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Abstract: In this paper, we consider a semiparametric model for lifetime
data with competing risks and missing causes of death. We assume that an
additive hazards model holds for each cause-specific hazard rate function
and that a random right censoring occurs. Our goal is to estimate the regres-
sion parameters as well as the functional parameters such as the baseline
and cause-specific cumulative hazard rate functions/cumulative incidence
functions.

We first introduce preliminary estimators of the unknown (Euclidean
and functional) parameters when cause of death indicators are missing
completely at random (MCAR). These estimators are obtained using the
observations with known cause of failure. The advantage of considering the
MCAR model is that the information given by the observed lifetimes with
unknown failure cause can be used to improve the preliminary estimates in
order to attain an asymptotic optimality criterion. This is the main pur-
pose of our work. However, since it is often more realistic to consider a
missing at random (MAR) mechanism, we also derive estimators of the re-
gression and functional parameters under the MAR model. We study the
large sample properties of our estimators through martingales and empiri-
cal process techniques. We also provide a simulation study to compare the
behavior of our three types of estimators under the different mechanisms
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of missingness. It is shown that our improved estimators under MCAR as-
sumption are quite robust if only the MAR assumption holds. Finally, three

illustrations on real datasets are also given.
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1. Introduction

The competing risks models are useful in Survival Analysis and Reliability in
order to take into account the different causes of death of a patient or the of fail-
ure of a device. The observations usually include the (possibly censored) lifetime
and the indicator of cause of death. Sometimes, a vector of (time dependent)
covariates is also available. Based on such data, one can carry out a statistical
inference assuming a parametric, semi-parametric or nonparametric model. One
can find an extensive review of these models and their statistical inference in,
for example, Crowder [8] or Andersen et al. [1].

In practice, it may happen that the cause of death or failure is missing for
some individuals. Many papers have considered the problem of missing informa-
tion in competing risks models. We refer to Miyakawa [27], Usher and Hodgson
[37], Lin et al. [21], Schabe [34], Goetghebeur and Ryan [18], Guttman et al.
[19], Reiser et al. [31], Basu et al. [5], Lu and Tsiatis [25], Flehinger et al. [13],
Craiu and Duchesne [6], Gao and Tsiatis [16], Craiu and Reiser [7], Lu and
Liang [24], Bakoyannis et al. [3] and Lee et al. [20].

Many authors have developed methods for accurate modeling of the missing-
ness mechanism. Some of these works are based on parametric models. When
a latent variable represents the missingness mechanism, an EM-type algorithm
can be used to estimate the model parameters. In Craiu and Duchesne [6], such
a procedure is proposed when the missingness mechanism depends both on the
failure cause and the failure time. Recently, Craiu and Reiser [7] considered a
very complete parametric model including dependence with the failure causes.

The special case of a possibly censored single failure cause differs from the
competing risks model by the fact that, in the former case, the censoring is not
an event of interest and is (usually) supposed to be independent of the lifetime.
However, when the censoring information is missing, we are close to the com-
peting risks situation where failure causes are possibly missing. Some specific
inferential methods have been derived for various models with or without covari-
ates and several missingness mechanisms, see e.g. Gijbels et al. [15], McKeague
and Subramanian [26], van der Laan and McKeague [38], Zhou and Sun [40],
Subramanian [36] and Song et al. [35].

Other authors have developed estimation procedures in a semi or nonpara-
metric framework for two or more failure causes with missing indicators (see e.g.
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Myakawa [27], Dinse [11], Lo [23], Schabe [34]). In particular, the case of a pro-
portional hazards model for the cause-specific hazard rate functions has been
studied by Goetghebeur and Ryan [18], Lu and Tsiatis [25] and, more recently,
by Lee et al. [20]. On the other hand, Gao and Tsiatis [16] have considered a
linear transformation competing risks model whereas Bakoyannis et al. [3] have
focused on the well-known Fine and Gray [12] model.

As far as we know, Lu and Liang [24] is the only paper which considers
an additive risk model for competing risks data with missing indicator. The
missing indicator situation is an interesting alternative to the proportional haz-
ards model. Lu and Liang [24] have assumed such a model on only one of the
cause-specific hazard rate functions, namely the cause of primary interest. Using
estimating equations based on inverse probability weighted (IPW) and double
robust (DR) techniques, they are able to estimate the regression parameters.
In their model, as in Bakoyannis et al. [3], Lee et al. [20] and Gao and Tsi-
atis [16], the mechanism of missingness may depend on the failure time, which
corresponds to the missing at random (MAR) assumption.

Our aim in this paper is to consider an additive risk model for competing
risks data when indicators of cause of death are missing at random. Our model
differs from the one of Lu and Liang [24] in the sense that we assume an additive
risk model for each cause-specific hazard rate function and not just for the cause
of interest. We do not assume independence between the causes of death. It has
to be noted that, unlike in Goetghebeur and Ryan [18], these functions are not
supposed to be linked in our model. Furthermore, we are interested in estimating
not only the regression parameters but also the cumulative incidence functions
and, finally, the overall survival function. Note that Lu and Liang [24] do not
consider the problem of estimating the cumulative incidence function and by
providing an estimator of the survival functions associated to the cause-specific
hazard rate functions of interest implicitly assume independence between the
various causes of death. We believe that obtaining estimation of the cumulative
incidence functions is also of interest due to the importance of these functions
in a competing risks model. As far as we know, the only paper which considers
estimation of the cumulative function when indicators are missing is Bakoyannis
et al. [3]. But, as noted earlier, their work is under a different model, since they
assume a Fine and Gray model.

In this paper, we first consider the case of the most restrictive mechanism of
missing information, namely the missing completely at random (MCAR) mech-
anism. We show that the advantage of this type of missingness mechanism lies in
the fact that it doesn’t affect the additive shape of the cause-specific hazard rate
functions. Thus, one can estimate the regression parameters following the idea
of estimating equations introduced by Lin and Ying [24]. We also show that the
observations with unknown failure cause are usable to estimate the sum of the
previous parameters. Then, and we think that this is the main contribution of
our approach, we develop a method that allows us to take into account this infor-
mation in an optimal way in order to improve our preliminary estimators of the
regression parameters. The improved estimators are built in order to attain an
asymptotic efficiency criterion. Such an improvement does not appear to be pos-
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sible with any other missingness mechanism. We are also able to derive improved
estimators of the cumulative hazard rate and the cumulative incidence functions.

We also consider the case of the MAR mechanism. We show that the Dou-
ble Robust technique, introduced by Robins et al. [32] and later used by Lu
and Liang [24] in a context similar to ours, can be used to derive estimates of
the Euclidean and functional parameters of our model. Our work in this part
extends the results of Lu and Liang [24] in the same manner as described ear-
lier: incorporating additive risks for each cause-specific hazard rate function,
not making any assumption of independence between the causes, estimating the
cause-specific cumulative hazard rate functions, etc. . .

The paper is organized as follows. In Section 2, the model and the MCAR
assumptions are introduced and seen as a specific case of a nonhomogeneous
Markov process. In Section 3, first estimators under MCAR, of the Euclidean
parameters are obtained using estimating equations. Then, we introduce our
improved estimators, still under MCAR, which have minimum asymptotic vari-
ance. In Section 4, we show that our parameter estimators are consistent and
asymptotically Gaussian. Section 5 deals with the estimation of the functional
parameters under MCAR assumption. Initial and improved estimators are intro-
duced and we prove their consistency and their asymptotic Gaussian behavior.
Consistent estimators of the asymptotic variances are also provided in each sec-
tion. Note that our proofs of the asymptotic results in Sections 4 and 5 are
based on the martingale theory and are, thus, very different from the methods
commonly used (see, e.g. Gao and Tsiatis [16], and Lu and Liang [24]) in the
literature on this topic. Section 6 is devoted to the consideration of the MAR
model. We introduce estimators of the Fuclidean and functional parameters un-
der this model and obtain their large sample behaviors. Finally, a Monte Carlo
study is performed in Section 7 in order to assess the behavior of our estimators
for finite sample sizes and to compare their properties under the MCAR and
MAR models. In addition, three examples using real data sets illustrate our
estimation methods.

2. Framework under MCAR assumption

Consider a population in which each individual is liable to die from any of
p > 2 causes. The causes are not necessarily independent but we assume that
each death is due to a single cause. Let us denote by T the individual lifetime
and d € {1,...,p} its cause of death. Suppose that our interest focuses on the
effect of a time-varying covariate vector Z(-) of dimension k. More precisely, let
Z(t) = {Z(u);u < t} be the history up to time t of this covariate process and
assume that an additive hazard model holds on the cause-specific hazard rate
function, that is:

1
N(tz) = lm SP(Tett+hld=j|T > %)

= ;) +B]Z(t), t>0, (2.1)
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for j =1,...,p where X\g;(-) is the baseline jth cause-specific hazard rate func-
tion and 3; € R* is the vector of regression parameters associated to the jth
cause.
Suppose also that the lifetime T is right-censored by a random variable (r.v.)
C and write
X = TAC=min(T,C)
{ 0 = I(T<C0O) ’

where I(+) is the set indicator function. Let A¢(+) denote the hazard rate function
of the r.v. C' and assume that conditionally on Z, the r.v. C is independent of
(T, d).

Of course, the future cause of death is not known if C' is observed instead
of T'. But, in some situations, it may happen that d is also not known even if
T is observed. Let R denote the missingness indicator, i.e. R = 1 if the cause
is known and R = 0 otherwise. Thus, we are in a situation where the available
observation for an individual is

(X,0,D,Z(X)),

where D = JRd reveals the failure cause d when the failure time is uncensored
(0 =1) and R =1 and is equal to zero otherwise. In the following, we assume
that the missing mechanism is such that:

P(R=1|X,Z,d,6=1)=P(R=1[6=1) =a €[0,1],
where « is an unknown parameter, and
P(R=0|X,Z,d, 06 =0)=P(R=0|6=0) =1.

This is the Missing Completely At Random (MCAR) assumption.

One can see the observation of the vector (X, d, D), conditionally on Z, as the
realization of a (p+ 3)-states nonhomogeneous Markov process (see Fig. 1) with
space set {0,1,...,p,m,c}: state 0 is the initial state; state 4, for i = 1,...,p,

C

FiG 1. Markov graph associated to (X, 9, D).
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corresponds to the observation of the lifetime 7" with known cause of death 1;
state m to the observation of the lifetime with missing cause; state ¢ to a censored
observation. Except 0, all the states are absorbing states. From the assumptions
on M and the independence between (T, d) and C, conditionally on Z, one can
easily get that the instantaneous transition rates of this Markov process are,
conditionally on Z:

N(HZ) = aX(t|Z), for j € {L,....p},
An(tlZ) = (1—a) 320, A(tZ),
N(Z) = Ac(tz).

In order to simplify the notation in the following derivations, let us denote
by p+ 1 the index corresponding to a missing cause (previously denoted by m).
It is important to note that, up to a multiplicative constant (« or 1 — «), the
additive form of the instantaneous rates is preserved (except for the transition
0 — ¢). It is obvious for X} (¢/Z) with 1 < j < p but also for A}, (:|Z) since

)‘;+1(t|Z) = (1 - a) ()‘0p+1 (t) + ﬁgﬂz(t)) )

where Xop+1(-) = 327 Aoj () and Bp41 = 3°7_, B;. This will help us to improve
the estimation of the regression parameters 31, ..., Bp.

Now, let us suppose that we observe a sample (X;,d;, D;, Zi(X;))1<i<n Of
(X,6,D,Z(X)). Let T < 400 be the upper bound of the interval of study which
means that individuals are only observed on the time interval [0, 7]. Let N;;(-),
for j € {1,...,p+ 1}, be the counting processes defined by:

Ni;i(t) = 1(X;<t,D;=j)forl<j<p,
and Njp1(t) = L(X; <t,0;=1,D;=0).

