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Abstract. In this paper, we consider an ARMA(p, q) model with stationary,
φ-mixing error variables having uniformly bounded fourth-order moments.
Both the autoregressive and moving average components of the model involve
stable and explosive roots. Estimating the autoregressive parameters using the
instrumental variable technique and the moving average parameters using a
derived autoregressive process, we derive the asymptotic distribution of the
estimators.

1 Introduction

The limiting distribution of the least squares estimators of an autoregressive pro-
cess with identically and independently distributed (i.i.d.) errors have been studied
by several authors like Mann and Wald (1943), White (1958), Anderson (1959),
Jeganathan (1988) and Chan and Wei (1988) for both the stable and explosive
roots. Basu and Sen Roy (1993) considered all forms of the roots and derived the
asymptotic distribution of the estimator assuming φ-mixing error variables.

However, very few such studies have been extended to an ARMA(p, q) model.
In a recent paper (Sen Roy and Bhattacharya, 2012), we had derived the asymptotic
distribution of the estimators of the parameters of a model with i.i.d. innovations
and having both stable and explosive roots. In the present paper, we seek to ex-
tend those results to a model with dependent innovations. Since the ordinary least
squares estimator of the AR parameters is inconsistent even for the i.i.d. case, we
use the instrumental variable technique to estimate the autoregressive parameters
and a derived autoregressive process to estimate the moving average parameters.

Consider the ARMA(p, q) model,

Xt − α1Xt−1 − α2Xt−2 − · · · − αpXt−p = et − β1et−1 − · · · − βqet−q, (1.1)

where Xt is the observation at time t , t = 1, . . . ,N and et is a stationary φ-mixing
sequence with mean zero, E(e2

t ) = σ 2 and

E
(
e4
t

)
< ∞. (1.2)
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The φ-mixing function φ(n) is a decreasing function of n, with
∑∞

n=1 φ(n)1/2 <

∞. This means that the dependence between the errors decreases as the distance
between the corresponding time points increases. Also the initial conditions are
assumed to be zero, that is, et = 0 for t ≤ 0.

The autoregressive (AR) component is stable or explosive according as the roots
of the characteristic polynomial �(z) = 1 − α1z − α2z

2 − · · · − αpzp are greater
than or less than unity in absolute value. Similarly, the moving average (MA) com-
ponent is stable or explosive according as the roots of the characteristic polynomial
�(z) = 1 − β1z − β2z

2 − · · · − βqzq are greater than or less than unity in absolute
value.

Using a backward shift operator B, model (1.1) can be rewritten as

�(B)Xt = �(B)et . (1.3)

Here, we study the asymptotic distribution of the ARMA(p, q) process as de-
fined in (1.1) under the above conditions. A problem here is that under these con-
ditions even the instrumental variable estimator is inconsistent. To circumvent this
difficulty, the condition

E(xt ej ) = 0p for all t and integers j > t, (1.4)

where xt = (Xt ,Xt−1, . . . ,Xt−p+1)
′ and 0n is a n-dimensional vector of zero ele-

ments, needs to be imposed.
In practice, this means that if ξ(h) is the hth-order autocovariance function of

et ,

�(B)ξ(h) = 0, (1.5)

that is, (1.4) translates into a restriction on the autocovariance function of et . A par-
ticular and plausible choice of ξ(h) is

ξ(h) = ξh, 0 < ξ < 1,

that is, ξ(h) is exponentially decreasing in h.
In studying the limiting distribution, a component-wise break-up according to

stable and explosive roots is made using techniques similar to that of Chan and
Wei (1988). Then using suitably chosen norming matrices, the limiting distribution
of each component is found separately. The results are then put together in the
final theorem. However, since the norming matrices involve the parameters of the
model, it is further shown that the asymptotic results hold even if these parameters
are substituted by their estimators.

Since some of the results are similar to those for the i.i.d. case, we simply state
such results for the sake of completeness and omit their proofs. In Section 2, a
componentwise break up of the process is made. Section 3 considers the asymp-
totic distributions of the estimators componentwise, while Section 4 contains the
main theorem. Some concluding remarks are made in Section 5.
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In the sequel In denotes an identity matrix of order n. diag((·)) denotes a block
diagonal matrix. ∼ implies “asymptotically equivalent to.” The norm of a vector
refers to Euclidean norm, while for a matrix A, ‖A‖ = sup‖x‖=1 ‖Ax‖. ci ’s, i =
0,1, . . . denote constants.

