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Abstract: We consider centered compound Poisson processes with finite
variance, discretely observed over [0,7] and let the sampling rate A =
Ar — o0 as T — oo. From the central limit theorem, the law of each
increment converges to a Gaussian variable. Then, it should not be possible
to estimate more than one parameter at the limit. First, from the study of
a parametric example we identify two regimes for A and we observe how
the Fisher information degenerates. Then, we generalize these results to the
class of compound Poisson processes. We establish a lower bound showing
that consistent estimation is impossible when Ap grows faster than /7.
We also prove an asymptotic equivalence result, from which we identify,
for instance, regimes where the increments cannot be distinguished from
Gaussian variables.
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1. Introduction
1.1. Motivation and statistical setting

Continuous diffusive models are often used for phenomena observed at large
sampling rate, even though they present discontinuities or jumps at lower fre-
quencies. For example in finance, asset prices or volumes change at discrete
random times (see for instance Gerber and Shiu [7], Russell and Engle [18] or
Guilbaud and Pham [8]), however it is common to use continuous diffusive pro-
cesses to model them when the sampling rate is large (see e.g. Masoliver et al.
[13], Onalan [16] or Hong and Satchell [9]). This opposition in the observations’
behavior between small frequencies and large sampling rate is evoked in Cont
and de Larrard [4]: “over time scales much larger than the interval between
individual order book events, prices are observed to have diffusive dynamics
and modeled as such.” In physics the opposition between large scale diffusive
behavior and point process at small scale is also popular (see e.g. Metzler and
Klafter [14] or Uchaikin and Zolotarev [23]). The usual justification for using
diffusive approximations is as follows. Suppose we have discrete observations
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of a centered pure jump process X observed at a sampling rate A > 0, e.g.
a centered compound Poisson process with finite variance, namely we observe

(Xa,-- s X|ra-1ja)- (1)

To lighten notation we set ny := [TA™!|, the number of observations. We make
explicit the dependence in T since it is the asymptotic of the paper. If A is large,
between two observations of X many jumps occurred, the central limit theorem
gives for every increments the approximation

Xia — X—nya mo(Wia — Wi_1)a)

where W is a standard Wiener process and ¢ is positive. Hence, only the variance
parameter o should be identifiable from (1). If X depends on more parameters
their identifiability should be lost. Yet the use of diffusive approximations con-
ceals the jump’s dynamic observed at lower frequencies. The following questions
naturally come across.

i) Is it possible to estimate the parameters characterizing X from (1)?
ii) Is the experiment generated by (1) asymptotically equivalent to a Gaussian
experiment when A = Ay — oo as T — oo?

The asymptotic equivalence of a Poisson experiment with variable intensity has
been studied in Brown et al. [3]. Shevtsova [19] looks at the accuracy of Gaussian
approximations for Poisson random sums.

Definition 1. Observations (1) are said to be on a macroscopic regime if A =
Ap — oo and T/Ap — o0 as T — oo.

The condition T/Ar — oo ensures there are asymptotically infinitely many
observations (ny — 0o as T — 00). A typical example of macroscopic regime is
a sampling rate Ap of the order of 7% as T — oo for ain (0,1) as T' — oco. In
this paper we restrain our study to homogeneous compound Poisson processes.
A compound Poisson process X is defined as

Ry
X =) &, >0
=1

where R is a Poisson process of intensity A and (§;) are independent and iden-
tically distributed random variables independent of R. The process X is char-
acterized by the the pair » = (A, f), where f is the probability law of & . We
denote by P the class of compound Poisson processes.

1.2. Main results

Investigating questions i) and ii) directly is difficult. Hence in Section 2 we
first build and study a toy model: a compound Poisson process plus a drift that
depends on a 2-dimensional parameter. This process does not belong to P. From
this toy model, we identify two distinct macroscopic regimes,
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e A regime where A goes to infinity faster than /T, where the parameters
cannot be consistently estimated from (1), providing a negative answer
to i) (see Theorem 1 hereafter).

e A regime where A goes to infinity slower than v/T, where the parameters
can be estimated answering positively to i). However, optimal rates are
much slower than usual parametric ones (see Proposition 1 hereafter).

From the study of the toy model, we derive a lower bound in Theorem 2. It
identifies regimes in which consistent estimation of the law generating a process
in P is impossible, leading to a negative answer to i). Theorem 3 gives an
asymptotic equivalence result; according to the behavior of Ar with regard to
T, the following occurs.

e The experiment generated by the observation of a process in P is asymp-
totically equivalent to a Gaussian experiment, answering positively to ii).

e Compound Poisson processes depending on a large number of parameters
are not identifiable, providing a negative answer to i). The limit number
of parameters beyond which consistent estimation is not possible is made
explicit.

This paper is organized as follows, in Section 2 we construct and study our
toy model. In Section 3 we establish the main Theorems 2 and 3. A discussion
is proposed in Section 4. Finally, Section 5 is devoted to the proofs.

2. Information loss: A parametric example
2.1. Building up a parametric model

Consider the Lévy process Y defined by

Ry
At At
1=1

where R is Poisson process of intensity A € (0, o) independent of (§;);>o which
are independent and exponentially distributed random variables with parameter
B € (0,00). Due to the drift part, Y does not belong to P (unlike X'). This model,
known as the Cramér-Lundberg model, is used by insurance companies to model
big claims of subscribers (see e.g. Embrechts et al. [6] or Miksoch [15]). Without
the drift part, it is also used in Alexandersson [1] to model rainfall.

Suppose we observe ng increments of Y, conditional on the event {R;n —
R(;_1)a # 0}. Namely we observe Y over [0, S(T')A] at a sampling rate A > 0,
where S(T') is random and such that

5(T)

Z 1{RiA7R(i—1)A¢O} =nr.
=1
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Remark 1. The following results on S(T") can be easily checked. Since the
probability of occurrence of a zero increment of X is e *#, we have

P(S(T) #np)=1— (1 —e )T ~ppe™™® 50 as T — oo

if A goes to infinity as a power of T'. Moreover, S(T) is negative binomial with
parameters (1 — e 2 np).

Define J = {i € {1,...,S(T)}, Rin—R(;i—1)a # 0}, by construction |.J| = ny.
Consider the ny independent and identically distributed observations

Y = (Yiar = Yiinar =Yia = Ya-nalRia =R na #0, i €J). (3)

We introduce the family of experiments indexed by A generated by the condi-
tional observations (3)

YA = (R", P(R"), {Ph 2,0 € ©}),

where 6 denotes the unknown parameter 0 = (X, ) € © = (0,00) x (0,00) and
Pp® the law of Y.

Remark 2. The natural experiment to work with is the experiment }* gen-
erated by the observations of ny increments of Y

Y = (Yia —Yipa, i =1,...,n7).