Finally write Y;(¢t) = 1(X; > ¢) the individual risk process, for i = 1,...,n.
From Andersen et al. [1] or Fleming and Harrington [14], we know that the
processes M;;(-), for j =1,...,p+ 1, defined by

Miy(0) = Ny ()= [ Vi slzyis,

for ¢ > 0, are zero mean martingales with respect to the filtration (F;);>¢ defined
by

‘Ft - O’{N”(S),N,Lm(S),}/Z(S),Z,L(S), S S t71 S 1 S nvj € {15 s 7p+ 1}}
3. Statistical inference on the Euclidean parameters under MCAR
3.1. Estimators

The finite dimensional parameters of our model are: the probability o of knowing
the cause of death; and the regression parameters f1,...,53, of each cause-
specific hazard rate functions. Recall that « = P(R = 1|6 = 1). Thus, the



48 L. Bordes et al.

maximum likelihood estimator of « is nothing but the proportion of lifetimes
with known cause of death among the uncensored lifetimes, that is:

S LD >0) Z§:1 N.;(1)

d = n - 9
>im Lo =1) N.(7)
where
n p+1
N;(t) =) Nij(t) and N.(t)=> N;(t), forall t.
i=1 j=1

Extending an approach proposed by Lin and Ying [22] in case of a single
cause of death, one can estimate f3;, for j = 1,...,p, by the solution 3; of the
estimating equation U; (8, &, 7) = 0 where

(5.6,1) =3 [ 12:06) = 206)) [0 (s) = 4" Ziis] . 31)

and

_ Z?:l Yi(S)Zi(S)'

S S
In the sequel we write
B
Bwwmc = : (3.2)
By

the estimator of the regression parameters without taking into account the sub-
jects with unknown cause of death (WMC abbreviates “Without taking into
account the Missing Causes”). Note that it is a vector of dimension kp.

Now, since it has been seen that the cause-specific hazard rate function
Apt1(+) associated with a missing cause has an additive form too, one can also
estimate [p4+1 by the solution B,,H of the estimating equation U,11 (8, G, 7) =0
where

Uyia(5.6.7) =3 [ 12065) = 206) [dNipia(s) = (1 = )57 Zu(s)Vi(5)ds]

Closed-form expressions of these estimators are available and given below (see
Equation (4.9)).

At this stage, we are in a situation where each parameter 3;, for j =1,...,p,
has its own estimator Bj. But we also have an estimator B,,H of their sum S, =
B1 + -+ + Bp. This estimator only uses the information from the transitions
0 — p+ 1 and hence is not equal to Bl 4+ 4+ Bp. It is, of course, of interest
to use it in order to improve the estimation of the first parameters [;, for
j =1,...,p. To this end, we propose to find the linear transformation of our
estimator (ﬁ?, ... ,B;F, A;;FH)T which will lead to an estimator of (31 ,... ,B;;F)T
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with minimum asymptotic variance. More precisely, let H be the family of all
the block matrices

Hyy Hiz oo+ Hippa
o H'21 H'22 H2f7+1 7
le Hp2 pr+1

where the H;;, for @ = 1,...,pand j = 1,...,p + 1, are k x k real valued
matrices, such that

o By
H : = : 3.3
Bp ﬁ (33)

ﬁerl !

for all vectors 31,..., 0, in RF and Bp+1 = B1+ -+ Bp. Write

G(H) = trace(HS

BpoHT)a

where 25 « Is an estimator of the asymptotic variance-covariance matrix of
(6?7 te Bga g+l)T' With

H = argmin G(H),

HeH
an estimator of (87,..., B;;F ) with minimal asymptotic variance is given by:

B ﬂl

1 .

L | =H ;
5 .

p .

ﬂp+1

Thus, the optimal estimators of the regression parameters are

p+1
BZ:ZIA{”BJ, fOI"Lzl,apv (34)
7j=1

and are called T—optimal estimators in the sequel. Let us denote by

B

Brope=| (3.5)
By

this vector of dimension kp of T—optimal estimators. Such a way to improve

estimators has been considered in Balakrishnan et al. [4].
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Note that the constraints on H, given by (3.3), are linear and that they act
separately on the rows of H. Indeed, denoting by I and Of the identity matrix
of order k and the null matrix of order k respectively, these constraints may be
written

{ Hij+Hipy1 = I
Hij + Hipy1 = O,
for1<i<pandje{l,....,p}\{i}.

On the other hand, we have

p p
G(H) = trace(HiX5 (Hi) =Y qi(H)
i=1 =1

where ¢;(H) = trace(Hi.XA]B JHL) and H;, is the ith row block of H.
Thus, it is sufficient to solve separately the following problems (P;), for i =
1,...,p:

Find H;1, ..., Hip+1 which minimize trace(Hi.igmHg)

(P) such that: Hy; + Hypy1 = I,
Hij + Hipy1 = 0, for j # 1.

3.2. Solving problems (P;)

Since problems (Py),...,(P,) are identical, we only give the method to solve
(Py). Let us introduce some temporary notations. For j = 1,...,p + 1, write
HU) = Hy;. Let us introduce the bloc diagonal matrix

O = diag (23700, o EB)OO)

p times

and

T
L= (Hﬁ),...,Hff*”,Hé?,...,Héf*” ey ..,Hﬁ*”) ,

ey 5.

where Hl(.j) is the [th row of HU).
One can rewrite the function ¢, (H) to be minimized like:

. T o
¢1(H) = trace ((H(l) . ..H(”“)) 25 0 (H(l) . .H(p+1)) ) =LQL".

Now, the constraints on H are

HY 4 g+t — [
H® 4 gt = 0,
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These constraints can be rewritten CL = d where C is a (pk?) x (k*(p + 1))
matrix and d a pk?-column vector.

Thus, the Lagrange function for this optimization problem with linear con-
straints is given by

UL\ = %LTQL +(CL—d)" ),

where A is a Lagrange multiplier vector. The optimal parameters L and A nec-
essarily satisfy the first-order conditions

ol A -
8—L(L,)\) = 0 = QL+C /\7
CL = d
leading to
A=—[cQ'c" 14
and

L=qQ 'c"[cQ~'c"d.
It has to be noted that Q is invertible whenever 3 4,00 is. Finally, having L we
obtain H@) for j=1,...,p+ 1.

4. Asymptotic behavior of the regression parameters estimators
under MCAR

4.1. Additional notations and assumptions, preliminary results

Let .
B1 B1
s=| dp=|
g, | ™ By
Bp'i'l Berl

If z is a column vector in R¥, let us write

1 when 0,
® = z when [ =1,
227 when [=2

Finally, let us denote by S;(-), for I =0, 1,2, the processes defined by

&@:%Zn@ﬁ%x
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for 0 < s < 7 and for b in R¥ the process S3(-;b) defined by

n

Sa(s;b) = % > Yi(9)ZE ()" Zi(s).

i=1

From now on we make the following assumptions.

Al
A2.

A3.

A4

A5.

A6.

The probability a to get a known cause of death is strictly positive.
The upper bound 7 of the time interval of study is such that

O</ Aoj(8)ds < 400, for,j=1,...,p,
0

and the covariate processes Z;(-) are (Fi)¢>o-predictable and uniformly
bounded with respect to ¢ > 1.
For 0 <1 < 2, there exists functions sy (-) defined on [0, 7] such that

[fax 52%]?7} [1Si(s) — si(9)]| 250, when n — +oo.

Moreover, the function sq(-) is bounded below by a positive real number.
With the notations a(u) = sa(u) — s72(u)/s0(u),

At) = /0 a(u)du and O(t) = /0 [so(u))\op+1(u) + Bgﬂsl(u)} du, (4.1)

the matrix A(7) is positive definite and the real number (1) is strictly
positive.
The matrix

/0 " [a(s) — S72(s)/S(s)] ds

is also positive definite. Note that, from previous assumptions, it was al-
ready true asymptotically.
For all b € R¥, let S4(-;b) be the process defined by

n

Sa(s;0) = % > (6" Zi(s))Yi(s)(s1()Z] (5)/50(s))-

i=1

There exist functions s3(+;b) and s4(+;b) such that, for all b € R¥,

max sup ||S;(s;b) — si(s;0)]] N 0, when n — +o0.
3<i<4 s€[0,7]

The following functions are integrable on [0, 7]:

$£20)
a(),a(-)Ao; (), s0()A0j (), 51(-)s =57
s5()

,83(5 B)s4 (5 By),

forj=1,...,p.
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Now, let us introduce, for all b € R¥, the processes U;(b,a;,-) defined, for
j=1,...,p+1and te|0,r7], by:

(b, aj, t) Z/ Z(s)) (dNij(s) — a;b” Zi(s)Y;(s)ds) ,
where

_ )« if 1<j<p,
O‘J‘{1—a if j=p+1. (4.2)

Note that values of these processes at s = 7 appear in the estimating equations
of Section 3.1.
It is easily seen that these processes can be rewritten as

(.00 ) z/ Z(s)) dMi (5),

for j =1,...,p+ 1. Hence, they are local square integrable (F;);>o-martingales
as sum of stochastic integrals of predictable and bounded processes with respect
to local square integrable martingales.

Now, let us introduce two technical results useful in the following section. Let
us note that all the functional convergence results of this paper are considered
in the Skorohod space of cadlag functions D[0, 7].

Proposition 4.1. Under Assumptions A1-AG, the multivariate process Uy(+)
defined, for all t € [0, 7], by

Z/{l (617 al7t)

Un®) = —= | Upsi(Bpri, apia,t)

3

where of = 1 —a for 1 < j < p and a,,y = —a, converges weakly in
Dk(p+1)+1[0,7], as n tends to infinity, to a zero mean multivariate Gaussian
martingale Us (+) with covariance matriz defined for all t € [0, 7] by

O.() 0 0 &(t)
B 0 . 0 .
Pua. () = 0 0 Opult) &u(t) |

f?(t) T g+1(t) fa(t)
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where, for j=1,...,p+1,

0,(t) = ij/o [a(s)Aoj(s) + s3(s; B5)
— sa(s;8;) — s1 (s:8;) + (8] s1(s))s7(s)/s5(s)] ds,

&) = @%A(t)ﬁj, with k; =1, for 1 <j<p and kpy1 = —1,
ol -a)
ga(t) - 92 (7’) e(t)

and A(-) as well as 0(-) are defined in (4.1).

Proof. As in Andersen and Gill [2], the main idea is to apply Rebolledo’s The-
orem (see Rebolledo [30], or Andersen et al. [1], p. 83-84). We only derive here
the limit of the predictable variation process associated to Uy (+). This will give
us the asymptotic variance-covariance matrix function Xy__ (+) of Uy, (+).

On one hand, straightforward calculations show that we have, for j =1,...,
p+1,

<%Z/lj(ﬂj, a, ')> (t)

= % Z /O (Zi(s) — Z(s)) (Zi(s) — Z(s))" Yi(s)XN,(s|Z)ds

= aj/o [S2(s) — ST(5)/S0(s)] Aoj(s)ds

+oa / [S5(s: B) — Sa(s: B5) — ST(s: 8;) + (B71(5))SE2(5)/52(s)] ds
+ Op(l),

which, by Assumptions A2-A6, converges in probability, as n tends to infinity,
to ©,(t) given in the Theorem.

On the other hand, since the martingales M;; and M, ; are orthogonal for
all 1 <i,9 <nand1<j#j <p+1, we have:

<uj (ﬁjv Qaj, ')7uj’ (Bj’vaj’v )> (t) =0,

whenever j is different from j’ and for all ¢ € [0, 7]. This justifies the null terms
in the asymptotic covariance matrix Xy__ (¢).

Now, thanks again to the orthogonality between martingales with different
indices, it is easy to show that, for 1 <1 < p+ 1, we have

L A af & t -
! <ul<->, > %)()> 0= b3 32 [ (o) - 2 vtsizyas

j=1

which converges in probability to
all —a)

9(7_) A(t)ﬁla

&(t) = m
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when n tends to infinity. Finally, with the same kind of arguments we have that
1 22 as M () 17 &t
LN MO Gy L J / Yi(s)N.(sZ)ds
(7L %m0 - 25> [

tends in probability to

6alt) = “00),

when n tends to infinity. O

4.2. Large sample behavior of &

Lemma 4.2. Under Assumptions A1-A/, we have

p+1 *

Ve —a)= 3 5

J

1
50 %M.j(T)-FOP(l). (4.3)

Moreover \/n(&—a) converges weakly to a N (0, a(1—«)/0(7)) distribution when
n — +00.

