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Local limit theorems for shock models
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Abstract. In many physical systems, failure occurs when the stress after
shock n first exceed a critical level x. We consider the number of shocks τ (x)

to failure and obtain more detailed information that is usually obtained about
asymptotic distribution by using local limit theorems. We consider extreme
and cumulative shock models with both univariate and multivariate shock
types. We derive the limiting distribution of τ (x) and the rate of convergence
to that. For the extreme shock model, rate of convergence for regularly vary-
ing shock distributions is found using the weighted Kolmorogov probability
metric. For the cumulative shock model, we examine the rate of convergence
to Gaussian densities.

1 Introduction

In modeling of technical processes, one is often interested in the reliability of the
system. A common cause of failure in mechanical, physical and electronic systems
appears in situations when the applied load exceeds the strength. “Load” refers to
mechanical stress, a voltage or internally generated stress such as temperature or
absorbed energy. “Strength” refers to any resisting physical property such as hard-
ness, melting point and so on. The failures of mechanical, physical or electronic
systems, as a result of applied loads, occur primarily due to one or more of the
following causes:

1. Overload, leading directly to failure;
2. Fatigue damage, that is caused when a system is under repeated stress. Fa-

tigue damage is cumulative so that repeated or cyclical stress above a critical level
will eventually result in failure of the system;

3. Material destruction, that is usually a very complex physical process that
consists of many micro-defects. Each of these micro-defects is harmless, but the
accumulation of many micro-defects may lead to the destruction of the material.
See, for example, Landau and Lifshits (1976).

Two basic shock models are the extreme shock model where failure occurs the
first time a shock is received that exceeds a critical level and the cumulative shock
model when the sum of shocks received to date first exceeds a critical level.
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To model the above situations, let ε(t) denote a measure for the functioning of
a physical system. Such a measure can be, for example, the absorbed energy up
to time t , the temperature at time t , the amount of contamination or pollution at
time t , the accumulated damage up to time t and so on. We assume that ε(t) is a
nondecreasing, right-continuous function of t ≥ 0 with ε(0) = 0. If ε(t) reaches a
certain critical level, E, the system fails or the system is fully contaminated and
it should either be replaced by a new system or some control action should be
undertaken. We are interested in the time τ(E) to reach a given level attainment
E, defined as

τ(E) = inf
{
t : ε(t) > E

}
.

In general, the function ε(t) is random and, therefore, also τ(E) is a random ele-
ment.

This paper obtains the distribution of τ(E) and studies asymptotic properties
of τ(E) for several models. The paper by Gut and Hüsler (1999) (and references
therein) show that in the extreme shock model the time of shock, τ(E) is geometric
with mean p(E) = 1/Pr(X > E), where X is the value of a generic shock. They
also show that p(E)τ(E) converges in distribution to an exponential distribution
with rate 1 as x approaches the upper limit of shocks xF = sup{x : Pr(X < x) <

1}. Along similar lines, Gut (1990) applies the central limit theorem to obtain
convergence in distribution to a normal distribution for a cumulative shock model.

In contrast to these results, one of the main contributions of this paper is to use
different methods from what are normally used to obtain more detailed information
about the asymptotic properties for the shock number of failure by means of local
limit theorems. We are interested in the shock number where failure occurs and set
t = 0,1,2, . . . . Other papers also consider the time between shocks, for example,
the two papers by Gut (1990) and Gut and Hüsler (1999) referred to above, but that
is not the focus of this paper. In general, local limit theorems provide a uniform
convergence result to a density function g over a given region. Convergence of
densities to a density can imply total variation convergence (e.g., Shorack (2000),
p. 380), which is a stronger form of convergence than convergence in distribution.
More specifically, in this paper were are interested in results of the form

lim
n→∞ sup

∣∣Pr
(
τ(E) = n

) − g(E,n)
∣∣ = 0, (1)

where the limiting function is g(E,n). We identify specific types of limiting func-
tions that can apply to different models. As well, we examine rates of convergence
to the limiting function by scaling time in an appropriate way.

2 Shock models

We consider two main classes of models: extreme shock models and cumulative
shock models and, for each, consider univariate and multivariate versions.
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2.1 Univariate extreme shock models

In the univariate extreme shock model, we assume that time is discrete and a sys-
tem fails due to one extreme shock, cf. Shanthikumar and Sumita (1983), Gut and
Hüsler (1999). In this case, we set

ε(n) = max(X1,X2, . . . ,Xn) = Xn : n, n ≥ 1,

where Xi , i = 1,2, . . . are nonnegative, independent and identically distributed
random variables and Xk : n, k = i = 1,2, . . . , n denote the order statistics of Xi ,
i = 1,2, . . . , n.

We can interpret Xi as the size of the ith shock and ε(n) as the strongest shock
after n such shocks. The time of a given level attainment x is given by

τe(x) = min
{
n : max(Xi, i = 1,2, . . . , n) > x

}
and it is of interest to study the (discrete) probability distribution

P(n, x) ≡ Pr
(
τe(x) = n

)
, n ≥ 1.

We can also consider a k-out-of-n shock model. In this type of model, the sys-
tem fails if there are k out of n shocks above a critical level. In this case, one
studies for each fixed k random variables of the type

τe,k(x) = min{n :Xn−k+1 : n > x}.
A mixture of these two models can be studied as well where the system fails if

there is one big shock or if there are several smaller shocks. In this case, the system
fails at time δk(x, y), where

δk(x, y) = min{n :Xn : n > x or Xn−k+1 : n > y}.
2.2 Univariate cumulative shock model

In this model, we assume that the damage is cumulative. We set ε(0) = 0 and have

ε(n) =
n∑

i=1

Xi, n ≥ 1,

where the Xi , i = 1,2, . . . are nonnegative, independent and identically distributed
random variables. We can interpret Xi as the size of the ith shock and ε(n) as
the total (cumulative) damage after n such shocks. Cumulative shock models of
this type have been studied before. We mention, for example, the paper of Sumita
and Shanthikumar (1985), Gut (1990) and the papers of Virchenko (1998) and
Virchenko et al. (1999). Now, the time of a given level attainment x is given by

τc(x) = min

{
n :

n∑
i=1

Xi > x

}

and it is of interest to study the (discrete) probability distribution

P(n, x) ≡ Pr
(
τc(x) = n

)
, n ≥ 1.
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2.3 Multivariate models

In reliability models, it is possible that a system is subject to different types of
damage leading to failure. We consider here two different types of damage denoted
by (X,Y ) and i.i.d. copies (Xi, Yi). For the multivariate extreme shock models, we
consider, among others, system failure that occurs at τ1(x, y) or τ2(x, y), where

τ1(x, y) = min{n :Xn : n > x and Yn : n > y},
τ2(x, y) = min{n :Xn : n > x or Yn : n > y}.

