost of using the exact interval

Next, we will study the cost of using the exact Clopper–Pearson interval instead
of an approximate interval. We will do so by comparing the exact interval to
three of the approximate intervals described in Section 2.3: the Wilson score,
Jeffreys and Agresti–Coull intervals. These intervals have been recommended as
default intervals for a single proportion by several authors [2, 5, 20].
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First, we measure the cost in terms of increased expected length. By compar-
ing the expansion in Theorem 2 to the expansions in Theorem 7 of Brown et al.
[6], we get the following expressions for how much the expected length of the
confidence interval increases when the Clopper–Pearson interval is used instead
of an approximate interval.

Corollary 1. The Clopper–Pearson interval is asymptotically wider than the

approximate intervals described in Section 2.3. In particular, compared to the

length LJ of the Jeffreys interval,

E(LCP ) = E(LJ) + n−1 +O(n−2), (8)

and if LA denotes the length of the Wilson or Agresti–Coull interval,

E(LCP ) = E(LA) + n−1 +O(n−3/2). (9)

Expanded versions of (9) for the different intervals, including the n−3/2-terms,
are given in the proof in the appendix.

Up to O(n−3/2), the increase in expected length is inversely proportional
to n. Note that, up to O(n−3/2), the increase does not depend on p or α. The
cost of using an exact interval, in terms of expected length, is thus more or less
constant for a fixed n. This is an interesting and somewhat unexpected fact,
since the expected lengths of these confidence interval are highly dependent on
both p and α.

Next, we consider required sample size. As the Clopper–Pearson interval is
wider than the approximate intervals, it naturally requires larger sample sizes to
obtain a particular expected length d. Let nCP (d, p, α) be the minimum sample
size for which Ep(LCP ) ≤ d at the 1 − α level. Similarly, let nJ(d, p, α) be the
minimum sample size for which the expected length of the Jeffreys interval is
at most d under p at the 1− α level.

As noted by Piegorsch [22], the sample size for the Jeffreys interval is well
approximated by nJ(d, p0, α) = 4z2α/2p0q0d

−2. Comparing this to (7) without

rounding, the increase in required sample size n+

J (d, p0, α) = nCP (d, p0, α) −
nJ(d, p0, α) can be approximated by

n+

J (d, p0, α) ≈
d− 2zα/2

(

zα/2p0q0 −
√

(zα/2p0q0)2 + dp0q0

)

d2
. (10)

This approximation is quite accurate, generally differing by less than 1 when
compared to the value for n+

J obtained using substantially more computer-
intensive exact computations.

(10) is plotted as a function of d for three choices of p0 in Figure 3. When
shorter intervals are desired, the increase in required sample size can be sub-
stantial. When d = 0.05, for instance, n+

J is 40 for 0.05 ≤ p0 ≤ 0.95.
As was the case for the expected length, the increase n+

J is remarkably in-
sensitive to p and α: there is no concernable difference when 0.05 ≤ p ≤ 0.95
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Fig 3. The increase in required sample size when using the Clopper–Pearson interval instead
of the Jeffreys, Wilson score and Agresti–Coull intervals, as approximated by (10)–(12).

and 0.001 ≤ α ≤ 0.2. The cost of using an exact interval instead of the Jef-
freys interval is, in terms of required sample size, constant for a fixed expected
length d.

Moving on to the Wilson score interval, Piegorsch [22] gave the following
formula for its sample size:

nWS(d, p0, α) = z2α/2[p0q0 + d2/2 +
√

p20q
2
0 + d2(p0 − 1/2)2][d2/2]−1.

The increase n+

WS(d, p0, α) = nCP (d, p0, α)−nWS(d, p0, α) can thus be approx-
imated by

n+

WS(d, p0, α) ≈ d−2

[

d(1+ dz2α/2)+ 2zα/2

(√

z2α/2p
2
0q

2
0 + dp0q0

−
√

z2α/2p
2
0q

2
0 + d2z2α/2(p0 − 1/2)2

)]

.

(11)

The approximation is good when p0 is not very small, typically not differing by
more than 2 from the exact value.