But the law of Y is not dominated and the Fisher information in Y» does not
exist. Indeed the distribution of YA can be decomposed in

P(Ra = 0)5{7%}(-) +P(Ra > 0)pas(-),

where pa ¢ is dominated by the Lebesgue measure but 5{—%}, the mass con-

centrated at —%, cannot be dominated over ©. Removing null increments of

the Poisson part gives the experiment 37A, dominated by the Lebesgue measure,
where the Fisher information exists. Since the probability of a null increments
of X is e™*2, which is negligible as A — oo, we show in Section 2.4 that the
results established for Y hold also for Y: the experiments YA and Y2 are
asymptotically equivalent.

The intuition of the problem is the following, as & has finite variance, the
central limit theorem applies for each increments and gives for ¢ in J

Yiar — 37(1;1)AT d 2\
/T 0T S N[0, ), T — oo.
A ( 52> as 00

Thus each observation converges in law to a Gaussian random variable depend-
ing on one parameter: the parameter 6 should no longer be identifiable when A
gets large, only the ratio /32 should be.
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2.2. Study of the Fisher information

The increments of Y are independent and identically distributed, it follows that
the Fisher information of Y2 satisfies

I, A(0) =npli A(0)

where I; A(6) is the Fisher information corresponding to one increment. It has
no closed form expression but the following Proposition gives its asymptotic
behavior.

Proposition 1. Let A = Ar such that Ay — oo and T/Ar — o0 as T — oo.
Then

1

1
. N o 232 T B
Tlgréofl,AT(e) =1(0) := < ﬁ % )
and the eigenvalues of I, ar(0), denoted e1.a..(0) and ez ap(0), satisfy

3(7844+408%2224+5671) T
e1.a0(0) = (F + g )nr + SEHGERERITE 1 0( )

nr
e2,a.(0) = mK * O(%)'

Remark 3. The matrix 1(6) is the Fisher information of an experiment con-
sisting in one variable of distribution N(0,2)/3?).

From Proposition 1, whenever Ap goes to infinity faster than /7" the Fisher
information degenerates to a rank 1 matrix: the second eigenvalue es A, goes to
0 as np /A ~ T/AZ%. Theorem 1 below shows that it is indeed not possible to
build a consistent estimator of # in those scales. Conversely, when A is slower
than /T, both eigenvalues of the Fisher information go to infinity. Since the
experiment Y* is regular we deduce that the parameter  remains identifiable
and that consistent estimators of # do exist. This is surprising, even if each
observation is close to a Gaussian variable depending on one parameter, the
whole sample still permits to estimate consistently all unknown parameters.
However the optimal rate of convergence, determined by the slowest eigenvalue
e2.n,(0), is in (nT/AT)1/2. It is much slower than usual parametric rates in
ny'/?, the square root of the sample size.

2.3. A lower bound

In what follows || - || denotes a norm on R?. Define the diameter of a set A as
diam(A) = sup |laz — ay.
ay,az€A

Theorem 1. Let A be such that Ar — 0o and TAL? — 1 € [0,00) as T — oo.
Then, for all 8y € © and 0 > 0 there exists V5(0y) C O a neighborhood of Oy
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such that diam(Vs(0o)) < 6 and

lim inf sup IEZLT[Ha—HH] >0
T—oo 6 60€Vs(6o) Po

where the infimum is taken over all estimators.

From Theorem 1, there is no consistent estimator of  when A grows rapidly
to infinity, faster than /7. This was expected as the Fisher information degen-
erates to a rank 1 matrix in those regimes (see Proposition 1). Notice that if
Theorem 1 holds for every § > 0, possibly small, it is not uniform in §. It is not
possible to apply it along a vanishing sequence of 9.

2.4. Generalization to the unconditional experiment

The asymptotic equivalence of Y2 and Y2 (defined in Remark 2) is an imme-
diate consequence of the following Lemma.

Lemma 1. Define the probability measures,

pn(0,x) = fn(6,2)dx
an(0,x) = an(0)wno(dx) + (1 — an(0)) fn(0, z)dz,

where 0 € X, where Y is a compact subset of R4, d > 1, a,(0) € (0,1), fn(0,-) is
a density absolutely continuous with respect to the Lebesgue measure and wy, g 15
a probability measure. Consider the statistical experiments E™ and G" generated
by the independent and identically distributed observation of n random variables
of density pn(0,-) and qn(0, ) respectively. If supgey, an(0) = o(L), then E™ and
g™ are asymptotically equivalent.

Proof of Lemma 1 is given in Section 5. Since Y is a Lévy process, observations
Y. and Y, are independent and identically distributed. The distribution of YA
is

pap(z) = 6_’\A5{7%}(dﬂ7) + (L= e *)pag(a)de, reR (4)

where d;_\a/p) is the measure concentrated at —% and pa g is the den-

sity of SN/A absolutely continuous with respect to the Lebesgue. We consider
macroscopic regimes such that A = 0(7%) for some « € (0,1), it follows that
e T = o(|TALY|™1) = o(ny') and Lemma 1 applies with a,,,.(6) = e AT
and wr(dz) = 6;_ya./py(dz). The experiments Y2 and YA are asymptoti-
cally equivalent and the results established for JNJA hold for YA.

3. Identifiability loss for compound Poisson processes
3.1. A lower bound

In Section 2 we exhibit on a parametric example a regime where estimation is
impossible. We generalize here Theorem 1 to the class of compound Poisson
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processes P whose norm

[7ll2,2 = [[(A, F)ll2, == [Afll2,

is finite, || - |2 stands for the usual Lo norm.

Theorem 2. Let A — oo be such that T/A% = o((log(T/A7))~Y*) and
T/Ap — 00 as T — oo. Then, for all ro € P, ||roll2,p, and 6 > 0, there exists
Vs(ro), a neighborhood of ro such that diam(Vs(ro)) < 6 and

lim inf sup EN7[[[F—r[2p] >0
T—oo T reVs(ro)

where the infimum is taken over all estimators.

It follows that if Ap is of the order of T* for o € (1/2,1) it is not possible
to build a consistent estimator of (A, f) from (1) when f is unknown.

Remark 4. A compound Poisson process is a renewal reward process and a
Lévy process. Thus, we immediately derive from Theorem 2 that if Ap is such
that T/A% = o((log(T/Ar))~/*) as T — oo, it is not possible to build consis-
tent estimators of the law generating a renewal reward process or a Lévy process
with jumps from (1).

Remark 5. The rate restriction T/AZ = o((log(T/A7))~'/*) is technical and
might be weakened in T/A% = O(1). Indeed we derive Theorem 2 from The-
orem 1, which holds under the restriction 7'/A2 = O(1). To apply Theorem 1
in the present setting, we show that the experiment Y27 introduced in Sec-
tion 2 is asymptotically equivalent to an experiment generated by increments

of a compound Poisson process. This asymptotic equivalence result imposes the
constraint T/AZ% = o((log(T/Ar))~/4).