In the first case, a failure occurs when both types of damage exceed a critical level.
In the second case, the system fails when one of the types of damage exceeds a
critical level.

Related models are τ1,k,l(x, y) and τ2,k,l(x, y), where

τ1,k,l(x, y) = min{n :Xn−k+1 : n > x and Yn−k+1 : n > y},
τ2,k,l(x, y) = min{n :Xn−k+1 : n > x or Yn−l+1 : n > y}.

We can also consider multivariate cumulative shock models. In this case, we
study τ3(x, y) or τ4(x, y), where

τ3(x, y) = min

{
n :

n∑
i=1

Xi > x and
n∑

i=1

Yi > y

}
,

τ4(x, y) = min

{
n :

n∑
i=1

Xi > x or
n∑

i=1

Yi > y

}
.

There are many feasible other alternative types of failure models.

2.4 Other models

It is clear that one can also combine the extreme and cumulative shock models and
study

τm(x, y) = min
(
τe(x), τc(y)

)
.

Such models were studied by Gut (1988, 2001) and Mallor et al. (2006).
Another approach is to consider shock-run models, cf. Mallor and Omey (2001),

Mallor et al. (2006). In such a model, the system fails if there is a run of consecutive
shocks above a certain level. In this case, one can study, for each fixed k = 1,2, . . . ,
random variables of the type

τr(x;k) = min{n :Xn ∈ R,Xn+1 ∈ R, . . . ,Xn−k+1 ∈ R},
where a critical shock is defined by a region R.

In this paper, we study into detail the asymptotic local behavior of the variables
τe(x), τe,k(x) and τ1,k,l(x, y). We plan to study other models in a forthcoming
paper.
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3 Regularly varying functions and extreme value theory

In this section, we review the regularly varying function theory and the extreme
value theory that will be used in the paper.

3.1 Regularly varying functions

Univariate case. The tail distribution function F(x) is regularly varying at infin-
ity with index a if it satisfies

lim
t→∞

F(tx)

F (t)
= xa for all x > 0.

We denote this by F(x) ∈ RV (a). For properties and applications of this class and
related classes of functions, we refer to de Haan (1970) and Bingham et al. (1987).

Multivariate case. Let r(x) ∈ RV (α), s(x) ∈ RV (β) with α,β > 0. We say that
the tail F = 1 − F(x, y) is in the class RV (r, s, λ) if it satisfies

lim
t→∞ tF

(
r(t)x, s(t)y

) = λ(x, y), (2)

for all x, y > 0 with min(x, y) < ∞.
Using local uniform convergence, from (2) we obtain that

lim
t→∞ tF

(
r(tx), s(ty)

) = λ
(
xα, yβ)

.

Using

tF
(
r(tzx), s(tzy)

) = 1

z
tz lim

t→∞ tF
(
r(tzx), s(tzy)

)
,

we find that

λ
(
zαxα, zβyβ) = 1

z
λ
(
xα, yβ)

.

Since x and y were arbitrary, we obtain that

zλ
(
zαx, zβy

) = λ(x, y).

For more detail, refer to Mallor and Omey (2006).

3.2 Extreme value theory

Univariate case . The random variable X is in the max-domain of attraction of the
non-degenerate random variable Z if there exist normalizing constants a(n) > 0
and b(n) ∈ � such that as n → ∞,

Xn : n − b(n)

a(n)

d�⇒ Z,
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or equivalently

Fn(
a(n)x + b(n)

) → G(x),

where G(x) is the d.f. of Z.
This is the classical setting of extreme value theory, cf. de Haan (1970). It can be

shown that the d.f. of Z is one of three extreme value types: φa(x) = exp(−x−a)

(x ≥ 0, a > 0), ψa(x) = φa(−1/x) or 
(x) = φ1(exp(x)).
The domain of attraction of 
(x) is related to the gamma class. A d.f. F(x) is

in the class �(g) if the tail satisfies

lim
t→∞

F(t + g(t)x)

F (t)
= exp(−x) for all x ∈ �.

The next proposition is well known. Recall that we assume that F(x) < 1 for
all x.

Proposition 3.1.

(i) Suppose that F(x) ∈ RV (−α), with α > 0. Then

lim
n→∞Fn(

a(n)x
) = φα(x),

where a(n) > 0 is such that nF(a(n)) → 1.
(ii) Suppose that F ∈ �(g) and let U(x) denote the inverse of − log(F (x)).

Then

lim
n→∞Fn(

a(n)x + b(n)
) = 
(x),

where b(n) = U(log(n)) and a(n) = U(log(ne)) − U(log(n)).

Multivariate case. The vector (X,Y ) is in the max-domain of attraction of the
nondegenerate vector (Z,V ) if there exist normalizing constants a(n) > 0, c(n) >

0 and b(n), d(n) ∈ �, such that(
Xn : n − b(n)

a(n)
,
Yn : n − d(n)

c(n)

)
d�⇒ (Z,V ),

or, equivalently,

Fn(
a(n)x + b(n), c(n)y + d(n)

) → G(x,y), (3)

where G is the d.f. of (Z,V ).
From the convergence of the marginals, the d.f. of Z and of V is one of the

three types that were discussed in Section 3.2. Also, the marginal convergence
determines the values of the normalizing constants.

A sufficient condition for (3) can be formulated in terms of multivariate regular
variation. Suppose that r(x) ∈ RV (α) and s(x) ∈ RV (β) where α,β > 0. Without
loss of generality, we assume that r and s are increasing functions.
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If (2) holds, then (3) holds with G(x,y) = exp−λ(x, y) and with a(n) =
r(n), c(n) = s(n) and b(n) = d(n) = 0.

From (3), we get that the marginals satisfy:

lim
t→∞ tF 1

(
r(t)x

) = λ(x,∞),

lim
t→∞ tF 2

(
s(t)y

) = λ(∞, y).

In order to have nondegenerate limits in (3), we require that λ(x,∞) > 0 and
λ(∞, y) > 0.

In the relation for the first marginal, replace t by ri(t), where ri(t) is the inverse
of r(t) to give

lim
t→∞ ri(t)F 1(tx) = λ(x,∞).

