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Abstract. The Lindley distribution has been generalized by many authors
in recent years. Here, we introduce a new generalization that provides better
fits than the Lindley distribution and all of its known generalizations. The
distribution contains Lindley and weighted Lindley (Ghitany et al. (Math.
Comput. Simulation 81 (2011) 1190–1201)) distributions as special cases.
Also, the distribution can be represented as a mixture of weighted exponen-
tial (Gupta and Kundu (Statistics 43 (2009) 621–634)) and weighted gamma
distributions, and as a negative mixture of Lindley distributions with differ-
ent parameters. Various properties of the distribution (including quantiles,
moments, moment generating function, hazard rate function, mean residual
lifetime, Lorenz curve, Gini index, Rényi entropy and Mathai–Haubold en-
tropy) are derived. Maximum likelihood estimators of the distribution pa-
rameters are derived and their behavior is assessed via simulation. Fisher’s
information matrix and asymptotic confidence intervals for the distribution
parameters are given. Finally, a real data application is presented.

1 Introduction

Weighted distributions are useful for better understanding of standard distribu-
tions and can extend distributions by adding flexibility. Also, truncated and dam-
aged observations can be analyzed using weighted distributions. Azzalini (1985)
proposed a new method for introducing a skewness parameter to the normal dis-
tribution based on a weighted function and obtained the skew-normal distribution.
Azzalini’s idea has been applied to other symmetric distributions and many skew-
symmetric distributions have been developed; for example, the skew-logistic distri-
bution due to Nadarajah (2009). Gupta and Kundu (2009) used a similar approach
to Azzalini for introducing a skewness parameter to the exponential distribution
and constructed a new class of weighted exponential distributions, which are gen-
eralizations of the exponential distribution and are similar to the Weibull, gamma
and exponentiated exponential distributions. They showed that the weighted ex-
ponential distribution can be used to analyze positively skewed data, like the
distributions mentioned above, and data coming from hidden truncated models.
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Shakhatreh (2012) proposed a new class of two-parameter weighted exponential
distributions which generalizes the class of weighted exponential distributions.

The aim of this paper is to introduce a skewness parameter to the Lindley dis-
tribution using a similar idea to Gupta and Kundu (2009) and to obtain a new
weighted Lindley (NWL) distribution. The Lindley distribution was originally in-
troduced by Lindley (1958) in the context of Bayesian statistics. It has the proba-
bility density function (p.d.f.)

f (x,λ) = λ2

1 + λ
(1 + x)e−λx (1)

for x > 0 and λ > 0. Ghitany et al. (2008) investigated properties of the Lindley
distribution with application and outlined that the Lindley distribution is a better
model than one based on the exponential distribution. Ghitany et al. (2013) showed
that the Lindley distribution can be written as a mixture of an exponential distribu-
tion and a gamma distribution with shape parameter 2.

Many generalizations of the Lindley distribution have been proposed in recent
years. The generalizations that we are aware of are: the generalized Lindley (GL)
distribution due to Zakerzadeh and Dolati (2009) with the p.d.f.

f (x) = θ2(θx)α−1(α + γ x)e−θx

(γ + θ)�(α + 1)
(2)

for x > 0, α > 0, θ > 0 and γ > 0; the weighted Lindley (WEL) distribution due
to Ghitany et al. (2011) with the p.d.f.

f (x) = θc+1

(θ + c)�(c)
xc−1(1 + x)e−θx (3)

for x > 0, c > 0 and θ > 0; the extended Lindley (EL) distribution due to Bakouch
et al. (2012) with the p.d.f.

f (x) = λ(1 + λ + λx)α−1

(1 + λ)α

[
β(1 + λ + λx)(λx)β−1 − α

]
e−(λx)β (4)

for x > 0, α ∈ (−∞,0)∪{0,1}, β > 0 and λ > 0; the exponential Poisson Lindley
(EPL) distribution due to Barreto-Souza and Bakouch (2013) with the p.d.f.

f (x) = βθ2(1 + θ)2e−βx(3 + θ − e−βx)

(1 + 3θ + θ2)(1 + θ − e−βx)3 (5)

for x > 0, θ > 0 and β > 0; the power Lindley (PL) distribution due to Ghitany et
al. (2013) with the p.d.f.

f (x) = αβ2

β + 1

(
1 + xα)

xα−1e−βxα

(6)
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for x > 0, α > 0 and β > 0; the Weibull Lindley (WL) distribution due to
Asgharzadeh et al. (2014b) with the p.d.f.

f (x) = 1

1 + λ

[
αλ(βx)α + αβ(1 + λ)(βx)α−1 + λ2(1 + x)

]
e−λx−(βx)α (7)

for x > 0, α > 0, β > 0 and λ > 0; the generalized inverse Lindely (GIL) distribu-
tion due to Asgharzadeh et al. (2014a) with the p.d.f.

f (x) = αλ2

λ + 1

(
1 + x−α)

x−α−1e−λx−α

(8)

for x > 0, α > 0 and λ > 0.
However, there are situations in which the Lindley distribution and all of its

generalizations may not be suitable from a theoretical or an applied point of view.
Here, we describe such a situation. We introduce a two-parameter distribution that
provides better fits than the Lindley distribution and all of its generalizations for
at least one real data set (in spite of the fact that three known generalizations
have three parameters each). It is a two-parameter generalization of the Lindley
distribution referred to as the NWL distribution. Some other motivation for the
NWL distribution are that it (i) extends the skewness of the Lindley distribution
from [√2,2] to [ 2√

3
,3]; (ii) contains the two-parameter weighted Lindley distri-

bution due to Ghitany et al. (2011) and the Lindley distribution as particular cases;
(iii) takes the form of a mixture of weighted exponential and weighted gamma
distributions; (iv) takes the form of a negative mixture of the Lindley distribution
with different parameters; (v) has the hazard rate function bounded; (vi) gives re-
alistic values for the Gini index; (vii) gives closed form expressions for the Fisher
information matrix.