2 A componentwise break-up of the process

For r + s = p and |ρi | > 1, i = 1,2, . . . , r and |γj | < 1, j = 1,2, . . . , s, �(z) can
be rewritten as

�(z) =
r∏

i=1

(
1 − ρ−1

i z
) s∏
j=1

(
1 − γ −1

j z
)
, (2.1)

where ρi are the r stable roots and γj are the s explosive roots of �(z) = 0.
Similarly, �(z) can be written as

�(z) =
c∏

i=1

(
1 − π−1

i z
) d∏
j=1

(
1 − η−1

j z
)
, (2.2)

where πi are the stable roots and ηj are the explosive roots of �(z), with |πi | > 1,
i = 1,2, . . . , c, |ηj | < 1, j = 1,2, . . . , d and c + d = q . All roots are assumed to
be distinct.

Model (1.3) can be rewritten as

�(B)Xt = ut , (2.3)

where

ut = �(B)et (2.4)

is a MA(q) process.
Defining ut = (ut ,0′

p−1)
′, and A = (α1 ... αp−1

Ip−1

αp

0p−1

)
, (2.3) can be rewritten as

xt = Axt−1 + ut , t = 1,2, . . . . (2.5)

Since xt−1 is correlated with ut through et−1, . . . , et−q the least squares esti-
mator of the AR parameter α = (α1, . . . , αp)′ will be inconsistent. Taking n =
N − q − 1 and following Basu et al. (2005), the instrumental variable estimator of
α is

α̂n =
(

n∑
t=1

xtx′
t+q

)−1(
n∑

t=1

xtXt+q+1

)
. (2.6)

To estimate the parameters of the MA component, let Yt−i = det

dβi
, be the partial

derivative of et with respect to βi . Then following Tsay (1993), we obtain the
derived AR(q) process

�(B)Yt = et , t = 1,2,3, . . . . (2.7)
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Defining yt = (Yt , . . . ,Yt−q+1)
′, vt = (et ,0′

q−1)
′, and C = (β1 ... βq−1

Iq−1

βq

0

)
, (2.7)

can be rewritten as

yt = Cyt−1 + vt , t = 1,2,3, . . . . (2.8)

Then the least squares estimator of β = (β1, . . . , βq)
′, based on n observations, is

β̂n =
(

n∑
t=1

yt+qy′
t+q

)−1(
n∑

t=1

yt+qYt+q+1

)
. (2.9)

Let θ = (α′,β ′)′, θ̂n = (α̂′
n, β̂

′
n)

′, zt = (x′
tut+q+1,y′

t+qet+q+1)
′, and

Dn =

⎛⎜⎜⎜⎜⎝
n∑

t=1

xtx′
t+q 0

0
n∑

t=1

yt+qy′
t+q

⎞⎟⎟⎟⎟⎠ .

Then

(θ̂n − θ) = D−1
n

(
n∑

t=1

zt

)
. (2.10)

Denoting by B the backshift operator, the different components are segregated as

Rt = �(B)

r∏
i=1

(
1 − ρ−1

i B
)−1Xt , (2.11)

St = �(B)

s∏
i=1

(
1 − γ −1

i B
)−1Xt , (2.12)

Qt = �(B)

c∏
i=1

(
1 − π−1

i B
)−1Yt , (2.13)

Pt = �(B)

d∏
i=1

(
1 − η−1

i B
)−1Yt . (2.14)

Let rt = (Rt , . . . ,Rt−r+1), st = (St , . . . ,St−s+1), qt = (Qt , . . . ,Qt−c+1) and pt =
(Pt , . . . ,Pt−d+1). Following (2.1) and (2.11), Rt can be written as

Rt =
s∏

i=1

(
1 − γ −1

i B
)
Xt = Xt − γ ∗

1 Xt−1 − · · · − γ ∗
s Xt−s (2.15)

so that for the r × p matrix

T1 =

⎛⎜⎜⎝
1 −γ ∗

1 . . . −γ ∗
s 0 0 0 0

0 1 −γ ∗
1 . . . −γ ∗

s 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 1 −γ ∗
1 . . . −γ ∗

s

⎞⎟⎟⎠ ,



644 S. Bhattacharya and S. Sen Roy

T1xt = rt . Similarly, following (2.1) and (2.12) we may find a s × p matrix T2
so that T2xt = st . Hence, there exists a p × p matrix T(1) = (T′

1,T′
2)

′ such that
T(1)xt = (r′

t , s′
t )

′. Similarly, following (2.2) and (2.13) we may define a c × q ma-
trix T3 for which T3yt = qt and following (2.2) and (2.14) a d × q matrix T4 such
that T4yt = pt . Combining these, we define the q × q matrix T(2) = (T′

3,T′
4)

′ with
T(2)yt = (q′

t ,p′
t )

′. Finally, let T = diag(T(1),T(2)). We next derive the componen-
twise limiting distributions.