It follows that F 1(x) is regularly varying with index −1/α. Moreover, F 1(t) ∼
c11/ri(t). In a similar way, we have that F 2(t) is regularly varying with index
−1/β and that F 2(t) ∼ c21/si(t). In (3), we obtain that the marginals of the lim-
iting distribution are given by φ1/α and φ1/β .

4 Univariate extreme shock model

4.1 Single shock model

Using the notation as in Section 1, the time of a given level attainment x is given
by

τe(x) = min
{
n : max(X1,X2, . . . ,Xn) > x

}
,

where X,X1,X2, . . . are positive random variables having the same distribution
as X. We assume that X has an infinite endpoint.

We are interested in the (discrete) probability distribution

P(n, x) ≡ Pr
(
τe(x) = n

)
, n ≥ 1.

It is easy to see that

Pr
(
τe(x) > n

) = Pr(Xn : n ≤ x) = Fn(x),

where F(x) denotes the distribution function of X. From here, it follows that

Pr
(
τe(x) = n + 1

) = Fn(x)F (x),

where F(x) = 1 − F(x) is the tail of F(x).
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4.2 k-out-of-n shocks model

For τe,k(x), we have

τe,k(x) = min{n :Xn−k+1 : n > x}
and

Pr
(
τe,k(x) > n

) = Pr(Xn−k+1 : n ≤ x) =
k−1∑
i=0

(
n

i

)
Fn−i(x)F

i
(x).

For k ≥ 2, we find that

Pr
(
τe,k(x) = n + 1

) = Pr
(
τe,k(x) > n

) − Pr
(
τe,k(x) > n + 1

)

=
k−1∑
i=0

(
n

i

)
Fn−i(x)F

i
(x) −

k−1∑
i=0

(
n + 1

i

)
Fn+1−i (x)F

i
(x).

Entering Fn+1(x) in the formula leads to

Pr
(
τe,k(x) = n + 1

) =
k−1∑
i=0

(
n

i

)(
Fn−i(x) − Fn+1(x)

)
F

i
(x)

−
k−1∑
i=0

(
n + 1

i

)(
Fn+1−i (x) − Fn+1(x)

)
F

i
(x)

+ Fn+1(x)

k−1∑
i=0

((
n

i

)
−

(
n + 1

i

))
F

i
(x)

and we find that

Pr
(
τe,k(x) = n + 1

) =
k−1∑
i=0

(
n

i

)
Fn−i(x)

(
1 − F i+1(x)

)
F

i
(x)

−
k−1∑
i=0

(
n + 1

i

)
Fn+1−i (x)

(
1 − F i(x)

)
F

i
(x)

+ Fn+1(x)

k−1∑
i=0

−i

n + 1 − i
F

i
(x).

4.3 Limiting distributions

For fixed x, we see that τe(x) has a geometric distribution. For fixed x, we also see
that as n → ∞, we have Pr(τe(x) = n + 1) → 0. To obtain a nondegenerate limit,
we use extreme value theory. The form of the limiting distributions is given by the
following proposition.
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Proposition 4.1. Suppose that F(x) ∈ RV (−α), with α > 0. Then

(i)

lim
n→∞nPr

(
τe

(
a(n)x

) = n + 1
) = x−αφα(x)

and
(ii)

lim
n→∞nPr

(
τe,k

(
a(n)x

) = n + 1
) = φα(x)Hk;α(x),

where Hk,α(x) = x−αk/(k − 1)!.
Proof. To prove (i), we have

nPr
(
τe

(
a(n)x

) = n + 1
) = Fn(

a(n)x
)
nF

(
a(n)x

)
= Fn(

a(n)x
)F(a(n)x)

F (a(n))
nF

(
a(n)

)
.

With our choice of a(n), we obtain that

nPr
(
τe

(
a(n)x

) = n + 1
) → x−αφa(x).

For the result (ii), we have

nPr
(
τe,k

(
a(n)x

) = n + 1
) = I − II + III,

where

I = n

k−1∑
i=0

(
n

i

)
Fn−i(a(n)x

)(
1 − F i+1(

a(n)x
))

F
i(

a(n)x
)
,

II = n

k−1∑
i=1

(
n + 1

i

)
Fn+1−i(a(n)x

)(
1 − F i(a(n)x

))
F

i(
a(n)x

)
,

III = nFn+1(
a(n)x

) k−1∑
i=1

−i

n + 1 − i
F

i(
a(n)x

)
.

First consider I . We have Fn−i(a(n)x) → φα(x). Note that 1 −F i+1(a(n)x) ∼
(i + 1)F (a(n)x). Using (

n

i

)
∼ ni

i!
and nF(a(n)x) → x−α , we obtain that

I → φα(x)

k−1∑
i=0

i + 1

i! x−α(i+1).



230 E. Omey and R. Vesilo

In a similar way, we obtain that

II = φα(x)

k−1∑
i=1

i

i!x
−α(i+1),

III → φα(x)

k−1∑
i=1

−i

i! x−αi.

It follows that nPr(τe,k(a(n)x) = n + 1) → φα(x)Hk(x), where

Hk,α(x) =
k−1∑
i=0

i + 1

i! x−α(i+1) −
k−1∑
i=1

i

i!x
−α(i+1) −

k−1∑
i=1

i

i!x
−αi

=
k−1∑
i=0

1

i!x
−α(i+1) −

k−1∑
i=1

i

i!x
−αi

= 1

(k − 1)!x
−αk.

This proves the result. �

Remark. Note that the limit in Proposition 4.1(i) can be written as x−αφα(x) =
α−1φ′

α(x). This shows that we obtained a real local limit result.

For a d.f. in the domain of attraction of 
(x), we have a similar result.

Proposition 4.2. Suppose that F ∈ �(g) and let a(n) and b(n) be as in Proposi-
tion 3.1. Then

lim
n→∞nPr

(
τe

(
a(n)x + b(n)

) = n + 1
) = e−x
(x)

and

lim
n→∞nPr

(
τe,k

(
a(n)x + b(n)

) = n + 1
) = 
(x)Gk(x),

where Gk(x) = Hk,1(e
−x).

Proof. To prove the first statement, we use

nPr
(
τe

(
a(n)x + b(n)

) = n + 1
) = Fn(

a(n)x + b(n)
)
F

(
a(n)x + b(n)

)
.