A final motivation is that the proposed distribution exhibits only unimodal
p.d.f.s and increasing hazard rates. The latter may seem unrealistic at first sight.
But there are many situations where only increasing hazard rates are used or ob-
served: Milkie and Perakis (2004) state “The results of the failure data analysis on
the Reliance class propulsion system casualties support a lifecycle with an increas-
ing failure rate. The original hypothesis that the evidence would indicate either
a constant or decreasing failure rate as operating hours increase appears false”;
Maeda and Nishikawa (2006) state “Ruling parties in presidential systems face an
increasing hazard rate in their survival”; Woosley and Cossman (2007) observe
that drugs during clinical development have increasing hazard rates; Saidane et al.
(2011) suppose that the demand interval in spare parts inventory systems has in-
creasing hazard rates; Tsarouhas and Arvanitoyannis (2010) show that machines
of the bread production display increasing hazard rates; Koutras (2011) finds that
software degradation times have increasing hazard rates; Lai (2013) investigates
the optimum number of minimal repairs for systems under increasing hazard rates;
and so on.
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The real data set that we consider in this paper is taken from Ugarte et al. (2008):

1501.82 6989.43 2424.02 4150.29 8693.35 2643.77
13148.37 6149.39 23587.21 7248.37 4788.22 6009.51
5349.65 5741.32 7065.81 7261.37 2358.42 10357.88
2499.05 3022.90 4234.86 4482.03 6363.71 3329.91
8740.47 3664.95 4515.97 8497.71 4569.89 8069.63
7366.79 1525.41 3363.02 2420.57 3576.74 3708.05
5819.12 5479.38

These data are carbon retained by leaves measured in kilogram/hectare for thirty
eight different plots of mountainous regions of Navarra (Spain), depending on the
forest classification: areas with ninety percent or more beech trees (Fagus Sylvat-
ica) are labeled monospecific, while areas with many species of trees are labeled
multispecific. These data have a sample skewness of 2.520, so the data cannot be
adequately modeled by the Lindley distribution in (1). We shall refer to the data as
carbon data.

A smoothed nonparametric p.d.f. and a smoothed nonparametric hazard rate
function of the carbon data are shown in Figure 1. We can see that the p.d.f. is
unimodal and that the hazard rate is increasing. So, the proposed distribution is
suitable for modeling the carbon data.

The rest of this paper is organized as follows. Various mathematical properties
of the NWL distribution (like quantiles, moments, moment generating function,
hazard rate function, mean residual lifetime, Lorenz curve, Gini index, Rényi en-
tropy and Mathai–Haubold entropy) are derived in Sections 2 and 3. Inference
with simulation and a real data application for the NWL distribution are discussed
in Section 4.

Figure 1 Smoothed nonparametric p.d.f. and hazard rate of the carbon data.
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2 The distribution and some properties

In this section, we define the NWL distribution and study shape properties of its
p.d.f. The study of shapes is useful to determine if a data set can be modeled by
the NWL distribution.

Definition 1. A random variable X follows the NWL distribution with parameters
λ > 0 and α > 0 if it has the p.d.f.

f (x) = λ2(1 + α)2

αλ(1 + α) + α(2 + α)
(1 + x)

(
1 − e−λαx)

e−λx (9)

for x > 0. The corresponding cumulative distribution function is

F(x) = 1 − e−λx{(1 + α)2(1 + λ + λx) − [λ(1 + α)(1 + x) + 1]e−αλx}
αλ(1 + α) + α(2 + α)

(10)

for x > 0.

Remarks.

1. The Lindley distribution is the particular case of the NWL distribution for α →
+∞.

2. The limit of (9) as α → 0 is

f (x) = λ3

2 + λ
x(1 + x)e−λx,

which is the p.d.f. of the weighted Lindley distribution due to Ghitany et al.
(2011) with parameters 2 and λ.

3. The NWL distribution can be expressed as a mixture of the weighted exponen-
tial distribution with parameters λ and α and the weighted gamma distribution
with parameters 2, λ and α. That is,

f (x) = p
λ(1 + α)

α
e−λx(

1 − e−λαx) + (1 − p)
λ2(1 + α)2

α(2 + α)
xe−λx(

1 − e−λαx)
,

where p = λ(1+α)
λ(1+α)+2+α

.
4. The NWL distribution can be expressed as a negative mixture of the Lindley

distribution with parameter λ and the Lindley distribution with parameter λ(1+
α). That is,

f (x) = p
λ2

1 + λ
(1 + x)e−λx + (1 − p)

λ2(1 + α)2

1 + λ + λα
(1 + x)e−λ(1+α)x,

where p = (1+α)2(1+λ)
αλ(1+α)+α(2+α)

.
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The following proposition derives the analytic shapes of the p.d.f. f (x). It
shows that the p.d.f. is log-concave. Log-concavity is an important property.
Among other areas it has applications in white noise analysis (Asai et al., 2001)
and stochastic optimization (Ninh and Prekopa, 2013).