Remark. The second result of this lemma is straightforward and doesn’t require
the first step. It arises from an easy application of the central limit theorem.
However the first result will be useful in the next section.

Proof. From the definition of & we can write:

izpj/o AN (s)

R i=1 j=1
o = n p+l1 T
dNij(s)
2
TdMij(s)—i— MY TYi(s))\;(s|Z)ds
T onoptl g n p+l .
dM;;(s) + Yi(s)X; (s|Z)ds
S M) +ad > OTYZ-(S)/\]-(S|Z)dS
=1 i=1 j=1
M+ XY [ vz
i=1 j=1
Z M. (1) + an /O ’ [So(u)Aop+1(u) + By S1(u)] du
M(T) + n/T [So(u))\op+1 (’U,) + ﬁg+151 (u)} du ,
0
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where M..(-) denotes the process >\, Zfii M;;(-). Tt follows that

S M(7) = M ()
- =1 1(N.(1) > 0)

M) = =My (r)

+ Op(l).

Moreover, using Lenglart’s inequality (see e.g. Andersen et al. [1]) and Assump-
tion A3, it is easily seen that

1
EM(T) 50, asn = +c. (4.4)
These two last results with Assumptions A3 and A4 complete the proof of (4.3).

As said in the previous remark, the asymptotic normality of & is straightfor-
ward. O

4.3. Large sample behavior of B

Theorem 4.3. Under Assumptions A1-A6, the random vector \/ﬁ(ﬁA —B) is
asymptotically Gaussian, with zero mean and positive definilte covariance matrix

2400 = Z1(7)Bu, (1)ET (7),
where
AN 0 _B
0
Li(r) =
. AN g
A B
o - 0 o Toa
Proof. Write
. & if 1<j<p
Of] e . . . .
l—a if j=p+1

From their definition, the estimators Bj, for j =1,...,p, are such that

Uj(ﬁj,djﬂ') =0.
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Thus, one can write:

1
_uj (ﬂjv Qg T)

X [\/ﬁ(dg‘ — o) B + Vna (B; — Bj)} :
With the notation

A(r) = / " [Sa(s) — SE2(s)/So(s)] ds,

we obtain
1
vn

It follows that

Ui(Bj, a5, 7) = A(r) {\/ﬁ(dg‘ — a;)B; + a; /(B — Bj)} :

Bi — B = Aifl_l(T)%Uj(ﬁj,aj,T) + (Zj - 1) B;, (4.5)

a; J

thanks to Assumption A4 which insures that A(7) is invertible. Now, using
Assumptions A3 and A4, Proposition 4.1 and Lemma 4.2, it is easily seen that
the right-hand side of (4.5) converges to zero when n tends to infinity. Thus ¢
is consistent.

Furthermore, after some straightforward calculations on equation (4.5), one
can write, for j =1,...,p+ 1:

il - 6 = o (47 BB gy it - o))

o N
e L (000 - a0 W) _ s, )5, )

Using again Assumptions A3 and A4 (which ensure that /1_1(7) converges in
probability to A=1(7)), Proposition 4.1 and Lemma 4.2 as well as the consistency
of B, one can prove that the second term of the right-hand side of this last
equality is an op(1). Thus we can write:

Vil - 5y) = % (a7 @BEEEED g i - a)) bop(1) (46)
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forj=1...,p, and

Vi(Bpi1 — Bpi1)
_ 1 (A_l( )UP-H (B;D-‘rlvap-i-lvT) + B \/—(A o )>
= 1-a T NG 1V (e —a
+op(1). (4.7)

Hence, from (4.3), (4.6) and (4.7) we finally obtain
\/E(B - B) = (T)Un(T) + OP(l)v (48)

where X1(7) is given in Theorem 4.3. This and Proposition 4.1 complete the
proof. Note that because Xy__ (7) is positive definite, the matrix ¥ .00 18 POSitive
definite too. O

4.4. The optimal estimator ,é

Recall that our T—optimal estimator is B =H B , where
H = argming_y,G(H) = argminHthrace(Hf)B JHT,

and EB,OO is required to be an estimator of the asymptotic covariance ma-
trix X f00 given in Theorem 4.3. Thus, we first have to find such an estimator
of EB,oo

It is easy to check from their definition that the explicit expressions of the
estimators Bj, forj=1,...,p+1, are

. 1 . 1< [T _
Bj=—A" (1)~ Z/ (Zl-(s) — Z(s)) dN;j(s). (4.9)
a_] n i—1 0
Furthermore, let
. 1< [T _ @2
0, =+ /0 (Zi(s) — Z(s))® ANy (s),
i=1
and Al — &)
~ e — Q) A N
§J (T) = Ky é(T) A(T)ij
where 6(7) = N..(7)/n, and finally
. a(l—a
Salr) = (9(7’) )
Therefore, one can use respectively
A0 . 0 _bB
. 0
(1) = U ; .
0 0 APt
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and
6:(1) 0 0 &i(7)
2Uoo (T) _ 0 - X 0 A .
) 0 0 Qpﬂ(ﬂ §zi+1(7’)
() - Galn) &)

as estimators of ¥1(7) and Yy_ (7). Finally, let g* = (87,...,8)".
Theorem 4.4. Under Assumptions A1-AG, the estimator

£ 00 = S1(N) 0 (NE] (1)

B,00
converges in probability to the matrix EB ~
Moreover, \/H(BTopt — %) is asymptotically Gaussian distributed with mean

zero and covariance matriz whose trace minimizes q(H) = trace(HX, JHY)
over H € H.

Proof. We know from Lemma 4.2 that & converges in probability to a. We
have also seen in the proof of Theorem 4.3 that A_l(T) and Bj, forj=1,...,
p + 1, converge in probability respectively to A~*(7) and ;. Thus, we get the
convergence in probability of 31 (7) to 1 (7).

Moreover, we have seen in the proof of Lemma 4.2 that

N.(7) = M.(7) +n /0 ’ [So(u)dops1 (1) + BT, 1 81 (u)] du.

Thanks to Assumptions A3 and A4, the integral in the right-hand side of the last
equation converges in probability to 6(7). This and (4.4) give the convergence
in probability of 6(r) to 6(r).

From the above convergences we have the convergence in probability of é i (7)
to &;(7), for j=1,...,p+ 1, as well as the one of o to &a.

On the other hand, one can write, for j =1,...,p:

6,) = 3 [ () = Z6) abto
T %Z /O ' (Zi(s) = Z(s)) 2 Yi(s)N, (s]Zi)ds. (4.10)
i=1

With the notation A®2 = AAT when A is also a matrix, it is easily seen that

<% Z /O t(Zi(s) - 2(5)) ™ dMij($)> (7)
_ L Z/OT ((Zi(s) - Z(s))®2)®2Yi(s))\;(smi)ds,

=1
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which converges to zero in probability when n tends to infinity, by Assump-
tions A2 and A3. This and Lenglart inequality yield the convergence in prob-
ability to zero of the first term of (4.10). Moreover, we have seen in the proof
of Proposition 4.1 that the second term of (4.10) is equal to (U; (5, o, 7)/+/1)
and converges in probability to ©;(7), when n tends to infinity. These two last

convergences prove that ©;(7) converges to ©,(7), for j =1,...,p+1. Thus we
get the consistency of the estimator $y__ (1) and finally the one of 3. 00"

From the above and the continuous dependency of Hon X foo WE deduce
that H converges in probability to the matrix H°P! in H which minimizes
trace(HX;  H 7). We recall that the existence of such an optimal matrix is en-
sured because X B0 is posi‘Eive definite. Since H 8 = p*, we get from the above
and Theorem 4.3 that /n(Srop: — 8*) = Hy/n(B — ) converges to a zero mean

Gaussian distributed random variable with covariance matrix H°P'Y 500 (HorH)T
which is optimal in the sense defined earlier.

5. Statistical inference on the functional parameters under MCAR

Even though it is not the model considered at the beginning of this paper, we will
first consider the fully nonparametric case; that is, a model without covariates
where only functional parameters have to be estimated. Of course, this model is
also of interest for applications. Then we will come back to our semiparametric
model and will see how to estimate its functional parameters.

5.1. Inference in the nonparameteric model

In this case, no parametric form is assumed on the cause-specific hazard rate
functions \;(), for j = 1,...,p and we also do not take into account any co-
variate. Let A;(-), for j =1,...,p, denote the cause-specific cumulative hazard
rate functions defined by:

A0 = [ Ay
for t in [0, 7] and
Appa(t) =D A1)
=1

With the assumption on M and the hypothesis of independence between
(T,d) and C, the instantaneous transition rates of the Markov process with
graph given in Figure 1 are:

N5 (t) = a)(t), forj=1,...,p,
A1) = (1-a) ?:1 () = (1= a)Apya(t),
Ac(t) Ac(t).
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Contrary to the model of Goetghebeur and Ryan [18], when there is no co-

variate in the data, the model is still of interest because it allows different failure
rates for failure causes.

5.1.1. First estimators of the cause-specific cumulative hazard rate functions

By standard arguments, one can easily estimate A;(¢), for j =1,...,p+1 and
t €0, 7], by

~ 1 -

Aj(t) = d—jA;(t), (5.1)

where &; is defined at the beginning of the proof of Theorem 4.3, Y(s) =
>, Yi(s) is the number at risk at time s and

- " [P dN(s)
A(t) = / —L
! ; o Y(s)
is the well-known Nelson-Aalen estimator of

A;(t)—/o N (u)du.

Write:
As() Av()
A() = Ap'(-) and A(:) = Ap(-
Ap+1(') Ap+l(')

Note that, as for the regression parameters case, the estimator Ap-i-l(') differs
from A;(-)+- - -+Ap(+) since it is based on information coming from the transition
0—=p+1.

Now, let us introduce two classical assumptions that allow to obtain the
following asymptotic results.

B1. 7 satisfies 0 < Aj(7) < +o0, for j =1,...,p.
B2. There exists a function sg(-), defined on [0, 7|, and bounded away from 0,
such that
()

Y
— - so(s)' 50, when n — +oc.
n

sup
s€[0,7]

These assumptions are nothing but Assumptions A2 and A3 of Section 4
adapted to this new model. It is well known that Assumptions B1 and B2
are fulfilled whenever 7 is such that S(7)G(7) > 0, where S(-) and G(-) are
respectively the survival functions of 7" and C.

Note also that the functions so(-)A;(-) and X\;(-)/so(-) are integrable on [0, 7].
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Finally, let us define:
n;i(-) = aj/ Aj(uw)/so(u)du, for j=1,...,p,
0

Mp+1(r) = Z 75 (+),

Oo(-) = /O s0(u) Apt1 (u)du,
pi() = rja(l—=a)A;(-)/0o(T), for L<j<p+1,
and po(7) = a(l —a)/by(7).