Using

lim
n→∞Fn(

a(n)x + b(n)
) = 
(x),

and

nF
(
a(n)x + b(n)

) → e−x,

we obtain the first statement.
For the second statement, we can proceed as in the proof of Proposition 4.1. �
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Remark. If F(x) = φα(x), we have a(n) = n1/α and F is max-stable, that is,
Fn(n1/αx) = F(x). In this case, we use the notation τ

(α)
e for τe and we have

Pr
(
τ (α)
e

(
n1/αx

) = n + 1
) = φα(x)

(
1 − φα

(
n1/αx

))
.

This shows that we cannot hope that τe(x) has some stability property.

4.4 Combined single shock and k-out-of-n shocks model

The next model can be considered as a combination of τe and τe,k . In this model,
we have a system failure at time δk(x, y), where

δk(x, y) = min{n :Xn : n > x or Xn−k+1 : n > y}.
This means that we have a failure if we have either one “extra” large shock or a
number of large shocks. In this model, we have

Pr
(
δk(x, y) > n

) = Pr(Xn : n ≤ x,Xn−k+1 : n ≤ y).

If x ≤ y, we have

Pr
(
δk(x, y) > n

) = Pr(Xn : n ≤ x) = Fn(x).

If y ≤ x, we have

Pr
(
δk(x, y) > n

) =
k−1∑
i=0

(
n

i

)
Fn−i(y)

(
F(x) − F(y)

)i
.

We have the following result.

Proposition 4.3. Suppose that F(x) ∈ RV (−α), with α > 0. For y ≤ x, we have

lim
n→∞nPr

(
δk

(
a(n)x, a(n)y

) = n + 1
) = φα(y)Hk(x, y),

where

Hk(x, y) =
k−1∑
i=0

1

i!y
−α(

y−α − x−α)i −
k−1∑
i=1

i

i!
(
y−α − x−α)i

.

Proof. See Appendix A. �

4.5 Rates of convergence

We obtain a rate of convergence result for Proposition 4.1 in this section. Proba-
bility metrics have been used by Smith (1982) and Omey and Rachev (1988) to
obtain rates of convergence results in extreme value theory. Among others, they
considered the distance ρr between distribution functions or random variables. Let
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X,Y denote random variables with d.f. F(x) and G(x) respectively. For r ≥ 0, we
define

ρr(X,Y ) = ρr(F,G) = sup
x

|x|r ∣∣F(x) − G(x)
∣∣.

For r = 0, we find the uniform metric.
To formulate our results, we apply a monotone transformation and replace X by

Xα allowing us to assume without loss of generality that α = 1. The main result of
this section is the following theorem.

Theorem 4.1. Suppose that r > 1 and that ρr(F,φ1) < ∞. Then, as n → ∞,

sup
x≥0

∣∣Pr
(
τe(x) = n + 1

) − φ1(x/n)
(
1 − φ1(x)

)∣∣ = O(1)n−r

and

sup
x≥0

∣∣nPr
(
τe(nx) = n + 1

) − nφ1(x)
(
1 − φ1(nx)

)∣∣ = O(1)n1−r .

Proof. For convenience, we write φ(x) in the place of φ1(x). To prove the theo-
rem, first note that

Pr
(
τe(x) = n + 1

) − φn(x)φ(x) = A + B,

where

A(x) = (
Fn(x) − φn(x)

)
F(x),

B(x) = φn(x)
(
F(x) − φ(x)

)
.

First, consider B(x). Since φn(x) = φ(x/n), our assumptions imply that∣∣B(x)
∣∣ ≤ φn(x)

∣∣F(x) − φ(x)
∣∣ ≤ ρr(F,φ)x−rφ(x/n).

Since for r > 0, we have φ(x)/xr ≤ C(r) = (r/e)r , we obtain that

sup
x≥0

∣∣B(x)
∣∣ ≤ ρr(F,G)C(r)n−r .

Next, we consider A(x). Using the inequality∣∣an − bn
∣∣ ≤ nmax

(
an−1, bn−1)|a − b|,

we see that ∣∣A(x)
∣∣ ≤ nF(x)max

(
Fn−1(x),φn−1(x)

)∣∣F(x) − φ(x)
∣∣.

Using ρr(F,φ) < ∞, we have x|F(x) − φ(x)| = O(x−r+1) = o(1) and it follows
that xF(x) → 1. As a consequence, xF(x) is bounded by, say, K . We find that∣∣A(x)

∣∣ ≤ nKρr(F,φ)x−r−1 max
(
Fn−1(x),φn−1(x)

)
.
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Consider the case where F(x) ≤ φ(x). In this case, we have that∣∣A(x)
∣∣ ≤ nKρr(F,φ)x−r−1φn−1(x)

= nKρr(F,φ)x−r−1φ
(
x/(n − 1)

)
≤ Kρr(F,G)C(r + 1)n(n − 1)−1−r .

Next, consider the case where φ(x) ≤ F(x). In this case, we use log(z) ≤ z − 1
(z ≥ 1) to find that

0 ≤ log
(

F(x)

φ(x)

)
≤ F(x) − φ(x)

φ(x)
.

Now, fix x◦ > 0 such that φ(x◦) > 0. For x ≥ x◦, we have

0 ≤ (n − 1) log
(

F(x)

φ(x)

)
≤ K(n − 1)x−r ,

where K = ρr(F,φ)/φ(x0). Now, choose xn in such a way that (n − 1)x−r
n = 1.

If n is sufficiently large, we find that xn ≥ x◦. For x ≥ xn and n ≥ N◦, we have

0 ≤ (n − 1) log
(

F(x)

φ(x)

)
≤ K,

or equivalently that

Fn−1(x) ≤ eKφn−1(x).

Now we can proceed as in the first case to obtain

sup
x≥xn

∣∣A(x)
∣∣ = O(1)n−r .

If x◦ ≤ x ≤ xn, we can use F(x) ≤ F(xn) to see that

Fn−1(x) ≤ Fn−1(xn) ≤ eKφn−1(xn)

and then we find that∣∣A(x)
∣∣ ≤ nF(x)φn−1(xn)e

K
∣∣F(x) − φ(x)

∣∣
≤ eKnφ

(
xn/(n − 1)

)
,

for some positive constant K . Since r > 1 and by our choice of xn, it follows that
nφ(xn/(n − 1)) → 0 exponentially fast. We conclude that

sup
x≥x◦

∣∣A(x)
∣∣ = O(1)n−r .

Finally, we consider the case where x ≤ x◦. In this case, we have∣∣A(x)
∣∣ ≤ Fn(

x◦) + φn(
x◦).