3.2. An asymptotic equivalence result
3.2.1. Building up asymptotically equivalent experiments

A parameter transformation function. Consider some density fy with
respect to the Lebesgue measure, centered with finite K first moments, K € N.
Let

/:vfg(x)dxzo and /l‘kf@(l')dl':mk, k=2,....K.

Define the parameter § = (A, ma,...,mg) € Xk, where Y is a compact subset
of

Ry x Ry xR} x -+ x [Ry x R] x Ry if K is even
Ry X [Ry xR} x -+ x [Ry X R] if K is odd,
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where R, denotes (0,00). Let v > 0, consider the parameter transformation
function

hy:0 € Xk — hy(0) = (7)\,%,...,’”7’().
Fix v € (0,00)\ {0, 1} such that h-(#) € . In the sequel we consider X and Z
two compound Poisson processes, X has intensity A and compound density fy
and Z has intensity yA and compound density f, (). Namely fj_ () is a density
with respect to the Lebesgue measure such that

m

/Zth,y(g)({E)d(E =0 and /xkfhv(g)(x)dx = —k, k=2,....K. (5)
Y

To establish Theorem 3 below, we do not need to know fj_ (), only to make
sure of its existence and that it is in the Sobolev space W' (i.e. fj, 9y € C*
with f,’lw(e) € L', see the class of densities (9) below). The existence of fj,_ (g) is
an immediate consequence of the truncated Hamburger moment problem. A nec-
essary and sufficient condition for (5) to have a solution is that the associated
Hankel matrices are positive definite (see e.g. Athanassoulis and Gavriliadis [2]
or Tagliani [21]). Since (0,ma, ..., mx) are the first moments of the density fp,
the associated Hankel matrices are positive definite. Then, the Hankel matrices
of (0, %, ceey %), for any v > 0, are positive definite as well and existence of
a density f},_(g), absolutely continuous with respect to the Lebesgue measure,
is thus ensured. Note that the number of solutions is infinite. A lot of papers
study methods to build explicit solutions of (5); for instance maximum entropy
approaches (see e.g. Tagliani [21] or Sobezyk and Trebicki [20]), polynomial so-
lutions (see e.g. Rodriguez and Seatzu [17]) or solutions based on kernel density
functions (see e.g. Athanassoulis and Gavriliadis [2]). All these solutions are
C' with integrable derivative, which ensures that Jn. 9y can be chosen in Wkl
In practice if K is large, building f_ () is difficult and the shape of the solu-
tion highly depends on the construction method considered. Above references
provide explicit examples.

Definition of the experiments. Consider also a Gaussian process W with
quadratic variation Ams. We associate the parameter ¢ = (A, ms) in Xo. Suppose
X, Z and W are discretely observed at a sampling rate A > 0 over [0, T'], namely

(X'LA _X(i—l)Aa i = 1,...,7’1/]‘), (6)
(Z’L _Z(i—l)Av i = 1,...,TLT), (7)
(Wi _W(i—l)Aaizla---anT)~ (8)

Define the families of statistical experiments indexed by A
X% = {Py®, 0 € Sk}, 2% :={Qy" 0 € Sk} and W2 = (D)2, 6 € Do},

where PZ’A denotes the law of (6), eT’A the law of (7) and Dz’A the law of (8).



282 C. Duval
3.2.2. Statement of the result

Define the subclass of densities
F={rer®, /'@l = om}, ©)

where F(R) is the class of densities with respect to the Lebesgue measure and f*
denotes the Fourier transform of f. The class F contains any density sufficiently
regular. For instance all densities in the Sobolev space W1, i.e. densities with
integrable derivatives.

Theorem 3. Let fg be in F and suppose supyey,. | [ 2° fo(x)dz| < oo let Ap —
oo be such that T/Ar — o0 as T — oo.

1. Let K > 2, if TA;(K+1)/2 = o((log(T/Ar))~Y*), the experiments XAT
and Z2T are asymptotically equivalent.
2. Moreover, if either one of the following holds

i. TAZY? = o((log(T/Ar))~1/%)
ii. TAL? = o((log(T/Ar))~Y*) and mz = 0

the experiment X7 is asymptotically equivalent to the Gaussian experi-
ment WAT .

The assumptions of Theorem 3 focus on fy only as it is possible to select
fn, (o) solution of (5) satisfying the same assumptions (see Section 3.2.1).

3.2.3. Interpretation

Part 2 of Theorem 3 can be easily interpreted. It states that when Ap goes
rapidly to infinity, the Gaussian approximation is valid. The increments of a
compound Poisson process cannot be distinguished from the increments of a
Brownian motion. Using a diffusive model even though the phenomena is per se
discontinuous is justified in those regime (see e.g. Cont and de Larrard [4]).

Part 1 of Theorem 3 is more general since it holds regardless of the rate Ap.
It should be interpreted as follows: for a given rate Ar, with regard to T, how
many parameters are not identifiable? The response given by the theorem is if
Ar is of the order of T® as T — oo, a € (0,1), it is not possible to identify
more than K, = [2 — 1] moments of the compound law and the intensity.
Indeed, it is possible to exhibit two different compound Poisson processes that
cannot be distinguished from their discrete observation. Thus, compound laws
characterized by their M > K, first moments cannot be estimated consistently
from observations (1).

The case K = 1, where parameter 6 reduces to § = ), is not covered by
Theorem 3. Indeed 6 appears in the limit variance and is always identifiable. This
case is studied for a particular discrete compound law in Duval and Hoffmann [5],
where an efficient estimator of @ is given and the asymptotic equivalence with
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a Gaussian experiment is established for A going rapidly to infinity, namely
T/A%FH/4 = o((log(T/Ar))~"/*). This constraint is more restrictive than the
one of Theorem 3 due to the discreteness of the compound law, a regularizing
kernel is needed to prove the equivalence and imposes the condition. In the case
K = 2, the parameter becomes 6§ = (\,m2), a particular example is studied in
Section 2. Corroborating Theorem 3, Theorem 2 shows that it is not possible
to estimate # whenever TA:?2 — 0 as T — oo since two parameters have to be
estimated.

4. Discussion

Consequences and extensions. An immediate consequence of the results
of the paper is that nonparametric estimation for compound Poisson processes
is impossible when A goes to infinity as a power of T, since it requires to
estimate an infinite number of parameters (see Theorem 3). In this paper we did
not investigate the existence and properties of consistent estimation procedures
when they exist. From the example of Section 2, we may expect that such
procedures exist but have optimal rates of convergence that deteriorate as the
number of parameters increases.