3 Componentwise asymptotic distributions

3.1 The AR stable component

We first consider the stable component of the autoregressive part,
∏r

i=1(1 −
ρ−1

i B)Rt = ut . Following (2.11), this can be reconstructed as

Rt = ρ∗
1 Rt−1 + ρ∗

2 Rt−2 + · · · + ρ∗
r Rt−r + ut , (3.1)

where ρ∗ = (ρ∗
1 , ρ∗

2 , . . . , ρ∗
r ) are the parameters of the process with roots ρj , j =

1, . . . , r . Define L1 = (ρ∗
1 ... ρ∗

r−1
Ir−1

ρ∗
r

0r−1

)
and u1t = (ut ,0′

r−1).
Then (3.1) can be rewritten as

rt = L1rt−1 + u1t , t = 1,2,3, . . . . (3.2)

Let ρ̌1 = max1≤j≤r |ρ−1
j | < 1. Then∥∥Ln

1

∥∥ ∼ c0ρ̌
n
1 as n → ∞. (3.3)

Let Jn = n−1/2In and 1 = E(rnr′
n+q), 1 positive definite. Define wt = r′

tut+q+1

and Rn = n−1 ∑n
t=1 rtr′

t+q .

Lemma 3.1. Under (3.3) and bounded fourth-order moments of the innovations,

n−1/2
n∑

t=1

wt
d−→N

(
0,∗

1
)
, (3.4)

where

∗
1 = E

(
w1w′

1
) +

∞∑
k=1

E
(
w1w′

k+1
) +

∞∑
k=1

E
(
wk+1w′

1
)

(3.5)

and the elements of ∗
1 are convergent.

Proof. Similar to that of Sen Roy and Bhattacharya (2012). �

Lemma 3.2. Under fourth-order bounded moment condition of the innovations,
for any constant c1 and for all ε > 0,

P
[‖Rn − 1‖ > ε

]
< c1n

−1ε−1. (3.6)
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Proof. Similar to that of Sen Roy and Bhattacharya (2012). �

Theorem 3.1. Under conditions (1.2) and (3.3),

(i) Jn

n∑
i=1

rtr′
t+qJ′

n

p−→1 (3.7)

and

(ii)
(
J′
n

)−1
(

n∑
t=1

rtr′
t+q

)−1(
n∑

t=1

rtut+q+1

)
d−→Nr

(
0,−1

1 ∗
1−1

1

)
. (3.8)

Proof. The proof follows from Lemmas 3.1 and 3.2. �

3.2 The AR explosive component

Next, consider the explosive component of the autoregressive part,
∏s

i=1(1 −
γ −1
i B)St = ut which from (2.12) can be rewritten as

St = γ ∗
1 St−1 + γ ∗

2 St−2 + · · · + γ ∗
s St−s + ut for t = 1,2, . . . , (3.9)

where γ ∗ = (γ ∗
1 , . . . , γ ∗

s ) are the parameters of the process with roots γj for j =
1,2, . . . , s. Defining F = (γ ∗

1 ... γ ∗
s−1

Is−1

γ ∗
s
0

)
and u2t = (ut ,0′

s−1)
′, the model (3.22)

can be rewritten as

st = Fst−1 + u2t , t = 1,2, . . . . (3.10)

Let γ̌1 = min1≤j≤s |γ −1
j | > 1 and γ̌2 = max1≤j≤s |γ −1

j | > 1. Then ‖Fn‖ ∼ c2γ̌
n
2

and ∥∥F−n
∥∥ ∼ c3γ̌

−n
1 as n → ∞. (3.11)

Let

s∗
n = F−(n−1)sn =

n∑
t=1

F−(t−1)u2t =
n∑

t=1

ftu2t , (3.12)

where ft denotes the first column of F−(t−1).
Following Longnecker and Serfling (1978), and because of (1.2) and

∞∑
t=1

‖F−t‖ < ∞,

it follows that s∗
n converges a.s. Let

lim
n−→∞ s∗

n = s∗ =
∞∑
t=1

F−(t−1)u2t . (3.13)

The next two lemmas are similar to those of Sen Roy and Bhattacharya (2012).
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Lemma 3.3. s∗
n

L2−→ s∗, and hence s∗
n

p−→ s∗.

