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Yaglom limit via Holley inequality

Pablo A. Ferrari and Leonardo T. Rolla
Universidad de Buenos Aires

Abstract. Let S be a countable set provided with a partial order and a min-
imal element. Consider a Markov chain on S ∪ {0} absorbed at 0 with a
quasi-stationary distribution. We use Holley inequality to obtain sufficient
conditions under which the following hold. The trajectory of the chain start-
ing from the minimal state is stochastically dominated by the trajectory of the
chain starting from any probability on S, when both are conditioned to non-
absorption until a certain time. Moreover, the Yaglom limit corresponding to
this deterministic initial condition is the unique minimal quasi-stationary dis-
tribution in the sense of stochastic order. As an application, we provide new
proofs to classical results in the field.

1 Introduction

Let S be a countable set, 0 be an element outside S and consider a Markov chain
Xn ∈ S ∪ {0} with transition matrix Q(x,y), x, y ∈ S ∪ {0}. We assume that the
matrix Q yields a chain which is absorbed at 0, meaning that Q(0,0) = 1. We
assume also Q(x,0) < 1 for all x ∈ S.

For a probability measure ν on S, we define νTn as the conditional distribution
at time n of the chain started with law ν given that it is not absorbed until time n.
More precisely,

νTn(y) := νQn(y)

1 − νQn(0)
, y ∈ S. (1.1)

A probability measure ν is a quasi-stationary distribution (or simply q.s.d.) if ν =
νT1 (and thus νTn = ν for all n ≥ 1). Rewriting (1.1), a measure ν is a q.s.d. if and
only if

ν(y) = ∑
x∈S

ν(x)
[
Q(x,y) + Q(x,0)ν(y)

]
, y ∈ S. (1.2)

The Yaglom limit of ν is limn νTn, if the limit exists and is a probability measure.
In this case, the limit is called a quasi-limiting distribution.

Assume that S has a partial order denoted ≤ and a minimal state called 1. Let
ν � ν′ denote the stochastic order of measures on S induced by ≤.
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We say that a probability measure μ on Sn is irreducible if the set {(x1, . . . ,

xn) ∈ Sn :μ(x1, . . . , xn) > 0} is connected in the sense that any element of Sn with
positive μ-probability can be reached from any other via successive coordinate
changes without passing through elements with zero μ-probability. We say that a
Markov chain on S ∪ {0} with transition matrix Q and initial distribution ν on S

has irreducible trajectories in S if for each n ≥ 1 the measure μ on Sn+1 defined
by μ(x0, . . . , xn) := ν(x0)Q(x0, x1) · · ·Q(xn−1, xn) is irreducible.

Let δx be the probability distribution on S concentrated on the state x ∈ S.

Theorem 1. Let S be a partially ordered countable space with a minimal element
called 1. Let Q be the transition matrix of a Markov chain on S ∪ {0} absorbed
at 0. Assume that the chain with initial distribution δ1 has irreducible trajectories
in S. If, for all x, x ′, z, z′ ∈ S with x ≤ x′, z ≤ z′, whenever the denominators are
positive,

Q(x, ·)Q(·, z)
Q2(x, z)

� Q(x′, ·)Q(·, z′)
Q2(x′, z′)

, (1.3)

Q(x, ·)
1 − Q(x,0)

� Q(x′, ·)
1 − Q(x′,0)

, (1.4)

as probability measures on S, then the following hold:

(i) The sequence (δ1Tn)n≥1 is monotone: δ1Tn � δ1Tn+1, for all n ≥ 0.
(ii) For any probability ν on S, δ1Tn � νTn.

(iii) In particular, if ν is a q.s.d., then δ1Tn � ν, for all n ≥ 0.
(iv) If there is a q.s.d. for Q, then the Yaglom limit of δ1 converges. The limit

distribution ν := limn δ1Tn is a q.s.d. and satisfies ν � ν for any other q.s.d. ν.

The proof of Theorem 1 is an application of Holley inequality in the space of
finite-length trajectories of the chain. Roughly speaking, Holley inequality says
that the local dominations (1.3) and (1.4) imply that the conditional law of a
length-n trajectory of the chain starting with δ1 given nonabsorption by time n

is stochastically dominated by the conditional law of a length-n trajectory of the
chain starting from any other measure ν.

