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Abstract: Statistical analysis of spike trains is one of the central prob-
lems in neural coding, and can be pursued in several ways. One option
is model-based, i.e. assume a parametric or semi-parametric model, such
as the Poisson model, for spike train data and use it in decoding spike
trains. The other option is metric-based, i.e. choose a metric for comparing
the numbers and the placements of spikes in different trains, and does not
need a model. A prominent idea in the latter approach is to derive metrics
that are based on measurements of time-warpings of spike trains needed
in the alignments of corresponding spikes. We propose the use of ideas de-
veloped in functional data analysis, namely the definition and separation
of phase-amplitude components, as a novel tool for analyzing spike trains
and decoding underlying neural signals. For concreteness, we introduce a
real spike train dataset taken from experimental recordings of the primary
motor cortex of a monkey while performing certain arm movements. To fa-
cilitate functional data analysis, one needs to smooth the observed discrete
spike trains with Gaussian kernels.
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1. Introduction

In the nervous system, the neurons propagate time-dependent information over
large distances via sequences of characteristic electrical pulses called action po-
tentials or, more simply, spikes [4]. These sequences (or spike trains) have been
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commonly regarded as the language of the brain and are the focus of much in-
vestigation. The decoding of these signals to extract underlying information is
an important scientific problem of our times. Scientists across many disciplines
are working on developing methods that analyze spike train data and extract
information regarding limb movement, visual processing, and brain diagnostics.
Due to significant variability in neural firing activity, even for same tasks and
stimuli, a precise mathematical representation of spike trains is difficult and
statistical modeling has naturally gained prominence [3, 8]. There is a large
ongoing effort in computational statistics techniques for analyzing neuroscience
data where one attempts to characterize the temporal structure of spike trains
using parametric or semi-parametric stochastic processes such as Gaussian pro-
cesses, Poisson processes, or general point process [2, 7]. The latest ideas in this
area of research can be found in a biennial international workshop titled Sta-

tistical Analysis of Neuronal Data or SAND1. These statistical approaches have
built solid foundations for neural data representation and have led to a variety
of tools for statistical analysis of spike trains.

Alternatively, there have been several efforts in developing metric-based ideas
for analyzing spike trains that rely on measurement of distances or dissimilarities
between spike trains. These ideas do not require a precise statistical model
for spike train data upfront. Examples include the distances in discrete state,
discrete time models [9, 11], discrete state, continuous time models [14, 1, 13, 5],
and those in continuous state, continuous time models [12, 6]. These methods
have mainly focused on the clustering or classification of spike trains with respect
to different stimuli, and are applied for neural decoding in various sensory and
motor systems.

Focusing on metric-based approaches, the most widely used metric in com-
putational neuroscience is the Victor-Purpura (VP) metric [14]. This method
measures both temporal and rate differences between spike trains. That is, the
distance is based on the differences in the numbers of spikes in the two trains
as well as their relative time locations. The differences in spike locations are
measured using a warping function that optimally aligns the two given trains
or maps the spike times of one train to those of the other. When seen from a
functional data analysis perspective [10], it is the registration function between
two spike trains. In this article we motivate the use of function registration
techniques in spike train data analysis. This study is aided by a real spike train
recording from neurons in primate motor cortex during four different move-
ment behaviors [15]. Our goal is to register, or align, the temporal structure of
spike train data using time-warping functions. These functions can then be used
to quantify the temporal variability in the data and perform neural decoding
with respect to different behaviors. Note that registration methods are generally
developed for continuous functions, rather than point processes such as spike
trains. To meet this requirement, we will first smooth the recorded spike data
using a Gaussian kernel function.

1http://sand.stat.cmu.edu/
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Fig 1. (A) Four trajectories of hand movement in the SP task. The four colors (blue, red,
green, and cyan) indicate the trajectories started at corners 1, 2, 3, and 4, respectively, where
the corners are also shown in the correspond colors. That is, Path 1: 1 → 2 → 3 → 4 → 1,
Path 2: 2 → 3 → 4 → 1 → 2, Path 3: 3 → 4 → 1 → 2 → 3, and Path 4: 4 → 1 → 2 → 3 → 4.
(B) 10 spike trains randomly chosen from each path. Each thin vertical line indicates the
time of a spike, where the colors are the same as that in (A). Each black, thick vertical line
is the time of reaching a corner. One row is for one trial.

2. Neural spike train data

In this section we introduce a spike train dataset from a real experimental
recording collected in the Hatsopoulos Lab and previously used in a metric-based
study of spike trains [15, 16]. This dataset is then used to motivate the use of
the function registration methods for spike train alignment, metric computation,
and neural decoding.