Similarly, Piegorsch [22] gave the formula nAC(d, p0, α) = 4z2α/2p0q0d
−2−z2α/2

for the sample size of the Agresti–Coull interval. Consequently, the increase
n+

AC(d, p0, α) = nCP (d, p0, α)− nAC(d, p0, α) is approximately

n+

AC(d, p0, α) ≈
d+ z2α/2(d

2 − 2p0q0) + 2zα/2
√

(zα/2p0q0)2 + dp0q0

d2
. (12)

The expressions (11) and (12) are plotted for some combinations of p and α in
Figure 3. For the Agresti–Coull interval, the cost is more or less constant in p,
but is sensitive to changes in α. For the Wilson score interval, the cost depends
on both p and α.

3.4. The exact frequentist interval and Bayesian credible intervals

with noninformative priors

Equation (8) in Corollary 1 and the fact that (10) is so insensitive to p and
α reveal a strong connection between the frequentist Clopper–Pearson interval
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and the Bayesian credible interval derived under the Jeffreys prior. In the light
of these results, it seems natural to think of the Bayesian interval as a sort of
continuity-correction of the Clopper–Pearson interval, in which conservativeness
is sacrificed in order to get a short interval.

Attempts to connect the exact frequentist interval with Bayesian intervals
have previously been made by Brown et al. [5], who argued that the Jeffreys
interval can be thought of as a continuity-corrected version of the Clopper–
Pearson interval. Their argument comes from a comparison between the Jeffreys
interval and the mid-p interval, which generally is considered to be a continuity-
corrected Clopper–Pearson interval. However, the key step in their argument is
their equation (17), which is incorrect; it relies on the false assumption that for
two continuous functions f1 and f2, (f1 + f2)

−1 = f−1

1 + f−1

2 .
Another natural noninformative Bayesian interval is that based on the uni-

form prior, Beta(1, 1). The Clopper–Pearson interval is essentially this interval
after half the prior information has been removed, a fact which we have not seen
mentioned before in the literature. To see this, note that for a central Bayesian
interval with prior Beta(a, b), a, b > 0, the lower bound is given by the beta
quantile pL,B(a, b,X, n) = B(α/2, X + a, n − X + b). The parameters a and b
can be interpreted as additional successes and failures added to the data. For
the uniform prior, a = b = 1. The lower bound of the Clopper–Pearson interval
is similarly the beta quantile B(α/2, X, n−X + 1). When X /∈ {0, n} this can
be written as B(α/2, (X−1)+1, (n−1)−(X−1)+1) = pL,B(1, 1, X−1, n−1),
the lower bound of the Beta(1, 1) interval with one success removed. Similarly,
the upper bound is 1 − pL,B(1, 1, n − X,n − 1), i.e. 1 minus the lower bound
for q under the uniform prior with one success removed. The Beta(1, 1) interval
can thus be thought of as a shrinkage Clopper–Pearson interval.

4. One-sided bounds

4.1. Expected distance to the true proportion

For one-sided confidence bounds, it is not the expected length that is of interest,
but how close the bound is to p. Let LU,CP = pU − p denote the distance from
pU to p. The next theorem gives an asymptotic expansion for the expectation
of LU,CP .

Theorem 3. As n → ∞ the expected distance to p for the 1 − α one-sided

Clopper–Pearson upper bound is

E(LU,CP ) = n−1/2zα(pq)
1/2 + (3n)−1

(

2(1/2− p)z2α + 1 + q
)

+ n−3/2zα(pq)
1/2

(

− 53

36
+

1

2
− p

q
+

z2α + 13

2

36pq
− 13z2α

36

)

+O(n−2)

(13)

The expansion (13) is compared to the actual expected distance to p in Fig-
ure 4. Like the expansion for the expected length of the two-sided interval, (13)
is close to the actual expected distance even for small n.



The cost of using exact intervals 829

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.1

0
.0

0
.1

0
.2

0
.3

n=10

p

E
x
p
e
c
te
d
 l
e
n
g
th

Exact

Asymptotic

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

n=20

p

E
x
p
e
c
te
d
 l
e
n
g
th

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
5

0
.1
0

n=40

p

E
x
p
e
c
te
d
 l
e
n
g
th

Fig 4. Comparison between the actual expected distance and the expansion (13) for the nom-
inal 95 % Clopper–Pearson upper bound.