In Section 2, we state and prove Holley inequality, and use it to prove Theo-
rem 1. We then give a sufficient condition for ν to be the minimal q.s.d. in the
sense of absorption time rather than stochastic domination.

Convergence of the Yaglom limit has been studied for birth-and-death chains
and one-dimensional random walks in both continuous and discrete time. Theo-
rem 1 gives an alternative proof to many of these classical results.

References to previous works and details of our approach to the aperiodic cases
are discussed in detail in Section 3. Periodic chains are discussed in Section 4,
after condition (1.3) is relaxed so as to include this case.
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There is a large literature on q.s.d.’s compiled and periodically updated by
Pollett (2014). We quote the recent book of Collet, Martínez and San Martín (2013)
and the work of Kesten (1995) on Yaglom limits of discrete-time Markov chains.

2 Yaglom limit via Holley inequality

2.1 Trajectory distribution

For integers n < m let Xm
n := {(xn, . . . , xm) :xk ∈ S for n ≤ k ≤ m} be the set

of possible trajectories of the chain with transition matrix Q in the time interval
[n,m] which are not absorbed by 0 in that time interval.

Let ν be a probability measure on S and define the measure μm
n (ν,Q) on Xm

n by

μm
n (ν,Q)

(
xm
n

) := ν(xn)Q(xn, xn+1) · · ·Q(xm−1, xm)

1 − νQn(0)
, (2.1)

where xm
n = (xn, . . . , xm). The measure μm

n (ν,Q) is the conditional distribution
of the chain Xm

n = (Xn, . . . ,Xm) with initial distribution ν at time n and transi-
tion probabilities Q, given that the chain is not absorbed during the time inter-
val [n,m].

Due to the conditioning, the first marginal of μm
n (ν,Q) is not ν in general, but

its last marginal is νTm−n. Indeed, by (1.1) and (2.1),

νTm−n(y) = ∑
(xn,...,xm−1)

μm
n (ν,Q)(xn, . . . , xm−1, y). (2.2)

2.2 Holley inequality

Let � be a set endowed with a partial order ≤. Let μ,μ′ be probability measures
on �. The stochastic domination μ � μ′ is equivalent to the existence of a measure
μ̃ on � × � with marginals μ and μ′ such that μ̃((ω,ω′) :ω ≤ ω′) = 1, see, for
instance, Lindvall (1999). In this case, we say that μ̃ is a monotone coupling of μ

and μ′.
Let us endow Xm

n with the partial order given by the coordinate-wise order of
trajectories: xm

n ≤ ym
n if xk ≤ yk for all k ∈ [n,m].

A local domination condition for global domination of measures is provided by
Holley Inequality (Holley (1974)). Here is a version suited to our context.

Proposition 2 (Holley inequality). Let S be a partially ordered countable space.
Let ν � ν′ be probabilities on S and let Q, Q′ be transition matrices on S ∪ {0}
absorbed at 0. Denote the conditional laws of trajectories by μ = μm

n (ν,Q) and
μ′ = μm

n (ν′,Q′), respectively. Assume that μ is an irreducible probability on the
space of trajectories Xm

n . If, for all x, x′, z, z′ ∈ S with x ≤ x′, z ≤ z′, whenever
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the denominators are positive,

ν(·)Q(·, z)
νQ(z)

� ν′(·)Q′(·, z′)
ν′Q′(z′)

, (a)

Q(x, ·)Q(·, z)
Q2(x, z)

� Q′(x′, ·)Q′(·, z′)
Q′2(x′, z′)

, (b)

Q(x, ·)
1 − Q(x,0)

� Q′(x′, ·)
1 − Q′(x′,0)

(c)

as measures on S, then μ � μ′.

Holley inequality was proved in Georgii, Häggström and Maes (2001) for finite
state space S. We use the Markovian structure of μ and condition (c) to get around
this assumption.