A natural generalization of Theorem 3 would be to relax the constraint on
the third moment of the compound law in | [, 2 fo(x)dx| < co for some n > 0,
and more specifically for n € (0,2). This allows to exhibit at the limit a conver-
gence to any stable process and not only to a Brownian motion (see for instance
Kotulski [10] or Levy and Taqqu [12]). The stable limit law is parametric, then
if the initial process depends on too many parameters questions i) and ii) (mod-
ifying the limit experiment accordingly) of Section 1.1 may also be extended.
However, the methodology used in this paper highly rely on the hypothesis
| [ 2° fo(x)dx| < oo (see the proof of Theorem 3 and the use of Edgeworth
expansions). Another generalization might be to add a long range dependence
structure between the jump times or the jumps themselves that remains at the
macroscopic limit. But our methodology uses heavily the Lévy structure of the
process.

On the difficulty of giving identifiability results. Section 3 contains
mostly negative results (see Theorems 2 and 3). Establishing positive results in
the general case such as “parametric estimation is possible for K parameters if A
goes to infinity slower than 775" for some function A, is much more involved,
even without specifying a rate of convergence. When A goes to infinity, the law
of each observation is asymptotically Gaussian and depends on one parameter,
the asymptotic variance. If this variance is insufficient to recover the initial
parameter, one has to study the limit experiment to derive identifiability and not
just the law of one observation. The successful study of the example of Section 2
entirely relies on the fact that modified Bessel functions of the first kind appears
in the density of the increments. Asymptotic expansions of such functions are
known rendering possible the study of the limit Fisher information. Thus, the
methodology adopted in Section 2 cannot be generalized to other cases.
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The multivariate case. The results of the paper should apply also to mul-
tivariate compound Poisson models. In that case the limit distribution of the
increments is a multivariate Gaussian variable, additional information might be
extracted from the covariance structure between coordinates.

A particular model is worth mentioning. Consider the bidimentional com-
pound Poisson model where we observe for each increment the number of events
Rian—R(i—1)a and the value of the increment X;A — X(;_1)a. One may think this
additional information may improve identifiability, it is not the case. Observing
R enables to estimate the intensity of the Poisson process with high accuracy;
indeed a sufficient statistics is the terminal value R, A = RLT ALY AL and the

maximum likelihood estimator R,,,.a /T converges at the rate v/T which is much
faster than \/nr! Consequently, it does improve identifiability when two param-
eters are to be estimated: the intensity and one jump parameter that appears in
the variance. In that case, the example studied in Section 2 remains identifiable
in all macroscopic regimes.

Still, identifiability of the jump probability law remains to be studied. In-
tuitively, if f depends on parameters that cannot be fully identified from the
asymptotic variance there might be a loss of identifiability: the variance of f is
identifiable but maybe not its shape. Moreover, if the construction that permits
to derive Theorem 3 part 1 becomes obsolete, the results of Theorem 3 part 2
still hold.

5. Proof
5.1. Proof of Proposition 1
Preparation

The increments of Y are independent and identically distributed. Conditional
on the presence of jumps, the density of Ya + AA/S is

alfsl(x) = > P(Ra =m|Ra # 0) 5™ (x) = P > —f5" (@)
m=1 m=1

where f3 is the density of an exponentially distributed random variable with

parameter  and x denotes the convolution product. It follows that f5™ is the

density of a gamma distribution. Then, for z > 0

-

e A = (A\ABz)™
= 7ﬁx _
Palfsl(@) 1_e¢a¢ ALS mzzo m!(m + 1)
Let k£ € N and introduce the function

(oo} m

g@) =3 m z € [0,00). (10)
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It is related to the modified Bessel function of the first kind Zj as follows

gk () = k/2 T (2y/x), x>0, (11)

OO x\ 2m-+tk 1

h L@=Y (3) -

Rewriting Pa[fs] and adding the drift part we get the density pa g of Ya, for
x> —=ANA/B

oe—2\A—Bz

Toon M8 (MBS + ATAT).

Pae(x) =

Technical Lemmas

Lemma 2. Let k € N, the modified Bessel function of the first kind Iy (x)
satisfies for all M € N

M

. -1)m T'(k+m+ ) 1
e I (x) (2r2) 1/2 Zo Tk —m + ) +O(IM+3/2)7
where the remainder depends on k and M.
Proof. See Watson [24]. O

We need to control the moments of }N/A and compute the first ones. For that
we use relation (4) and the moments of Ya derived from the Lévy-Kintchine
formula

¢ya(w) = E[e™"2] = exp (AA((1 — iw/B) ™" — 1 —iw/p))
by the relation
i 8m¢YA (w)

- m € N.
im o Quwm ‘wzo’

E[y{] =
The control of the moments of YA is given in Lemma 4 hereafter, which is a
consequence of the following Lemma, whose proof can be found in the Appendix.

Lemma 3. Let K € N, suppose X is a compound Poisson process whose com-
pound law is centered and has moment up to order K. Then for A large enough
and m < K we have [E[XT]| < €AL™/2) where € continuously depends on X
and the K first moments.

Remark 6. Lemma 3 and Cauchy-Schwarz inequality imply E[|X3"!|] <
CAmTL/2,

Lemma 4. Let K > 2, then [E[YZ]] < €A™/2] where € continuously depends
on 6.
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Proof of Lemma 4. The process Y is not in P, nevertheless a convex inequality
leads to

RA m 1

ER] <2m(B[(X (6@ 5) |+ ZwEl(Ra - 28)"]).

i=1
We apply Lemma 3 to the first term of the right hand part of the inequality.
We control the second term using Faa di Bruno’s formula; we compute the nth
derivative of the Laplace transform of Rao — AA at 0 as follows

n d" ¢ d"”
—_F t(RAf)\A) - AA(& 7t71) - —_ F t
e | = Zme T F(G(1))
where F(t) = (=1 and G(t) = e! —t, which satisfy F(™)(t)|;—o = (A\A)" and
G (t)]t—0 = 1,21 for all n > 1. Applying Faa di Bruno’s formula we get

n

dar T, @) (
PO = 5 et PG [T (S5)

mi1,mo,..., Mp :
mi42mo+--Fnmp=n

Let t = 0. All the terms corresponding to mj # 0 are null, we obtain

E[(RA — )\A)n} = Z n! ()\A)m2+"-+mn < €A|_n/2j7

mi!lms!2!™2 . m,, Inlmn

ma,..., My,
2mo+---tnmnp=n

for large enough A. The last inequality follows from the fact that, due to the

constraint 2mso + 3mg + -+ + nm,, = n, for large enough A, the exponent
mo + -+ + m,, is maximized for mg = -+ = my, = 0. The constant € depends
on A. To conclude we control the moments of YA using (4)
yvm 1 m —AAXNA [m/2]
E[YA}:m(E[YA]—e %) <ealm,
for A large enough and where € continuously depends on 6. O