2.1. Raw experimental recording

In this experiment the process of recording electrical signals generated at the cel-
lular level is as follows. A silicon microelectrode array containing 100 platinized-
tip electrodes was implanted in the arm area of primary motor cortex in a juve-
nile female macaque monkey (Macaca mulatta). The electrodes recorded elec-
trical signals during different activities and signals were filtered, amplified and
recorded digitally using a Cerebus acquisition system (developed by Cyberkinet-
ics Neurotechnology Systems Inc.). Single units were manually extracted using
an offline sorter developed by Plexon Inc.

In this setting a subject monkey was trained to perform a closed Squared-
Path (SP) task by moving a cursor to targets via contralateral arm movements
in the horizontal plane. Basically, the targets in the SP task are all fixed at
the four corners of a square and the movement is stereotyped (Fig. 1A). At the
start of a trial, the target appeared at one corner and the monkey had to move
the cursor to reach it. Once reached, the target jumped counterclockwise to
the next corner and the monkey had to move the cursor again. The trial ended
when the cursor reached the starting corner. That is, in each trial the subject
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touched a sequence of 5 targets which were the four corners of the square, with
the first and the last being the same. Each sequence of 5 targets defined a path,
and there were four different paths in the SP task (depending on the starting
vertex). In this experiment, we recorded 60 trials for each path and, thus, the
total number of trials was 240.

To generate function data for phase-amplitude separation, we selectively
choose spiking activity from one neuron which shows a significant tuning prop-
erty over four different paths. The time length of each trial varies from 5 to
6 seconds. To fix a standardized time interval for all data, we normalize the
kinematics and spiking activity in each trial to 5 seconds. For illustration, 10
spike trains from each movement path as well as the reaching times at the five
corners are shown in Fig. 1B. It is observed that the number of spikes in each
trial is about constant, but their temporal distribution is strongly based on the
behavioral movement path; the temporal patterns are similar within the same
path, but significantly different across difference ones.

2.2. Smoothed spike trains

So far the spike trains are discrete in the sense that the signal is exactly zero in
between random spike times. For the purpose of alignment and phase-amplitude
separation, a functional data with peaks and valleys is deemed better. To go
from discrete spike data to continuous functional form, a standard approach
is to smooth them using a continuous kernel. Here we adopt a commonly-used
Gaussian kernel and the smoothing is simply a convolution operation.

Let s(t) be a spike train with spike times 0 < t1 < t2 < · · · < tM < T , where
[0, T ] denotes the recording time domain. Then, s(t) can be expressed as,

s(t) =

M∑
i=1

δ(t− ti), t ∈ [0, T ],

where δ(·) is the Dirac delta function. We smooth the spike trains using a

Gaussian kernelKσ(t) = e−t2/(2σ2)/(
√
2πσ), where σ = 50ms denotes the kernel

width. Therefore, the smoothed spike train is

f(t) = s(t) ∗Kσ(t) =

∫
f(τ)Kσ(t− τ)dτ =

M∑
i=1

Kσ(t− ti). (1)

This smoothing process is illustrated using one example train in Fig. 2, where
we show the original spike times {δ(t− ti)}, the Gaussian kernels {Kσ(t− ti)},
and the smoothed spike train

∑
Kσ(t− ti).

All 60 smoothed spike trains in each path are shown in Fig. 3. These functions
have been sampled at 20Hz for use in computer programs. From these data, we
observe that the smoothed functions have similar pattern within each class; for
example, they have similar number of peaks and the locations of these peaks
are only slightly different. However, the peak locations across different paths
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Fig 2. An illustration of spike train smoothing with a Gaussian kernel. Upper panel: one
example spike train in Path 4 and the corresponding kernel functions. Lower panel: smoothed
spike train.
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Fig 3. Smoothed spike train functions in each of the four movement paths.

are significantly different. For the purpose of registration, we will align these
functions by removing such phase variability. This phase variability can also be
used to compare any two functions.

3. Goals: Alignment, metrics and decoding

Now that the spike trains have been transformed into smooth functions, they are
ready for functional data analysis. There are several immediate goals that can
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Fig 4. (A) Given smoothed spike train functions in Path 1. (B) The cross-sectional mean and
mean ± std of the given functions. (C) The warping function for registration. (D) Aligned
functions. (E) The cross-sectional mean and mean ± std of the aligned functions.

be accomplished in their analysis. These are: (1) Temporal alignment of differ-
ent spike-train functions using warping functions, resulting in phase-amplitude
separation, (2) Definition of proper metrics involving phase and amplitude com-
ponents for comparing, clustering and classifying spike trains, and (3) Decoding
activities represented by different spike trains. In this paper, we focus only on
the first two goals.

At first, we introduce some notation. For simplification of presentation, we
fix the time domain as [0, 1] (This domain can be easily adapted to any other
time interval). Let H be the set of orientation-preserving diffeomorphisms of the
unit interval [0, 1]: H = {h : [0, 1] → [0, 1]|h(0) = 0, h(1) = 1, h is a diffeo}.
Elements of H form a group, i.e. (1) for any h1, h2 ∈ H, their composition
h1 ◦ h2 ∈ H; and (2) for any h ∈ H, its inverse h−1 ∈ H, where the identity is
the self-mapping hid(t) = t.

