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Abstract. In this paper, we establish the existence of a square integrable oc-
cupation density for two classes of stochastic processes. First, we consider a
Gaussian process with an absolutely continuous random drift, and second we
handle the case of a (Skorohod) integral with respect to subfractional Brow-
nian motion with Hurst parameter H > 1

2 . The proof of these results uses a
general criterion for the existence of a square integrable local time, which is
based on the techniques of Malliavin calculus.

1 Introduction

Local times for semimartingale have been widely studied. See, for example, the
monograph Revuz and Yor (1994) and the references therein. On the other hand,
local times of Gaussian processes have also been the object of a rich probabilis-
tic literature; see, for example, the book of Marcus and Rosen (2006). A general
criterion for existence of a local time for a wide class of anticipating processes,
which are not semimartingale or Gaussian processes, was established by Imkeller
and Nualart (1994). The proof of this result combines the technique of Malliavin
calculus with the criterion given by Geman and Horowitz (1980). This criterion
was applied in Imkeller and Nualart (1994) to the Brownian motion with an an-
ticipating drift, and to indefinite Skorohod integral processes. The same criterion
was applied in Es-Sebaiy et al. (2010) to the fractional Brownian motion with an
anticipating drift, and to indefinite Skorohod integral with respect to fractional
Brownian motion with Hurst parameter H ∈ (1

2 ,1). The aim of this paper is to
extend the result of Es-Sebaiy et al. (2010) to the case of subfractional Brownian
motion. First, we consider a subfractional Brownian motion SH = {SH

t , t ∈ [0,1]}
with an absolutely continuous random drift

Xt = SH
t +

∫ t

0
us ds,

where u is a stochastic process measurable with respect to the σ -field gener-
ated by SH . Under reasonable regularity hypotheses imposed to the process u,
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we prove the existence of a square integrable occupation density with respect to
the Lebesque measure for the process X. Our second example is represented by
indefinite divergence (Skorohod) integral X = {Xt, t ∈ [0,1]} with respect to the
subfractional Brownian motion with Hurst parameter H ∈ (1

2 ,1), that is,

Xt =
∫ t

0
usδS

H
s .

We provide integrability conditions on the integrand u and its iterated derivatives
in the sense of Malliavin calculus in order to deduce the existence of a square
integrable occupation densities for X.

The paper is organized as follows. In Section 2, we give some preliminaries on
subfractional Brownian motion and on Malliavin calculus with respect to Gaus-
sian process. In Section 3, we prove the existence of the occupation densities for
perturbed subfractional Brownian motion process, and in Section 4 we treat the
case of indefinite divergence integral processes with respect to the subfractional
Brownian motion.

2 Preliminaries

2.1 Subfractional Brownian motion

The subfractional Brownian motion SH = {SH
t , t ∈ [0,1]} with parameter H ∈

(0,1) is a centered Gaussian process with covariance function

CH(s, t) = E
[
SH

t SH
s

] = s2H + t2H − 1

2

[
(s + t)2H + |t − s|2H ]

, s, t ≥ 0.

If H = 1
2 , the process SH is a standard Brownian motion. The increments of SH

satisfy
[(

2 − 22H−1) ∧ 1
]|t − s|2H

≤ E
(
SH

t − SH
s

)2 (2.1)

≤ [(
2 − 22H−1) ∨ 1

]|t − s|2H if H ∈ (0,1).

For the most information about subfractional Brownian motion, see Bojdecki,
Gorostiza and Talarczyk (2004); Dzhaparidze and van Zanten (2004).

2.2 Malliavin calculus

Let {Bt, t ∈ [0,1]} be a centered Gaussian process with covariance

R(t, s) = E(BtBs),
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defined in a complete probability space (�,F,P). By HB , we denote the canonical
Hilbert space associated to B defined as the closure of the linear space generated
by the indicator functions {1[0,t], t ∈ [0,1]} with respect to the inner product

〈1[0,t],1[0,s]〉HB
= R(t, s), s, t ∈ [0,1].

The mapping 1[0,t] → Bt can be extended to an isometry between HB and the
first Gauusian chaos generated by B . We denote by B(ϕ) the image of an element
ϕ ∈ HB by this isometry.