Proposition 1. The p.d.f. f (x) of the NWL distribution is log-concave and uni-
modal.

Proof. The second derivative of logf (x) is

d2 logf (x)

dx2 = − 1

(1 + x)2 − α2λ2 exp(−αλx)

[1 − exp(−αλx)]2 .

We see that logf (x) is concave for all λ and α. So, f (x) is log-concave and
unimodal. �

Corollary 1. Solving the equation d logf (x)
dx

= 0, the mode M of the NWL distri-
bution is the root of

M = 1

λ

{
e−αλM [−1 + (1 + M)(λ + αλ)

] + 1 − λ
}
.

In the limiting case α → +∞, we find that M = 1−λ
λ

, the mode of the Lindley
distribution.

Note that f (0) = 0, f (+∞) = 0,

f (x) ∼ λ3(1 + α)2

λ(1 + α) + α(2 + α)
x

as x → 0 and

f (x) ∼ λ2(1 + α)2

αλ(1 + α) + α(2 + α)
xe−λx

as x → +∞. The lower tail of the NWL p.d.f. is polynomial while its upper tail
is exponential. Figure 2 plots f (x) for different values of α and λ. We see that the
magnitude of the mode increases with increasing values of α and λ. The location
of the mode decreases with increasing values of α and λ.

3 Statistical and reliability measures

In this section, we give some important statistical and reliability measures for the
NWL distribution like quantiles, moment generating function, moments, hazard
rate and mean residual life functions, Lorenz curve, Gini index, Rényi entropy and
Mathai–Haubold entropy.
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Figure 2 Probability density function of the NWL distribution. The x axes are in log scale.

3.1 Quantiles, moment generating function and moments

Quantiles are fundamental for estimation (for example, quantile estimators) and
simulation. Moment properties are fundamental for any distribution. For instance,
the first four moments can be used to describe any data fairly well. Moments are
also useful for estimation.

Proposition 2. The pth quantile xp of the NWL distribution defined by F(xp) = p

is the root of the equation

xp = 1

λ
log

[
(1 + α)2(1 + λ + λxp) − e−αλxp [λ(1 + α)(xp + 1) + 1]

α(1 − p)[λ(1 + α) + 2 + α]
]
. (11)

Note that xp can be used to generate NWL random variates.

Proposition 3. Let X denote a NWL random variable. Its moment generating
function and r th moment about the origin are

E
(
etX) = λ2(1 + α)2

αλ(1 + α) + α(2 + α)

{
λ − t + 1

(λ − t)2 − λ(1 + α) − t + 1

[λ(1 + α) − t]2

}
and

μ′
r = E

(
Xr) = r![(1 + α)r+2(λ + r + 1) − λ(1 + α) − r − 1]

λr(1 + α)r [αλ(1 + α) + α(2 + α)] ,
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respectively. In particular,

E(X) = μ = (1 + α)3(λ + 2) − (1 + α)λ − 2

λ(1 + α)[λα(1 + α) + α(2 + α)] ,

E
(
X2) = 2

(1 + α)4(λ + 3) − (1 + α)λ − 3

λ2(1 + α)2[λα(1 + α) + α(2 + α)]
and

Var(X) = a2(α)λ2 + a1(α)λ + a0(α)

λ2(1 + α)2[λ(1 + α) + 2 + α]2 ,

where a2(α) = (1 + α)2(2 + 2α + α2), a1(α) = 2(1 + α)(2 + α)(3 + 3α +
2α2) and a0(α) = 2(6 + 12α + 12α2 + 6α3 + α4). Note that limλ→0 Var(X) =
(2 + 2α + α2)/(2 + α)2 > 0 and a2(α)λ2 + a1(α)λ + a0(α) has a minimum at
−a1(α)/a0(α) < 0.

Remark 1. The central moments of X are μr = E(X − μ)r = ∑r
k=0

(r
k

) ×
μ′

k(−μ)r−k . The skewness and kurtosis of X can be obtained using the formulas
skewness(X) = μ3/σ

3 and kurtosis(x) = μ4/σ
4, where σ 2 = Var(X).

Figure 3 plots the mean, variance, skewness and kurtosis of the NWL distribu-
tion. We see that the mean and variance are decreasing as both α and λ increase.
On the other hand, the skewness and kurtosis are increasing as both α and λ in-
crease. We can also see that the NWL distribution extends the skewness of the
Lindley distribution from [√2,2] to [2/

√
3,3]. The increase in the range is mod-

est however.
The range [2/

√
3,3] was determined numerically by computing the skewness

over α = 0.01,0.02, . . . ,100 and λ = 0.01,0.02, . . . ,100. We have no analytical
proof that the skewness belongs to [2/

√
3,3]. This is a possible future work.