Proof of Proposition 2. Let (ηt : t ≥ 0) be the Gibbs sampler for μ, a Markov
jump process on Xm

n with the following evolution: the value at each site k ∈ [n,m]
is updated at rate 1 to a new value using the conditional distribution of μ given the
configuration at the sites [n,m] \ {k}. Different sites are never updated simultane-
ously since they use independent Poisson clocks. This amounts to use the measures
in the left-hand side of (a), (b) and (c) to update sites n, [n + 1,m − 1] and m, re-
spectively. The measure μ is reversible for ηt . Analogously, let (η′

t : t ≥ 0) be the
Gibbs sampler for μ′ for which the updating is done with the measures in the
right-hand side of (a), (b) and (c), respectively. The measure μ′ is reversible for η′

t .
We will use the stochastic inequalities (a), (b), (c) to construct a monotone cou-

pling ((ηt , η
′
t ) : t ≥ 0) of both Gibbs sampler processes. In this coupling, at rate 1

the value at each site in [n,m] is simultaneously updated for both marginal tra-
jectories using a monotone coupling of the measures in (a), (b) and (c) to update
sites n, [n + 1,m − 1] and m, respectively. If the trajectories are ordered at time 0,
then they will remain ordered at future times, that is, if η0 ≤ η′

0 then ηt ≤ η′
t for all

t ≥ 0. We thus need to find η0 ≤ η′
0.

We claim that, given any trajectory zm
n with positive μ′-probability, there ex-

ists a trajectory xm
n ≤ zm

n with positive μ-probability. We prove this by construct-
ing xm

n as follows. Since ν′(zn) > 0 and ν � ν′, it is possible to choose xn ≤ zn

such that ν(xn) > 0. Suppose that xn ≤ zn, . . . , xk ≤ zk have been chosen. Since
Q′(zk, zk+1) > 0, from condition (c) it is possible to choose xk+1 ≤ zk+1 such that
Q(xk, xk+1) > 0. This proves the claim.

The coupled process starts from (η0, η
′
0), where η′

0 is distributed with the re-
versible measure μ′ and, given η′

0, a trajectory η0 ≤ η′
0 with positive μ-probability

is chosen according to the previous claim. Since η0 ≤ η′
0, by the coupling we have

ηt ≤ η′
t for all t ≥ 0, and thus the law of ηt is stochastically dominated by that

of η′
t . Irreducibility implies that ηt converges in distribution to its unique invariant
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measure μ. On the other hand, the distribution of η′
t is μ′ for all t . Letting t → ∞,

we get μ � μ′. �

The proof of Holley inequality works also for the nonhomogeneous case. Con-
sider a family o transition matrices Q = (Qk, k ∈ Z) and let (Xk) be a (nonhomo-
geneous) Markov chain satisfying P(Xk+1 = y|Xk = x) = Qk(x, y), that is, the
transition matrix Qk is used at time k. Then we have the following corollary of the
proof of Proposition 2.

Corollary 3. Proposition 2 holds for nonhomogeneous families of transition ma-
trices Q and Q′ such that Qn and Q′

n satisfy (a), Qm−1 and Q′
m−1 satisfy (c), and

that, for k = n + 1, . . . ,m − 1,

Qk−1(x, ·)Qk(·, z)
Qk−1Qk(x, z)

� Q′
k−1(x, ·)Q′

k(·, z)
Q′

k−1Q
′
k(x, z)

. (b′)

2.3 Monotonicity and Yaglom limit

Proof of Theorem 1. We first prove (ii) using Holley inequality with Q′ = Q

and ν = δ1. The probability measure on the left-hand side of condition (a) is δ1,
and, since 1 is minimal in S, this condition is satisfied for any ν′ on S. Condi-
tions (b) and (c) are being assumed in (1.3) and (1.4). Irreducibility of μn

0(δ1,Q)

has also been explicitly assumed. By Holley inequality, μn
0(δ1,Q) � μn

0(ν
′,Q),

which by (2.2) implies δ1Tn � ν′Tn, concluding the proof of (ii).
If ν′ is a q.s.d., then ν′ = ν′Tn. Together with (ii), this implies (iii).
To prove (i), we introduce a nonhomogeneous chain Q forced to make the

first jump into state 1 while the rest of the jumps are governed by Q. Let
Q = (Qk,−1 ≤ k ≤ n) be given by Q−1(x,1) = 1 for all x ∈ S and Qk = Q

for k = 0, . . . , n. By definition of Q−1, the projection of μn−1(δ1,Q) onto X n
0 is