We will first introduce some elements of the Malliavin calculus associated
with B . We refer to Nualart (2006) for detailed account these notions. For a smooth
random variable F = f (B(ϕ1), . . . ,B(ϕn)), for ϕi ∈ HB and f ∈ C∞

b (Rn) (f and
all its partial derivatives are bounded), the derivative of F with respect to B is
defined by

DF =
n∑

j=1

∂f

∂xj

(
B(ϕ1), . . . ,B(ϕn)

)
ϕj .

For any integer k ≥ 1 and any real number p ≥ 1, we denote by D
k,p the Sobolev

space defined as the closure of the space of smooth random variables with respect
to the norm

‖F‖p
k,p = E

(|F |p) +
k∑

j=1

∥∥DjF
∥∥p

Lp(�,H⊗j
B )

.

Similarly, for a given Hilbert space V , we can define Sobolev spaces of V -valued
random variables Dk,p(V ).

Consider the adjoint δ of D in L2. Its domain is the class of elements u ∈
L2(�,HB) such that

E
(〈DF,u〉HB

) ≤ C‖F‖2,

for any F ∈D
1,2, and δ(u) is the element of L2(�) given by

E
(
δ(u)F

) = E
(〈DF,u〉HB

)

for any F ∈ D
1,2. We will make use of the notation δ(u) = ∫ 1

0 usδBs . It is well
known that D1,2(HB) is included in the domain of δ. Note that E(δ(u)) = 0 and
the variance of δ(u) is given by

E
(
δ(u)2) = E

(‖u‖2
HB

) +E
(〈
Du, (Du)∗

〉
HB⊗HB

)
, (2.2)

if u ∈ D
1,2(HB), where (Du)∗ is the adjoint of Du in the Hilbert space HB ⊗HB .

We have Meyer’s inequality

E
(∣∣δ(u)

∣∣p) ≤ Cp

(
E

(‖u‖p
HB

) +E
(‖Du‖p

HB⊗HB

))
, (2.3)
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for p ≥ 1. We will make use of the property

Fδ(u) = δ(Fu) + 〈DF,u〉HB
, (2.4)

if F ∈ D
1,2 and u ∈ Dom(δ) such that Fu ∈ Dom(δ). We also need the commuta-

tivity relationship between D and δ

Dδ(u) = u +
∫ 1

0
DusδBs, (2.5)

if u ∈ D
1,2(HB) and the process {Dus, s ∈ [0,1]} belong to the domain of δ.

Throughout this paper, we will denote by C a generic constant that may be dif-
ferent from line to line.

For a measurable function x : [0,1] → R, we define the occupation measure

μ(x)(C) =
∫ 1

0
1C(xs) ds,

where C is a Borel subset of R and we will say that x has one occupation density
with respect to the Lebesque measure λ if the measure μ is absolutely continuous
with respect to λ. The occupation density of the function x will be the derivative
dμ
dλ

. For a continuous process {Xt, t ∈ [0,1]}, we will say that X has a occupa-
tion density on [0,1] if for almost all ω ∈ �,X(ω) has an occupation density on
[0,1]. We will use the following criterium for the existence of occupation densities
(see Es-Sebaiy et al., 2010; Imkeller and Nualart, 1994). Set T = {(s, t) ∈ [0,1]2 :
s < t}.
Theorem 2.1. Let {Xt, t ∈ [0,1]} be a continuous stochastic process such that
Xt ∈ D

2,2 for every t ∈ [0,1]. Suppose that there exists a sequence of random
variables {Fn,n ≥ 1} with

⋃
n{Fn �= 0} = � a.s. and Fn ∈ D

1,1 for every n ≥ 1,
two sequences αn > 0, δn > 0, a measurable bounded function γ : [0,1] → R, and
a constant θ > 0, such that:

(a) For every n ≥ 1, |t − s| ≤ δn, and on {Fn �= 0} we have
〈
γD(Xt − Xs),1[s,t]

〉
HB

> αn|t − s|θ , a.s. (2.6)

(b) For every n ≥ 1,∫
T
E

(〈γDFn,1[s,t]〉HB

)|t − s|−θ dt ds < ∞. (2.7)

(c) For every n ≥ 1,∫
T
E

(∣∣Fn

〈
γ ⊗2DD(Xt − Xs),1⊗2

[s,t]
〉
H⊗2

B

∣∣)|t − s|−2θ dt ds < ∞. (2.8)

Then the process {Xt, t ∈ [0,1]} admits a square integrable occupation density on
[0,1].
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3 Occupation density for subfractional Brownian motion with
random drift

We study in this part the existence of the occupation density for subfractional
Brownian motion perturbed by a absolute continuous random drift. For the reader’s
convenience, we recall the following.