Another measure of skewness is MacGillivray’s skewness function (MacGil-
livray, 1986) defined by

ρM(p) = ρ
(1)
M

ρ
(2)
M

= xp + x1−p − 2x0.5

xp − x1−p

for 0 < p < 1. From (11), we obtain

ρ
(1)
M = log

{[
(1 + α)2(1 + λ + λxp) − e−αλxp

(
λ(1 + α)(xp + 1) + 1

)]
× [

(1 + α)2(1 + λ + λx1−p) − e−αλx1−p
(
λ(1 + α)(x1−p + 1) + 1

)]
×

[
α

2

(
λ(1 + α) + 2 + α

)]2}
− log

{[
α(1 − p)

(
λ(1 + α) + 2 + α

)][
αp

(
λ(1 + α) + 2 + α

)]
× [

(1 + α)2(1 + λ + λx0.5) − e−αλx0.5
(
λ(1 + α)(x0.5 + 1) + 1

)]2}
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Figure 3 Mean (top left), variance (top right), skewness (bottom left) and kurtosis (bottom right)
of the NWL distribution.

and

ρ
(2)
M = log

{[
(1 + α)2(1 + λ + λxp) − e−αλxp

(
λ(1 + α)(xp + 1) + 1

)]
× [

αp
(
λ(1 + α) + 2 + α

)]}
− log

{[
(1 + α)2(1 + λ + λx1−p) − e−αλx1−p

(
λ(1 + α)(x1−p + 1) + 1

)]
× [

α(1 − p)
(
λ(1 + α) + 2 + α

)]}
.

Figure 4 plots ρM for some values of the parameters. We can see, again, that the
magnitude of skewness increases as both α and λ increase.

3.2 Hazard rate and mean residual life functions

In reliability studies, the hazard rate (failure rate) and mean residual life functions
are important characteristics and fundamental to the design of safe systems in a
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Figure 4 MacGillivray’s skewness function for the NWL distribution.

wide variety of applications. Therefore, we discuss these properties in the case of
the NWL distribution.

Based on (9) and (10), the hazard rate function of the NWL distribution is

h(x) = λ2(1 + α)2(1 + x)(1 − e−αλx)

(1 + α)2(1 + λ + λx) − [λ(1 + α)(1 + x) + 1]e−αλx
.

In particular, limα→+∞ h(x) = λ2(1+x)
1+λ+λx

, the hazard rate function of the Lindley
distribution.

The following proposition derives the analytical shape of the hazard rate func-
tion.

Proposition 4. The hazard rate function h(x) is an increasing function for all α

and λ.

Proof. Let η(x) = −d logf (x)
dx

. Since

dη(x)

dx
= 1

(1 + x)2 + α2λ2e−αλx

(1 − e−αλx)2 > 0,

Glasser’s lemma (Glaser, 1980) implies that h(x) is increasing in x for all values
of α and λ. �
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Figure 5 Hazard rate function of the NWL distribution. The x axes are in log scale.

Remark 2. The hazard rate function is bounded since h(0) = 0 and h(+∞) = λ.
Furthermore,

h(x) ∼ λ2(1 + α)2αλ

(1 + α)2(1 + λ) − λ(1 + α) − 1
x

as x → 0, a polynomial lower tail.

Figure 5 plots the hazard rate function for different values of α and λ. As shown
by the theory, h(x) is increasing with x. The value of h(x) is increasing with
increasing α (respectively, λ) for fixed λ (respectively, α) and fixed x.

Proposition 5. The mean residual life function m(x) of the NWL distribution is

m(x) = E[X − x|X > x] = 1

1 − F(x)

∫ +∞
x

[
1 − F(t)

]
dt

= (1 + α)3(2 + λ + λx) − e−αλx[2 + λ(1 + α) + λ(1 + α)x]
λ(1 + α){(1 + α)2(1 + λ + λx) − e−αλx[1 + λ(1 + α) + λ(1 + α)x]} .

Remarks.

1. Since the hazard rate function is increasing, the mean residual life function
m(x) is decreasing.
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Figure 6 Mean residual life function of the NWL distribution. The x axes are in log scale.

2. We have

m(0) = μ = (1 + α)3(λ + 2) − (1 + α)λ − 2

λ(1 + α)[λα(1 + α) + α(2 + α)] < m(x) <
1

λ
= m(+∞).

3. In the limiting case α → +∞, we have m(x) = 2+λ+λx
λ(1+λ+λx)

, the mean residual
life function of the Lindley distribution.

Figure 6 plots the mean residual life function for some values of α and λ. As
shown by the theory, m(x) is decreasing. The value of m(x) is decreasing with
increasing α (respectively, λ) for fixed λ (respectively, α) and fixed x.

3.3 Lorenz curve, Gini index, Rényi entropy and Mathai–Haubold entropy

The Lorenz curve for a non-negative random variable X is the graph of

L
(
F(x)

) =
∫ x

0 tf (t) dt∫ +∞
0 tf (t) dt

versus F(x) with the property L(p) ≤ p, L(0) = 0 and L(1) = 1. The Gini index
of X is

G = 1 − 2
∫ 1

0
L(p)dp = 1 − 2

∫ +∞
0

L
(
F(x)

)
f (x) dx,

which can be computed numerically.
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Traditionally, applications of the Lorenz curve and the Gini index are in in-
come modeling and related areas, see Kleiber and Kotz (2003). The list of appli-
cations is too long to cite. But these concepts have also received applications in
other areas: hierarchy theory for digraphs (Egghe, 2002); depression and cogni-
tion (Maldonado et al., 2007); disease risk to optimize health benefits under cost
constraints (Gail, 2009); seasonal variation of environmental radon gas (Groves-
Kirkby et al., 2009); statistical nonuniformity of sediment transport rate (Radice,
2009).