4.2. Sample size determination

The expressions we obtain in the one-sided case are not quite as simple as those
in the two-sided case. Let d denote the desired expected distance to p and let p0
be the initial guess for the value of p. Proceeding as before, using the second-
order approximation

E(LU,CP ) ≈ n−1/2zα(pq)
1/2 + (3n)−1

(

2(1/2− p)z2α + 1 + q
)

yields the required sample size

⌈

n = (2d2)−1

(

9z2αp0q0 + 3zα
√

3p0q0
√

3z2αp0q0 + 4[dz2α − 2dz2αp0 + d(1 + q0)]

+ 6[2z2α(1/2− p0) + (1 + q0)]
)⌉

.

This approximation is very good when d is not too small. For smaller d it has a
small negative bias: when α = 0.05 and p0 = 1/2 the actual required sample size
for d = 0.02 is n = 1738, whereas the above expression gives the approximation
n = 1721, corresponding to a true expected distance of d = 0.0201. For most
purposes, this will probably be a sufficiently accurate approximation.

As in the two-sided case, we may consider using a prior distribution of p,
rather than a fixed p0, to determine a reasonable sample size. The expectation
of the second-order approximation with respect to a Beta(a, b) prior for p is

(2+ z2α)Γ(2− a)Γ(2− b)

3nΓ(4−a− b)
− (2z2α+1)Γ(3− a)Γ(2− b)

3nΓ(5−a− b)
+

zαΓ(5/2−a)Γ(5/2− b)√
nΓ(5− a− b)

.

(14)
Note that this expression is undefinied when a, b ≥ 2, limiting which priors we
can use. When (14) is well-defined, a general formula for the required sample
size can be obtained by equating (14) to d and solving for n, but the resulting
expression is rather complicated. It is however readily evaluated for particular
values of a and b. For the Jeffreys prior for instance, the required sample size is

⌈

n =
6zα(zα +

√

z2α + 9dπ)

d2
+

π

16d

⌉

.
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Fig 5. The required sample size for the upper Clopper–Pearson bound for different combina-
tions of p and α.

The solutions for the Jeffreys and uniform priors as well as the low-informative
asymmetric Beta(1/2, 1) prior are shown in Figure 5, along with the solutions
for fixed p0 and different values of α.

In contrast to the two-sided case, d can in fact be interpreted as an error
tolerance for the one-sided bound. This makes the interpretation of d easier in
this case.

4.3. The cost of using the exact bound

The cost of using the exact bound will be evaluated in relation to three approxi-
mate bounds: The Jeffreys, second-order correct and modified loglikelihood root
bounds, described in Section 2.3. Comparing (13) to the expansions in Corol-
lary 1 of Cai [7] and Proposition 2.2 of Staicu [24], the following corollary is
immediate.

Corollary 2. When LU,A denotes the distance of the Jeffreys, second-order

correct or modified loglikelihood root bounds,

E(LU,CP ) = E(LU,A) + (2n)−1 +O(n−3/2).

It should be noted that there are one-sided versions of the Wald and Wil-
son score intervals, but since these have very poor performance [7] they are
omitted from our comparison. They can however readily be compared to the
Clopper–Pearson bound by comparing (13) to the corresponding expansions in
Corollary 1 of Cai [7].

For one-sided bounds, the approximation of the increased sample size when
the exact bound is used is more involved than it was for the two-sided cases.
To keep the comparison brief, we simply use the naive first-order formula n =
z2α/2pqd

−2 to determine the sample sizes for the approximate bounds. This works

reasonably well most of the time. Let n+(d, p, α) be the increase in sample size
when the Clopper–Pearson bound is used instead of an approximate bound.
Then, with ω(z, d, p) = 9z2pq + 12dz2 − 24dz2p,

n+(d, p0, α) ≈
√

ω(zα, d, p0)+ 12d(1+ q0)−
√

ω(zα, d, p0)+ 12d(1/2−p0)+
d
2

d2
.

(15)
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Fig 6. The increase in required sample size when using the upper Clopper–Pearson bound
instead of an approximate upper bound, as approximated by (15) for α = 0.05.

Compared to the increased sample size in the two-sided setting, (15) is more
sensitive to changes in p and α. The cost is the smallest when p = 0.5. When
evaluating the increased sample size p0 = 0.5 is therefore not to be recommended
as the default choice, as this can lead to a serious underestimation of the increase,
especially for smaller d.