μn
0(δ1,Q). Hence, the time-n marginal of μn−1(δ1,Q) is δ1Tn, the same as the time-

n marginal of μ0−n(δ1,Q). Let Q′ = (Q′
k,−1 ≤ k ≤ n) be given by Q′

k = Q for
k = −1, . . . , n (i.e., the homogeneous chain). The time-n marginal of μn−1(δ1,Q′)
is δ1Tn+1, the same as the time-n marginal of μn−1(δ1,Q). Again, condition (c) has
been assumed in (1.4). Writing ν = ν′ = δ1, condition (a) holds trivially. Condi-
tion (b′) is trivial for k = 0, and for k = 1,2, . . . , n− 1 it is assumed in (1.3). Also,
irreducibility of μn

0(δ1,Q), and thus of μn−1(δ1,Q), has been explicitly assumed.
Using Corollary 3, we get μn−1(δ1,Q) � μn−1(δ1,Q′), and thus δ1Tn � δ1Tn+1,
proving (i).

To show (iv), let ν′ be a q.s.d. By (i), δ1Tn is an increasing sequence of measures
and by (iii) all elements of the sequence are dominated by ν′. Hence, there is a limit
ν := limn δ1Tn � ν′. To check that ν is a q.s.d., use that Tn is a semigroup and that
T1 is continuous to get

ν = lim
n

δ1Tn+1 = lim
n

δ1TnT1 = νT1. �
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2.4 Yaglom limit and minimal q.s.d.

For a measure ν on S, denote

a(ν) := 1 − νQ(0), (2.3)

the mass staying at S after one step for the chain starting with ν. If ν is a q.s.d.,
then ν is a left eigenvector for Q|S with eigenvalue a(ν):

νQ|S = a(ν)ν.

Let a∗ := inf{a(ν) :ν is a q.s.d.}. If there exists a q.s.d. ν with a(ν) = a∗, then it is
called minimal and denoted νmin.

The following lemma gives sufficient conditions in terms of Q so that the mea-
sure ν given by Theorem 1 coincides with νmin.

Lemma 4. If Q is such that Q(x,0) ≥ Q(x′,0) for all x ≤ x′ ∈ S, and ν is a q.s.d.
such that ν � ν for any other q.s.d. ν, then ν = νmin.

Proof. The function f :S → R
+ given by f (y) = Q(y,0) is nonincreasing,

whence νf ≥ νf for any q.s.d. ν. Thus, a(ν) ≤ a(ν), and taking the infimum
over ν we get a(ν) = a∗, which proves the lemma. �

3 The birth-and-death chain

In this section, we consider S = N with the usual order and birth-and-death pro-
cesses. The transition matrix Q is defined by:

px, rx, qx > 0, qx + rx + px = 1 for all x ≥ 1;
Q(x,x − 1) = qx, Q(x, x) = rx, Q(x, x + 1) = px, (3.1)

Q(x,y) = 0 if |x − y| > 1 and Q(0,0) = 1.

In this case, there exist a q.s.d. if the absorption time of the chain starting from
a fixed state has an exponential moment; see, for instance, van Doorn and Schri-
jner [(1995a), Corollary 4.1], Ferrari, Martínez and Picco [(1992), Theorem 6.1]
and Ferrari et al. (1995). Under these conditions, Cavender (1978) shows that
there is a critical value γ > 0 such that there is a one-parameter family of q.s.d.’s
{ν :ν(1) ∈ (0, γ ]} indexed by ν(1). Cavender fixes ν(1) ≤ γ and computes explic-
itly the other values using the equation (1.2) and the nearest-neighbor structure
(this procedure does not yield a probability if ν(1) > γ ). Cavender also shows that
any pair of q.s.d.’s ν, ν ′ satisfy a monotone likelihood ratio: ν′(1) > ν(1) implies
ν(1)
ν′(1)

< ν(2)
ν′(2)

≤ ν(3)
ν′(3)

≤ · · · , which in turn implies the domination ν′ � ν.
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van Doorn and Schrijner (1995b) use the Karlin and McGregor polynomial
representation of the chain to give a sufficient condition for the Yaglom limit to
converge to an explicit limit. Ferrari, Martinez and Picco (1991) describe the do-
main of attraction of q.s.d.’s and show in particular that the Yaglom limit of δx

converges to the minimal q.s.d., for any initial state x. Daley (1969) and Iglehart
(1974) showed the Yaglom limit for random walks with negative drift and finite
variance, respectively for discrete and continuous space.