Theorem 5.1. Under Assumptions Al, B1 and B2, the process \/ﬁ(A()
-) with

A(+)) converges weakly in DPT[0,7] to a zero mean Gaussian process L(
covariance matriz function

TL(t) = B2()Dv.. (63 (1),

where
Lo .. 0o - Agé(t)
0 : :
Yo(t) =
1 0 A
0 0 % Azi+1(t)
and
m (t) 0 0 P1 (t)
Sou=| 0 o 0 :
0 0 mpra(t)  ppta(t)
pr(t) - ppa(t)  palT)
Proof. Our proof starts with the observation that:

A1)
Vna;a

A straightforward application of the central limit theorem gives the +/n-
asymptotical normality of & and thus that /n(& — «) is an O,(1). More-
over, under Assumptions Bl and B2, the Nelson-Aalen estimators f\;(), for
j=1,...,p+ 1, are well-known to be uniformly consistent (see e.g. Andersen
et al. [1]). Hence, under the assumptions of Theorem 5.1, one can get easily from
(5.2) the uniform convergence in D[0, 7] of A;(-) to A;(-), for j = 1,....,p+ 1.
These convergences and (5.2) yield

Vs - A = Y [ BLEL B0 R ) sop), 59

aj Jo Y(s) oy

Ayt = A0 = - (R0 - M) -

Qj

Vi —a).  (5.2)

in D[0,7] and for j =1,...,p+ 1.
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But, following the lines of Lemma 4.2, we show that
p+1 *

= 2 gyt 7 tatr) + el

where 6y(7) > 0 by B1 and B2. From this and (5.3), we deduce that
Vi(A() = A1) = Z2(8) V(1) + op(1), (5.4)
in DPFL0, 7], where Xa(t) is defined in Theorem 5.1 and

t dM.1(s
Jo G

Vn(t) = vn

t dM', s
Jo Ppate)

+1
5 2 ey M (1)

Using the Rebolledo Theorem or an approach given in Dauxois [10] one can
easily prove that, under Assumptions B1 and B2, the process V, () converges
weakly in DP*2[0,7] to a zero mean Gaussian process V.. (+). It remains to
specify its covariance function Xy__(+). First, note that we can write V,,(t) =
Vin(t) + Vo, (t) where

t dM.q(s)
fO Y(ls)

Vin(t) =+vn t dM. i (s)

fO (s)

1 J
5 2 gt M ()

and
0
1 :
Von(t) = — :
2, ( ) \/ﬁ O
1 o
S0 oty (Mij(r) = Mo (¢))
Since the martingales M.; are orthogonal, for j =1,...,p + 1, we have
E [VZ*(1)] =E[VIR ()] +E [VI5(2)]
and thus

Sv..(t) = lim E[VE2(1)] + lim E[VS2(1)].

n—roo n—roo

Straightforward calculus lead to the expression of Xy__ (+) given in the theorem.
From this and (5.4) we get the desired result. O
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One can get a consistent estimator of the covariance function ¥p(-) of the
limit process L(-). To this end, let us define, for j =1,...,p+ 1:

~ ¢ dNJ S
i) =n [ T

a(1— ), (1)
90 T)

Define also:
a(l— &)

yforj=1,...,p+1, and po, = —
Oo(7)

pi(t) = k; )

where 0o(7) = N..(1)/n.
Then, plug-in estimators of Xo(t) and Xy_ (), for ¢ € [0, 7], are respectively

19 ... o _ho
. 0 :
Yo(t) = )
PR W0
0 0 A et
and . .
() 0 0 p1(t)
iVoo (t) = 0 - A 0 A
0 0 Mp+1(t)  Pp+r(t)
pr(t) -+ Pper(t)  pa

Finally, an empirical estimator of Xy,(+) is given by:

SL() = 2 () 8w ()T ().

5.1.2. Optimal estimators of the cause-specific cumulative hazard rate
functions

Except for the fact that estimators in this section are functions, the situation
is the same as the one of Section 3.1. Indeed, our multivariate functional esti-
mator A() gives estimators A (), ..., A, () of Ai(-),..., A,(-) respectively and
an estimator A, 1(-) of their sum A,y (") = P L Ai(+). Here also we will look
for a linear transformation of A(-) which will give us an optimal estimator of
A() = (Ar()s- - Ap ()T

To this end, let us define H' as the set of p x (p+ 1) real valued matrices such

that Ha = a* for all a* = (ay,...,a,)" € R” and a = (a*",Y"_ ;)" € RPTL.
We define
H(t) = argmin trace(HSy(t)HT) (5.5)
HeH!
and set ~ o
A() = H(A() (5.6)

as a new estimator of A*(-). The next theorem proves that the later estimator
is asymptotically normal and T—optimal.
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Theorem 5.2. Under Assumptions A1, B1 and B2, the matrix f]L(t) converges
in probability to the matriz Xy,(t), for all t € [0,7].

Moreover, let us assume that the matriz Xy,(t) is invertible, for all t €]0,7].
If, for all t € [0,7], the matriz H(t) is the unique solution of (5.5), then the
process /n(A(-) — A*(-)) converges weakly in DP[0,7] to a centered Gaussian
process L/ (-) = Hs, (-)LL(-) with covariance function Hs, (-)SL(-)H3 (-) where

Hy, (t) = argmin trace(HYy (t)HT).
HeH'
Proof. The proof is omitted since it follows the lines of the proof of Theorem 4.4.
O

Let us denote by L the column vector in RP(®+1) defined by L = (Hj, .. ., Hy)
where H; is the ith row of H € H'. The link between L = (l;)1<i<p(p+1) and
H = (hij)1<i<pii<j<p+1 is therefore h; j = l(;_1)(p41)+;- One can see that the
linear constraints on H may be written on L as CL = d where C and d are
known. Indeed

hii+hipyn = 1, forl<i<p,

hi,j+hi,p+1 = O, fOI‘lS’LSp,lS]Sp—FlandZ#j,
- li—1ypry+i T lipry = 1, for 1 <i <p,

li—1yprry+j Tlaryp = 0, for 1<i<p 1<j<p+1andi##j,
& CL=d,

where the matrix C and the vector d are obvious. Moreover, let Q(t) be the pxp
block diagonal matrix defined by

O(t) = diag (2L(t), L 2L(t)),

p times

and note that . R
trace(HXL(H)HT) = LTQ(t)L.

Thus, in order to find our optimal estimator, we have to solve the following
optimization problems

(P) Find L(t) which minimizes L (£)Q(t)L(t)
! such that : CL(t) =d ’

for ¢ € [0, 7].
Following the method of Section 3.2, the solution of (P;) is:

L(ty=Q ' ()cT(cQ (1)) 1d

and H(t) is therefore defined by hi;(t) = Z(i_l)(p+1)+j(t) for 1 < i < pand
I<j<p+1l
Remark. Since 2L(t) is piecewise constant, it is sufficient to calculate the

matrix H (t) at points t € [0, 7] where the counting process N.. jumps, that is
at points X; € [0, 7] such that §; = 1.
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5.1.3. Estimation of the cumulative incidence functions and the survival
function of T

Our aim in this section is to introduce estimators of the survival function S(-) of
the lifetime 7" as well as estimators of the cumulative incidence functions Fj(-)
defined, for all t and j =1,...,p, by

Fi(t)=P(T < t,d=j).

Let us recall that A.(-) = f 1 Aj(+) is the cumulative hazard rate function

of the survival time T'. It is well known that one can write the survival function
in terms of the cumulative hazard rate function:

St)= TT (1—dA.(u),

u€]0,t]

where 71 denotes the product integral (see Gill & Johansen [17]). Using a
plug-in method on this last equation, one can get the Kaplan-Meier estimator

of S(t):
S(t) = ug}'gﬂ (1 - dA.(u)) ,
where A(-) is the optimal estimator of the previous paragraph and
P
=> &)
j=1

On the other hand, it is also well-known that one can write, for ¢t € [0, 7] and

ij=1...,p, ,
- /0 S(u)dA, (u)

and that an estimator of this cumulative incidence function is given by the
Aalen-Johansen estimator (see Andersen et al. [1])

— /OtS‘(u_

The asymptotic behavior of these estimators is given in the following theorem.
Theorem 5.3. Under Assumptions A1, B1 and B2, we have the following weak
convergence in DPT1[0, 7], when n tends to infinity

O\ (RO Ji SALA () — f SL. () ()
Vn x - : —

Fp () Fp() o S(u)dL (u fo w)dA,(u)

S() 50 —S(-)Lf(-)
where 1L)(+) is the jth component of the limit process /() of Theorem 5.2 and
L) =L3¢) + -+ L, ().
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Proof. This result is easily obtained from Theorem 5.2 and the functional J-method

(see e.g. van der Vaart & Wellner [39], for details on this method). Indeed, from
the above, one can write

=9 : ;

where 9(+) is a function from DP[0, 7] to DP*1[0, 7] with coordinate functions
defined, for : = 1,...,p, by:

. Aq ()
zm>—Asw>w4>—m .
Ap(')
and
Aq ()
SO=tp | 1| =TT (1—dr(w),
Ap(') 7

We know (see again Van der Vaart and Wellner [39]) that the product-integral

function
¢o(-): DI[0,7] — D|0,7]

A = (A= TT (1—dA(u))

u€]0,-]

is Hadamard differentiable on BV [0, 7], the subset of functions in D[0, 7] with
total variation bounded by K. Its derivative is

$(A)()

$(A)(u)

and is equal to —¢(A)(-)a(-) when A is continuous.
We also know that the function

o(,): DJ0,7] x BVk[0,7] — DJ0, 7]
(A, B) — (A, B) = [, AdB

¢M@0=—A¢mmr> do(u)

is Hadamard differentiable on (A, B) where A is of bounded variation, with
derivative:

wglxa,ﬁxo:=j€24@ndﬁ@n-+jﬁ¢wand8<u»

Using for instance the chain rule (see Lemma 3.9.3 of Van der Vaart and
Wellner [39]) and the composition

MN%~AAW¥MMWSMTHASWWMmm
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one can prove that the coordinate functions ¢1(-),...,¥,(-) are differentiable
and get their derivatives. The functional §-method allows us to obtain from
Theorem 5.2 the following weak convergence in DPT1[0, 7]:

Vi (9(A0) = (A% () = ¥ (L),

when n tends to infinity. Straightforward differential calculus and the continuity
of S(-) give the expression of ¢y.(L'(-)) detailed in the Theorem. O

5.2. With explanatory variables

Now, let us come back to the semiparametric model of equation (2.1) with
explanatory variable Z(-). As we have done before, we will first introduce esti-
mators of the cause-specific hazard rate functions which only use the lifetimes
Without Missing Causes (WMC). Then, as previously, we will introduce the
T—optimal estimators of these functions.

5.2.1. First estimators of the cause-specific cumulative hazard rate functions:
the WMC' estimators

First note that, even if we will only use the quantities with index 7 =1,...,p
in this paragraph, we will also introduce here the terms with index p + 1.
These latter will be used in the following paragraph where we will get the
T—optimal estimators which also use the lifetimes with unknown cause of fail-
ure. In the sequel, Agpt1(-) and Api1(-|Z) denote respectively Zé’zl Ag;(+) and

2 A (2).
Recall that we have, for j =1,...,p+ 1:
dN.j(s) = dM.j(s) + a;Y (s)dAo;(s) + a;jnST (s)B;ds,
where the a; are defined in (4.2). Thus, an estimator of Ag;(t) is given, for all

t€[0,7], by
. . i ¢ dNJ(S) B AT t Sl(S) s
Aoy (1) = oy /0 Y(s) b /0 SO(S)d ’ (5.7

where Bj is the estimator introduced in Section 3.1 and is such that
Z/{j(Bj,Oéj,T) =0.

Then we propose to estimate A;(+|Z), for j = 1,...,p+1, by A;(-|Z) defined,
for t > 0, by

Mm):&m+@4ams
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LN L ([ g [50E)
= Y T (/ Zs)ds = | so<s>d)’ (5:8)

where by abuse of notation fot Z(s)ds denotes the vector of integrals of each
coordinate of Z(-). Let us write:

A(-1z)
Awne(|Z) = : : (5.9)
Ap('|Z)
Before giving the large sample behavior of this estimator in the following
theorem, let us introduce other notations. For j = 1,...,p+ 1 let us define:

" 50(5)Noj (s Tsi(s
p() = aj/o 0(8)Ao (Sg)(;;ﬂj ()ds,
_ O[J‘O[;f ' So(S)Aoj(S) +ﬂf$1($)
) = G [ e
S CIC)
/’L3J() - ]‘/O SO(S)d ﬁ]u

where the a7, for j=1,...,p+ 1, are defined in Proposition 4.1. Finally, let us
define the block matrix ¥5(t) by

1 0 0 ... 0 Kt 0 0 ... 0 —A(tz)

0 1 0 0 0 K({) 0 0 —As(t|Z)
a¥s(t) = | : ) ) L : . . . : :

0 ... 0 1 0 0 ... 0 KB 0 —A_(t|2)

0O ... 0 0 1 0 ... 0 0 K& -AE2Z)

where K (t) is a 1 x k vector defined by

K(t) = (/Ot Z(s)ds — /Ot Z;EZidS)TA_l(T), for all t € [0, 7].