Proposition 6. The Lorenz curve of the NWL distribution is

L(p) = 1

(1 + α)3(λ + 2) − (1 + α)λ − 2

× [
e−λF−1(p){−(1 + α)3[

λ2(
F−1(p)

)2 + λ(λ + 2)F−1(p) + (λ + 2)
]

+ e−αλF−1(p)[λ2(1 + α)2(
F−1(p)

)2

+ (
λ(1 + α)

(
λ(1 + α) + 2

))
F−1(p)

+ λ(1 + α) + 2
]}

− 2 + 2(1 + α)3 − λ(1 + α) + λ(1 + α)3]
.

The area between the line L(F(x)) = F(x) and the Lorenz curve, known as the
area of concentration, may be regarded as a measure of inequality of income, so it
is important in insurance, economics and other fields like reliability and medicine.
Figure 7 shows this area for some values of α and λ. We see that the area increases
as both α and λ increase. The Lorenz curve is convex by definition (see Lorenz,
1905), and the curves in Figure 7 appear indeed convex.

The Gini index is a well-known measure for summarizing income inequality. Its
range is [0,1]. A Gini index of 0 expresses perfect equality, that is every person in
the population has an exactly equal income. A Gini index of 1 expresses a maxi-
mal inequality, that is only one person has all the income. Figure 8 shows the Gini
index for some values of α and λ. We see that it is increasing as both α and λ in-
crease. The possible values of the Gini index appear to include at least the interval
[0.33,0.45]. This range was again determined numerically by computing G over
α = 0.01,0.02, . . . ,100 and λ = 0.01,0.02, . . . ,100. We have no analytical proof
that 0.33 ≤ G ≤ 0.45. This is a possible future work.

Entropy is used to measure the randomness of systems and it is widely used in
areas like physics, molecular imaging of tumors and sparse kernel density estima-
tion. Two popular entropy measures are the Rényi entropy (Rényi, 1961) and the
Mathai–Haubold entropy (Mathai and Haubold, 2008) defined by

JR(γ ) = 1

1 − γ
log

{∫



f γ (x) dx

}
(12)
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Figure 7 Lorenz curve of the NWL distribution.

Figure 8 Gini index of the NWL distribution.

and

JMH(δ) =
∫

[f (x)]2−δ dx − 1

δ − 1
, (13)

respectively, for γ > 0, γ �= 1, δ �= 1 and δ < 2. The entropy JMH(δ) is an inaccu-
racy measure through disturbance or distortion of systems.

Some recent applications of the Rényi entropy have been: sparse kernel density
estimations (Han et al., 2011); high-resolution scalar quantization (Kreitmeier and
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Linder, 2011); estimation of the number of components of a multicomponent non-
stationary signal (Sucic et al., 2011); identification of cardiac autonomic neuropa-
thy in diabetes (Jelinek et al., 2012); and signal segmentation in time-frequency
plane (Popescu and Aiordachioaie, 2013).

Theorems 1 and 2 derive expressions for these entropies for the NWL distribu-
tion.

Theorem 1. The Rényi entropy of the NWL distribution is

JR(γ ) = 1

1 − γ
log

[ ∞∑
i=0

∞∑
j=0

∞∑
k=0

(
γ

i

)(
γ

j

)
Aγ (−1)j+k

λi+1(αj + γ )i+1k!(i + k)

]
. (14)

Proof. Using the expansion

(1 + x)q =
∞∑
i=0

(
q

i

)
xi

for q ∈ 
 and |x| < 1, we have∫ +∞
0

f γ (x) dx =
∞∑
i=0

∞∑
j=0

(
γ

i

)(
γ

j

)
Aγ (−1)j

δ(i + 1,1)

λi+1(αj + γ )i+1

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

(
γ

i

)(
γ

j

)
Aγ (−1)j+k

λi+1(αj + γ )i+1k!(i + k)
,

where δ(a, b) is the lower incomplete gamma function given by

δ(a, b) =
∫ b

0
xa−1e−x dx =

∞∑
k=0

(−1)kba+k

k!a + k
,

and A = λ2(1+α)2

αλ(1+α)+α(2+α)
. The proof is complete. �

Theorem 2. The Mathai–Haubold entropy of the NWL distribution is

JMH(δ) = 1

δ − 1 (15)

×
[ ∞∑

i=0

∞∑
j=0

∞∑
k=0

(
2 − δ

i

)(
2 − δ

j

)
A2−δ(−1)j+k

λi+1(αj + 2 − δ)i+1k!(i + k)
− 1

]
.

Proof. Note that∫ ∞
0

f 2−δ(x) dx =
∞∑
i=0

∞∑
j=0

∞∑
k=0

(
2 − δ

i

)(
2 − δ

j

)
A2−δ(−1)j+k

λi+1(αj + 2 − δ)i+1k!(i + k)
.