In the sequel we develop Theorem 1’s conditions and make them explicit for the
case of birth-and-death chains. Corollary 7 is about space-homogeneous discrete-
time random walks with delay.

Item (iv) of Corollary 8 gives the Yaglom limit for continuous-time walks. It
was originally proven by Seneta (1966) using direct computation. Our proof uses
monotonicity of the trajectories instead.

Corollary 10, presented in the next section, gives the Yaglom limit for the
discrete-time periodic chain. It provides an alternative proof to that of Seneta and
Vere-Jones (1966).

The conditions of Theorem 1

Since the state space S = N is totally ordered and the transitions are only to nearest
neighbors, we can obtain conditions (1.3) and (1.4) in explicit terms of pk , rk
and qk . Take Q as defined in (3.1). Define for positive integers x, z, y:

b
(
(x, z), y

) := ∑
w≥y

Q(x,w)Q(w, z)

Q2(x, z)
; (3.2)

c(x, y) := ∑
w≥y

Q(x,w)

1 − Q(x,0)
. (3.3)

Conditions (1.3) and (1.4) are equivalent to

b
(
(x, z), y

) ≤ b
((

x′, z′), y)
for z ≤ z′, x ≤ x′; (3.4)

c(x, y) ≤ c
(
x′, y

)
for x ≤ x′, (3.5)

for all y ≥ 1, whenever the denominators of both sides are positive.
Inequalities (3.4) hold trivially when y = 1 or {x, x ′, z, z′} �⊂ {y − 1, y}. The

remaining cases are the following. For y ≥ 2, the conditions (3.4) are equivalent to
the following conditions:

b
(
(y − 1, y − 1), y

) ≤ b
(
(y, y − 1), y

) ≤ b
(
(y, y), y

)
,

b
(
(y − 1, y − 1), y

) ≤ b
(
(y − 1, y), y

) ≤ b
(
(y, y), y

)
.

(3.6)
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Using the convention p0 = 0, conditions (3.6) for y ≥ 2 read

py−1qy

r2
y−1 + py−1qy + qy−1py−2

≤ ryqy

qyry−1 + ryqy

≤ r2
y + pyqy+1

r2
y + pyqy+1 + qypy−1

,

(3.7)
py−1qy

r2
y−1 + py−1qy + qy−1py−2

≤ py−1ry

py−1ry + ry−1py−1

≤ r2
y + pyqy+1

r2
y + pyqy+1 + qypy−1

.

Analogously, conditions (3.5) on c(x, y) hold trivially when y = 1 or (x, x′) �=
(y − 1, y). Hence, (3.5) is equivalent to

c(y − 1, y) ≤ c(y, y), y ≥ 2,

which in the case y = 2 and y ≥ 3 read, respectively,

p1

p1 + r1
≤ r2 + p2, py−1 ≤ py + ry for y ≥ 3. (3.8)

We summarize these computations as a lemma.

Lemma 5. Let Q be the transition matrix for the birth-and-death chain defined
in (3.1). Then conditions (1.3) and (1.4) are equivalent to (3.7) and (3.8).

We are ready to state the result in this case.

Corollary 6. Assume that the birth-and-death chain absorbed at zero defined
in (3.1) has at least one q.s.d. and satisfies conditions (3.7) and (3.8). Then (i),
(ii), (iii), (iv) of Theorem 1 hold. The Yaglom limit of δ1 coincides with νmin, the
minimal q.s.d. in the sense of absorption time. Furthermore, for any x ∈ N, the
Yaglom limit of δx also converges to νmin.

Proof. Since for x ≥ 1 the probability of transitions from x to x and to nearest
neighbors of x are positive, the birth-and-death chain starting with δ1 has irre-
ducible trajectories in N. By Lemma 5, the conditions of Theorem 1 are equivalent
to the present conditions, hence (i), (ii), (iii), (iv) of Theorem 1 hold and the Ya-
glom limit of δ1 converges to ν. Since Q(x,0) = 0 for all x > 1, Lemma 4 applies
and ν = νmin. By Ferrari, Martinez and Picco [(1991), Theorem 3.1], if the Ya-
glom limit of δ1 exists, then it coincides with the Yaglom limit of δx for any x,
concluding the proof. �
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3.1 Random walk with delay

The absorbed delayed random walk is a particular case of birth-and-death chain on
N∪ {0} defined in (3.1) with constant transition probabilities along N:

px ≡ p, qx ≡ q, rx ≡ r,
(3.9)

p,q, r > 0, p + q + r = 1, p < q.