Theorem 5.4. Under Assumptions A1-A6, the process
Vi (Awane (12) = (A ([2), A (12))

converges weakly in DP[0, 7], when n — 400, to a zero mean Gaussian process
with covariance matriz X5 (t)Xw; ()2 (t), where

11 12
AR O AN
AU E S S
N UL AN



70 L. Bordes et al.

with
paa(t) 0 0
si) = " .t
P 0
0 0 Mlp(t)
dL@t o 0 . 0 pr21 (t)
ph(t) 0 o 0 p22(t)
zg,z?m(t) - : SV - : :
0 v 0w, () 0 ey (t)
0 .0 0 () p2p(t)
and
©i(r) 0 0 0 &7
0 @2(7’) 0 0 62(7-)
(22) c. .'
Do B =1 0 ©,(r) 0 fp ()
0 0 0 Gp(T) ( )
(1) 55(7) €a(T)

Proof. By the definition of A;(-|Z) and A;(-|Z), one can write, for all £ > 0 and
j=1...,p

Vi (As(1Z) - A5(012))
- (e s [ g
+ B —-8)" | Z(s)ds|.
But it is easy to check that oxé assumplons and preliminary results yield
(i d];( (> o ) St i)

Sof
T e ] S o)

- \/ﬁ(ﬁj—ﬁj) / Eid +op(1).

These two last equations and (4.6) enable us to write:

R e V)

«

Vi (Ai(12) = A1)
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+é (Al(T)uij(ﬁi}gﬂ'”)y </0 Z(s)ds — /0 :Jgds) +op(1).

Hence we have
Av(1Z) - A (12)
vn : = Y5(- )W}, . (-) +op(1),
Ap('|Z) - Ap('|Z)

where
) - ([ ] B0

u,iT(BhalaT) (ﬁp?apu iy al

e ST S )

But, a straightforward application of Rebolledo’s Theorem proves that, under
Assumptions A1-A6, the process

o) = (V5 55

u?(ﬁluala ) (ﬁlﬂalﬂ : Zil ; M
\/ﬁ Sy 9 J

converges weakly in DPF+D+1[0, 7] to a zero mean multivariate Gaussian mar-
tingale W, o (+). It is easy to check that the covariance matrix Xy, _ (-) of this
limit process is similar to Ew/p Oo() where 7 is everywhere replaced by t. This

ends the proof. O
Estimators O1(1), ..., 0,(1),E(1), ..., Ep(7) and £, (7) of respectively O (1),
and &, (7) have been introduced in Section 4.4.

04(7). ... 0y(r), &1(7), ---,ép(fz

Moreover one can estimate p1;(¢), pio;(t), pusj(t), for j = 1,...,p+ 1 and t €
[0, 7], with

f(t) = n/o ;,lé\ég)’
oo G5 AN (s)
mﬁ)—émA R

t S) — ©2 S S) ~
o) = o[ S=SPS0),

and an estimator of K () is given by:

K(t) = </OtZ(s)ds - /Ot §;Ez§d5>TA1(T).

Using these estimators one can get consistent estimators of the matrices ¥5(t)
and EW% - (t)
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5.2.2. Improved estimators of the cause-specific cumulative hazard rate
functions: the T—optimal estimators

The estimators of the cause-specific (baseline) hazard rate functions introduced
in the previous paragraph can be improved thanks to the following two argu-
ments:

e replace in equation (5.7) and (5.8) the estimator Bw e by the improved
estimator BTopt of the regression parameters;

e apply the idea of Section 5.1.2, i.e. use the estimation of the sum of the
cause-specific (baseline) hazard rate functions in order to obtain optimal
estimators of each quantity.

Thus, let us first consider the new estimators of Ay;(t) and A;(¢|Z), for j =
1,...,p+ 1, respectively given by:

Aoy = L th'j(S)_NT " Si(s) s
AoJ(t)—&j/O Y s) B; ; SO(S)d (5.10)

and

Aj(t1Z) = Aoj(t) + BT /Ot Z(s)ds

where 8,11 = >0, B
Some supplementary notations are needed before describing the large sample
behavior of these new estimators. Let
. H;f)t = (Hjoft, .. H;gt,Hfgil) for j = 1,...,p, be the jth row of the
optimal block matrix H°P! defined in the proof of Theorem 4.4 and thus
a matrix of dimension k x (p + 1)k;

o HY = Hjof) , a matrix of dimension k x (p + 1)k;
o /_&j(t):AOJ +ﬁTft§1E§ ds, for j=1,...,p+1;
o I';(t) = K(t)A(r )H;ftEl( ) —(0,...,0, j( )/a;), for j = 1,...,p, and

Tp1(t) = K A(T)HE S (1) + (0, .. .,0, Api1 (£)/api1), all these matri-
ces being of dimension 1 x [k(p 4+ 1) + 1].

Finally, let us define the block matrix 3¢(t), for all ¢ € [0, 7], by:

1/0&1 0 e 0 Fl(t)
0 . .
Yg(t) =
o 1/ay 0 Lp(t)
0 0 apir Tpia(t)

The large sample behavior of the above estimators of the cause-specific cu-
mulative hazard rate functions is given in next Theorem.
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Theorem 5.5. Under Assumptions A1-AG, the process
A(1Z) = M (]2)
vl :
_ Ap('|Z) - Ap('|Z)
Ap1(1Z) = Ap1a(12)

73

converges weakly in DPT1[0, 7], when n — +o00, to a zero mean Gaussian process

with covariance matriz S¢(t)Sw: | _(0)%E(t), where

200 @ =02 @)

PO [ A
p+1,00 (12) T (22)
EW;H,OO (*) Zw/pﬂ,m ®)
with
pua(t) 0O 0
0
o |
,Ulp(t) 0
0 0 pipa(t)
ph@) 0 0o ... 0 p21(t)
0 4L o ... 0 pi22(t)
S0 = 5 :
p+1,00 T
0 S N0 0 pap(t)
0 .0 0 30y H2een(t)
and
O:1(t) 0 0 &u(t)
SG(#) =Sy () = 0 ' ! :
Wt s 0 0 Oppi(t) &aa(t)
G - Gal) L)

Proof. One can prove that, for all j =1,...,p and t € [0, 7], we have:

Vi [faMy(s) A0 RS of Ma(r)

\/ﬁ(]\j(ﬂZ)—Aj(ﬂZ)) T w )y Y o(r) vn
j 7=

+ K()A(T)H? 'S (1)Un(7) + 0p(1),
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where op(1), here and in the following, is uniform for ¢ € [0, 7]. Similarly, one
obtains:

Vi (R (HZ) = Apia (112) )

Vi [P dMp(s) | Ay () S~ of Ma(r)
apr1 o Y(s) apr1 = 0(r) Vn

1
+ KOAMHE'S1(T)Un (1) + 0p(1).

Hence
A (+Z) — A (H]2Z)
vr AUD-ACE) | Z6()Wii1 () +0p(1),
Ap1(1Z) = Apta(|Z)
where

N A AMy(s) [ dMya(s)
P+1,n(') - (ﬁ\/(; Y(S) a"'v\/ﬁ/o Y(S) 7\/5/0 Y(J;) 5

ulT(ﬁhOéhT) upT(ﬂva‘paT) Ugﬂ(ﬁpﬂaapﬂﬂ'

) 1 p+1 a; | T
NG Y , NG ,ﬁ;ﬁM.J(TO .

The weak convergence of Wy ,(-) to W . (-) in DFEDEHDH 7] is easily
obtained thanks to arguments similar than those used in previous sections (see in
particular the proofs of Proposition 4.1 and Theorem 5.1). This ends the proof.

O

Recall that estimators of the quantities which appears in the limiting covari-
ance matrix have been introduced in previous sections (see in particular Section
4.4 and Section 5.2.1).

Now, T—-optimal estimators of the (baseline) cause-specific cumulative hazard
rate functions can be obtained following the line of Section 5.1.2. For example,
from the estimator ]Xoj(-), for j=1,...,p+1, given in equation (5.10), one can
obtain T—optimal estimators of the baseline cause-specific cumulative hazard
rate functions. Indeed, write

Aoi ()

Rop()
A0p+1(')

and

H(t) = argmin trace(HY5 (t)HT),
HEM' 0
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where 3 i, (t) is the estimator of the asymptotic covariance matrix of the esti-

mator Ag(t). Then the T-optimal estimator of Ag(-) = (Agi(-),-- -, Aop(-)T is
given by: ~

Ag™'(-) = H()Ao(-). (5.11)

Finally, it has to be noted that, as in Section 5.1.3, it is also possible to get
estimators of the survival function and the cumulative incidence functions as well
as to get their large sample behavior (like in Theorem 5.3). But this is omitted
here since it is very similar to what has been done in Section 5.1.3. Let us just
note that, from a practical point of view, if for some t € [0, 7] the determinant
of the matrix 2[\0 (t) is too small, then we set Aj P (t) = (Ao (t), . .., Aop(t))T.

6. Semiparametric inference under the M AR assumption

Following the request of the Associate Editor and the referees, we have consid-
ered the possibility of weakening the assumption on the missingness mechanism.
Indeed, one knows that the MCAR assumption can be too strong in some situa-
tions and it could be of interest to consider the case where the probability that
the cause is missing depends on the time X as in the MAR case. The aim of
this section is to consider such a situation. In this Section, we show that under
the MAR assumption, one can obtain estimators of the Euclidean parameters
(the regression parameters) as well as the functional parameters (the baseline
cause-specific cumulative hazard rate function and, as a consequence, of the Cu-
mulative Incidence Function and the survival function). Our approach is based
on the double robust technique already used by Lu and Liang [24] but it gener-
alizes their work in the following ways. We do not assume independence between
the causes of death; we assume an additive form on each cause-specific hazard
rate function and, finally, we obtain estimators of the cumulative incidence func-
tions as well as the survival function of the lifetime 7' (all causes confounded).
As mentioned earlier in Section 1, there is, however, a disadvantage in consid-
ering such a more general situation since it won’t be possible to improve the
estimators as done in the previous section.

6.1. MAR assumption

In this section we still assume that an additive hazard model holds on the cause-
specific hazard rate function, that is:

1
\i(t|Z) = lim —P(T € [t,t +h[,d = j|T > t,Z(t)) = Xo; (t) + BT Z(t), >0,
h—0t+ R J
(6.1)
for j =1,...,p, where A\o;(-) is the baseline jth cause-specific hazard rate func-

tion, Z(t) = {Z(u);u < t} is the history up to time ¢ of this covariate pro-
cess and f3; € R* is the vector of regression parameters associated to the jth
cause.
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But we only assume a MAR assumption (Rubin [33]) on the mechanism of
missing information on the cause of death (and not a MCAR assumption as in
previous sections). More precisely, we suppose that:

P(R=1|d,6=1,X,2,G)=P(R=1|6 = 1,X,Z,G) = 7(X,Z,G) = n(0),

where GG is an auxiliary covariate collected for each individual and where O
denotes (X, Z, G) to shorten notation. Thus, given § = 1 and O, the probability
that the cause is missing depends only on @ (which is observable) and not on
the cause of death (not always observed). It is also assumed that

P(R=0|d,6 =0,0) = 1.

The above assumption of independence between R and d, given § = 1 and
O, allows us to write, for 7 =1,...,p:

Pd=j6=1,R=0,0)=P(d=jl0 =1,R=1,0) = P(d=j|6 =1,0).

Assuming that these probabilities don’t depend on the auxiliary covariate G,
let us denote them h;(Q), for j =1,...,p, where Q = (X, Z).
In the following, we will assume that we observe a sample

(Xi,0i, Di, 2;(X;), Gi)1<i<n
of (X,0,D,Z(X),G), where we still write D = §Rd.