5. Discussion

5.1. Minimum coverage or mean coverage?

The Clopper–Pearson methods are exact in the sense that their minimum cov-
erage over all p is at least 1 − α. An alternative measure of coverage is mean
coverage, which typically is taken to be the expected coverage with respect to a
uniform pseudo-prior of p. In recent papers on binomial confidence intervals, ap-
proximate methods have often been considered to be preferable to exact methods
[2, 5, 7, 21], the argument being that it makes more sense to interpret the confi-
dence level as the mean coverage probability rather than the minimum coverage
probability, as this corresponds better to how many modern-day statisticians
think of coverage levels. Reasoning along the lines of Newcombe & Nurminen
[21], the minimum coverage can occur in an uninteresting part of the parameter
space, typically close to the boundaries, possibly rendering it an uninteresting
measure of coverage. This is discussed further in the next section.

As noted e.g. by Newcombe & Nurminen [21], using mean coverage is very
much in line with current statistical practice in other problems. Widely used
methods based on boostrapping and MCMC, for instance, typically only con-
trol confidence levels and type I error rates approximately, attaining the 1 − α
level only on average. This is particularly reasonable when the model is known
to be an imperfect representation of the underlying process, in which case even
minimum coverage criterions are approximate at best. Unlike in many other ap-
plications however, one can often be rather certain that a random variable truly
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is binomial. This begs the question whether one should resort to approximations
or use methods that really are guaranteed to be exact.

If the Bayesian credible intervals based on either the Jeffreys Beta(1/2, 1/2)
or the uniform Beta(1, 1) priors are used, an additional argument for the mean
coverage criterion is given by the Bayesian interpretation of these intervals. If we
accept mean coverage as a criterion when choosing between confidence intervals,
we can obtain intervals that simultaneously admit both frequentist and objective
Bayesian interpretations.

The minimum coverage criterion underlying the Clopper–Pearson interval
is in line with classical statistical theory. It asserts that overcoverage is a less
serious problem than undercoverage, or, in other words, that it is better to be
more confident than you think that you are than to be overconfident. Next, in
order to evaluate this argument further, we will discuss just how overconfident
one risks being when using approximate intervals.

5.2. The cost of using approximate methods

Just as there are costs associated with using exact methods, there are costs
associated with using approximate methods: the actual coverage level may, even
for large n, drop below the nominal 1−α. There is no guarantee that the true p is
not in an unfortunate area with low coverage. However, these coverage anomalies
usually occur close to the boundaries of the parameter space, so unless we are
interested in inference for p close to 0 or 1, it may therefore be more relevant to
investigate the minimum over a central subset, such as [0.1, 0.9].

The problem of undercoverage is illustrated in Figure 7, in which the min-
imum coverages of the Jeffreys, Wilson and Agresti–Coull intervals are shown
for different n when the minimum is taken over either p ∈ [0.01, 0.99] or p ∈
[0.1, 0.9]. For p ∈ [0.01, 0.99] and a moderately large sample size of n = 250, the
minimum coverage of the Jeffreys interval is approximately 0.88, whereas the
minimum coverage of the Wilson score interval is about 0.93. The Agresti–Coull
interval fares somewhat better, with a minimum coverage of 0.94. In this setting
neither the Jeffreys nor the Wilson score interval has a minimum coverage above
0.94 even for a sample size as large as n = 2000.
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Fig 7. Minimum coverage of two-sided approximate intervals over p ∈ [0.01, 0.99] or p ∈

[0.1, 0.9] when α = 0.05, computed over a grid of 200,000 equidistant points.
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A coverage of 0.94 for a nominal 0.95 method is well below what one should
expect for sample sizes as large as n = 2000. If undercoverage of this size is
unacceptable, one may apply computer-intensive coverage-adjustment method
similar to those discussed in Reiczigel [23], decreasing α to some γ for which the
minimum coverage over some set of values of p is at least 1 − α, thus making
the methods exact. Decreasing α will however increase the expected length of
the intervals.

Comparing sample sizes of the 1− γ Jeffreys interval and the 1−α Clopper–
Pearson interval, we have:

n+(d, p0, α, γ)) ≈
d+ 2p0q0(z

2
α/2 − 2z2γ/2) + 2zα/2

√

z2α/2p
2
0q

2
0 + dp0q0

d2
.