Both terms of the right-hand side of this inequality tend to zero exponentially fast.
This proves the result. �
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Remark. Note that Theorem 4.1 is not a statement about convergence in distribu-
tion, but rather a statement about convergence of density functions. This limits the
optimal use of probability metrics. For nonnegative functions ψ(·), one can prove
the following result following the same lines as in the proof of Theorem 4.1.

Proposition 4.4. Suppose that r > 1 and that
∫ ∞

0 xrψ(x)|F(x)−φ1(x)|dx < ∞.
Then we have∫ ∞

0
ψ(x)

∣∣nP
(
τe(x) = n + 1

) − φ1(x/n)φ1(x)
∣∣ = O(1)n−r .

Remark. Under the conditions of the theorem, we have F(x)/φ1(x) → 1, and we
see that xF(x) → 1. From Proposition 4.1, we find that

lim
n→∞nPr

(
τe(nx) = n + 1

) = φ1(x)
(− logφ1(x)

)
. (4)

Our theorem gives that

sup
x≥0

∣∣nPr
(
τe(nx) = n + 1

) − nφ1(x)
(
1 − φ1(nx)

)∣∣ = O(1)n1−r .

It follows that ∣∣nPr
(
τe(nx) = n + 1

) − φ1(x)
(− logφ1(x)

)∣∣
≤ ∣∣nPr

(
τe(nx) = n + 1

) − nφ1(x)
(
1 − φ1(nx)

)∣∣
+ φ1(x)

∣∣− logφ1(x) − n
(
1 − φ1(nx)

)∣∣.
Using |1 − x − exp(−x)| ≤ 1

2x2, we see that

φ1(x)
∣∣− logφ1(x) − n

(
1 − φ1(nx)

)∣∣ ≤ 1

n

φ1(x)

x2 ≤ K

n
,

for some positive constant K . We conclude that

sup
x≥0

∣∣nPr
(
τe(nx) = n + 1

) − φ1(x)
(− logφ1(x)

)∣∣ = O(1)n1−r + O(1)n−1.

This bound is sharp and shows that the rate of convergence in (4) is given by
O(1)n−1if r ≥ 2. If r > 2, it is better to approximate nPr(τe(nx) = n + 1) by
nφ1(x)(1 − φ1(nx)) than by its limit.

5 Multivariate extreme shock model

In this section, we study local limit theorems for multivariate extreme shock mod-
els.

Consider nonnegative and i.i.d. random vectors (X,Y ), (X1, Y1), (X2, Y2), . . . .
The d.f. of (X,Y ) will be denoted by F(x, y). The marginal distributions will be
denoted by F1 and F2.
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We first consider systems in which failure occurs at discrete time τ1(x, y) or
τ2(x, y) where

τ1(x, y) = min{n :Xn : n > x and Yn : n > y},
τ2(x, y) = min{n :Xn : n > x or Yn : n > y}.

It is clear that

Pr
(
τ2(x, y) > n

) = Pr(Xn : n ≤ x,Yn : n ≤ y) = Fn(x, y)

and

Pr
(
τ1(x, y) > n

) = Pr(Xn : n ≤ x or Yn : n ≤ y)

= Fn
1 (x) + Fn

2 (y) − Fn(x, y).

It follows that

Pr
(
τ2(x, y) = n + 1

) = Fn(x, y)F (x, y),

Pr
(
τ1(x, y) = n + 1

) = Fn
1 (x)F 1(x) + Fn

2 (y)F 2(y) − Fn(x, y)F (x, y).

5.1 Limiting distribution

Assuming that (X,Y ) is in the class RV (r, s, λ) it is straightforward to obtain the
following result.

Proposition 5.1. Suppose that (2) holds. Then, as n → ∞
nPr

(
τ2

(
a(n)x, c(n)y

) = n + 1
)

→ G(x,y)λ(x, y),

nPr
(
τ1

(
a(n)x, c(n)y

) = n + 1
)

→ G1(x)λ(x,∞) + G2(y)λ(∞, y) − G(x,y)λ(x, y).

5.2 A rate of convergence result

To derive a rate of converge result, we introduce the following weighted Kol-
mogorov metric. Using M(x,y) = min(|x|, |y|) and d.f. F and G, we define

ρr(F,G) = sup
x,y≥0,min(x,y)<∞

Mr(x, y)
∣∣F(x, y) − G(x,y)

∣∣.
(See Rachev (1991).) Note that this definition implies that the marginals have a
finite ρr -distance.

For simplicity, we assume that (3) and (2) hold with G1(x) = G2(x) = φ1(x).
In this case, we have α = β = 1 and

zλ(zx, zy) = λ(x, y).
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Theorem 5.1. Suppose that r > 1 and that ρr(F,G) < ∞. Then

sup
x,y≥0

∣∣∣∣Pr
(
τ2(x, y) = n + 1

) − G

(
x

n
,
y

n

)
G(x,y)

∣∣∣∣ = O(1)n−r .

Proof. The proof follows similar lines to that of Theorem 4.1 and is given in Ap-
pendix B. �

6 Cumulative shock model

6.1 Univariate shock model

Using the notation as in Section 2, in the univariate cumulative shock model the
time of a given level attainment x is given by

τc(x) = min

{
n : ε(n) =

n∑
i=1

Xi > x

}
,

where X1,X2, . . . are nonnegative random variables having the same distribution
as X. We are interested in the (discrete) probability distribution

P(n, x) ≡ Pr
(
τc(x) = n

)
, n ≥ 1.

We prove a local limit theorem for τc(x).
Clearly, this setting is that of classical renewal theory (cf. Feller (1971)) and

many properties are known. If E(X) = μ < ∞, we have

1

n
ε(n)

a.s.→ μ as n → ∞
and, as a consequence, τc(x) is finite for each level x > 0. Moreover, we have

1

x
τc(x)

a.s.→ 1

μ
as x → ∞.

If var(ξ) = σ 2 < ∞, then τc(x) obeys a central limit theorem (cf. Feller (1971),
Chapter XI.5) and as x → ∞, we have

τc(x) − x/μ√
x

d�⇒ Z,

where Z ∼ N(0, σ 2/μ3). Feller (1971), Chapter XI. 5, also gives results if σ 2 = ∞
assuming that X is in the domain of attraction of a stable law with parameter α < 2.
For an overview, we refer to Mallor and Omey (2006).