6.2. Parametric model on the MAR mechanism

Following Lu and Liang [24], one can introduce parametric models on the un-
known probabilities 7(0) and h;(Q), for j =1, ..., p. To this end, let us denote
by m(Q, ) the parametric model posited on the probability 7(Q), where v is a
regression parameter of dimension £.,. A logistic regression model could be used,
among others. Let us denote by h;(Q, (), where ¢ is a regression parameter of
dimension k¢, the parametric model used for the h;(Q), for j = 1,...,p; for
example, a multinomial logistic regression model. Due to the MAR assumption,
one can get estimators 4 and Q: of v and ( respectively by maximization of the
likelihoods

J (W((O)iv ’7))Ri6i (1 — W(@i7 ’7))(1_Ri)5i

i=1

n

and

p—1

II|11 (h(Qy, O) P = 5 (1= ha(Qi,€) — -+ — hyp-1(Qs, Q) 17771

i=1 | j=1

If their corresponding parametric models are correctly specified 4 and é are
well-known to be consistent estimators of the true values of the parameters
and (.
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6.3. The double robust estimators of B; and Ag;(+)

Once estimators of v and ( are obtained, the question is how to estimate the
regression parameters 3; and the cause-specific cumulative hazard rate func-
tions Ag;(+), for j = 1,...,p. One possible approach is to construct estimating
equations based on the double robust technique introduced by Robins et al. [32]
and later used by Lu and Liang [24] in a context similar to the present.

To this end, let us introduce two new families of counting processes:

Nij(t) = I{X; < t,d; = j} and Nj(t) = [{X; < t,6; = 1},

fori=1,...,n,j=1,...,p and all ¢ > 0. Note that, due to missingness of
cause of death, the counting process Nw() are not always observable, but will
always appear in the sequel multiplied by R; (itself given by the observation of
0; and D;), which ensures that the product is observable.

Estimators of the 8; and the Ag;(-), for j = 1,...,p, will be obtained as
solutions of the following estimating equations:

> g - g @ gav
i=1 v i)

— Y;(t)ﬁJTZl(t)dt — Y;(t)dAoj (t)} =0, for all t > 0; (62)
Z /OT Zi(t) {ﬂ%%dmw — %W@(Qi,ﬁ)w(t)
~ Vi3] Z: (0 iAoy (1)} = 0. (63)

Let 700 and (o be respectively the limit of the maximum likelihood estimators
4 and CA introduced in previous subsection. As long as at least one of the two
models used on 7(Q) and on the h;(Q), for j = 1,...,p is well specified, one
can show that we have, for all ¢ > 0:

Ri Rl —W(@i,;}/)
- [W(@iﬁ) (04, %)

- /t Yi(t) (B] Zi(t)dt — dAo;(t)) | = 0.
0

This result is obtained thanks to consideration of the conditional expectation:
given {Q;,d;,d; = 1}, in the case where the model on 7(Q) is correct; given
{0y, R;,6; = 1}, in the case where it is the model on the h;(Q), for j=1,....p
which is well specified.

From equations (6.2) and (6.3), one can get easily the expression of the Double
Robust (DR) estimators:
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. Ri _T‘—(@iuﬁ/) . o F *
77((0)1'7 ;Y) h] (Qzu C)sz (t)} I (64)

where A(7) and Z(t) are defined respectively in sections 4.3 and 3.1 and
Ao; ()
n ; Y i — (04,75 2 * A
/' > e {%dl\%‘ (t) — RWTW}IJ‘(@, QAN (t) — Yi(t)ﬂjTZi(t)dt}
0

> Yi(t) 7
(6.5)

forj=1,...,p.

Remark. In the case where there is no covariate, one can fix the estimators f3;,

for j=1,...,p, to zero in (6.5) to obtain nonparametric estimators Aj of the p
cause-specific cumulative hazard functions.

Let us denote by

B

Bpr = : (6.6)
Bo

the vector of dimension kp concatenating the Double Robust estimators of the

regression parameters and

Ao1 ()
AFR() = : (6.7)
AOP(')

the Double Robust estimator of the baseline cause-specific hazard rate functions.

6.4. Large sample behavior

Let us introduce the following notations:

R o . Ri—7(07)
OO RACACR T

- /Ot Yi(t) (8] Zi(t)dt — do;(t))

M:; (tu 6]7 v Ca AO]()) -

hj(@z‘, C)Ni*(t)

Vel

o ! _ 1)\ V47 (01, 700) N .
5= | [ (20 - 20) B2m O (a0 - @i coan)]
(0

V)

5| (- 2 e, o]

0; (R — m(04,7x))
(04, 700) (1 = 7(04,7e0))

S%i =

vvﬂ-(@ia '700)7
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Vehi(Q4, o) Vehp-1(Qi, (o)

Sei=I{D;=1} +---+I{D;=p—1}

hl (Qu Coo) hpfl (Qu Coo)
B 3 Veh(Qi Coo) -+ Viehp—1(Qi, Coo)
D= Py @ co) = = hpa (@1, )

I, =E (Smls'iyp,l) ’
Ic =E(8¢15(1) »

where V,, f(-) denotes the gradient function of a function f(-) computed at u,
and finally

@J-1£T<wa—-;gi)dﬂﬁ<tﬂawmxanA&c»

1 -1
7] L S'YZ_BCJ ¢ S,

where 39 and A;(-) are the true values of 8; and A;(-). Note that S, ; and S¢ ;
are the score functions for individual ¢ associated to the models on 7(Q) and
the h;(Q), for j = 1,...,p, respectively. The matrices I, and I are nothing but
the corresponding Fisher Information matrices.

Theorem 6.1. Under Assumptions A2-A/, A6 and if at least one of the two
parametric models assumed on the MAR mechanism is well specified, then the
7.0.

R R T
\/ﬁ(ﬂl_ﬂla"'vﬂp_ﬂp)
converges in distribution in RP* to a mean zero Gaussian r.v. with covariance
block matriz:
-1 T \ -1
EB,Oo = (A (T)E((bl] 1j’)A (T))lgj,j’gp .

Proof. Since it is an adaptation of the proof of Theorem 1 of Lu and Liang [24],
only the skeleton of the proof is given. Fix j between 1 and p. The solution of
(6.2) in terms of Ag;(-), for all 8, in R¥ is:

Aoj(t. B))
/t doica {%dl\ﬁj(t) - %m;jwh (Qs, )dN; (t) — Yz‘(f)ﬁfzi(f)dt}
0 >y Yi(t) ’

for all + > 0. Replacing Ag;(-) by Ag;(-, ;) in (6.3) one has now to solve the
following equation in terms of 3;:

Z/ Z(t)) {%dﬁij(ﬂ

——Z@g%ﬁ<@x> F0 -V 20 | =0

that we will briefly write

U;(8;,%,¢) = 0.
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A Taylor expansion of U;(f3},7, ¢) around ve and (s and rather standard
arguments in empirical process and maximum likelihood areas enable us to
obtain after some cumbersome calculus:

On the other hand, since by definition of Bj one has U (Bj, 7, é) =0, we can
write:

Finally, we get
— B8 — Al (S ol
\/_(BJ BJ) A ( )\/ﬁ (; (b%] + P(\/_)>

and the result of the theorem follows from an application of the Central Limit
Theorem. O

Note that the block (j,7'), for 1 < 4,5 < p, of the asymptotic covariance
matrix given in the last theorem can be consistently estimated by

A~ 1 " ~ "T 1T
A1) (Ezl¢i,j¢i,j’> A7),
where
bij = /0 (Zi(t) — Z(t)) de}(taﬁAjﬁaéc,AOj(')) - E;F,jfy_lgw - Eg,jjg_lgc,i,

and B, ;, Bej, L, I, S’%i and S ; are obtained from B, j, Bej, Iy, Iy Sy
and S¢; by replacement of vo, and (s by their maximum likelihood estima-
tors, replacement of so(-) and s1(-) by So(-) and Si(+) and replacement of the
expectations by their empirical counterparts.

Let us now consider the asymptotic behavior of the estimator of the baseline
cause-specific cumulative hazard rate function Ag;(+). To this end, let us write:

o T Rlvvw((@la'?/oo) R *
C%J =K [~/O 772(@1;'}/00)50(t) (lej (t) h] (le COO)le (t))] ’

gl [ RO .
CCJ =E |:/0 77(@1,700)50(0 VChJ(le COO)le (t):|

Yij(t) = /Ot dMi?(th?,;Z’)CWAgj(.)) - </Ot a1(u) du>TA1(T)¢z‘,j

Co I S, — CLI S,

V3T
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Theorem 6.2. Under Assumptions A2-A/4, A6 and if at least one of the two
parametric models assumed on the MAR mechanism is well specified, then the
multivariate process

N ~ T
Vi (Ror() = A3 (). By () = A3,0))

converges weakly in DP[0, 7], when n — +00, to a zero mean Gaussian process
with block covariance matrix functions given by

E (wl,j(s)w,{,j’(t)) 9 fO’f’ (Svt) € [077—]2 Cl/fld 1 S jvj/ S D-

As in the case of the previous theorem, the blocks of the above asymptotic
covariance matrix function can also be consistently estimated by

1 - .
=~ Yis(s)di]
i=1

where z/AJl ;(+) is obtained from ; ;(-) with replacement of the unknown param-
eters by their estimators and the expectations by their empirical counterparts.

Proof. Again, the proof is on the same lines as in Lu and Liang [24]. We only
mention here that using empirical processes arguments and a Taylor expansion
around Yoo and (s, one can write, for j =1,...,p and ¢ € [0, 7

Vi (Ron(0) = 810)) = 2= 3" (0) + op()

and the functional central limit theorem completes the proof. O

We are now in a position to consider the estimation of the cause-specific
cumulative hazard rate function, given the covariate Z. Recall that the additive
hazard model considered in this paper assumes that we have, for all ¢ in [0, 7]:

Thus, an estimator of the conditional cumulative hazard rate function is given
by:

Aj(tZ) = Ao (t) / BT Z(u)

where Ag;(-) and f; are the double robust estimators introduced in Section 6.3.
From the above, one can easily write, for all ¢ in [0,7] and j =1,...,p:

\/ﬁ([&j(ﬂZ) AY( t|Z) Tznj i (6 2) + op(1), (6.8)

U, (6, Z) =y (1) </ > A7) iy

where
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Theorem 6.3. Under Assumptions A2-Aj, A6 and if at least one of the two
parametric models assumed on the MAR mechanism is well specified, then the
multivariate process

Vi (A(12) — AC12). ... A 12) — A0(12))

converges weakly in DP[0, 7], when n — 400, to a zero mean Gaussian process
with block covariance matrix function given by

E (\Ill_,j(s)\lllTyj/ (), for (s,t) € [0,7]* and 1 < 4,5’ < p.

The proof is omitted since the result immediately follows from equation (6.8)
and the central limit theorem.

Again, the blocks of the above asymptotic covariance matrix function can be
consistently estimated by:

Z \i’i)j (S)\i’,fj/ (t),
i=1

S|

where
T

0,0 =0+ | t Zluyin) A7)

We end this section by mentioning that it is also possible to get estimators
of the survival function and the cumulative incidence functions as well as to
obtain their large sample behavior (as in Theorem 5.3). To keep this paper
shorter, we omit the details which require just an application of the approach
of Section 5.1.3: one need only use the Gaussian process which appears in the
limit of Theorem 6.3 as the process L/(+) in Theorem 5.3.

7. Numerical study

In this section we first present a simulation study to compare the properties of
our estimators for different sample sizes, their robustness to model misspecifi-
cation and their efficiency. Then we illustrate the use of our estimators through
an application on three different real datasets.

The simulation work has been implemented with the R statistical software
(see R Development Core Team [29]).

7.1. Simulation study
7.1.1. Simulation design

We carried out Monte Carlo simulations with only two causes of death and a
time-independent covariate Z of dimension 1 with continuous distribution. More
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precisely, let T7 (resp. T2) denote the continuous latent, or potential, survival
time associated with risk/cause 1 (resp. 2). Hence, the individual lifetime T
introduced in Section 2 is given by T' = min(7},T) and d = 1 (resp. d = 2) if
T =T (resp. T = T5). Note that since the covariate Z is time-independent, the
notation Z is useless here and won’t be used in the sequel.