Theorem 3.1 (See Es-Sebaiy et al., 2010, Theorem 2, page 137). Let {Bt, t ∈
[0,1]} be a centered Gaussian process satisfying

C1(t − s)2ρ ≤ E
(|Bt − Bs |2) ≤ C2(t − s)2ρ,

for some ρ ∈ (0,1) with C1,C2 two positive constants not depending on t, s.
Consider the process {Xt, t ∈ [0,1]} given by

Xt = Bt +
∫ t

0
us ds,

and suppose that the process u satisfies the following conditions:

(i) u ∈ D
2,2(L2([0,1])).

(ii) E((
∫ 1

0 ‖D2ut‖p
H⊗H dt)λ/p) < ∞, for some λ > 1,p > 1

1−ρ
.

Then the process X has a square integrable occupation density on the interval
[0,1].

The main result of this section is the following.

Theorem 3.2. Let {SH
t , t ∈ [0,1]} be a subfractional Brownian motion with pa-

rameter H ∈ (0,1). Consider the process {Xt, t ∈ [0,1]} given by

Xt = SH
t +

∫ t

0
us ds,

and suppose that the process u satisfies the following conditions:

1. u ∈ D
2,2(L2([0,1])).

2. E((
∫ 1

0 ‖D2ut‖p
H

SH ⊗H
SH

dt)q/p) < ∞, for some q > 1,p > 1
1−H

.

Then the process X has a square integrable occupation density on the interval
[0,1].

Proof. Since SH is Gaussian process then by using (2.1) and Theorem 3.1 we
obtain the result. �
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4 Occupation density for Skorohod integrals with respect to the
subfractional Brownian motion

We study here the existence of occupation densities for indefinite divergence in-
tegrals with respect to subfractional Brownian motion. Consider a process of the
form Xt = ∫ t

0 usδS
H
s , t ∈ [0,1], where SH is subfractional Brownian motion with

Hurst parameter H ∈ (1
2 ,1), and u is an element of D1,2(L2([0,1])) ⊂ Dom(δ).

We know that the covariance of subfractional Brownian motion can be written
as

E
(
SH

t SH
s

) =
∫ t

0

∫ s

0
φH (u, v) dudv = CH(s, t), (4.1)

where φH (u, v) = H(2H − 1)[|u − v|2H−2 − (u + v)2H−2].
Formulae (4.1) implies that

〈ϕ,ψ〉H
SH

= αH

∫ 1

0

∫ 1

0

[|u − v|2H−2 − (u + v)2H−2]
ϕuψv dudv (4.2)

for any pair step functions ϕ and ψ on [0,1] and where αH = H(2H − 1). Con-
sider the kernel

nH (t, s) = 21−H
√

π

�(H − 1/2)
s3/2−H

(∫ t

s

(
x2 − s2)H−3/2

dx

)
1(0,t)(s). (4.3)

By Dzhaparidze and van Zanten (2004, Theorem 3.2, page 45), we have

CH(s, t) = c2
H

∫ s∧t

0
nH (t, u)nH (s, u) du, (4.4)

where

c2
H = �(1 + 2H) sinπH

π
.

Property (4.4) implies that CH(s, t) is nonnegative definite. Consider the linear
operator n∗

H from E (set of step functions on [0,1]) to L2([0,1]) defined by

n∗
H(ϕ)(s) = cH

∫ 1

s
ϕr

∂nH

∂r
(r, s) dr.

Using (4.2) and (4.4), we have
〈
n∗

Hϕ,n∗
Hψ

〉
L2([0,1])

= c2
H

∫ 1

0

(∫ 1

s

∂nH

∂r
(r, s) drϕr

)(∫ 1

s
ϕr

∂nH

∂u
(u, s) duψu

)
ds

= c2
H

∫ 1

0

∫ 1

0

(∫ r∧u

0

∂nH

∂r
(r, s)

∂nH

∂u
(u, s) ds

)
ϕrψu dr du
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= c2
H

∫ 1

0

∫ 1

0

∂2CH

∂r ∂u
(r, u)ϕrψu dr du

= αH

∫ 1

0

∫ 1

0

[|u − r|2H−2 − (u + r)2H−2]
ϕrψu dr du

= 〈ϕ,ψ〉H
SH

.