Lemma 3.4. For dn = F−(n−1) ∑n
t=1 stut+q+1 and hn = ∑n

t=1 F−(t−1)s∗
nun+q+2−t ,

dn − hn
p−→0.

Let K be a nonsingular matrix such that KFK−1 = diag(γ −1
1 , . . . , γ −1

s ). Writing
G = diag(γ1, . . . , γs), we have F−n = K−1GnK where∥∥Gn

∥∥ ∼ c4γ̌
−n
1 as n → ∞. (3.14)

Also let Sn and S be s × s diagonal matrices with ith diagonal element equal to
the ith element of Ks∗

n and Ks∗, respectively, and let ϑn = (v1, . . . , vs)
′, where

vj = ∑n
i=1 γ

(i−1)
j un+q+2−i for j = 1,2, . . . , s. Then hn can be written in the form

hn = K−1
n∑

t=1

Gt−1Ks∗
nun+q+2−t = K−1Snϑn. (3.15)

Define the s × s diagonal matrix S∗
n with ith diagonal element equal to the ith el-

ement of S∗∗
n = K

∑[n/3]
t=1 ftut and ϑ∗

n = (v∗
1 , v∗

2 , . . . , v∗
s ), where for j = 1,2, . . . , s

v∗
j = ∑[n/3]

i=1 γ
(i−1)
j un+q+2−i . Here, S∗

n and ϑ∗
n are partial sums consisting of only

[n/3] of the ui’s. However, S̄∗
n depends on the first [n/3] observations of ut ,

while ϑ∗
n depends on the last [n/3] observations. S∗

n and ϑ∗
n are separated by

[n/3] + q + 1 intervening ui’s.

Lemma 3.5. Sn and ϑn are asymptotically independent.

Proof. Under bounded second-order moment of ut ’s and since ut ’s of S∗∗
n are

separated from those of ϑ∗
n by at least length [n/3]+q +1, using the lemma (page

170) of Billingsley (1968),∥∥E
(
S∗∗

n ϑ∗
n

′)∥∥
≤ ‖K‖

[n/3]∑
i=1

n∑
j=[2n/3]+1

‖di‖
∥∥Gn−j

∥∥∣∣E(uiuq+1+j )
∣∣

(3.16)

≤ ‖K‖
[n/3]∑
i=1

n∑
j=[2n/3]+1

‖di‖2φ1/2([n/3] + q + 1
)
E

(
u2

i

)∥∥Gn−j
∥∥

≤ c5

([n/3]∑
i=1

‖di‖
)(

n∑
j=[2n/3]+1

∥∥Gn−j
∥∥)

→ 0 as n → ∞.

Since E(S∗∗
n ) = 0 and E(ϑ∗

n) = 0, S∗
n and ϑ∗

n are asymptotically uncorrelated.
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Now, following (1.2) and (3.11), we have

E
∥∥(

Sn − S∗
n

)(
Sn − S∗

n

)′∥∥ ≤ E

(
n∑

i=[n/3]+1

‖K‖∥∥F−(i−1)
∥∥‖u2i‖

)2

≤ c6
∥∥F−2[n/3]∥∥ → 0 as n → ∞.

Hence, Sn − S∗
n

L2−→0 which implies Sn − S∗
n

p−→0.
Following (1.2) and (3.14),

E
∥∥(

ϑn − ϑ∗
n

)(
ϑn − ϑ∗

n

)′∥∥ ≤ E

(n−[n/3]∑
i=1

∥∥Gn−i
∥∥‖uq+1+i‖

)2

≤ c7
∥∥G2[n/3]∥∥ → 0 as n → ∞.

Hence, ϑn − ϑ∗
n

L2−→0 which implies ϑn − ϑ∗
n

p−→0.
Since S∗

n and ϑ∗
n are Gaussian, they are asymptotically independent. Hence, Sn

and ϑn are asymptotically independent. �

Lemma 3.6. S∗
n

L2−→S and ϑ∗
n

L2−→ϑ , where ϑ = (v̄1, v̄2, . . . , v̄s), with v̄j =∑∞
i=1 γ

(i−1)
j un+q+2−i for j = 1,2, . . . , s.

Proof. The proof is similar to that of Lemma 3.5. �

Next, define

� =
⎛⎜⎝

(
1 − γ 2

1

)−1
(1 − γ1γ2)

−1 . . . (1 − γ1γs)
−1

. . . . . . . . . . . .