We assumed that the bivariate survival function of (T, T3), conditionally on
Z = z, is given by

STl,T2 (tl, t2|2) = exp (—(Al + Blz)tl — ()\2 —+ /BQZ)tQ — A3t1t2) s

where A3 is such that 0 < A3 < min(A1, A2). One can see that, conditionally on
Z = z, the r.v. T1 and T5 are dependent if A3 > 0 and that the distribution of
T; is exponential with rate A; + 8,z for j = 1,2. It is also easy to check that
the assumption of an additive hazard rate model is fulfilled in this case since,
conditionally on Z = z, the cause-specific hazard rate function of T} is

Aj(tlz) = Aj + Ast + Bz,  fort >0,

for 7 = 1,2. Finally, we assumed that the covariate Z is uniformly distributed
on (0,7z) and that the censoring time has an exponential distribution with rate
Ac. Our computer program first simulates the covariate Z according to the uni-
form distribution, then simulates T3, given Z, with an exponential distribution
and finally simulates T4, given (73, Z), by numerical inversion of its conditional
cumulative distribution function.

We chose the following set of parameters: (A1, A2, A3) = (1,1,0.5), (81, B2) =
(1,2), 7z = 2 and A¢ = 3. These parameters yield empirically (based on 100 000
replications of the above simulation scenario): 38.2% of censoring, 25.4% of
failure from cause 1, and 36.4% of failure from cause 2.

Then we considered separately two mechanisms of causes missingness:

e the MCAR model with P(R = 1|X,Z,d,§ = 1) = o = 0.8 which leads
empirically to 12,6% of missing cause of failure, 20.2% of failure from
cause 1, and 29.0% of failure from cause 2;

e the MAR model with a logistic regression model for the conditional prob-
ability 7(X, Z), i.e.

eYotmzty2z
W(I,Z) :P(R: 1|X:(E,Z:Z,d,6: 1) = W’
denoted briefly in the sequel by logit(P(R = 1|X,Z,d,0 = 1)) = v +
1 X + v Z. We chose 79 = —0.0855 and v; = 72 = 1 which leads empir-
ically to 17,1% of missing cause of failure, 17.4% of failure from cause 1
and 26.1% of failure from cause 2.

Three sample sizes have been considered in our simulation study: n = 100,n =
400 and n = 1000. This simulation design was replicated 10 000 times.

Note finally that, under the MAR assumption, the estimates are obtained
with a logistic regression model assigned to the conditional probabilities
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hj(z,z) =P(d=jl0d =1,R=0,X =z,Z = z), for j =1, 2. More precisely:
1
hl(I,Z) = W and hg(x,z) =1- hl(x,z).

7.1.2. Regression parameter estimators

Let us first study the behavior of the three different estimators of the regression
parameters introduced in previous sections:

e the WMC estimator BW Mc given in (3.2) which generalizes an approach
introduced by Lin and Ying [22] and doesn’t take into account the data
with missing cause;

e our T—optimal estimator BTopt introduced in (3.5) which uses in an opti-
mal way the information carried by the missing causes in order to get an
estimator of asymptotic minimal variance;

e The DR estimator 3pg introduced in (6.6) and obtained through a gen-
eralization of the Double Robust estimators of Lu and Liang [24].

Recall that the two first estimators (WMC and T-optimal) are obtained un-
der the MCAR assumption whereas the DR estimator is based on the MAR
assumption.

Comparison of the three estimators under the MCAR and MAR models

From the 10 000 times replication of the simulation design described in Section
7.1.1 we derived, for each estimator, the Monte-Carlo estimates of the following
quantities:

the bias (Bias);

the variance (Emp. Var.);

e the mean of the estimates of the theoretical variance given in the previous
sections (Var. Mean);

e the coverage probability of the 95% confidence intervals (Coverage %).

Table 1 lists the results when the MCAR model was used for simulations
whereas Table 2 gives the results for the MAR model.

Table 1 shows that, under the MCAR model, the T—optimal estimator has
generally lower standard-errors than the others. Moreover it has the smallest
bias in the case of a small sample size. For all the estimators, the larger is the
sample size the better behaves the estimator. One can also see that, for all the
estimators, the coverage probabilities are almost always close to the nominal
value of 95%, even if for n = 100 the coverage probabilities are rather large for
the DR estimator.

It is interesting to note in Table 2 that the DR estimator outperforms the two
other estimators in terms of bias. The WMC estimator has a bad behavior with
a significant bias and with a coverage percentage which deteriorates when the
sample size increases. Contrary to the WMC estimator, the T—optimal estimator
proves to be robust under the MAR assumption; its standard-error and its
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TABLE 1
Simulation results for the three regression parameter estimators (WMC, T —-optimal
and DR) under MCAR assumption. Monte Carlo estimates of the bias (Bias), the variance
(Emp. Var.), the mean of estimated variance (Var. Mean) and the coverage percentage
(Coverage %)

n Estimator WMC T—optimal DR
B1 B2 B1 B2 B1 B2

100 Bias 0.021 0.057 0.014 0.032 0.022 0.046
Emp. Var. 0.699 1.051 0.638 0.951 0.649 0.937
Var. Mean 0.701 1.037 0.638 0.908 0.794 0.970
Coverage % 94.5 94.7 94.6 94.4 98.1 97.3

400 Bias 0.000 0.016 —0.001 0.011 —0.001 0.016
Emp. Var. 0.161 0.231 0.148 0.207 0.150 0.208
Var. Mean 0.162 0.239 0.150 0.213 0.164 0.198
Coverage % 94.8 95.4 94.8 95.0 96.7 95.1

1000 Bias 0.003 —0.004 0.003 —0.004 0.003 —0.002
Emp. Var. 0.065 0.094 0.060 0.085 0.060 0.085
Var. Mean 0.064 0.094 0.059 0.084 0.062 0.076
Coverage % 94.8 95.0 94.8 94.8 95.6 94.0

TABLE 2

Simulation results for the three regression parameter estimators (WMC, T —-optimal
and DR) under MAR assumption. Monte Carlo estimates of the bias (Bias), the variance
(Emp. Var.), the mean of estimated variance (Var. Mean) and the coverage percentage
(Coverage %)

n Estimator WMC T—optimal DR
B1 B2 B1 B2 B1 B2

100 Bias 0.541 0.805 —0.069 —0.133 0.017 0.059
Emp. Var. 0.814 1.246 0.613 0.929 0.748 1.049
Var. Mean 0.799 1.197 0.689 0.950 0.878 1.054
Coverage % 93.4 91.6 95.0 93.8 98.0 97.3

400 Bias 0.516 0.745 —0.051 —0.118 0.001 0.014
Emp. Var. 0.185 0.278 0.140 0.202 0.162 0.221
Var. Mean 0.185 0.277 0.162 0.224 0.174 0.208
Coverage % 79.8 72.6 96.0 94.7 96.5 95.3

1000 Bias 0.512 0.721 —0.045 —0.121 0.002 —0.001
Emp. Var. 0.074 0.112 0.056 0.083 0.064 0.089
Var. Mean 0.073 0.109 0.064 0.089 0.066 0.079
Coverage % 53.7 41.4 95.7 93.2 95.6 94.1

coverage probability appear to be competitive with respect to the ones of the
DR estimator.

Efficiency with respect to the parametric model
Since the model used for simulations is fully parametric, one can get maximum

likelihood (ML) estimators of the unknown parameters. Indeed, it is easy to see
that under the MCAR assumption the likelihood function is given by

LY (e s, B, B2) = [T (X3l 20)" P70 x (a1 20)) TP
i=1

< (AL(X|Z:) + Ao (X;] Z:)) P=00=0 o (X1 2),
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TABLE 3
Simulation results for the ML regression parameter estimators under MCAR and MAR
assumption. Monte Carlo estimates of the bias (Bias), the variance (Emp. Var.), the mean
of estimated variance (Var. Mean) and the coverage percentage (Coverage %)

Data n Parameter Bias Emp. Var. Var. Mean Coverage %

100 B1 0.058 0.465 0.627 99.3

B2 0.033 0.726 0.825 96.4

MCAR 400 b1 0.009 0.135 0.136 94.9
B2 0.024 0.179 0.182 95.0

1000 b1 0.007 0.055 0.054 94.5

B2 0.001 0.074 0.072 94.7

100 51 0.054 0.481 0.707 99.5

B2 0.028 0.757 0.917 97.0

MAR 400 51 0.011 0.146 0.149 94.8
B2 0.022 0.194 0.197 95.0

1000 51 0.060 0.059 0.059 94.8

B2 0.020 0.079 0.078 94.7

where /\g(Xz|Zz) = /\j + ﬁij + /\3X1', fOI‘j = 1,2, and
S(XilZi) = 51,1, (Xi, Xi| Zi)

is the conditional survival function of the lifetime 7', given Z;. On the other
hand, under the MAR, assumption the likelihood function is given by

LO™ (A1, Az, Az, Br, B2, 70, 71, 72)

=TI (KAZOT(D: = 1) 4 Ao Z0)I(D; = 2) 7(X;, 2)
i=1

where m(X;, Z;) = exp(y0 + 11 Xi +727:)/(1 + exp(y0 + 1 X + 127;)). Hence,
we are able to obtain the ML estimator of the regression parameters (51, 32)
by maximizing LM*™ (resp. LIM*™) under the MCAR (resp. MAR) assump-
tion.

To study the behavior of the ML estimator, we used the same criteria as
for the three other estimators (WMC, T—optimal and DR). Thus, based on the
10 000 replications of the above simulation design, we obtained empirical esti-
mates of its bias, variance, mean of the estimates of the asymptotic variance and
coverage probability of the 95% confidence intervals. Note that the asymptotic
variances are estimated by inverting the Hessian matrix of the log-likelihood
function at its maximum.

We first provide a study of the behavior of the ML estimator under the MCAR
and MAR assumptions. The results are summarized in Table 3. Irrespective of
the type of missingness, the ML estimator behaves correctly in case of moderate
or large sample size but it has the weakness to provide conservative confidence
intervals when the sample size is small.

Let us now study the relative efficiency of our estimators (WMC, T—optimal
or DR) with respect to the ML estimator. The relative efficiency is defined as the
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TABLE 4
Simulation results for the regression parameter estimators under MCAR and MAR
assumption. Monte Carlo estimates of the relative efficiency

Data n WMC vs. ML T—-optimal vs. ML DR vs. ML
B1 B2 B1 B2 B1 B2
100 1.493 1.450 1.363 1.309 1.387 1.292
MCAR 400 1.192 1.288 1.096 1.153 1.110 1.160
1000 1.181 1.270 1.090 1.149 1.090 1.149
100 1.287 2.499 1.277 1.249 1.546 1.389
MAR 400 3.088 4.283 0.976 1.110 1.109 1.137
1000 5.370 7.958 0.927 1.230 1.022 1.121

ratio of the empirical Mean Square Error (MSE) of one of our estimators with the
empirical MSE of the ML estimator, both based on the same 10 000 simulated
samples. These relative efficiencies are listed in Table 4. It is worth noting that
the T—optimal and DR estimators have the same performance under MCAR
while the WMC is less efficient. In case of MAR mechanism, the T—optimal
estimator seems to have the better behavior. Finally, relative efficiencies of the
WMC estimator are very large which confirms that this estimator should not
be used in this case.

7.1.3. Estimators of the baseline cause-specific cumulative hazard functions

Let us now study the behavior of the three different estimators of the baseline
cause-specific cumulative hazard functions introduced in previous sections:

e the estimators f\oj(-), for j = 1,...,p, given in (5.7), which use data
Without Missing Causes and called WMC estimators in the sequel;

e our T-optimal estimators of the baseline cause-specific cumulative hazard
rate functions given in (5.11);

e The DR estimators introduced in (6.7) and obtained through a general-
ization of the Double Robust estimators of Lu and Liang [24].