For n between 1000 and 1500, computer-intensive adjustments of the Jeffreys
interval lead to γ ≈ 0.04 (the actual γ being somewhat larger than 0.04). For
p0 = 1/2 and d = 0.04, we get n+(0.04, 1/2, 0.05, 0.04)) ≈ −186, i.e. that the
Clopper–Pearson interval requires 186 observations fewer to obtain the desired
expected length. In general, approximate intervals that have been adjusted to
be exact are outperformed by the Clopper–Pearson interval.

Similarly, if one is willing to use approximate intervals, it is possible to apply
coverage-adjustments to the Clopper–Pearson interval in order to adjust its
mean coverage to 1−α. The resulting γ > α, meaning that the interval becomes
shorter after the adjustment. Thulin [27] studied this problem in detail for n ≤
100, showing that the adjusted Clopper–Pearson intervals often outperformed
its competitors.

It should be noted that other criterions than coverage and expected length
can be used for comparing confidence intervals. Newcombe [19, 20] compared
location properties, i.e. left and right non-coverage, of intervals and found the
Clopper–Pearson interval to have good properties in comparison to some approx-
imate intervals. Vos & Hudson [29] considered two criterions related to p-values,
motivated by the interpretation of confidence intervals as inverted tests, and
found the Clopper–Pearson interval to be better than its competitors.

5.3. On sample size determination

One of the main contributions of this paper is the formulas for sample size
determination that are given in Sections 3.2 and 4.2. Bearing in mind the rapid
increase of computational power, one might question whether there is a need
for such formulas, or if computer-intensive sample size methods should be used
instead. Some arguments in defence of formulas are presented next.

Despite the computational resources available, time can still be an issue when
comparing formulas and computer-intensive methods. While computer-intensive
sample size determination certainly is feasible on modern computers, comparing
the sample sizes for different combinations of α and p can be time-consuming.
Using a formula, such a comparison is a trivial task. In Sections 3.2 and 4.2,
we propose using a prior for p (rather than a fixed guess p0) when determining
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the sample size. While this also can become very time-consuming if a computer-
intensive method is used, the sample size under the prior is readily computed
using the formulas in Sections 3.2 and 4.2.

Apart from the merits of computational simplicity, the benefit of having a
formula is that it becomes clear how the parameters p, d and α affect the sample
size n. Computer-intensive methods, in contrast, are black boxes that are useful
for computing sample sizes, but not for much else. A formula is more useful
when a statistician shows and explains sample size calculations to a client, and
is likewise more useful in teaching.

Finally, the formulas in 3.2 and 4.2 are of interest even if one prefers to use
computer-intensive methods, as they can be used to obtain an initial guess for
the sample size n required. This can speed up computer-intensive determination
substantially, particularly if d is small, in which case a large number of iterations
tend to be needed to find the sample size if no good starting guess is available.

5.4. Conclusion

When choosing between exact and approximate confidence methods, it is im-
portant to be aware of the benefits and the costs associated with the two types
of methods. The coverage fluctuations of approximate intervals have been com-
pared in several studies, making it easy for practitioners to compare how costly
these intervals can be in terms of undercoverage.We have attempted to make the
costs of using exact methods explicit, by giving expressions for how much larger
the expected length of the exact intervals are and for how much the sample size
increases when a fixed expected length is to be attained.

For the two-sided Jeffreys interval, exactness comes at a fixed price: the cost
of using the Clopper–Pearson interval instead of this intervals is, in terms of
expected length and required sample size, insensitive to p and α. For the Agresti–
Coull interval, the cost only depends on α. This stands in contrast to the Wilson
score interval and one-sided bounds, for which p and α can greatly affect the
cost. In either case the required sample sizes for the exact methods can be
substantially larger than those of the approximate methods. That α can have
a large impact on the cost is interesting since most numerical comparisons of
binomial confidence intervals only consider α = 0.05.

In our comparison of exact and approximate methods, the only exact methods
considered were the Clopper–Pearson interval and bound. While other shorter
exact two-sided intervals exist, they suffer from various problems that make
them unsuitable for use. Moreover, the Clopper–Pearson interval is used far
more often than the other exact intervals, which merits its role as the main
subject of this study.
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Appendix: Proofs

Theorem 1 follow directly from the following lemma, which is used in the proofs
of Theorems 2 and 3.