(1 − γ1γs)
−1 (1 − γ2γs)

−1 . . .
(
1 − γ 2

s

)−1

⎞⎟⎠
and F∗ = ∑∞

i=1 F−(i−1)s∗s∗′F−(i−1)′. Then with γ (i−1) = (γ i−1
1 , . . . , γ i−1

s )′ we
observe that

F∗ =
∞∑
i=1

K−1G(i−1)Ks∗s∗′K′G(i−1)′K−1′

(3.17)

= K−1
∞∑
i=1

Sγ (i−1)γ (i−1)′S′K−1′ = K−1S�S′K−1′
.

Taking Kn = F−(n+q−1), we have the following theorem.

Theorem 3.2. Under (1.2) and (3.11),

(i) Kn+q−1

n∑
t=1

sts′
t+qK′

n

p−→F∗. (3.18)
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If in addition et ’s are Gaussian, F∗ is positive definite a.s. and

(ii)
(
K′

n

)−1
(

n∑
t=1

sts′
t+q

)−1(
n∑

t=1

stut+q+1

)
d−→N∗

1, (3.19)

where N∗
1 = K′S−1�−1ϑ , ϑ being a s-variate Gaussian variable with mean zero

and dispersion matrix V = ((vij )) with

vij =
∞∑

k=1

∞∑
l=1

γ
(k−1)
i γ

(l−1)
j E(un+q+2−kun+q+2−l).

Also ϑ is independent of K′S−1�−1.

Proof. Under Lemmas 3.3–3.6, the proof follows similarly as in Sen Roy and
Bhattacharya (2012). �

3.3 The MA stable component

Following (2.13), the stable part of the moving average component,
∏c

i=1(1 −
π−1

i B)Qt = et , can be rewritten as

Qt = π∗
1 Qt−1 + · · · + π∗

c Qt−c + et , (3.20)

where π∗ = (π∗
1 , . . . , π∗

c ) are the parameters of the process with roots πj , j =
1, . . . , c. Defining L2 = (π∗

1 ... π∗
c−1

Ic−1

π∗
c

0c−1

)
and v1t = (et ,0′

c−1)
′, model (3.20) re-

duces to

qt = L2qt−1 + v1t , t = 1,2, . . . . (3.21)

Let π̌1 = max1≤j≤c |π−1
j | < 1. Then∥∥Ln

2

∥∥ ∼ c8π̌
n
1 as n → ∞. (3.22)

Let Mn = n−1/2In and 2 = E(qnq′
n).

Theorem 3.3. Under the conditions (1.2) and (3.22),

(i) Mn

n∑
i=1

qt+qq′
t+qM′

n

p−→2 (3.23)

and

(ii)
(
M′

n

)−1
(

n∑
i=1

qt+qq′
t+q

)−1(
n∑

i=1

qt+qet+q+1

)
(3.24)

d−→Nc

(
0,−1

2 ∗
2−1

2

)
,

where ∗
2 = E(qq+1q′

q+1e
2
q+2).

Proof. The proof is similar to that of Theorem 3.1. �
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3.4 The MA explosive component

From (2.14), the explosive component of the moving average part
∏d

i=1(1 −
η−1

i B)Pt = et can be rewritten as

Pt = η∗
1Pt−1 + · · · + η∗

dPt−d + et for t = 1,2, . . . , (3.25)

where η∗ = (η∗
1, . . . , η

∗
d) are the parameters of the process with roots ηj for j =

1,2, . . . , d . Define, F̃ = (η∗
1 ... η∗

d−1
Id−1

η∗
d

0d−1

)
and v2t = (et ,0′

d−1)
′, and rewrite (3.25)

as

pt = F̃pt−1 + v2t , t = 1,2, . . . . (3.26)

Let η̌1 = min1≤j≤d |η−1
j | > 1 and η̌2 = max1≤j≤d |η−1

j | > 1. Then ‖F̃n‖ ∼ c9η̌
n
2

and ∥∥F̃−n
∥∥ ∼ c10η̌

−n
1 as n → ∞. (3.27)

Let K̃ be a nonsingular matrix such that K̃F̃K̃−1 = diag(η−1
1 , . . . , η−1

d ) and s̃ =∑∞
t=1 F̃−(t−1)v2t . Define the d × d diagonal matrix S̃ whose ith diagonal element

is the ith element of K̃̃s. Let Nn = F̃−(n+q−1),

� =
⎛⎜⎝

(
1 − η2

1

)−1
. . . (1 − η1ηd)−1

. . . . . . . . .