3.1. Alignment of smoothed spike trains

Let {fi : [0, 1] → R+|i = 1, 2, . . . , n} represent a set of smoothed spike trains.
In the first goal – the temporal alignment of spike trains – we want to find
time-warping functions his such that the set {fi ◦ hi} are well aligned. The
aligned functions {fi◦hi} represent the amplitude components while the warping
function {hi} represent the phase components of the given data.

As an example of phase-amplitude separation of spike train data, we show
a result based on all spike trains resulting from Path 1 in Fig. 4. Basically,
a set of 60 smoothed functions {fi} forms the original data and is shown in
panel (A). The cross-sectional mean and mean ± standard deviation (std) of
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{fi} are shown in panel (B). While different techniques for optimal alignments
are presented in accompanying papers, we simply use an arbitrary method here
to illustrate the ideas. The optimal warping functions for registration {h∗

i } and
the corresponding aligned functions {f̃i = fi ◦h∗

i } under this method are shown
in panels (C) and (D), respectively. We see that most of the warping functions
{h∗

i } are around the identity hid(t) = t. This indicates that spike train functions
in Path 1 only have slight variability along the time axis for registration. Finally,
we show the cross-sectional mean and mean ± std of {f̃i} in panel (E). It is
observed that the given data (in panel (A)) has a lot of phase variability (in peak
and valley locations), and such variability is removed with a tight alignment of
functions with sharper peaks and valleys (in panel (D)). This means that the
effects of phase variability have been completely removed and only the amplitude
variability remains. Also, the plot of mean ± std in panel (E) shows a much
tighter arrangement of bands around the mean function due to the alignment
as compared to the one before alignment (in panel (B)).

In addition to alignment of spike trains within the same activity class, there
is a great interest in studying the phase and amplitude variability in spikes
belonging to different classes. To illustrate that idea, we take spike trains from
multiple classes and jointly align them. For example, we can combine all 120
spike train functions in Paths 1 and 4 (shown in the top, left panel of Fig. 5) and
then apply an alignment algorithm on them. We can see that these functions
can be well aligned (shown in the top, rightmost panel). Note that functions in
Path 1 concentrate around the beginning time (0–2 sec) whereas the functions
in Path 4 concentrate around ending time (3–5 sec). Therefore, most warping
functions in Path 1 (top row, second panel) are slightly above the 45◦ line, which
indicates that the concentrated period slightly moves right in the time domain.
In contrast, most warping functions in Path 4 (first row, third panel) are slightly
below the 45◦ line which indicates a movement in the left direction.

Similarly, we can register the 120 spike trains in Paths 2 and 3 (see bottom
row, first panel in Fig. 5), where functions in Path 2 concentrate around 1–
3 sec whereas the functions in Path 3 concentrate around 2–4 sec. The aligned
functions are shown in the fourth panel in the bottom row. By removing the
phase variability along the time axis, these functions retain the concentration
around 1–4 sec. Looking at the warping functions in Path 2 (bottom row, second
panel), we find a similar pattern as that in Path 1 (moving rightward). In this
case, the warping is relatively more moderate due to lower contrast to Path 3
in the time domain. Similarly, warping functions in Path 3 (bottom row, third
panel) are slightly below the 45◦ line which indicates a shift in the left direction.

3.2. Neural decoding using warping metrics

From Fig. 1(B), we can see that the spike trains in all paths have approximately
the same total number of spikes. However, the temporal distributions, or phase
components, of spike trains in different paths are very different from each other.
Basically, this motor cortical neuron has high firing rates when the hand moves
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upward, but relatively lower rates in the other three directions. This can also
be observed in Fig. 3 where the smoothed functions have larger value during
upward movements. We expect to find that the optimal warpings are close to
identity hid(t) = t within the same path, but can be more drastic across differ-
ent paths. One can utilize metrics between amplitude and phase components,
or a combination or both, to decode neural activity and potentially infer the
movement path from the given neural signals. In the preliminary experiments,
there is evidence that the phase distances can properly address the dissimilarity
of spike trains between different paths, and therefore can be used to infer the
movement path using neural activity.

4. Conclusion

A statistical analysis of spike trains is central in decoding neural signals. Due to
the inherent nature of spike trains, the phase-amplitude separation of functional
(smoothed) versions of spike trains can play an important role in this decod-
ing. The alignment of smoothed spike trains separates the phase and amplitude
components which, in turn, can provide important clues about the information
conveyed in those spike trains. We introduce a real dataset obtained from experi-
mental recordings of spike trains from the motor cortex of a monkey during hand
movement tasks. This recording is ideally suited for studying phase-amplitude
separation methods and exploring the roles of these components in classifying
different hand movements.
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