In the present paper, we assume that σ 2 < ∞. Let g(x) denote the standard
Gaussian density function, that is, g(x) = (2π)−1/2 exp(−x2/2) and let φ(z) de-
note the common characteristic function of the Xi . The main result of this section
is the following.
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Theorem 6.1. Suppose that |φ(z)|m is integrable for some m ≥ 1. Then as n →
∞,

sup
x

∣∣∣∣σ
√

n

μ
Pr(n + 1, x) − g

(
x − μn

σ
√

n

)∣∣∣∣ = o(1).

Moreover, if also EX3
1 < ∞, then

√
n sup

x

∣∣∣∣σ
√

n

μ
Pr(n + 1, x) − g

(
x − μn

σ
√

n

)∣∣∣∣ = O(1).

Before proceeding to the proof of the theorem, we present some preliminary
results.

By assumption, we have σ 2 < ∞, and hence ε(n) satisfies the central limit
theorem. From Feller (1971), we have the following results.

Lemma 6.1 (Feller (1971), Chapter XV.5). Suppose that |φ(z)|m is integrable for
some integer m ≥ 1. Then for all n ≥ m the random variable (ε(n) − nμ)/σ

√
n

has a density gn(x) and gn(x) converges uniformly to the density g(x).

Lemma 6.2 (Feller (1971), Chapter XVI). Suppose that |φ(z)|m is integrable for
some integer m ≥ 1 and suppose that E(X3

1) = a < ∞. Then as n → ∞, we have

gn(x) − g(x) − a

6σ 3
√

n

(
x3 − 3x

)
g(x) = o(1)

1√
n

uniformly in x.

Under the condition of Lemma 6.1, we obtain that for n ≥ m, the random vari-
able ε(n) also has a density. We denote it by fn(x). The relation between fn(x)

and gn(x) is given by

gn(x) = σ
√

nfn(xσ
√

n + μn). (5)

From Lemmas 6.1 and 6.2 and using the same notation, we obtain the following
result.

Lemma 6.3. Suppose that |φ(x)|m is integrable for some m ≥ 1. Then as n → ∞,

sup
x

∣∣gn(nμ + √
nσx) − g(x)

∣∣ → 0.

Moreover, if also E(X3) < ∞, then as n → ∞,
√

n sup
x

∣∣gn(nμ + √
nσx) − g(x)

∣∣ = O(1).
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Now we are ready to prove the main theorem.

Proof. Let F(x) = Pr(X ≤ x) denote the common distribution function of the
Xi and let F ∗n(x) = Pr(ε(n) ≤ x) denote the distribution function of ε(n). The
following relation is well known in renewal theory:

Pr(n + 1, x) = Pr
(
ε(n) ≤ x < ε(n + 1)

)
=

∫ x

0

(
1 − F(x − y)

)
dF ∗n(y).

If we introduce the notation

h(x) = 1

μ

(
1 − F(x)

)
, x ≥ 0

we find that
1

μ
Pr(n + 1, x) =

∫ x

0
h(x − y)dF ∗n(y). (6)

Note, that since h(x) is a bounded probability density function, also 1
μ

Pr(n+1, x)

is a bounded probability density function.
For n ≥ m, we can write

1

μ
Pr(n + 1, x) =

∫ x

0
h(x − y)fn(y) dy

so that, using (5), we have

σ
√

n

μ
Pr(n + 1, x) =

∫ x

0
h(y)gn

(
x − y − μn

σ
√

n

)
dy.

Now, we consider the three terms in the following relation:

σ
√

n

μ
Pr(n + 1, x) − g

(
x − μn

σ
√

n

)
= I1 + I2 + I3,

where

I1 =
∫ x

0
h(y)

(
gn

(
x − y − μn

σ
√

n

)
− g

(
x − y − μn

σ
√

n

))
dy;

I2 =
∫ x

0
h(y)

(
g

(
x − y − μn

σ
√

n

)
− g

(
x − μn

σ
√

n

))
dy;

I3 = g

(
x − μn

σ
√

n

)∫ ∞
x

h(y) dy.

First, consider I1. We clearly have

|I1| ≤ sup
x

∣∣gn(x) − g(x)
∣∣ ∫ x

0
h(y) dy.
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Using Lemma 6.3, we obtain that

sup
x≥0

|I1| → 0 as n → ∞.

Also, if E(ξ3
1 ) < ∞, we find that

√
n sup

x≥0
|I1| = O(1) as n → ∞.

In the second term, I2, we use the mean value theorem to see that

g

(
x − y − μn

σ
√

n

)
− g

(
x − μn

σ
√

n

)
= − y

σ
√

n
g′(θ),

where
x − y − μn

σ
√

n
≤ θ ≤ x − μn

σ
√

n
.

Since |g′(x)| is bounded, we find that

|I2| ≤ K√
n

∫ x

0
yh(y) dy,

where K is a positive constant. Finally, since σ 2 < ∞, we obtain that∫ x

0
yh(y) dy ≤

∫ ∞
0

yh(y) dy = 2

μ

∫ ∞
0

y2 dF(y) < ∞.

We conclude that

sup
x≥0

|I2| = O(1)
1√
n

as n → ∞.

Finally, we consider I3. In the case where x > nμ/2, we have

|I3| ≤ g(0)

∫ ∞
x

h(y) dy ≤ g(0)

x

∫ ∞
x

yh(y) dy ≤ K
1

n
,

for some positive constant K . On the other hand, if 0 ≤ x ≤ nμ/2, we find

|I3| ≤ g

( −μn

2σ
√

n

)∫ ∞
x

h(y) dy ≤ g

(
μ

√
n

2σ

)

and using |xg(x)| ≤ K , we obtain that

|I3| ≤ K
2σ

μ
√

n
.

Combining the two cases, we find that

sup
x≥0

|I3| ≤ K√
n
,
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for some positive constant K . To complete the proof, we consider the case where
x < 0. In this case, we trivially have∣∣∣∣σ

√
n

μ
Pr(n + 1, x) − g

(
x − μn

σ
√

n

)∣∣∣∣ = g

(
x − μn

σ
√

n

)
≤ g

(−μn

σ
√

n

)

and consequently

sup
x<0

∣∣∣∣σ
√

n

μ
Pr(n + 1, x) − g

(
x − μn

σ
√

n

)∣∣∣∣ ≤ g

(
μn

σ
√

n

)
≤ K√

n

for some constant K . This proves the result. �

6.2 Bivariate cumulative shock model

In the bivariate cumulative shock model, one studies processes of the following
type:

τc(x, y) = min

{
n :

n∑
i=1

Xi > x or
n∑

i=1

Yi > y

}
.