(1 − η1ηd)−1 . . .
(
1 − η2

d

)−1

⎞⎟⎠
and F̃∗ = ∑∞

i=1 F̃−(i−1)̃s̃s′F̃−(i−1)′ = K̃−1S̃�S̃′K̃−1′.

Theorem 3.4. Under (1.2) and (3.27),

(i) Nn

n∑
t=1

pt+qp′
t+qN′

n

p−→ F̃∗. (3.28)

In addition if et ’s are Gaussian, F̃∗ is positive definite a.s. Also

(ii)
(
N′

n

)−1
(

n∑
t=1

pt+qp′
t+q

)−1 n∑
t=1

pt+qet+q+1
d−→N∗

2, (3.29)

where N∗
2 = K̃′S̃−1�−1ϑ̃ , ϑ̃ being a d-variate Gaussian variable with mean zero

and dispersion matrix Ṽ = ((ṽij )) with ṽij = σ 2 ∑∞
k=1

∑∞
l=1 η

(k−1)
i η

(l−1)
j . Also ϑ̃

is independent of K̃′S̃−1�−1.

Proof. The proof is similar to that of Theorem 3.2. �
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4 The main theorem

We first show the consistency of θ̂n. Although, like for the i.i.d. errors or the mar-
tingale difference errors, the consistency can be shown directly, in this case we
take advantage of the discussions in Section 3 to do so.

Let Gn = diag((Jn,Kn,Mn,Nn)). Then we have the following theorem.

Theorem 4.1. Under conditions (1.2), (3.3), (3.11), (3.22) and (3.27),

(θ̂n − θ) = op(1). (4.1)

Proof. Consider the different components of (T′G′
n)

−1(θ̂n − θ).
For the stable component of the AR part, it follows from Theorem 3.1(ii) that

(
J′
n

)−1
(

n∑
t=1

rtr′
t+q

)−1(
n∑

t=1

rtut+q+1

)
= Op(1).

Next, for the explosive component of the AR part, defining dn as in Lemma 3.4,

(
F−(n+q−1)′)−1

(
n∑

t=1

sts′
t+q

)−1 n∑
t=1

stut+q+1

=
(

F−(n−1)
n∑

t=1

sts′
t+qF−(n+q−1)′

)−1

dn.

Now under the stationarity of the sequence ut , for some c11 > 0,

E‖dn‖ ≤ n
∥∥F−(n−1)

∥∥n−1
n∑

t=1

E‖stut+q+1‖

= c11n
∥∥F−(n−1)

∥∥ −→ 0 as n −→ ∞.

Hence, dn = op(1). This along with Theorem 3.2(ii) gives(
F−(n−1)

n∑
t=1

sts′
t+qF−(n+q−1)′

)−1

dn = op(1).

Similar results hold for the stable and explosive components of the MA part.
Hence, using Proposition 6.1.2 of Brockwell and Davis (1991), we have∥∥(

T′G′
n

)−1
(θ̂n − θ)

∥∥ = Op(1)

so that ∥∥(θ̂n − θ)
∥∥ = op

(‖TGn‖)
.

Hence, we have the following theorem. �
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Theorem 4.2. Under conditions (1.2), (3.3), (3.11), (3.22) and (3.27), as n −→
∞,

(i) GnTDnT′G′
n

p∼ diag
((

1,F∗,2, F̃∗))
(4.2)

and

(ii)
(
T′G′

n

)−1
(θ̂n − θ)

d∼ (
Nr ,N∗

1,Nc,N∗
2

)′
, (4.3)

where the stable and explosive components are asymptotically independent of each
other, but the two stable components and the two explosive components of the AR
and MA parts are not.

To prove Theorem 4.2, we require the following lemmas.

Lemma 4.1. Under conditions (1.2), (3.3), (3.11), (3.22) and (3.27),

(i) Jn

n∑
t=1

rts′
t+qK′

n

p−→0

and

(ii) Mn

n∑
t=1

qt+qp′
t+qN′

n

p−→0.

Proof. The proof is similar to that of Sen Roy and Bhattacharya (2012). �

We next state (without proof) a lemma by Helland (1982).

Lemma 4.2. Let (X(1)
n,k, . . . ,X(k)

n,k), k = 1,2, . . . ,m = 1,2, . . . be a sequence of m-

dimensional, stationary φ-mixing array with
∑∞

n=1{φ(k)(n)}1/2 < ∞ for each k.