Recall that, here also, the two first estimators (WMC and T-optimal) are ob-
tained under the MCAR assumption whereas the DR estimator is based on the
MAR assumption.

We have used the criterion of the Mean Integrated Square Error (MISE) in
order to compare the different estimators of the baseline cause-specific cumula-
tive hazard rate functions. More precisely, for cause j = 1,2 and for each type
of estimator (WMC, T—optimal and DR), based on N simulated samples we
obtained estimates /A\((JE)(), . ,JA\((JJJY)() of the baseline jth-cause-specific cumu-
lative hazard rate function A;(-). An empirical estimate of the MISE of this
estimator is then given by:
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TABLE 5
Simulation results for the three estimators (WMC, T—optimal and DR) of the baseline
cause-specific cumulative hazard rate functions Ao1(-) and Ao2(-) under MCAR and MAR
assumptions. Monte Carlo estimates of MISE (x103)

Data Estimator WMC T—optimal DR

n Ao (") Ao2(") Ao1 (") Ao2(") Ao1 (") Ao2(")

100 11.69 15.89 11.31 15.19 10.85 14.59

MCAR 400 3.05 4.02 2.94 3.84 2.87 3.67
1000 1.29 1.63 1.23 1.52 1.17 1.37

100 16.22 23.56 12.29 15.9 13.28 16.43

MAR 400 7.30 12.35 4.17 5.61 3.52 4.18
1000 5.35 8.69 2.39 2.97 1.39 1.44

where 7, is the |0.95n]th order statistic of the observed durations in the kth
simulated sample. Thus 73 is nothing but an estimation of the 0.95—quantile of
the distribution of X.

Table 5 lists the empirical MISE, based on N = 1000 samples, of the three
types of estimators (WMC, T—-optimal and DR) of the two baseline cause-specific
cumulative hazard rate functions Agq () and Agz(-), under the MCAR model and
also under the MAR model. One can see that the MISE is almost always lower
for DR estimator than for the WMC and the T—optimal estimators. As expected,
the difference in terms of MISE between the estimators is larger under MAR
assumption than under the MCAR assumption where estimates of the MISE are
similar. Under MAR assumption, the WMC has a bad behavior, even when the
sample size increases. Again the T—optimal estimator outperforms the WMC
estimator under the MCAR and MAR assumptions and, as for the regression
parameter estimation, it reveals some robustness properties when the MCAR
assumption is violated. It is not so for the WMC estimator.

7.2. Applications on real datasets
7.2.1. Hodgkin’s disease dataset

Let us first consider the real dataset presented in Pintilie [28] of 616 patients
treated with radiation therapy for a Hodgkin’s disease at the Princess Margaret
Hospital between 1968 and 1986. The event of interest is the incidence of second
malignancy, the death without malignancy is seen as a competing risk. The
question is whether the younger subjects (30 years old or younger) have the
same risk of a new malignancy than the older ones. In this study there are 84
patients with incidence of second malignancy and 195 who died without a second
malignancy. There is only one covariate, age, with 308 young patients and 308
older patients. The rate of censoring is about 54%. Let us call this dataset the
“Without Missing Cause (WMC) dataset”.

With the aim to apply our estimators, we have artificially created two new
datasets with some causes of death missing. The first one is obtained from the
WMC dataset after the application of a MCAR mechanism with o = 0.4 and
is called “MCAR dataset”. The second one is also obtained from the WMC
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TABLE 6
WMC, MCAR and MAR datasets on Hodgkin’s disease (Pintilie [28]). Percentages of
events for incidence of second malignancy (cause 1) and death without malignancy (cause 2)

Data Censoring Missing Cause 1 Cause 2
WMC 54.7 0 13.6 31.7
MCAR 54.7 28.0 5.0 12.3
MAR 54.7 26.1 4.4 14.8

TABLE 7

WMC, MCAR and MAR datasets on Hodgkin’s disease (Pintilie [28]). WMC, T -optimal
and DR estimates of the regression parameters, their estimated standard error
(within parenthesis) and a 95% confidence interval for the incidence of second malignancy

(B1) and death without malignancy (B2)

Data Method B1 B2
WMC WMC Estim. (SE) 0.00558 (0.00198) 0.02435 (0.00305)
95% CI [0.00169, 0.00946] [0.01837, 0.03034]
WMC Estim. (SE) 0.01064 (0.00325) 0.02681 (0.00463)
95% CI [0.00426, 0.01701] [0.01773, 0.03588]
MCAR T—-optimal Estim. (SE) 0.00827 (0.00300) 0.02166 (0.00376)
95% CI [0.00239, 0.01142] [0.01430, 0.02902]
DR Estim. (SE) 0.00877 (0.00258) 0.02069 (0.00358)
95% CI [0.00370, 0.01383] [0.01367, 0.02772]
WMC Estim. (SE) 0.01083 (0.00287) 0.03882 (0.00427)
95% CI [0.00521, 0.01645] [0.03044, 0.04720]
MAR T—optimal Estim. (SE) 0.00576 (0.00272) 0.02601 (0.00360)
95% CI [0.00043, 0.01109] [0.01894, 0.03307]
DR Estim. (SE) 0.00567 (0.00278) 0.02399 (0.00368)
95% CI [0.00022, 0.01111] [0.01678, 0.03120]

dataset but after the use of MAR mechanism with probability of missingness
given by the logistic regression model logit(n(X,Z)) = —1 + 0.01X + Z. Let
us call it the “MAR dataset”. The different percentages of events for the three
datasets are listed in Table 6.

Except for the WMC dataset where only the WMC estimator is used, we
have applied our three estimators (WMC, T—optimal and DR) on these datasets.
Table 7 lists the estimates of the regression parameters, their standard-errors
and the 95% confidence intervals. Our results agree with those of Pintilie [28].
We find that, for all datasets and all estimation methods, an age larger than
30 is a risk factor, whatever the event of interest. The age factor increases
more significantly the specific risk of death without second malignancy than
the specific risk of incidence of second malignancy. For the MAR dataset, the
T—optimal estimates are close to those obtained through the DR method, while
the WMC estimates are rather far from results obtained on the initial WMC
sample. This last point confirms the fact that the use of the WMC estimator is
risky under MAR assumption.

We plotted in Figure 2 the different estimates we obtained, thanks of the
WMC, T-optimal and DR methods under MCAR and MAR assumptions, of
the two baseline cumulative risk functions associated respectively to the inci-
dence of second malignancy and death without malignancy. The estimates of
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Fic 2. Hodgkin’s disease dataset (Pintilie [28]). Estimates of the baseline incidence of second
malignancy (solid) and death without malignancy (dotted) specific cumulative hazard func-
tions using the WMC method (red), the T—optimal method (green) and the DR method (blue)
under MCAR (left) and MAR (right) assumptions.

the cumulative incidence functions are presented in the book of Pintilie [28].
One can note for example that, the probability of a second malignancy for the
younger subjects remains very low up to 15 years then it joins the value of the
probability of death without second malignancy at about 25 years. This can
explain the shape of the estimates of the baseline specific cumulative hazard
functions presented in Figure 2. The estimate of the incidence of the second
malignancy remains very low for a long period and then quickly increases and
catches up or exceeds the estimate for the death without malignancy.

7.2.2. Breast cancer dataset

Now, let us consider a dataset from a clinical trial in stage II breast cancer
involving a population of elderly women. At the opposite of previous dataset,
some patients had unknown cause of death. We use the same data than Cum-
mings et al. [9], Goetghebeur and Ryan [18] and Lu and Tsiatis [25] and, thus,
we take into account two binary covariates: the presence of at least four positive
nodes and the oestrogen receptor status (ER-negative) of their primary tumor,
that were considered as significantly associated with overall survival.

A cause-specific survival analysis study using the additive hazards model is
carried out for these data. Of the 169 eligible patients, 79 had died at the time
of analysis and cause-of-death information was incomplete. Of these 79, cause
of death was available for 61, of whom 44 were classified as dying from their
disease and 17 from other causes. The remaining 18 patients had unknown cause
of death. The estimates (WMC, T—optimal and DR) for death due to breast
cancer are shown in Table 8. It appears that, with the WMC and T—optimal
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TABLE 8
Breast Cancer dataset. WMC, T—optimal and DR estimation of the regression parameters
for breast cancer data. For breast cancer cause of death are given WMC, T -optimal and DR
estimates of the regression parameters, their estimated standard error (within parenthesis)
and a 95% confidence interval

Method Covariate Estim. (SE) (x10%) 95% CI (x107)
nodes > 4 0.533 (0.316) [—0.086,1.152]

WMC ER-negative ~0.696 (0.190) [—1.068, —0.324]
nodes > 4 0.500 (0.303) [0.094, 1.094]

T-optimal ER-negative —0.696 (0.187) [—1.063, —0.329]
nodes > 4 0.369 (0.279) [~0.178,0.916]

DR ER-negative —0.613 (0.439) [—1.473, 0.247]

Baseline cause-specific cumulative hazard function
0.05
|

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
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F1G 3. Breast Cancer dataset. Estimates of the baseline cause-specific cumulative hazard rate
function for the risk of death due to breast cancer using the WMC method (red), the T -optimal
method (green) and the DR method (blue). Time is days from randomization.

methods, a negative oestrogen receptor status significantly decreases the risk of
death due to cancer with very similar estimates. We do no found this result with
the DR method although the regression parameter estimate is not too far. The
three methods lead to the conclusion that a high number of positive nodes is
not associated with death due to breast cancer. The three estimates (thanks to
WMC, T-optimal and DR methods) of the baseline cause-specific cumulative
hazard rate function associated to death due to cancer are shown in Figure 3.
Time is the number of days from randomization.

7.2.8. Hard drive dataset

In Section 5.1 we have considered the nonparametric case (i.e. whitout covariate)
and have obtained WMC estimators and T—optimal estimators of the functions
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of interest. In order to illustrate this part, let us consider now a dataset in
Reliability, without covariates, and introduced by Flehinger et al. [13]. These
authors consider a scenario in which a company manufacturing computer hard
drives tries to analyze the causes of failures of a certain sub-assembly. 10 000
hard drives were manufactured and only 172 items failed during a study period
of 4 years. The 9828 other items still functioning at the end of the study are
considered as censored observation with time 4 years.

Some of the causes of failure (such as “defective head”) are related to compo-
nents, but others (like “particle contamination”) are not. In this dataset, there
are three major causes of failures which, without going into details, are denoted
as causes 1, 2 and 3. We assume that these causes act in series. Some of the
failures were masked and a number of them were analyzed for complete resolu-
tion in a defect isolation laboratory. The observed masked groups were {1, 2, 3}
and {1, 3}. Considering causes 1 and 3 as a single cause of failure, we obtain
a new dataset with two competing modes of failure: mode 1 (corresponding to
causes 1, 3 or masked group {1, 3} in the original data set) and mode 2 (cor-
responding to the cause 2 in the original data set). The failure cause is missing
in this new dataset when none of the three original causes of failure is known
(corresponding to the masked group {1, 2, 3} in the original data set). Finally,
this new dataset contains 119 failures of type 1, 19 failures of type 2, 34 failures
with missing cause and 9828 censored observations.

Assuming that the MCAR assumption holds, the probability « that the cause
of failure is missing is empirically estimated by & = 0.802. We plotted in Fig-
ure 4 the WMC and T—optimal estimates of the two cause-specific cumulative
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Fic 4. Hard drives dataset (Flehinger et al. [13]). Estimates of the Cause-specific cumula-
tive hazard functions for the two failure causes: WMC estimates (green lines); T-optimal
estimates (red lines) with their 95% pointwise confidence intervals (blue lines).
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hazard rate functions as well as the 95% pointwise confidence intervals of the
T—optimal estimators. We can see that our T—optimal estimators are slightly
more regular (with smaller size jumps) than the WMC estimators; however the
T—optimal estimators may not be fully legitimate (they can be locally decreas-
ing). However, the latter drawback disappears when the sample size increases
because of uniform convergence of our estimators.
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