As a consequence, the operator n∗
H provides an isometry between the Hilbert space

HSH and L2([0,1]). Hence, the process W defined by

Wt = SH ((
n∗

H

)−1
(1[0,t])

)
is a Wiener process, and the process SH has an integral representation of the form

SH
t = cH

∫ t

0
nH (t, s) dWs,

because (n∗
H)(1[0,t])(s) = cHnH (t, s). By Dzhaparidze and van Zanten (2004), we

have

Wt =
∫ t

0
ψH(t, s) dSH

s ,

where

ψH(t, s) = sH−1/2

�(3/2 − H)

×
[
tH−3/2(

t2 − s2)1/2−H (4.5)

− (H − 3/2)

∫ t

s

(
x2 − s2)1/2−H

xH−3/2 dx

]
1(0,t)(s).

We can find a linear space of functions contained in HSH in the following way. Let
|HSH | be the linear space of measurable functions on [0,1] such that

‖ϕ‖2|H
SH | = c2

H

∫ 1

0

(∫ 1

s
|ϕr |∂nH

∂r
(r, s) dr

)2

ds < ∞. (4.6)

From the above computations, it is easy to check that

‖ϕ‖2|H
SH | = αH

∫ 1

0

∫ 1

0
|ϕr ||ϕu|φH (r,u) dr du. (4.7)

It is not difficult to show that |HSH | is a Banach space with the norm ‖ · ‖|H
SH | and

E is dense in |HSH |. We will obtain the following lemma.

Lemma 4.1. The canonical Hilbert space HSH associated to SH satisfies:

L2([0,1]) ⊂ L1/H ([0,1]) ⊂ HSH , (4.8)

where H > 1
2 .
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Proof. For any H > 1
2 , we have φH (t, s) ≤ αH |u − r|2H−2. Then, for any mea-

surable function ϕ on [0,1] we have

‖ϕ‖|H
SH | ≤ ‖ϕ‖|H

BH |. (4.9)

Using (4.9) and the fact that L2([0,1]) ⊂ L1/H ([0,1]) ⊂ |HBH | (see Nualart,
2006), we obtain

L2([0,1]) ⊂ L1/H ([0,1]) ⊂ |HBH | ⊂ |HSH |.
It remains to show that |HSH | ⊂ HSH . For any measurable function ϕ on [0,1],
we have

‖ϕ‖H
SH

= αH

∫ 1

0

∫ 1

0
ϕrϕuφH (r, u) dr du

≤ αH

∫ 1

0

∫ 1

0
|ϕr ||ϕu|φH (r, u) dr du = ‖ϕ‖|H

SH |.

Hence, |HSH | ⊂ HSH . �

For any 0 ≤ s < t ≤ 1, and u ∈ [0,1] we set

fs,t (u) :=
∫ t

s
φH (u, v) dv. (4.10)

The following is the main result of this section.

Theorem 4.2. Consider the stochastic process Xt = ∫ t
0 usδS

H
s where the inte-

grand u satisfy the following conditions for some q > 2H
1−H

and p > 1 such that
1
p

+ 2 < H(p + 1):

(H1) u ∈ D
3,2(L2([0,1]));

(H2)
∫ 1

0
∫ 1

0 [E(|Dtus |p)+E(‖|DtDus |‖p
H

SH
)+E(‖|DtDDus |‖p

H
SH ⊗H

SH
)]ds dt<

∞;
(H3)

∫ 1
0 E(|ut |−p(q+1)/(p−1)) dt < ∞.

Then the process {Xt, t ∈ [0,1]} admits a square integrable occupation density on
[0,1].

Proof. We are going to show conditions (a), (b) and (c) of Theorem 2.1.
Before, we note that by Es-Sebaiy et al. (2010), there exists a function

γ : [0,1] → {−1,1} such that γtut = |ut |.
Proof of condition (a): Fix 0 ≤ s < t ≤ 1. From (2.5), we obtain

D(Xt − Xs) = u1[s,t] +
∫ t

s
DurδS

H
r ,
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and we can write〈
γD(Xt − Xs),1[s,t]

〉
H

SH
= 〈|u|1[s,t],1[s,t]

〉
H

SH

(4.11)

+
〈
γ

∫ t

s
DurδS

H
r ,1[s,t]

〉
H

SH

.