This walk has a drift towards 0 and it is absorbed at 0. A probability ν on N is a
q.s.d. if and only if it satisfies the equations (1.2), which in this case are

ν(x + 1)q + ν(x − 1)p + (
qν(1) − (p + q)

)
ν(x) = 0, x ≥ 1, (3.10)

with the convention ν(0) = 0. Cavender (1978) proved that the set of q.s.d.’s is
a family indexed by ν(1) with ν(1) ∈ (0, (1 − √

λ)2], where λ = p/q . Since the
absorption probability of a q.s.d. ν is νQ(0) = qν(1), the q.s.d. with maximal ν(1)

is the minimal q.s.d. νmin, a negative binomial with parameters 2 and
√

λ:

νmin(x) = (1 − √
λ)2x(

√
λ)x−1, x ≥ 1. (3.11)

The remaining q.s.d. are given in function of ν(1) ∈ (0, (1 − √
λ)2) by

ν(x) = ν(1)

c

[(
λ + 1 − ν(1) + c

2

)x

−
(

λ + 1 − ν(1) − c

2

)x]
, (3.12)

where c = [(ν(1) − λ − 1)2 − 4λ]1/2, Cavender (1978), p. 585.

Corollary 7. Consider the random walk with delay absorbed at zero defined
in (3.1) with constant rates (3.9). If pq ≤ r2, then the conclusions (i), (ii), (iii),
(iv) of Theorem 1 hold with ν = νmin given by (3.11). Furthermore, for any x ∈ N

the Yaglom limit of δx converges to ν.

Proof. In the present context the worst case of (3.7) is when y = 2, which reduces
to:

pq

pq + r2 ≤ 1

2
≤ r2 + pq

r2 + 2pq
. (3.13)

On the other hand (3.8) reads
p

p + r
≤ r + p, p ≤ p + r. (3.14)

Condition pq ≤ r2 implies both (3.13) and (3.14). The result thus follows from
Corollary 6. �

If r <
√

pq , then trajectory domination is not true. Although the Yaglom limit
of δ1 is known to hold in this case (Daley (1969)), it does not seem to follow
from the arguments presented here, except for the periodic case r = 0 discussed in
Section 4.
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3.2 The continuous-time random walk

Take positive p < q with p + q = 1 and consider a family of random walks with
delay (Xr

n), indexed by r ∈ [0,1), with transition probabilities

Qr(x, x − 1) = q(1 − r), Qr(x, x) = r, Qr(x, x + 1) = p(1 − r),

Qr(x, y) = 0, otherwise, x ≥ 1; Qr(0,0) = 1.

Define the rescaled process

Y r
t := Xr[t/(1−r)].

As r → 1, the process (Y r
t ) converges in finite time-intervals to the process (Ŷt ),

a continuous-time random walk with rates p,q to jump one unit forward or back-
wards, respectively, and absorbed at 0. Call Ût the corresponding semigroup:

Ût (x, y) := P(Ŷt = y|Ŷ0 = x).

Define νT r
t as the probability given by

νT r
t (y) := νQ

[t/(1−r)]
r (y)

1 − νQ
[t/(1−r)]
r (0)

,

that is, νT r
t is the distribution at time t of the walk Y r

t starting with ν, conditioned
to nonabsorption. This distribution converges as r → 1 to the distribution at time t

of the continuous-time walk Ŷt under the same condition:

lim
r→1

νT r
t (y) = νT̂t (y) := νÛt (y)

1 − νÛt (0)
. (3.15)

The resulting operator T̂t is a semigroup. For any r ∈ [0,1), the q.s.d.’s for Y r
t sat-

isfy equations (3.10) because the factors (1 − r) cancel out. Moreover, the q.s.d.’s
for the continuous-time walk Ŷt also satisfy the same equations. Indeed, ν = νT̂t if
and only if ν(Ût −I )+νÛt (0) ·ν = 0; dividing by t and letting t → 0 yields (3.10).
As a consequence, the minimal q.s.d. for both Y r

t and Ŷt is given by (3.11) while
the remaining q.s.d. are given by (3.12). In the continuous-time case, p and q may
be any positive real numbers satisfying p < q; the definitions (3.11) and (3.12)
depend on p and q only through the ratio λ = p/q .