Completion of the proof of Proposition 1

Since observations (3) are independent and identically distributed, the Fisher
information satisfies I, A, (0) = nrli A, (6)

— IAT(A7)\) IAT(/\vﬂ)
Il)AT(e) B ( Ing (B:A) 1ar(B,8) )

where
82
IAT(A7>\) = |:a)\2 IngA G(YATv)‘ ﬂ)}
82
IAT(B?B): |:(9ﬁ2 1ngA 9(}/AT5A B):|

IAT()\)/B) = IAT(/B) ) Eﬁe logpA G(YATv)\ ﬂ)

0?
L?A@ﬁ
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From (10) we derive g (z) = gr+1(x). Straightforward computations lead to

Ing (M A) =

[ A2 —2)\A7T N A2 —AAT - 292(/\AT[33:/AT+/\2A%)
(I—e  ar)2 " T e Aar T (AL BY A, + A2A2)

1 ~
+ v (BATY A, + 20\A%)?

y <93<AATmfAT +X°A%) (gz(mTﬁfAT + AZA:f;))w
g1 ()\ATﬂYAT + )\2A%) g1 ()\ATﬁYAT + /\QA%)
[ _ AT gg(AATﬁi:/AT +A2A2)
" (AATBY A, 4 A2A2)
5 9sAALBY AL + N2AZ) 1 ga(AAPSBY A, + A2AZ)\2
20AT) % - - ( — )
g1 ()\ATBYAT + A2AZ2 ) gl(/\ATﬁYAT + /\QA%)

Iny (N, B) = E5 — AMATYa, (BATY AL+

g3(AATBY A, + A2A2)
L(AATBY A, + A2A2)
B (gQ(AATm?AT +A\2AZ2, )) )]

G AATBY A, + A2AZ2)
Finally equation (11), Lemma 2 applied with M = 8, Lemma 4 (with Remark 6)

and the Taylor expansions around 0 of z — 1/(1 + z) up to order 4 in A lead
to Proposition 1. Computations are made with Mathematica.

IAT(ﬁ?ﬁ) = Eﬁe [% - ()\AT?AT)2(

5.2. Proof of Theorem 1
Preliminary

Lemma 5. Let Ar be such that Ap — oo and TAL? — [ € [0,00) as T — o0,
then for v >0 and v # 1

E@O{lo ( G1(MoBoATY A, + NEAZ)

Y =20A7(1=9%) +3lo
91(73)\OBOATYAT +74A%A%))] 0 T( v ) g('y)

B 9(v* - 1) +O( 1 )

16’72)\0AT A?}/z
Proof. Tt is a consequence of (11), Lemma 2 applied with M = 8 and Lemma 4
(with Remark 6). Computations are made with Mathematica. (]

Completion of the proof of Theorem 1

The following inequality holds for all 6y € © and § > 0

sup B2 [10-6)] = [ B2 - 6] o)
Vs (00)

0eVs(6o)
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where Vs(6p) is a neighborhood of 6y such that diam(Vs(0p)) < ¢ and u is the
following measure on Vs(6o)

p(dz) = %(590 (dx) + 5h7(90)(d$))

where hy(6p) € V(0o) is a perturbation of 6y and d¢9 denotes the Dirac distribu-
tion in 6. For the reader convenience, wherever there is no ambiguity, we drop
the super and sub scripts as follows,

Ey7[]:==E37[], P'T=PFg"" and P)T = P®"(§O)

with the convention P®! = P. Tt follows that

n n o 1 n n nt d]PmT
/ o B8 110 = 01n(a) = 5 (57 (19 6ol + B3 18— o 60)] 527 ]

> By [ S (18 — boll + 18— A (B))1{ o > )] (12)

for any s > 0. The triangle inequality applied to (12) gives
nr

/ B2 (118 - 0] u(do) > & hoy(60)||P (dP > 675)

_ > ) '
Vs(do) %0\ gprr
Noticing that for any s > 0 and P and QQ some probabilities

P ) o1 R p( R )

Markov’s inequality and ||P — Q||rv = [ [dP — dQ], lead to

(z%>e 5)21—1_1

— [P - Qlrv.

Then, for all s >0

~ e S 1
BT (118 — 0] ju(d6) > |60 — h- (8 1— PPT — PRy ).
Lo E L0 01t 2 100 = 00 - (1 = s P~ Py
Hence,
[ 01— oluds) > oo by G0l ~ B3 rv) (13
Vs (6o)
where
s 1 (1= /)2
B(x) = 1 S 1.
(z) el 2 ( 1—6—5$) 5 c€0]]

If z is bounded away from 1, ® is strictly positive. In the remaining of the proof
we choose h, such that
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o ||PrT — P:THTV < €; < 1 for some constant €,
e ||0g — hy(6p)|| > €2 > 0 for some constant €, possibly depending on 6.

Define the function h : 0 — hy(0) = (v?)\,v3) where v # 1 is positive. First,
Pinsker’s inequality gives

[Brr — B2 ||y < /K (BP,) = /2 K (B, P, (14)
where K is the Kullback divergence and

oo

M%ﬁww:/(M@mw4M%MMMM@M

— 00

_ 91 (MoBo AT XA +AFAT) 9
= Eﬁeo [log (91(V3>\060ATXAZ+V2)\§TAZT))] - ZAOA(l - ) - 310g(7)

In view of Lemma 5,

I 9(1 — o2
K(]}D%’]}DM(QO)):M_,_O( 1 )7

1672X A INTE
9(1 —~?) nr T
nr __ nT R
and P P ||y < \/ 3272\, Ar + O(A;m)' (15)
Then, if T/A2% — 0 as T — oo, for large enough T there exits €; < 1 such that
[P"r — P27, <€ <1 (16)

The inequality holds for any ~. If T/A% — [ > 0 as T — oo, take v # 1 such
that

—1
0< (8% +1)7 <42 (17)
Then, (15) ensures that there exists €; < 1 such that
||]PmT — ]P):T”TV <& <1 (18)
Second, we bound from below ||y — h~(6p)]|, here || - || denotes the Ly norm.

Since

160 = h (60)l| = \/(1 —V)2A8 + (1= )288 = 11— 9y (1 + )X + 63,

we choose v # 1 such that (17) is satisfied and h,(6y) € Vs(6p). That latest
condition can always be fulfilled since we can have either v > 1 or v < 1,
avoiding boundary issues. Finally, there exists €5 > 0, depending on v and 6y,
such that

180 — o (60)]] = €2 > 0. (19)
We complete the proof plugging (16), (18) and (19) into (13) and taking limits.