The proof is complete. �
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Finally, we show how (14) and (16) can be computed in practice. We claim
that the infinite series in each of these can be truncated at twenty to yield a high
degree of accuracy. In fact, extensive computations showed that the absolute dif-
ference between (12) and the truncated version of (14) did not exceed 10−20

for all γ = 0.01,0.02, . . . ,0.99,1.01, . . . ,10, α = 0.01,0.02, . . . ,10, and λ =
0.01,0.02, . . . ,10. The absolute difference between (13) and the truncated ver-
sion of (16) did not exceed 10−20 for all δ = 0.01,0.02, . . . ,0.99,1.01, . . . ,1.99,
α = 0.01,0.02, . . . ,10, and λ = 0.01,0.02, . . . ,10.

4 Inference with simulation and data application

In this section, we consider maximum likelihood estimation of the unknown pa-
rameters α and λ of the NWL distribution and give an expression for the associated
Fisher’s information matrix. Also, simulation results on the behavior of maximum
likelihood estimators and a real data application are presented.

4.1 Maximum likelihood estimation and information matrix

Let x1, . . . , xn be a random sample of size n from the NWL distribution. The log-
likelihood function is

l(α,λ) = 2n log(λ) + 2n log(1 + α) − n log(α) − n log
[
λ(1 + α) + 2 + α

]
+

n∑
i=1

log(1 + xi) +
n∑

i=1

log
(
1 − e−αλxi

) − λ

n∑
i=1

xi.

The maximum likelihood estimators of α and λ say α̂ and λ̂ are the simultaneous
solutions of the equations

∂l(α,λ)

∂α
= 2n

1 + α
− n[λ(1 + 2α) + 2(1 + α)]

α[λ(1 + α) + 2 + α] + λ

n∑
i=1

xie
−αλxi

1 − e−αλxi
= 0,

and

∂l(α,λ)

∂λ
= 2n

λ
− n(1 + α)

λ(1 + α) + 2 + α
+ α

n∑
i=1

xie
−αλxi

1 − eαλxi
−

n∑
i=1

xi = 0.

For interval estimation and hypothesis testing of the parameters α and λ, we pro-
vide the Fisher information matrix.

Theorem 3. The Fisher information matrix of the maximum likelihood estimators
of α and λ is

IF (α,λ) = −
(

E(Iαα) E(Iαλ)

E(Iλα) E(Iλλ)

)
,

where Iαα = ∂2l(α,λ)

∂α2 , Iλλ = ∂2l(α,λ)

∂λ2 and Iαλ = Iλα = ∂2l(α,λ)
∂α ∂λ

, and their expecta-
tions are given in the Appendix.
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Proof. The proof uses

E

[
X2e−αλX

(1 − eαλX)2

]
= (1 + α)2[ψ ′′′(1 + 1/α) − λαψ ′′(1 + 1/α)]

α5λ2[λ(1 + α) + 2 + α]
and

E

[
Xe−αλX

1 − e−αλX

]
= λ(1 + α) + 2

αλ(1 + α)[λ(1 + α) + 2 + α] ,

where ψ(n)(x) denotes the nth derivative of the digamma function ψ(x). �

Proposition 7. Under certain regularity conditions (see, for example, Ferguson,
1996), the distribution of

√
n(α̂ − α, λ̂ − λ) as n → +∞ is bivariate normal with

zero means and variance covariance matrix I−1
F (α,λ).

Corollary 2. Based on Theorem 3,

Var(α̂) ≈ 1

E(Iαα)
, Cov(α̂, λ̂) = 1

E(Iαλ)
�= 0, Var(̂λ) ≈ 1

E(Iλλ)

for large n. Therefore, α̂ and λ̂ are not asymptotically independent.

Corollary 3. Based on Theorem 3, the asymptotic confidence intervals for α and
λ with significance level γ are

α̂ − zγ/2

√
1

E(Iαα)

∣∣∣∣
α=α̂

< α < α̂ + zγ/2

√
1

E(Iαα)

∣∣∣∣
α=α̂

and

λ̂ − zγ/2

√
1

E(Iλλ)

∣∣∣∣
λ=λ̂

< λ < λ̂ + zγ/2

√
1

E(Iλλ)

∣∣∣∣
λ=λ̂

,

respectively, where za denotes the 100a percentile of a standard normal distribu-
tion.

4.2 Simulation study

Here, we assess the performance of the maximum likelihood estimators α̂ and λ̂

with respect to sample size n. The assessment was based on a simulation study:

1. Generate ten thousand samples of size n from (9). The inversion method was
used to generate samples.

2. Compute the maximum likelihood estimates for the ten thousand samples, say
(α̂i, λ̂i) for i = 1,2, . . . ,10,000.

3. Compute the standard errors of the maximum likelihood estimates for the ten
thousand samples, say (si,α̂, si,̂λ) for i = 1,2, . . . ,10,000.
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4. Compute the biases, mean squared errors, coverage lengths and coverage prob-
abilities given by

biash(n) = 1

10,000

10,000∑
i=1

(ĥi − h), MSEh(n) = 1

10,000

10,000∑
i=1

(ĥi − h)2

and

CLh(n) = 2 · 1.959964

10,000

10,000∑
i=1

si,ĥ,

CPh(n) = 1

10,000

10,000∑
i=1

I {ĥi − 1.959964 · si,ĥ < h < ĥi + 1.959964 · si,ĥ}

for h = α,λ, where I {·} denotes the indicator function.

We repeated these steps for n = 10,11, . . . ,100 with α = 1 and λ = 1, so comput-
ing biash(n), MSEh(n), CLh(n) and CPh(n) for h = α,λ and n = 10,11, . . . ,100.