We first study the term

〈|u|1[s,t],1[s,t]
〉
H

SH
=

∫ t

s

∫ t

s
|uα|φH (α,β)dα dβ =

∫ t

s
|uα|fs,t (α) dα.

For any q > 1, we have (see Bojdecki, Gorostiza and Talarczyk, 2004)

E
(
SH

t − SH
s

)2 =
∫ t

s
fs,t (α) dα

=
∫ t

s

(|uα|fs,t (α)
)q/(q+1)(|uα|fs,t (α)

)−q/(q+1)
fs,t (α) dα,

and using Hölder’s inequality with order q+1
q

and q + 1, we obtain

E
(
SH

t − SH
s

)2

(4.12)

≤
(∫ t

s
|uα|fs,t (α) dα

)q/(q+1)(∫ t

s
|uα|−qfs,t (α) dα

)1/(q+1)

.

Hence,

fs,t (α) ≤ H(2H − 1)

∫ 1

0

[|α − β|2H−2 + (α + β)2H−2]
dβ

(4.13)
= H

[
(1 − α)2H−1 + (1 + α)2H−1] ≤ 2H,

using (2.1), (4.12) and (4.13), we get∫ t

s
|uα|fs,t (α) dα ≥ C|t − s|2H(q+1)/qZ−1/q

q , (4.14)

where Zq = ∫ 1
0 |uα|−q dα.

On the other hand, for the second summand in the right-hand side of (4.11) we
can write, using Hölder’s inequality∣∣∣∣

〈
γ

∫ t

s
DurδS

H
r ,1[s,t]

〉
H

SH

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣
∫ t

s
DαurδS

H
r

∣∣∣∣fs,t (α) dα

≤
(∫ 1

0
fs,t (α)p/(p−1) dα

)(p−1)/p

(4.15)

×
(∫ 1

0

∣∣∣∣
∫ t

s
DαurδS

H
r

∣∣∣∣
p

dα

)1/p

.
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We can write
(∫ 1

0
fs,t (α)p/(p−1) dα

)(p−1)/p

= αH

∥∥∥∥
∫ t

s

[| · −β|2H−2 − | · +β|2H−2]
dβ

∥∥∥∥
Lp/(p−1)

(4.16)

≤ αH

∥∥∥∥
∫ t

s
| · −β|2H−2 dβ

∥∥∥∥
Lp/(p−1)

≤ αH

∥∥1[s,t] ∗ | · |2H−21[−1,1]
∥∥
Lp/(p−1)(R).

Young’s inequality with exponents a and b in (1,∞) such that 1
a

+ 1
b

= 2 − 1
p

yields
∥∥1[s,t] ∗ | · |2H−21[−1,1]

∥∥
Lp/(p−1)(R)

(4.17)
≤ ‖1[s,t]‖La(R)

∥∥| · |2H−21[−1,1]
∥∥
Lb(R).

Choosing b < 1
2−2H

and letting η = 1
a

< 2H − 1
p

we obtain from (4.15)–(4.17)
∣∣∣∣
〈
γ

∫ t

s
DurδS

H
r ,1[s,t]

〉
H

SH

∣∣∣∣
(4.18)

≤ C|t − s|η
(∫ 1

0

∣∣∣∣
∫ t

s
DαurδS

H
r

∣∣∣∣
p

dα

)1/p

.

Now we will apply Garsia–Rodemich–Ramsey’s lemma (see Garsia, Rodemich
and Rumsey, 1970/1971) with φ(x) = xp,p(x) = x(m+2)/p and to the continuous
function us = ∫ s

0 DαurδS
H
r and (Alòs and Nualart, 2003, Theorem 5), we get

∣∣∣∣
∫ t

s
DαurδS

H
r

∣∣∣∣
p

≤ C|t − s|m
∫ 1

0

∫ 1

0

| ∫ y
x DαurδS

H
r |p

|x − y|m+2 dx dy.

As a consequence
(∫ 1

0

∣∣∣∣
∫ t

s
DαurδS

H
r

∣∣∣∣
p

dα

)1/p

≤ C|t − s|m/pY 1/p
m,p, (4.19)

where

Ym,p =
∫ 1

0

∫ 1

0

∫ 1

0

| ∫ y
x DαurδS

H
r |p

|x − y|m+2 dx dy dα.