Remark 7. To bound the total variation norm in (14) we prefer the Kull-
back divergence over the Hellinger distance since the logarithm makes easier
the manipulation of the density pgp a (see Lemma 5).
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5.3. Proof of Lemma 1

Both experiments £" and G" are dominated by vy, g(dz) = i, g(dx) + dz, where
lin,o is a dominating measure for w, a, therefore to establish the asymptotic
equivalence it is sufficient to show (see Le Cam and Yang [11])

supH]P’;@" — ?"HTV — 0 as n — oo,
fecx

where || - [|7v denotes the total variation norm. Since each experiment is the n
fold product of independent and identically distributed random variables' the
result

PE" — QE"||,.y — 0 a5 n > oo.

is implied by
LX) - ‘C(Z)HTV =o(n™),

if X has density p,(6,-) and Z has density ¢, (6, -). The connection between the
total variation norm and the L; norm leads to

HE(X) - E(Z)HTV = %~/R ’pn(H,x) - qn(eux)ll/nﬂ(d,T)
= an2(9) /R ‘fn(@,ilf) — wnﬁg(x)‘yny(_)(dx) < an(8).

The condition supyes, an () = o(2) completes the proof of Lemma 1.

n
Remark 8. The last inequality is an equality when p, ¢ and the Lebesgue
measure are orthogonal.

5.4. Proof of Theorem 2
Preliminary

The process Y defined in Section 2 is not in P, we build a compound Poisson
process V close to Y in total variation norm. Keeping up with notation of Section
2,60 = (\,fB) € O, where © is compact subset of (0,00) x (0,00), consider the
process V

Ve= (20)

()=
o
V)
Vv
o

1

.
Il

where N is a Poisson process of intensity %)\ and independent of (¢;) which
are independent and identically distributed centered exponential variables with

IFor instance, by using the bound (see Tsybakov [22] pp. 83-90)

227 = Q| < VE(L = (1= 3P = Qllrv)") 2,
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2 . . .
parameter £ /3. Their common density is

fo(z) = 2pe~3PEHGR) g > /28 (21)

Remark 9. The multiplicative constants g and % in front of A\ and [ ensure
that Ya defined by (2) and VA have same moments of order 2 and 3.
Consider the observations (Via —Vii—pa, i=1,..., |TA~1|) and denote by
—1
QémT " its law. We have the following Lemma.

Lemma 6. Let Ar — oo such that T/A2 = o((log(T/Ar))~ /) and T/Ar —
oo as T — oo. Then, for any compact set © C (0,00) x (0, 00)

sup| P57 — Q" |7y — 0.

where Py" denotes the law of (Yia — Yi—1)a, i=1,...,n7).

Proof of Lemma 6 can be found in the Appendix. The steps of the proof
follows the lines of the proof of Theorem 3 hereafter.

Completion of the proof of Theorem 2

Let rg = (A, f3) defined from (20) and (21), for all 7o € F and § > 0

sup  Epl[|F—7llap] > sup  Egl[|IF = roll2,p]
r€Vs(ro) r9€EVs(ro,)

where the neighborhood Vs(rg) (resp. Vs(rg,)) of ro (resp. rg,) is such that
diam(Vs(ro)) < 6, diam(Vs(re,)) < 6 and Vs(re,) C Vs(ro). Notice that

inf sup  Egr(|F —rollap] = _inf - sup  EgT[|F - roll2e].
T rg€Vs(re,) Qe[ ] TEVs(Tay) 14€Vs(ray) QG[ ]

Otherwise if # ¢ Vs(rg, ), define ILy, (., )
we immediately get for all rg € Vs(rg,)

the projection operator onto Vs(rg,),

17 = 7oll2,p = 1Ty, (rg) [F] — Toll2,P-

It follows that for all 7, 7y in Vs(re,) we have

17 = rollace < 260+ lraylo:2). 22)

The remainder of the proof is a consequence of Scheffé’s theorem. Let F' be a
bounded function then for every measures P and Q

[Bel (X)) ~ Bo[F(X)]| < [Pl [ 4P - dQ] = 2 Fcl[P - Qzv. (23
It follows from (22) and (23)

Egr [II7 = roll2,p] > B! [IIF = roll2p] —2(2(8 + llre, ) IP6 — Qellzv)-

We conclude the proof with Lemma 6, Theorem 1 and taking limits.
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5.5. Proof of Theorem 3
Preliminary

Lemma 7. Let f be a density with respect to the Lebesque measure, centered
and with finite variance. Then, for every p > 0 there exists a < 1 such that

|f*(©)] < a, VIE] > p.

Proof of Lemma 7. First, we establish that |f*(£)| = 1 if and only if £ = 0.
Only the direct implication needs justification. Denote D = {x, f(x) > 0} and
suppose | f*(§)| = 1, taking square leads to

0= 17 ©F - 1=Re( [

D2

eié(mfy)f(:zr)f(y)d:rdy) — /D2 f(x) f(y)dxdy
= [ (eostgto =) = 1) o) ()

where Re(z) designates the real part of z. Since (cos(&(z—y))—1)f(x)f(y) <0
for all z, y € D we derive that cos({(x —y)) =1 for all z, y € D. Since D is an
interval of R we have £ = 0.

Second, by Riemann-Lebesgue Lemma there exists A > 0 such that V|{| > A,
[f*(€)] < 1/2. Since f has finite expectation §& — |f*(§)| is continuous. It is
continuous over the compact [p, A] and reaches its supremum, denoted S, which
is by the first part of the proof strictly lower than 1. Finally, since f has finite
variance f*"(0) > 0 and for all p > 0 we have |f*(p)| < 1. Set a = SVIV[f*(p)|.
Proof is now complete. O

To establish Theorem 3, we show that the total variation norm between the
experiments vanishes, using the Lévy structure of the processes X, Z and W.
The experiments X7, ZA7 and WAT are dominated by the measure do(dz) +
dx. Introduce

paro(x) = e Td0(x) + (1= e A)pas (@) (24)
qAr,h,0)(T) = eIy () + (1 — 677’\AT)5JVAT,M(9)(I) (25)
where pa,.0 and ga,. n. (o) are the distributions of Xa, and Za, and par ¢ and

dar,h. (0) are absolutely continuous with respect to the Lebesgue measure. For
the reader convenience, in absence of ambiguity we drop the subscripts and set

D= DPar.e and §:= Ga, ., (6)-

Proof of Theorem 3.1

We prove that for K > 2, Ap satisfying the rate restriction
T/AET2 = o((log(T/Ar)) %) as T — 00 (26)

and the condition supyey, | [ 2® fo(z)dz| < oo the experiments XA and ZAT
are asymptotically equivalent. They live on the same state space and are the
nr fold product of independent and identically distributed random variables,



When is it no longer possible to estimate a compound Poisson process? 293
therefore it is sufficient to show (see Section 5.3 the proof of Lemma 1)
1£(Xar) = L(Zag)||l 7y = o(nz'). (27)
We have
1£(Xar) = £Zap)llry = 5 [ 10— 47)50a)
C (1= e PTG |de + _|67>\AT oA

Where p and g are defined in (24) and (25), and |e M7 — e=AT| = o(n;t),
as A is of the order of T* for some a > 0. Applying successively the triangle
inequality and Cauchy-Schwarz we obtain

/| eATYE(2) — (1 — e~ ATVG()|da < T+ 1T+ IT1

where for any n > 0,

r=va( [ (0= e?p) - (1 - e ) i)

IT=(1- eiAAT)/ p(z)dx and IIT = (1-— eiWAAT)/ q(z)dx.

|z[>n |z|>n

Set n = nr = k\/Arlog(T/Ar), we claim that for £ > 2Am, the terms I, 1T
and 1T are o((T/AL")) hence (27) and the result.