For some stopping rule sn(t), let Xn(t) = (X(1)
n (t), . . . ,X(k)

n (t)), where X(j)
n (t) =∑sn(t)

k=1 X(j)
n,k . Also suppose that W1,W2, . . . ,Wm are m independent Gaussian pro-

cesses and f1, f2, . . . , fm are independent nonnegative measurable functions such
that for all t > 0 and k = 1,2, . . . ,m,

∫ t
0 f 2

k (s) ds < ∞. Then under the conditions

sn(t)∑
k=1

(
X(i)

n,k

)2 p−→
∫ t

0
f 2

i (s) ds for all i = 1,2, . . . ,m (4.4)

and
sn(t)∑
k=1

X(i)
n,kX(j)

n,k

p−→ 0 for all i 	= j = 1, . . . ,m, (4.5)

Xn
p−→

(∫
f1 dW 1, . . . ,

∫
fm dWm

)
. (4.6)
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Lemma 4.3. Jn

∑n
t=1 rtut+q+1 and Kn

∑n
t=1 stut+q+1 are asymptotically inde-

pendent.

Proof. In fact, it can be shown that(
1√
n

[nt]∑
k=1

rkuk+q+1,F−(n−1)
[nt]∑
k=1

skuk+q+1

)
d→(

Ns,N∗
1
)
, (4.7)

where Ns is a normal vector with mean zero and variance ∗
1 and N∗

1 = K−1S̄ϑ̂ is
the product of two independent normal variates, Ns being independent of N∗

1.
In Theorems 3.1 and 3.2, we have shown that each of the two components in

(4.7) converge to the corresponding marginal distributions, that is, condition (4.4)
holds. Hence, we need only to show that the cross product term converges in prob-
ability to zero.

Under the assumption of bounded fourth-order moment,

E

∥∥∥∥∥ 1√
n

F−(n−1)
[nt]∑
k=1

rkuk+q+1s′
kuk+q+1

∥∥∥∥∥
= E

∥∥∥∥∥ 1√
n

F−(n−1)
[nt]∑
k=1

u2
k+q+1

(
k∑

j=1

Lk−j
1 uj

)(
k∑

l=1

Fk−lul

)′∥∥∥∥∥
≤ c12

1√
n

∥∥F−(n−1)
∥∥ [nt]∑

k=1

(
1 − ‖L1‖k)(‖F‖k − 1

)
(4.8)

≤ c12
1√
n

∥∥F−(n−1)
∥∥(

n∑
k=1

∥∥Fk
∥∥ − [nt]

)

= c12
1√
n

∥∥F−(n−2)
∥∥(

(‖Fn‖ − 1)

‖F‖ − 1
− [nt]

)
→ 0 as n → ∞.

Hence, condition (4.5) holds. Thus, Lemma 4.2 leads to Lemma 4.3 and (4.7). �

Corollary 4.1. The following are asymptotically independent:

(i) Mn

∑n
t=1 qt+qet+q+1 and Kn

∑n
t=1 stut+q+1,

(ii) Jn

∑n
t=1 rtut+q+1 and Nn

∑n
t=1 pt+qet+q+1,

(iii) Mn

∑n
t=1 qt+qet+q+1 and Nn

∑n
t=1 pt+qet+q+1.

Proof. The proofs are similar to that of Lemma 4.3. �

Lemma 4.4. The following terms are dependent even for large n:

(i) Jn

∑n
t=1 rtut+q+1 and Mn

∑n
t=1 qt+qet+q+1,

(ii) Kn

∑n
t=1 stut+q+1 and Nn

∑n
t=1 pt+qet+q+1.
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Proof. For large n and any kn � kn/n → 0, both the terms in (i) depend on ei ,
kn + 1 ≤ i ≤ n − kn. Hence, the two terms are dependent.

Similarly, the terms in (ii) are dependent since for large n, Sn and S̃n depend on
ei for 1 ≤ i ≤ kn and ϑn and ϑ̃n depend on ei for n − kn + 1 ≤ i ≤ n. Hence, the
lemma. �

Proof of Theorem 4.2. Theorem 4.2(i) and (ii) follows from Theorems 3.1, 3.2,
3.3 and 3.4, Lemmas 4.1, 4.3 and 4.4 and Corollary 4.1. �

Remark. T and Gn in Theorem 4.2 involves parameters, which in practical situ-
ations need to be estimated. This can be done as follows. An estimator Â of A as
defined in (2.5) can be obtained using the instrumental variable estimator α̂n of α.
This would lead to the estimators ρ̂−1

i , i = 1, . . . , r and γ̂ −1
j , j = 1, . . . , s of the

roots of A, and hence to

ρ̂∗
i = (−)j

∑
i1<

r∑
i2<

· · · ∑
<ij=1

ρ̂−1
i1

ρ̂−1
i2

· · · ρ̂−1
ik

, i = 1, . . . , r (4.9)

and the corresponding expression of γ̂ ∗
j , j = 1, . . . , s. π̂∗

i ’s and η̂∗
j can be similarly

estimated by using β̂n in C as defined in (2.8).
Since ‖(Â − A)‖ = op(1) and ‖(B̂ − B)‖ = op(1), it follows that ρ̂∗

i ’s, γ̂ ∗
j ’s,

π̂∗
k ’s and η̂∗

l ’s are consistent estimators of ρ∗
i ’s, γ ∗

j ’s, π∗
k ’s and η∗

l ’s, respectively.

Hence, ‖L̂1 −L1‖ = op(1), ‖L̂2 −L2‖ = op(1), ‖F̂−F)‖ = op(1) and ‖ ˆ̃F− F̃‖ =
op(1).

Using these in T and Gn, we get the estimators T̂ and Ĝn.

Theorem 4.3. Under conditions (1.2), (3.3), (3.11), (3.22) and (3.27), as n −→
∞, (

T̂′Ĝ′
n

)−1
(θ̂n − θ)

d∼ (
Nr ,N∗

1,Nc,N∗
2
)′
.

Proof. To prove the theorem, we write(
T̂′Ĝ′

n

)−1
(θ̂n − θ)

(4.10)
= {(

T̂′Ĝ′
n

)−1 − (
T′G′

n

)−1}
(θ̂n − θ) + (

T′G′
n

)−1
(θ̂n − θ).

Now, ∥∥(ĜnT̂) − (GnT)
∥∥

= ∥∥(Ĝn − Gn)(T̂ − T) + Gn(T̂ − T) + T(Ĝn − Gn)
∥∥ (4.11)

≤ ∥∥(Ĝn − Gn)
∥∥‖T̂ − T‖ + ‖Gn‖

∥∥(T̂ − T)
∥∥ + ‖T‖∥∥(Ĝn − Gn)

∥∥,



654 S. Bhattacharya and S. Sen Roy

where for some c13 > 0,

‖Ĝn − Gn‖ ≤ c13 max
(∥∥F̂−n − F−n

∥∥,∥∥F̃−n − F−n
∥∥)

. (4.12)

Since ‖Â − A‖ = op(1), ‖F̂ − F‖ = op(1), since maximum eigenvalue of F̂ and F
are the same as those of Â and A, respectively. Hence,∥∥F̂−1 − F−1∥∥ = ∥∥F̂−1∥∥∥∥Is − F̂F−1∥∥

(4.13)
= ∥∥F−1∥∥∥∥Is − (

FF−1 + op(1)
)∥∥ = op(1).

Also since for any positive integer m > 0,

F̂−m − F−m =
m−1∑
j=0

(
m

j

)(
F̂−1 − F−1)m−j F−j ,

it follows from (4.13) that ∥∥F̂−n − F−n
∥∥ = op(1).

Similarly, ‖F̃−n − F−n‖ = op(1), so that from (4.12) we have

‖Ĝn − Gn‖ = op(1). (4.14)

Again the nonzero terms of the matrix T̂ − T converges in probability to zero, so
that ‖T̂ − T‖ = op(1). Using this along with (4.14) in (4.11) gives∥∥(ĜnT) − (GnT)

∥∥ = op(1), (4.15)

from which arguments similar to (4.13) leads to{(
T̂′Ĝ′

n

)−1 − (
T′G′

n

)−1} = op(1). (4.16)

Theorem 4.1 along with (4.16) show that the first term in (4.10) converges to zero
in probability, and hence the theorem follows. �

5 Concluding remarks

In this paper, we derive the asymptotic distribution of the estimated ARMA pa-
rameters taking the instrumental variable estimator for the AR component and the
derived AR process estimator for the MA component. The latter is unobservable,
and hence cannot be directly used to estimate β . As suggested by Chan and Tsay
(1996), the derived process Yt (β

0) can be constructed from an initial value β0 of
β and then iterated to obtain the final solution β̂ .

The proofs show that unlike for i.i.d. or martingale difference errors, for φ-
mixing errors, conditions like (1.4) are necessary to derive the asymptotic distri-
butions. The results, however, come out in similar form. The implication is that for
more stringent dependence structure more conditions are necessary to bring about
similar results.
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