Lemma 1. With assumptions and notation as in Theorem 1, the bounds of the

Clopper–Pearson interval are

pL = p̂− n−1/2zα/2(p̂q̂)
1/2 + (3n)−1

(

2(1/2− p̂)z2α/2 − (1 + p̂)
)

− n−3/2zα/2(p̂q̂)
1/2

(

− 53

36
−

1

2
− p̂

p̂
+

z2α/2 + 11

36p̂q̂
−

13z2α/2

36

)

+O(n−2),

pU = p̂+ n−1/2zα/2(p̂q̂)
1/2 + (3n)−1

(

2(1/2− p̂)z2α/2 + (1 + q̂)
)

+ n−3/2zα/2(p̂q̂)
1/2

(

− 53

36
+

1

2
− p̂

q̂
+

z2α/2 + 11

36p̂q̂
−

13z2α/2

36

)

+O(n−2).

The approximations are close to the actual bounds even for small sample
sizes. When n = 25 and p̂ is not too close to 0 or 1, the approximations are
typically accurate up to at least least two decimal places.

Proof of Lemma 1. First, we note that the lower limit of the Bayesian interval
with prior Beta(a, b), a, b > 0, is given by the beta quantile pB(a, b,X, n) =
B(α/2, X + a, n−X + b).

For the Clopper–Pearson interval pL is the beta quantile B(α/2, X, n−X+1).
When X /∈ {0, n} this can be written as B(α/2, (X−1)+1, (n−1)−(X−1)+1),
i.e. pB(1, 1, X−1, n−1), the lower limit of the Beta(1, 1) interval for X−1 and
n− 1.

Brown et al. [6] gave the following asymptotic expression for pB(1, 1, X, n):

pB(a, b,X, n) = p̂+
1

3

(1− 2p̂)(z2α/2 + 2)

n
−
[zα/2(p̂q̂)

1/2

√
n

+
zα/2(p̂q̂)

1/2

(n)3/2

(z2α/2 + 11

36
(p̂q̂)−1 −

13z2α/2 + 71

36

)]

+O(n−2).

In particular, for X ∈ {1, 2, . . . , n− 1} and n > 1 we have

pL = pB(1, 1, X − 1, n− 1)

=
X − 1

n− 1
+

1

3

(1− 2 · X−1

n−1
)(z2α/2 + 2)

(n− 1)
−
[zα/2(

X−1

n−1
· n−X

n−1
)1/2

(n− 1)1/2

+
zα/2(

X−1

n−1
· n−X

n−1
)1/2

((n− 1))3/2

(z2α/2 + 11

36

(X − 1

n− 1
· n−X

n− 1

)

−1

−
13z2α/2 + 71

36

)]

+O((n− 1)−2).

(16)
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Next, we obtain the asymptotic expression for the lower Clopper–Pearson bound
by rewriting each part of (16) in terms of p̂ = X/n and q̂ = 1− p̂. First of all,

X − 1

n− 1
=

X

n
+

X − 1

n− 1
− X

n
=

X

n
+

X − 1− X
n (n− 1)

n− 1
= p̂+

p̂− 1

n− 1
.

The (n− 1)−1-part of (16) now becomes

p̂− 1

n− 1
+

1

3

(1− 2 · X−1

n−1
)(z2α/2 + 2)

(n− 1)

=
3p̂− 3 + z2α/2 + 2− 2

(

p̂+ p̂−1

n−1

)

(z2α/2 + 2)

3(n− 1)

=
2(1/2− p̂)z2α/2 − (1 + p̂)

3(n− 1)
+O((n − 1)−2)

=
2(1/2− p̂)z2α/2 − (1 + p̂)

3n
+O(n−2).

(17)

Next, we have
n−X

n− 1
= 1− X − 1

n− 1
= q̂ − p̂− 1

n− 1
,

whence it follows

X − 1

n− 1
· X − n

n− 1
=

(

p̂+
p̂− 1

n− 1

)(

q̂ − p̂− 1

n− 1

)

= p̂q̂ + (q̂ − p̂)
p̂− 1

n− 1
−
( p̂− 1

n− 1

)2

= p̂q̂ + 2(1/2− p̂)
p̂− 1

n− 1
−
( p̂− 1

n− 1

)2

= p̂q̂ − 2(1/2− p̂)
q̂

n− 1
−
( q̂

n− 1

)2

.