Bounding terms I1 and II]. For I] we use that
(=) [ e = [ paga(e)ds = Bo(lXar] > nr)
lz|>nT |z|>nT

and that Xa, is a centered compound Poisson process whose compound law
has finite variance, it follows that

Xa,
VAT

Let D ~ N(0, A\ms), the triangle inequality gives

— N(0, Am2) as T — oo.

Pyo(|Xar| = nr) <P(|D| > ky/log(T/Ar))
+ |P(ID| > k\/log(T/A7)) — P(| 232 | > +/log(T/A7)) |-

We readily obtain

P(|D| > 5y/1og(T/A7)) < 2(T/Ag)™/@Am2) = o((T/Ar)7").

We bound the second term using Edgeworth series, even if it means condition-
ing on the value of the Poisson process associated to X. By assumption, the
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compound law has finite moment of order 3, denoted mgs, uniformly bounded
over Y, we derive

[P(|D] > ky/log(T/Ar)) —Po( jg—T log(T/Ar))|
‘ ¢ 93 [ 2
< ——/ e 2m2(s

VAT 023 log(T/A7)
__ ¢ _ wlog(T/Ar) |~ =*isscriar

/\mQ\/AT )\mg

€10g(T/AT) .2 _
< o T iy A TR/ 2Am2) (T ALY L
=T /Ar (T/Ar) o((T/Ar)™")

where € continuously depends on \, ma and mg and which is o((T//A7)~?t) for
k2 > 2Amy. The term IIT is treated similarly as I1, the parameter  simplifies.
We do not reproduce computations. Thus 11 and 11 have the right order, the
choice of k and the bounds on IT and II1 is made independent of 6 taking the
supremum over the compact set Y.

Bounding term I. Plancherel theorem gives

A= [ (1= 2)5a) = (1= P20)(w) da
= 57 [0 =807 = (1= a7 o),

where f* denotes the Fourier transform of f. The Fourier transforms are com-
puted using (24) and (25) and the Lévy-Kintchine formula

(1—eT)p (&) = exp (A (f5(€) — 1)) —e 27
(1= eA1)G* (&) = exp (YANAT ([ (9)(€) = 1)) — e77A4T.
Then, 2w A can be upper bounded as follows

_ _ ~ 2_d§
/| O ()~ (e T (G TR < IV VY
where for p > 0
1 _ _ 2 d¢
IV=—/ (1— e 1) () — (1— e A7) (o) :
21 J\e|<pv/Br VAT Va7 VAT
V=ok [ [1—e?2)p (@) de and VI= L [ |1 —e27)g ()] de.
1€1>p [€1>p

Bounding term IV. Since fy and f, () have their K first moments finite, we
get the following expansion for any bounded &

2 K %
Fi©) — (1= T2 g T g g

m2§2 iKngK

and f;,y(g)(f)— (1— 27 +.”+K7!7) :§K+1a2(§)




When is it no longer possible to estimate a compound Poisson process? 295

for some bounded functions £ ~» a1 (§) and & ~» a2 (). It follows that IV is less
than

/‘E<P\/AT

—Amg g-{-»»»-{-iK)\mK

K 2§2K+2
e VAT K2k ’

S
Aq]g_lo‘ (\/TT)

K+1
S

d
o (2 ) ) T + 2V AT e )

for some bounded function & ~» a(£). Set @ = sup,, |a(x)|, then I'V is bounded
by

, 2K +2 LK/2] (1) o\ de
! /5< var AR eXp( Almz = Z ) + 20" ) )\/_T
<pvAr Ar
+ 20/ Ap(e AT 4 e”MAT).

We pick p such that p >0

LK/2] 2

A(ma— Y (=1)Fmogp*t~
k=2

202h), ) + 205 '@ > 0. (28)

Even if it means taking p small, condition (28) can always be satisfied. Using
that the Gaussian density has finite moment of order 2K + 2, term IV is of

order A;QK*D/Q.

Bounding terms V and VI. For any A > p,

1 _ 7>\AT 7>\AT -
V= u/ ]]5*(5)]2d§ = ¢ / ’eAATfe & _ 1]2d§
[€1>p |€1>p

2 2w
—AA —AA
_ ¢ r / ‘eAAng*(f) _ 1’2d§+ ¢ ’ / ‘e)\Ang(E) _ 1‘2d§
21 Jasigsp 21 Jigj>a
=VII+VIII.

First, by Lemma 7 VII is bounded by constant times Ae~(1=@AAT —

o((T/Ar)™1) as a < 1. Second, since fy belongs to JF, there exist C' > 0 such
that for all £ > A, |f*(£)/¢] < C.

2e M 01 ZC(AALC) 1P
VIIT < — = d
- 27 /A ; inoog ¢
—>\AT o 0 /\ATO 11+12 /OO 1
< dg
11231 12231 hllz a g0
_ e AT i i (AApC)htt 1 < P —-29)0nar
;115! (I1 + 1 — 1)Ab+l—1 = 7 '

l1=112=1
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Fix A > 2C, then, (y/77V)"/2 is of order (v/Agpe~1-2DXATYY/2 — o((T/Ap) ).
The term VI is treated similarly and is of the same order.

Completion of the proof of Theorem 3.1. The leading quantity is IV, we

deduce that I is of order n;/2A;(2K71)/4. The choice nr = ky/Arlog(T/Ar)
and restriction (26) imply I = o((T/Ar)~1!). The proof of Theorem 3.1 is com-
pleted taking the supremum in 6 over the compact set ¥ .

Proof of Theorem 3.2

Proof of part 2 of Theorem 3 is deduced from above computations replacing Z
with W and applying modifications i. or .