Figures 9, 10, 11 and 12 show how the two biases, the two mean squared errors,
the two coverage lengths and the two coverage probabilities vary with respect to n.
Also shown in Figure 10 are the asymptotic mean squared errors computed using
Theorem 3. The horizontal lines in Figure 9 correspond to the biases being zero.
The horizontal lines in Figure 10 correspond to the mean squared errors being
zero. The horizontal lines in Figure 12 correspond to the coverage probabilities
being 0.95.

Figure 9 Biases of (α̂, λ̂) versus n.
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Figure 10 Mean squared errors (solid) and asymptotic mean squared errors (broken) of (α̂, λ̂)

versus n.

Figure 11 Coverage lengths of (α̂, λ̂) versus n.
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Figure 12 Coverage probabilities of (α̂, λ̂) versus n.

The following observations can be drawn from the figures: the biases for α ap-
pear generally positive; the biases for λ appear generally negative; the biases for
each parameter approach zero with increasing n; the biases appear larger for α; the
biases appear smaller for λ; the mean squared errors for each parameter decrease
to zero with increasing n; the mean squared errors appear larger for α; the mean
squared errors appear smaller for λ; the asymptotic mean squared errors appear
smaller than the mean squared errors for α; the asymptotic mean squared errors
appear greater than the mean squared errors for λ; the difference between asymp-
totic mean squared errors and mean squared errors diminishes with increasing n;
the coverage lengths for each parameter decrease to zero with increasing n; the
coverage lengths appear larger for α; the coverage lengths appear smaller for λ;
the coverage probabilities for α appear generally greater than the nominal level;
the coverage probabilities for λ appear generally smaller than the nominal level;
the coverage probabilities for each parameter approach the nominal level with in-
creasing n; the coverage probabilities for α are generally closer to the nominal
level. These observations are for α = 1 and λ = 1. But similar observations were
noted for other values of α and λ.

Section 4.3 presents a real data application. The sample size is thirty eight. We
shall see later in Section 4.3 that the NWL distribution provides a good fit to the
data set. Based on this fact, the biases for α̂ and λ̂ can be expected to be less than
0.05 and 0.02, respectively. The mean squared errors for α̂ and λ̂ can be expected to
be less than 0.05 and 0.06, respectively. The difference between asymptotic mean
squared errors and mean squared errors appears negligible at n = 38. The coverage
lengths for α̂ and λ̂ can be expected to be less than 0.8 and 0.9, respectively. The
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coverage probabilities for α̂ and λ̂ can be expected to be within 0.01 and 0.05 of
the nominal level, respectively. Hence, the point estimates given in Section 4.3 can
be considered accurate enough.

4.3 Data application

Here, we illustrate the power of the NWL distribution by using the carbon data
discussed in Section 1.

We fitted the following eleven distributions to the carbon data: the Lindley dis-
tribution specified by the p.d.f. (1); the GL distribution specified by the p.d.f. (2);
the WEL distribution specified by the p.d.f. (3); the EL distribution specified by
the p.d.f. (4); the EPL distribution specified by the p.d.f. (5); the PL distribution
specified by the p.d.f. (6); the WL distribution specified by the p.d.f. (7); the GIL
distribution specified by the p.d.f. (8); the proposed NWL distribution specified by
the p.d.f. (9); the Weibull distribution specified by the p.d.f.

f (x) = abaxa−1 exp
[−(bx)a

]
for x > 0, a > 0 and b > 0; the gamma distribution specified by the p.d.f.

f (x) = ba

�(a)
xa−1 exp(−bx)

for x > 0, a > 0 and b > 0. Note that these distributions include all of the known
generalizations of the Lindley distribution. The GL, EL and WL distributions have
each three parameters. The WEL, EPL, PL, GIL, NWL, Weibull and gamma dis-
tributions have each two parameters. The Lindley distribution has one parameter.

Each distribution was fitted by the method of maximum likelihood. The NWL
distribution was fitted by following the details in Section 4.1.

Table 1 lists the parameter estimates, their standard errors (computed by in-
verting the observed information matrices), the negative log-likelihood values, the
values of the Akaike information criterion (AIC), the values of the Bayesian infor-
mation criterion (BIC), the p-values based on the Kolmogorov–Smirnov statistic
and the p-values based on the test due to Chen and Balakrishnan (1995).

We see that the NWL distribution has the largest log-likelihood value, the
smallest AIC value, the smallest BIC value, the largest p-value based on the
Kolmogorov–Smirnov test, and the largest p-value based on Chen and Balakr-
ishnan’s (1995) test in spite of the fact that three of the fitted distributions have
more parameters. The WEL and gamma distributions have the second largest log-
likelihood value, the second smallest AIC value, the second smallest BIC value,
the second largest p-value based on the Kolmogorov–Smirnov test, and the sec-
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Table 1 Parameter estimates, standard errors, log-likelihood values and goodness of fit measures

Log- KS CB
Distribution Estimates (ses) likelihood AIC BIC p-value p-value

Lindley λ̂ = 3.438 × 10−4 (5.025 × 10−5) 358.98 719.95 721.59 0.45 0.4

NWL α̂ = 1.000 (1.788), 356.86 717.72 721.00 0.72 0.70
λ̂ = 4.009 × 10−4 (1.355 × 10−4)