Since

(

pq− 2(1/2− p)
q

n− 1
−
( q

n− 1

)2)1/2

=
√
pq−√

pq(1/2− p)(pn)−1 +O(n−2),

(n− 1)−1/2 = n−1/2 +
1

2
n−3/2 +O(n−5/2)

and
(

pq − 2(1/2− p)
q

n− 1
−
( q

n− 1

)2)−1

= (pq)−1 +O(n−1)

the (n− 1)−1/2 and (n− 1)−3/2-parts of (16) can be written as

−
[zα/2(

X−1

n−1
· n−X

n−1
)1/2

(n− 1)1/2
+

zα/2(
X−1

n−1
· n−X

n−1
)1/2

((n− 1))3/2
×
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×
(z2α/2 + 11

36

(X − 1

n− 1
· n−X

n− 1

)

−1

−
13z2α/2 + 71

36

)]

+O((n − 1)−2)

=−
[

zα/2
√

p̂q̂n−1/2 + zα/2
√

p̂q̂n−3/2×
(18)

×
(

1/2− 1/2− p̂

p̂
+

z2α/2 + 11

36
(p̂q̂)−1 −

13z2α/2 + 71

36

)]

+O(n−2)

=−
[

zα/2
√

p̂q̂n−1/2 + zα/2
√

p̂q̂n−3/2×

×
(

− 1/2− p̂

p̂
+

z2α/2 + 11

36
(p̂q̂)−1 −

13z2α/2 + 53

36

)]

+O(n−2).

The expansion for pL is now obtained as p̂+ (17) + (18). The expansion for pU
is derived analogously.

Proof of Theorem 2. Using the expansion in Lemma 1, when X /∈ {0, n}

LCP = pU − pL =2n−1/2zα/2(p̂q̂)
1/2 + n−1 + n−3/2m(p̂) +Rn,

where

m(p̂) = (p̂q̂)−1/2 zα/2

18

(

z2α/2 + 2− 17p̂q̂ − 13p̂q̂z2α/2

)

and E(Rn) = O(n−2) by the mean value theorem. As the contribution to ex-
pected length given by X ∈ {0, n} is P (X ∈ {0, n})·(1−(α/2)1/n) = O((1/2)n),
when computing E(LCP ) we can disregard the fact that the above expansion is
invalid for X ∈ {0, n}.

The n−1/2-term is the length of the Wald interval, the expectation of which
was given in Brown et al. [6]:

E
(

2zα/2n
−1/2(p̂q̂)1/2

)

= 2zα/2n
−1/2(pq)1/2

(

1− (8npq)−1

)

+O(n−2).

m(p̂) is bounded when X 6= {0, n} and m(p) is twice differentiable for 0 < p < 1.
Thus, by the theorem in Section 27.7 of Cramér [10],

E(m(p̂)) = (pq)−1/2 zα/2

18

(

z2α/2 + 2− 17pq − 13pqz2α/2

)

+O(n−1)

and (6) follows after all terms of the same order are collected.

Proof of Corollary 1. (8) and (9) are obtained by comparing (6) to the expan-
sions in Theorem 7 of Brown et al. [6]. In particular, compared to the length
LWS of the Wilson score interval,

E(LCP ) = E(LWS) + n−1

− n−3/2 zα/2

36(pq)1/2

[

9zα/2

(

zα/2 +
(26

9
pq − 2

9

)2)

+ 34pq(1− 2z2α/2)− 4
]

+O(n−2),
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compared to the length LAC of the Agresti–Coull interval,

E(LCP ) = E(LAC) + n−1

− n−3/2 zα/2

36(pq)1/2

[

9zα/2

(

2zα/2 +
(26

9
pq − 2

9

)2)

+ pq(34− 108z2α/2)− 4
]

+O(n−2).

The proof of Theorem 3 is in complete analogue with the proof of Theorem
2 and is therefore omitted. As in the proof of Theorem 2, the expected distance
of the one-sided Wald bound must be computed in an intermediate step: this
expectation can be found in Corollary 1 of Cai [7].
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