Appendix
Proof of Lemma 3

We prove the result by induction on m. The Lévy-Kintchine formula gives an
explicit formula of the Fourier transform of Xa

dxn(w) = E[eiwxﬂ = exp ()\A(f*(w) - 1))

where f*(w) = E[e"¢] denotes the Fourier transform of the compound law and
A is the intensity of the Poisson process. The moments of X are obtained with

i 8m¢XA (’LU)

E[XZL] - m ow™ ’w:O,

m € N. (29)

We prove by induction the following property, for all m < | £ ]

%?m(w) = (Pomn(w, A) + Qo (w, A)) exp (AA(f* (w) — 1))
2m—+1 w
aaw+ﬁ() = (Pomt1(w, A) + Qami1(w, A)) exp (AA(f* (w) — 1))

where the functions A — Py, (w, A), A = Qo (w, A), A = Payy1(w, A) and
A = Qamy1(w,A) are polynomials in A, the degree of Q2 and Qapy1 is
smaller than m and there exist C' functions (com ;(+), c2m+1,5(-),7 = 1,...,m),
continuously depending on A\, such that

P2m(wu A) = Z Com,j (w)f*l(w)2jAm+j P2m+l(w7 A)
j=1

=" Compr g (w) f* ()P AT,
j=1
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Straightforward computations lead to the result for m =1

2 w ) /
Mg{iﬁ;) = (AP (w) + AAF (w))?) exp (AA(f*(w) — 1))

3 w / i / 2
TOXO) _ (rn () 4 20202 () 1 ) + AAF () A )

+(AAS (w))?)) x exp (AA(f*(w) = 1)).
Assume that the property holds at rank m — 1, we have
82m¢XA(w) o 3} 82m_1¢XA (w)

Jw2m T ow  w2m-1
= (OwPam—1(w, A) + 00 Qam—1(w, A) + AA f* () (Pagm—1 (w, A)

+ Q2m—1(w, A))) X exp ()\A(f*(w) - 1))

where Oy Pop—1(w, A) = ch,lyl(w)'f*'(w)Am + cszl,l(w)f*"(w)f*'(w)Am
+ Z (C2m711j+1(w)/f*/(w)QjJrlAerj
=1

+ camo1,41 (w)(25 + 1) F*" (w) [ (w)? A™H)

m—1

)\Af*/({,[])PQW_l(w,A) =\ Z C2m—1,j(w)f*/(w)2jAm+j_

j=1

We set

m—2
Po(w, A) Z Com—1,j41(w) f* (W) + cam—1,j41(w) (25 + 1) f*" (w))
=1
S ORING
Q2m(wu A) = anQm—l(wu A) + )\Af*/(:T)sz_l(’w, A)

where Ps,, have the desired property and from the property at rank m — 1 the
degree of Qa,, is lower than m. Similar computations give the result for Po,, 41
and Qam+1. We complete on the proof with (29), f*(0) = 1 and using that f is
centered: f*'(0) = 0. It follows that

E[X3"] < €A™ and [E[XZ"H]| < €A™,
where ¢; and €, continuously depend on .
Proof of Lemma 6

We adopt the same methodology as for the proof of Theorem 3. Computations
are quite similar we do not develop all of them. Each experiment is the np-fold
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product of independent and identically distributed random variables the result
is implied by (see Section 5.3 the proof of Lemma 1)

H]P)G Q9||TV (T/AT> )v

uniformly over the compact set ©. Let us further denote by pa,.¢ and ga, ¢ the
densities of Ya, and of Va, respectively, which can be decomposed as follows

paro(x) = e 870 (2= 257) + (1= e747)pay o (2) (30)
aar0(x) = € 3T 00(x) + (1= e”30) g, p(a) (31)
where pa, .9 and ga, ¢ are absolutely continuous with respect to the Lebesgue

measure. For the reader convenience we set p := pa,.¢ and ¢ := ga,,¢. Then,
we have that 2||Py — Qgl|7v equals

/ ‘ 7)\AT ‘r) _ (1 _ 7—)\AT ‘dl‘ + e*—)\AT _ e*)\AT,
where e 5AAT _ g=AAT g o(nr}l) as A is of the order of T* for o > 0. Applying

successively the triangle inequality and Cauchy-Schwarz inequality we get
/y e MY j(z) — (1 — e SN g(a)|de < T+ 1T + 111,

where for any n > 0,

I=/2n( / (1= e?2)p(@) — (1 — e~ 927 G(w)) *da) 2,
1T =Py([Yar| > n) IIT =Po(|Var| 2 n).

Set nr = Kk\/Arlog(T/Ar), we show that for k> > 3\, I, II and III are
o((T/A71)).

Bounding terms /] and [II. The argument used in the proof of Theorem 3
to bound the similar terms 11 and II1 also holds here. Then II and II] are

o((T/Ar) ).

Bounding term I. We apply the Plancherel theorem to the integral in I, we
denote by p* and ¢* the Fourier transforms of p and ¢ respectively. They are
computed with (30), (31) and the Lévy-Kintchine formula. We introduce the
decomposition

/((1—6_’\AT)17(:E) (1 — e 57 g( )) de < IV 4V +VI,
R
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with for any p > 0 and after replacing £ by &/v/Ar

B

IV = 1 — e MAT\H(_E ) _ (] — o8 M5 (_E) |2 7
/|£|spm‘( I (ar) — (e T (i) 7
1
V= AAF (1)) — e XA
/|f|>p’exp( T(l—ZE/ﬁ ))

1 . .
VI = EAAp (b =i3/(28) _ 1)) _ —$rAr
/|§|>p‘exp(9 T(1—23€/(2B)6 )) ¢

d€ ;

2
d.

Bounding term IV. A first order expansion (see Remark 9) gives that IV is
less than

8.2 13 4

/ 225 SR 2gra(0A7)
2
l€1<pvAT Ar

AT(engAT _ e*)\AT)

for some bounded function £ ~ a(€). Set @ = supg |a(&)|, we obtain that IV is
bounded by a constant times

/e*2>\ PQ)52€8 a’ d§ '
R A% VAr

Choosing p such that A — p*a > 0, gives IV of order AL 5/2,

Bounding terms V' ad VI. Since

V = e M7 /|£|>p ’ exp ()\AT/( —' — 1} d¢

. . 2
VI:e%’\AT/||> ‘exp (3AApe36/CP /(1 i3)) —1‘ de,
p

computations developed in the proof of Theorem 3 (to bound the analogous
terms V and V1) holds for C = 8 (C = 166/27) for term V (for term VI), any

A > 2C and any p > 0 leading to a = 1/4/(1 + Z—z) < 1. We derive that V and
VI are of the right order.

Completion of the proof of Lemma 6. Finally, [ (px,a,(2)—qx,a, (2))?dz is

dominated by I which is in 171/2A75/4. The choice nr = k/Arlog(T/Ar) and
the restriction condition T/A2. = o((log(T/Ar))~/*) imply I = o((T/Ar)™1).
The proof is completed taking the supremum over ©.
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