Corollary 8. The continuous-time random walk with rates p,q absorbed at zero
satisfies:

(i) The sequence (δ1T̂t , t ≥ 0) is monotone: δ1T̂s � δ1T̂t for 0 < s ≤ t < ∞.
(ii) If ν is a probability measure on N, then δ1T̂t � νT̂t for all t ≥ 0.

(iii) In particular, if ν is a q.s.d., then δ1T̂t � ν.
(iv) The Yaglom limit of δ1 converges to νmin given by (3.11).
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Proof. Take r sufficiently close to one so that pq(1 − r)2 ≤ r2, to be under the
conditions of Corollary 7.

To show (i), we use Corollary 7(i) to get δ1T
r
t � δ1T

r
t+s, for all t, s ≥ 0, and

then use (3.15) to conclude. To prove (ii), (iii), we use Corollary 7(ii), (iii) to get
δ1T

r
t � νT r

t (which equals ν if it is a q.s.d.), and again use (3.15) to conclude.
Let us show (iv). As discussed above, νmin given by (3.11) is a q.s.d., the other

q.s.d.’s are given by (3.12), and in particular νmin is minimal also in the sense
of stochastic ordering. By (i), (iii), there is ν = limt δ1T̂t . As in the proof of Theo-
rem 1, using the semigroup property of T̂t , the limit ν is a q.s.d. It follows from (iii)
that ν � νmin, and therefore ν = νmin. �

4 The periodic case

Assume that the matrix Q is irreducible in S and that Q restricted to S has pe-
riod d ≥ 2. Let S1, . . . , Sd ⊂ S be the cyclic subclasses, that is, the equivalence
classes induced by the equivalence relation ∼ defined by x ∼ y if and only if
Qd	(x, y) > 0 for some 	 ≥ 1. Assume that the classes are labeled so that x ∈ Sj ,
Q(x,y) > 0 implies y ∈ Sj+1 ∪ {0} (with the convention Sd+1 = S1).

Theorem 9. Let S be a partially ordered countable set with a minimal element
called 1 and let Xn be a Markov chain on S ∪ {0}, absorbed at 0, irreducible in
S and with period d when restricted to S. Let S1, . . . , Sd ⊂ S denote the cyclic
subclasses of the chain restricted to S, choosing S1 � 1. Assume that the chain
with initial state 1 has irreducible trajectories.

If, for all x, x′, z, z′ ∈ S with x ≤ x′, z ≤ z′, x and x′ in the same class, the
stochastic inequalities (1.3) and (1.4) are satisfied whenever the denominators are
positive, then the following hold.

(i) Monotonicity: δ1Tn � δ1Tn+d for any n ≥ 0.
(ii) For any probability ν on S1, one has δ1Tn � νTn.

(iii) If ν is a q.s.d., then δ1Tdk+j−1 � ν(·|Sj ) for any k ≥ 0.
(iv) If the chain has a q.s.d., then there is a q.s.d. ν
 such that the Yaglom limit

of δ1 along d-periodic subsequences is given by

lim
k

δ1Tdk+j−1 = ν
(·|Sj ).

Moreover, for any other q.s.d. ν, one has ν
(·|Sj ) � ν(·|Sj ) for all j .
(v) If moreover Q is such that ν � ν′ implies a(ν) ≤ a(ν′), then ν
 = νmin.

Before giving the proof, we discuss the particular case of the p-q random walk.
As an application of the above theorem, we prove convergence of the Yaglom limit
to the minimal q.s.d. based on monotonicity of trajectories.
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The p-q discrete-time random walk is defined as follows. Consider the periodic
random walk with transition probabilities

Q(0,0) = 1, Q(x, x − 1) = q, Q(x, x + 1) = p for x ≥ 1,
(4.1)

Q(x,y) = 0, otherwise; p + q = 1, p < q.