Substituting (4.19) into (4.18) yields
∣∣∣∣
〈
γ

∫ t

s
DurδS

H
r ,1[s,t]

〉
H

SH

∣∣∣∣ ≤ C|t − s|η+m/pY 1/p
m,p, (4.20)
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and from (4.14) and (4.20) into (4.11), we get〈
γD(Xt − Xs),1[s,t]

〉
H

SH
≥ |t − s|2H(q+1)/qZ−1/q

q − C|t − s|η+m/pY 1/p
m,p

= |t − s|2H(q+1)/q(
Z−1/q

q − C|t − s|δY 1/p
m,p

)
,

where δ = η + m
p

− 2H − 2H
q

. With a right choice of η the exponent δ is positive,

provide that m + 1
p

− 2H − 2H
q

> 0, because η < 2H − 1
p

. Taking account that
2H
q

< 1 − H , it suffices that

m >
1

q
+ 1 − H. (4.21)

We construct now the sequence {Fn,n ≥ 1}. Fix a natural number n ≥ 2, and
choose a function ϕn(x), which is infinitely differentiable with compact support,
such that ϕn(x) = 1 if |x| ≤ n − 1, and ϕn(x) = 0 if |x| ≥ n. Set Fn = ϕn(G),
where G = Zq + Ym,p . Then clearly the sequences αn and δn required in Theo-
rem 2.1 can be constructed on the set {Fn �= 0}, with θ = 2H + 2H

q
.

It only remains to show that the random variables Fn are in the space D
1,1. For

this we have to show that the random variables ‖DZq‖H
SH

and ‖DYm,p‖H
SH

are
integrable on the set {G ≤ n}. First notice that, as in the proof of Proposition 4.1 of
Imkeller and Nualart (1994), we can show that E(‖DZq‖H

SH
) < ∞. This follows

from the integrability conditions (H3) and
∫ 1

0
E

(‖Dut‖p
H

SH

)
dt < ∞, (4.22)

which holds of (H2), the continuous embedding of L1/H ([0,1]) into HSH (see
Lemma 4.1), and the fact that pH ≥ 1. On the other hand, we can write

DYm,p = p

∫ 1

0

∫ 1

0

∫ 1

0
|ξx,y,α|p−1 sign(ξx,y,α)Dξx,y,α|x − y|−m−2 dx dy dα,

where ξx,y,α = ∫ y
x DαurδS

H
r . Thus

‖DYm,p‖H
SH

≤ p

∫ 1

0

∫ 1

0

∫ 1

0
|ξx,y,α|p−1‖Dξx,y,α‖H

SH
|x − y|−m−2 dx dy dα

≤ p(Ym,p)(p−1)/p

(∫ 1

0

∫ 1

0

∫ 1

0
‖Dξx,y,α‖p

H
SH

|x − y|−m−2 dx dy dα

)1/p

.

Now, to show that 1(G≤n)‖DYm,p‖H
SH

belong to L1(�), it suffices to show that
the random variable

Y =
∫ 1

0

∫ 1

0

∫ 1

0
‖Dξx,y,α‖p

H
SH

|x − y|−m−2 dx dy dα
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has a finite expectation. Since, for any 0 ≤ y < x ≤ 1

Dξx,y,α = 1[y,x]Dαu +
∫ x

y
DDαusδS

H
s ,

we have

Y ≤ C

(∫ 1

0

∫ 1

0

∫ 1

0
‖1[y,x]Dαu‖p

H
SH

|x − y|−m−2 dx dy dα

+
∫ 1

0

∫ 1

0

∫ 1

0

∥∥∥∥
∫ x

y
DDαusδS

H
s

∥∥∥∥
p

H
SH

|x − y|−m−2 dx dy dα

)

= C(Y1 + Y2).

From the continuous embedding of L1/H ([0,1]) into HSH , we obtain

Y1 ≤ C

∫ 1

0

∫ 1

0

∫ 1

0
‖1[y,x]Dαu‖p

L1/H ([0,1])|x − y|−m−2 dx dy dα

≤ C|x − y|pH−1
∫ 1

0

∫ 1

0

∫ 1

0

∫ x

y
|Dαur |p|x − y|−m−2 dx dy dα.