EL λ̂ = 9.824 × 10−1 (4.414 × 10−1), 467.167 940.33 945.25 0.02 0.01
α̂ = −5.264 × 10−7 (2.376 × 10−7),
β̂ = 9.029 × 10−2 (9.934 × 10−3)

WEL θ̂ = 5.461 × 10−4 (7.227 × 10−4), 357.02 718.04 721.32 0.61 0.58
ĉ = 2.172 (3.294)

EPL θ̂ = 2.679 × 104 (2.004 × 103), 367.35 738.70 741.97 0.04 0.04
β̂ = 1.717 × 10−4 (8.492 × 10−5)

GL θ̂ = 2.817 × 10−2 (1.422 × 10−2), 6376.23 12,758.46 12,763.38 0.01 0.01
α̂ = 2.239 × 10−6 (3.307 × 10−1),
γ̂ = 3.495 × 10−2 (9.228 × 10−3)

PL α̂ = 1.202 (1.045), 357.77 719.53 722.81 0.59 0.55
β̂ = 5.712 × 10−5 (4.671 × 10−5)

WL λ̂ = 3.894 × 10−4 (3.065 × 10−5), 359.71 725.42 730.37 0.05 0.05
α̂ = 7.709 × 10−1 (5.201 × 10−2),
β̂ = 3.981 × 10−7 (6.956 × 10−9)

Weibull â = 1.670 (7.454 × 10−1), 359.75 723.50 726.77 0.11 0.09
b̂ = 1.526 × 10−4 (9.937 × 10−5)

Gamma â = 3.171 (6.936 × 10−1), 357.02 718.04 721.32 0.61 0.60
b̂ = 1.831 × 103 (4.340 × 102)

GIL α̂ = 1.148 (5.986 × 10−2), 363.85 731.71 734.98 0.04 0.03
λ̂ = 1.262 × 104 (5.863 × 103)

ond largest p-value based on Chen and Balakrishnan’s (1995) test. The GL dis-
tribution has the smallest log-likelihood value, the largest AIC value, the largest
BIC value, the smallest p-value based on the Kolmogorov–Smirnov test, and the
smallest p-value based on Chen and Balakrishnan’s (1995) test. The EL distribu-
tion has the second smallest log-likelihood value, the second largest AIC value, the
second largest BIC value, the second smallest p-value based on the Kolmogorov–
Smirnov test, and the second smallest p-value based on Chen and Balakrishnan’s
(1995) test.

Thus we can conclude that the NWL distribution provides the best fit among the
distributions considered here for the carbon data. The second best fit is by the WEL
and gamma distributions. The worst fit is by the GL distribution. The second worst
fit is by the EL distribution. The density and probability plots shown in Figures 13
and 14 confirm these observations. The fitted p.d.f. of the NWL distribution best
captures the empirical histogram. The plotted points for the NWL distribution are
most closest to the diagonal line in the probability plot.



A new weighted Lindley distribution with application 23

Figure 13 Histogram of the carbon data and the fitted p.d.f.s of the Lindley, GL, WEL, EL, EPL,
PL, WL, GIL, NWL, Weibull and gamma distributions.

Figure 14 Probability plots for the fits of the Lindley, GL, WEL, EL, EPL, PL, WL, GIL, NWL,
Weibull and gamma distributions.
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Appendix

Here, we provide the elements of the Fisher’s information matrix IF (α,λ). They
are

Iαα = ∂2l(α,λ)

∂α2

= − 2n

(1 + α)2

+ n
(1 + 2α + 2α2)λ2 + 2(2 + 3α + 2α2)λ + 2(2 + 2α + α2)

α2[λ(1 + α) + 2 + α]2

− λ2
n∑

i=1

x2
i e−αλxi

(1 − e−αλxi )2 ,

Iλλ = ∂2l(α,λ)

∂λ2 = −2n

λ2 + n(1 + α)2

[λ(1 + α) + 2 + α]2 − α2
n∑

i=1

x2
i e−αλxi

(1 − e−αλxi )2 ,

Iαλ = Iλα = ∂2l(α,λ)

∂α ∂λ

= − n

[λ(1 + α) + 2 + α]2 +
n∑

i=1

xie
−αλxi

1 − e−αλxi
− λα

n∑
i=1

x2
i e−αλxi

(1 − e−αλxi )2 ,

E(Iαα) = − 2n

(1 + α)2

+ n
(1 + 2α + 2α2)λ2 + 2(2 + 3α + 2α2)λ + 2(2 + 2α + α2)

α2[λ(1 + α) + 2 + α]2

− n
(1 + α)2[ψ ′′′(1 + 1/α) − λαψ ′′(1 + 1/α)]

α5[λ(1 + α) + 2 + α] ,

E(Iλλ) = −2n

λ2 + n(1 + α)2

[λ(1 + α) + 2 + α]2

− n
(1 + α)2[ψ ′′′(1 + 1/α) − λαψ ′′(1 + 1/α)]

α3λ2[λ(1 + α) + 2 + α]
and

E(Iαλ) = − n

[λ(1 + α) + 2 + α]2 + n[λ(1 + α) + 2]
αλ(1 + α)[λ(1 + α) + (2 + α)]

− n(1 + α)2[ψ ′′′(1 + 1/α) − λαψ ′′(1 + 1/α)]
α4λ[λ(1 + α) + 2 + α] .
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