The chain has period 2 and, starting from δ1, the walk visits odd sites at even
times and vice-versa. The q.s.d.’s for this random walk satisfy (3.10) as before.
The minimal q.s.d. νmin is given by (3.11), and the remaining q.s.d.’s are given
by (3.12). The cyclic subclasses are S1 = 2N− 1 and S2 = 2N.

Corollary 10. Let Xn be the discrete-time p-q random walk with transition prob-
abilities (4.1). The Yaglom limit of δ1 converges along even and odd times to pro-
jections of νmin given by (3.11). That is, for both j = 1,2,

lim
n

δ1T2n+j−1 = νmin(·|Sj ).

Moreover, νmin(·|Sj ) � ν(·|Sj ) for any other q.s.d. ν.

Proof. By Theorem 9(iv) there is ν
 with the above properties, and the Yaglom
limit converges to projections of ν
 along even or odd subsequences. By Theo-
rem 9(v) we have ν
 = νmin, concluding the proof. �

In order to prove Theorem 9, we start with some basic properties of q.s.d.’s for
periodic chains. For a probability ν on S, write ν = ∑

j mjνj , where νj := ν(·|Sj )

and
∑

j mj = 1. For shortness, let Sj , mj and νj be indexed by j ∈ Zd , so that
Sd+1 = S1, etc. Recall that a(ν) is defined in (2.3).

Lemma 11. Let Q be the transition matrix for a d-periodic chain in S absorbed
at 0. If ν is a q.s.d., then for each class j , mja(νj ) = a(ν)mj+1, and νjTn = νj+n,

for all n ≥ 0. In particular, (a(ν))d = a(ν1) · · ·a(νd).

Proof. For any measure ν on S, νjQ is supported on Sj+1 ∪{0}, and thus νjQ|S =
a(νj )νjT1. Hence, νQ|S = ∑

j mjνjQ|S = ∑
j mja(νj )νjT1. On the other hand,

if ν is a q.s.d., νQ|S = a(ν)ν = ∑
j a(ν)mjνj , and thus

∑
j mja(νj )νjT1 =∑

j a(ν)mj+1νj+1. Now notice that, for each class j , the measures νjT1 and νj+1
are probabilities supported on Sj+1, and these sets are disjoint. Therefore, νjT1 =
νj+1, and mja(νj ) = a(ν)mj+1. Iterating the former identity, we get νjTn =
νjT

n
1 = νj+n, and taking the product over j of both sides of the latter, we get

(a(ν))d = a(ν1) · · ·a(νd). �

Proof of Theorem 9. Under the present assumptions on the transition matrix,
Holley inequality holds for any pair of measures supported on the subspace of
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trajectories that start in a given cyclic subclass. Therefore, parts (i) and (ii) can be
proved just as in the proof of Theorem 1.

To prove (iii), let ν be a q.s.d. By (ii) and Lemma 11, δ1Tn � ν1Tn = ν1+n.

Claim (iii) follows by taking n = dk + j − 1.
Proof of (iv). As in the proof of Theorem 1(iv), by (i), (iii) the limits

νj := lim
k

δ1Tdk+j−1

exist and satisfy

νjT1 = νj+1,

and moreover νj � νj for any q.s.d. ν. It remains to find the right constants mj

and show that ν
 given by ν
 = ∑
j mjνj is a q.s.d., that is, that there exists an α ∈

(0,1) such that ν
Q|S = αν
. Since νjQ|S = a(νj )νj+1, the problem is equivalent
to find α,m1, . . . ,md solving the system of d linear equations given by mja(νj ) =
αmj+1. The system has a nonzero solution if and only if αd = a(ν1) · · ·a(νd).

Choosing the positive α that satisfies this identity, the space of solutions is one-
dimensional and its elements have coordinates which agree in sign. Choosing m to
be the unique solution to satisfy

∑
j mj = 1, we have that ν
 is a probability and

moreover it is a q.s.d. with a(ν
) = α, concluding the proof of (iv).
Proof of (v). It suffices to prove that a(ν
) ≤ a(ν) for all q.s.d. ν. By Lemma 11,

(
a(ν
)

)d = a(ν1) · · ·a(νd) ≤ a(ν1) · · ·a(νd) = (
a(ν)

)d
,

where the inequality comes from (iv) and the hypothesis of (v). �
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