Hence, E(Y1) < ∞, by Fubini’s theorem (Imkeller and Nualart, 1994, Proposi-
tion 3.1) and condition (H2), provided

m < pH − 1. (4.23)

On the other hand, using the estimate (2.3), and again the continuous embedding
of L1/H ([0,1]) into HSH yields

E

(∥∥∥∥
∫ x

y
DDαusδS

H
s

∥∥∥∥
p

H
SH

)

≤ CE
(∥∥DαDu·1[y,x](·)

∥∥p

H⊗2
SH

+ ∥∥DαDDu·1[y,x](·)
∥∥p

H⊗3
SH

)

≤ CE
(∥∥|DαDu·|1[y,x](·)

∥∥p

L1/H ([0,1],H
SH )

+ ∥∥|DαDDu·|1[y,x](·)
∥∥p

L1/H ([0,1],H⊗2
SH )

)

≤ C|x − y|pH−1
(∫ x

y
E

(∥∥|DαDur |
∥∥p
H

SH

)
dr

+
∫ x

y
E

∥∥|DαDDur |
∥∥p

H⊗2
SH

)
.

As before we obtain E(Y2) < ∞ by Fubini’s theorem and condition (H2), provided
(4.23) holds. Notice that condition 1

p
+ 2 < H(p + 1) implies that we can choose

an m such that (4.21) and (4.23) hold.
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Proof of condition (b): Define An = {G ≤ n}. Then condition (b) in Theorem 2.1
follows from ∫

T
E

(〈γDFn,1[s,t]〉H
SH

)|t − s|−θ dt ds

≤ C

∫
T
E

(
1An〈γDG,1[s,s]〉H

SH

)|t − s|−θ dt ds

≤ CE
(
1An‖DG‖H

SH

) ∫
T

|t − s|H−θ dt ds,

since CE(1An‖DG‖H
SH

) < ∞ and θ − H = H + 2H
q

< 1.
Proof of condition (c): We have

DαDβ(Xt − Xs) = 1[s,t](β)Dαuβ + 1[s,t](α)Dβuα +
∫ t

s
DαDβurδS

H
r .

Hence, 〈
γ ⊗2DD(Xt − Xs),1⊗2

[s,t]
〉
H⊗2

SH

= 〈
γ ⊗21[s,t](β)Dαuβ,1⊗2

[s,t]
〉
H⊗2

SH

+ 〈
γ ⊗21[s,t](α)Dβuα,1⊗2

[s,t]
〉
H⊗2

SH

+
〈
γ ⊗2

∫ t

s
DαDβurδS

H
r ,1⊗2

[s,t]
〉
H⊗2

SH

= J1(s, t) + J2(s, t) + J3(s, t).

For i = 1,2,3, we set Ai = E(Fn

∫
T |t − s|−2θJi(s, t) dt ds). Let us compute first

A1 ≤ C

∫
T

∫
T

|t − s|2H−2θ
E

(∥∥|Dαuβ |1[s,t](β)
∥∥
H⊗2

SH

)
ds dt

≤ C

∫
T

∫
T

|t − s|2H−2θ
E

(∥∥∣∣Dαuβ1[s,t](β)
∣∣∥∥

H⊗2
BH

)
ds dt

= C

∫
T

∫
T

|t − s|2H−2θ

(∫ t

s

∫ t

s
ϕ(β, y) dβ dy

)1/2

ds dt,

where

ϕ(β, y) =
∫ 1

0

∫ 1

0
E

(|Dαuβ ||Dxuy |φ′(α, x)φ′(β, y)
)
dα dx,

with φ′(β, y) = αH |y − β|2H−2. By Fubini’s theorem A1 < ∞, because 2H −
2θ > −2, which is equivalent to q > H , and∫ t

s

∫ t

s
ϕ(β, y) dβ dy ≤ E

(∥∥|Du|∥∥2
H⊗2

BH

)
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and this is finite because of the inclusion of L2([0,1]) in HBH (see Nualart, 2006).
In the same way, we can show that A2 < ∞. Finally,

A3 = E

(
Fn

∫
T

|t − s|−2θ

∣∣∣∣
〈
γ ⊗2

∫ t

s
DαDβurδS

H
r ,1⊗2

[s,t]
〉
H⊗2

SH

∣∣∣∣dt ds

)

≤
∫
T

|t − s|2H−2θ
E

(∥∥∥∥
∫ t

s
DαDβurδS

H
r

∥∥∥∥
H⊗2

SH

)
dt ds,

and we conclude as before by using for example the bound (2.3) for the norm of
the Skorohod integral and the condition (H2). �
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