Now we find that

Pr
(
τc(x, y) > n

) = Pr

(
n∑

i=1

Xi ≤ x,

n∑
i=1

Yi ≤ y

)
= F ∗n(x, y),

where F ∗n(x, y) denotes the n-fold convolution of the d.f. F of the vector (X,Y ).
To study these types of processes, one needs multivariate central limit theory, lo-
cal limit theorems and multivariate renewal theory. For an overview of univariate
and multivariate renewal functions and generalized renewal functions, we refer to
Mallor and Omey (2006).

Let τc,X(x) and τc,Y (y) be defined as (cf. Section 6)

τc,X(x) = min

{
n :

n∑
i=1

Xi > x

}
, τc,Y (y) = min

{
n :

n∑
i=1

Yi > y

}
.

In this case, we see that τc(x, y) = min(τc,X(x), τc,Y (y)).
For convenience, let μ = E(X) and ν = E(Y ). Using τc,X(x)/x

a.s.→ 1/μ and
τc,Y (y)/y

a.s.→ 1/ν, we get that as min(x, y) → ∞,

τc(xμ,yν)

min(x, y)

a.s.→ 1.

Now, suppose that σ 2
1 = var(X) < ∞ and σ 2

2 = var(Y ) < ∞. In this case, we have

Pr
(
τc(nμ + √

nx,nν + √
ny) > n

)
= Pr

(
n∑

i=1

Xi ≤ nμ + √
nx,

n∑
i=1

Yi ≤ νn + √
ny

)

→ Pr(σ1Z1 ≤ x,σ2Z2 ≤ y),
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where (Z1,Z2) has a bivariate normal distribution with standard normal marginals.
We obtain

Pr
(
τc(x, y) = n + 1

) = F ∗n(x, y) − F ∗n+1(x, y)

=
∫ x

0

∫ y

0
h(x − u,y − v)dF ∗n(u, v),

where

h(x, y) = 1 − F(x, y).

Now, assume that F has a density f and that the density satisfies the central
limit theorem, that is,

gn(x, y) → φ(x, y),

where

gn(x, y) = σ1σ2nf
⊗n(μn + σ1

√
nx, νn + σ2

√
ny)

and f ⊗n is the n-fold convolution of f . The function φ is a bivariate normal den-
sity with standard normal marginals:

φ(x, y) = C exp
−1

2(1 − ρ2)

(
x2 + y2 − 2ρxy

)
.

Using this notation, we find that

Pr
(
τc(x, y) = n + 1

)
=

∫ x

0

∫ y

0
h(x − u,y − v)f ⊗n(u, v) dudv

=
∫ x

0

∫ y

0
h(u, v)f ⊗n(x − u,y − v)dudv

= 1

σ1σ2n

∫ x

0

∫ y

0
h(u, v)gn

(
x − u − μn

σ1
√

n
,
y − v − νn

σ2
√

n

)
dudv.

It follows that

σ1σ2nPr
(
τc(x, y) = n + 1

) − φ

(
x − μn

σ1
√

n
,
y − νn

σ2
√

n

)∫ x

0

∫ y

0
h(u, v) dudv

=
∫ x

0

∫ y

0
h(u, v)

(
gn

(
x − u − μn

σ1
√

n
,
y − v − νn

σ2
√

n

)

− φ

(
x − μn

σ1
√

n
,
y − νn

σ2
√

n

))
dudv

= I + II,
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where

I =
∫ x

0

∫ y

0
h(u, v)

(
gn

(
x − u − μn

σ1
√

n
,
y − v − νn

σ2
√

n

)

− φ

(
x − u − μn

σ1
√

n
,
y − v − νn

σ2
√

n

))
dudv,

II =
∫ x

0

∫ y

0
h(u, v)

(
φ

(
x − u − μn

σ1
√

n
,
y − v − νn

σ2
√

n

)

− φ

(
x − μn

σ1
√

n
,
y − νn

σ2
√

n

))
dudv.

If we have uniform convergence for the densities, then we find that

|I | ≤ sup
x,y≥0

∣∣gn(x, y) − φ(x, y)
∣∣ ∫ x

0

∫ y

0
h(u, v) dudv.

For the second term, we use the mean value theorem to obtain that

φ

(
x − u − μn

σ1
√

n
,
y − v − νn

σ2
√

n

)
− φ

(
x − μn

σ1
√

n
,
y − νn

σ2
√

n

)

= ϑφ

ϑx

(
θ1,

y − v − νn

σ2
√

n

)
u

σ1
√

n
+ ϑφ

ϑy

(
x − μn

σ1
√

n
, θ2

)
v

σ2
√

n
.

Since the partial derivatives of φ are bounded, for some constant K we find that

|II| ≤ K√
n

∫ x

0

∫ y

0
(u + v)h(u, v) dudv.

Our results at least show that

σ1σ2nPr
(
τc(x, y) = n + 1

) − φ

(
x − μn

σ1
√

n
,
y − νn

σ2
√

n

)∫ x

0

∫ y

0
h(u, v) dudv → 0,

for fixed values of x, y > 0.

Appendix A: Proof of Proposition 4.3

Proof. Proceeding as in the proof of Proposition 4.1, we have

Pr
(
δk(x, y) = n + 1

) = I − II + III,

where

I =
k−1∑
i=0

(
n

i

)
Fn−i(y)

(
1 − F i+1(y)

)(
F(x) − F(y)

)i
,
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II =
k−1∑
i=1

(
n + 1

i

)
Fn+1−i (y)

(
1 − F i(y)

)(
F(x) − F(y)

)i
,

III = Fn+1(y)

k−1∑
i=1

(
n

i

) −i

n + 1 − i

(
F(x) − F(y)

)i
.

Now, we replace x and y by a(n)x and a(n)y. For the first term, we get

nI = n

k−1∑
i=0

(
n

i

)
Fn−i(a(n)y

)(
1 − F i+1(

a(n)y
))(

F
(
a(n)x

) − F
(
a(n)y

))i
.

As in the proof of Proposition 4.1, we get that

nI ∼ n

k−1∑
i=0

ni

i! φα(y)(i + 1)
(
1 − F

(
a(n)y

))(
F

(
a(n)x

) − F
(
a(n)y

))i
.

Using n(1 − F(a(n)x)) → x−α and n(F (a(n)x) − F(a(n)y)) → y−α − x−α , we
obtain that

nI → φα(y)

k−1∑
i=0

i + 1

i! y−α(
y−α − x−α)i

.

In a similar way, we obtain that

nII → φα(y)

k−1∑
i=1

i

i!y
−α(

y−α − x−α)i
and

nIII → −φα(y)

k−1∑
i=1

i

i!
(
y−α − x−α)i

.

The result follows. �

Appendix B: Proof of Theorem 5.1

Proof. To prove the result, first note that

Pr
(
τ2(x, y) = n + 1

) − G

(
x

n
,
y

n

)
G(x,y) = Fn(x, y)F (x, y) − Gn(x, y)G(x, y)

= A(x, y) + B(x, y),

where

A(x, y) = (
Fn(x, y) − Gn(x, y)

)
F(x, y),

B(x, y) = Gn(x, y)
(
F(x, y) − G(x,y)

)
.



244 E. Omey and R. Vesilo

Choose x◦, y◦ > 0 such that F1(x
◦),F2(y

◦),G(x◦, y◦) > 0. If x ≤ x◦ (and simi-
larly if y ≤ y◦), we have∣∣A(x, y)

∣∣ + ∣∣B(x, y)
∣∣ ≤ Fn(x, y) + 2Gn(x, y)

≤ Fn
1

(
x◦) + 2Gn

1
(
x◦),

which converges to 0 exponentially fast.
From now on, assume that x ≥ x◦ and y ≥ y◦ > 0. First, consider B(x, y). Our

assumptions imply that∣∣B(x, y)
∣∣ ≤ Gn(x, y)

∣∣F(x, y) − G(x,y)
∣∣

≤ ρr(F,G)
(
min(x, y)

)−r
G

(
x

n
,
y

n

)
.

Suppose that x ≤ y. Since G(x/n, y/n) ≤ G1(x/n) = φ1(x/n), we obtain that

(
min(x, y)

)−r
G

(
x

n
,
y

n

)
≤ x−rφ1(x/n) ≤ n−rB(r).

If y ≤ x, in a similar way we obtain that

(
min(x, y)

)−r
G

(
x

n
,
y

n

)
≤ y−rφ1(y/n) ≤ n−rB(r).

We conclude that ∣∣B(x, y)
∣∣ ≤ ρr(F,G)B(r)n−r .

Next, consider the term A(x, y). Using the inequality∣∣an − bn
∣∣ ≤ nmax

(
an−1, bn−1)|a − b|,

we see that∣∣A(x, y)
∣∣ ≤ nF(x, y)max

(
Fn−1(x, y),Gn−1(x, y)

)∣∣F(x, y) − G(x,y)
∣∣,

and so,∣∣A(x, y)
∣∣ ≤ nF(x, y)

(
min(x, y)

)−r max
(
Fn−1(x, y),Gn−1(x, y)

)
ρr(F,G). (7)

We show that min(x, y)F (x, y) is bounded. Since ρr(F,G) < ∞, we have∣∣min(x, y)
(
F(x, y) − G(x,y)

)∣∣ ≤ (
min(x, y)

)−r+1
ρr(F,G).

In the case x ≤ y, we obtain that∣∣xF(x, y) − xG(x, y)
∣∣ ≤ x−r+1ρr(F,G).

Now observe that

xG(x, y) ≤ xG1(x) + xG2(y)

≤ xφ1(x) + yφ1(y).
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Since zφ1(z) ≤ 1 for z ≥ 0, it follows that

xF(x, y) ≤ x−r+1ρr(F,G) + 2.

In a similar way, for y ≤ x we get that

yF(x, y) ≤ y−r+1ρr(F,G) + 2.

It follows that min(x, y)F (x, y) is bounded. Returning to (7), we just showed that∣∣A(x, y)
∣∣ ≤ Kn

(
min(x, y)

)−r−1 max
(
Fn−1(x, y),Gn−1(x, y)

)
. (8)

Consider the case where F(x, y) ≤ G(x,y). In this case, we find that∣∣A(x, y)
∣∣ ≤ Kn

(
min(x, y)

)−r−1
Gn−1(x, y)

≤ Kn
(
min(x, y)

)−r−1
G

(
x

n − 1
,

y

n − 1

)
.

If x ≤ y, we have

∣∣A(x, y)
∣∣ ≤ Knx−r−1G1

(
x

n − 1

)
≤ KB(r + 1)n−r .

If x ≥ y, we have a similar bound.
Next, consider the case where G(x,y) ≤ F(x, y). Since log(z) ≤ z − 1, z ≥ 1,

we have that

0 ≤ log
(

F(x, y)

G(x, y)

)
≤ F(x, y) − G(x,y)

G(x, y)

≤ 1

G(x◦, y◦)
(
min(x, y)

)−r
ρr(F,G)

= C
(
min(x, y)

)−r
,

where C > 0 is a constant. It follows that

Fn−1(x, y) ≤ exp
(
C(n − 1)

(
min(x, y)

)−r)
Gn−1(x, y). (9)

A similar inequality holds when we consider the marginals of F and G.
Now choose xn in such a way that (n−1)x−r

n = 1. Since xn ↑ ∞, we can choose
n large enough to have xn > x◦ and xn > y◦.

For x, y ≥ xn relation (9) shows that

Fn−1(x, y) ≤ exp
(
C(n − 1)x−r

n

)
Gn−1(x, y)

= exp(C)G

(
x

n − 1
,

y

n − 1

)
.

We can proceed as in the case F ≤ G to obtain

sup
x,y≥xn

∣∣A(x, y)
∣∣ = O(1)n−r .
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For x◦ ≤ x ≤ xn and y◦ ≤ y ≤ xn, we use F(x, y) ≤ F(xn, xn) and (9) to show
that

Fn−1(x, y) ≤ exp(C)Gn−1(xn, xn).

From (8), we obtain that

∣∣A(x, y)
∣∣ ≤ K exp(C)n

(
min

(
x◦, y◦))−r−1

G

(
xn

n − 1
,

xn

n − 1

)
.

By our choice of xn, we have that nG(xn/(n − 1), xn/(n − 1)) → 0 exponen-
tially fast.

Next, assume that x◦ < x ≤ xn and that y > xn. In this case, (8) implies that∣∣A(x, y)
∣∣ ≤ Knx−r−1Fn−1(x, y) ≤ K ′nFn−1

1 (xn),

for some constant K . It follows that∣∣A(x, y)
∣∣ ≤ K ′′nGn−1

1 (xn).

Also, in this case we have nGn−1
1 (xn) → 0 exponentially fast. A similar result

applies for the case y◦ < y < xn < x. Combining all the above cases, gives

sup
x,y≥0

∣∣A(x, y)
∣∣ = O(1)n−r . �
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