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Scaling It Up: Stochastic Search Structure
Learning in Graphical Models

Hao Wang∗

Abstract. Gaussian concentration graph models and covariance graph models
are two classes of graphical models that are useful for uncovering latent depen-
dence structures among multivariate variables. In the Bayesian literature, graphs
are often determined through the use of priors over the space of positive defi-
nite matrices with fixed zeros, but these methods present daunting computational
burdens in large problems. Motivated by the superior computational efficiency of
continuous shrinkage priors for regression analysis, we propose a new framework
for structure learning that is based on continuous spike and slab priors and uses
latent variables to identify graphs. We discuss model specification, computation,
and inference for both concentration and covariance graph models. The new ap-
proach produces reliable estimates of graphs and efficiently handles problems with
hundreds of variables.

Keywords: Bayesian inference, Bi-directed graph, Block Gibbs, Concentration
graph models, Covariance graph models, Credit default swap, Undirected graph,
Structural learning.

1 Introduction

Graphical models use graph structures for modeling and making statistical inferences
regarding complex relationships among many variables. Two types of commonly used
graphs are undirected graphs, which represent conditional dependence relationships
among variables, and bi-directed graphs, which encode marginal dependence among
variables. Structure learning refers to the problem of estimating unknown graphs from
the data and is usually carried out by sparsely estimating the covariance matrix of the
variables by assuming that the data follow a multivariate Gaussian distribution. Under
the Gaussian assumption, undirected graphs are determined by zeros in the concentra-
tion matrix and their structure learning problems are thus referred to as concentration
graph models; bi-directed graphs are determined by zeros in the covariance matrix and
their structure learning problems are thus referred to as covariance graph models. This
work concerns structure learning in both concentration and covariance graph models.

Classical methods for inducing sparsity often rely on penalized likelihood approaches
(Banerjee et al., 2008; Yuan and Lin, 2007; Bien and Tibshirani, 2011; Wang, 2014).
Model fitting then uses deterministic optimization procedures such as coordinate de-
scents. Thresholding is another popular method for the sparse estimation of covariance
matrices for covariance graph models (Bickel and Levina, 2008; Rothman et al., 2009);
however, there is no guarantee that the resulting estimator is always positive definite.
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Bayesian methods for imposing sparsity require the specification of priors over the space
of positive definite matrices constrained by fixed zeros. Under such priors, model deter-
mination is then carried out through stochastic search algorithms to explore a discrete
graphical model space. The inherent probabilistic nature of the Bayesian framework
permits estimation via decision-theoretical principles, addresses parameter and model
uncertainty, and provides a global characterization of the parameter space. It also en-
courages the development of modular structures that can be integrated with more com-
plex systems.

A major challenge in Bayesian graphical models is their computation. Although
substantial progress in computation for these two graphical models has been made
in recent years, scalability with dimensions remains a significant issue, hindering the
ability to adapt these models to the growing demand for higher dimensional problems.
Recently published statistical papers on these two graphical models either focus on
small problems or report long computing times. In concentration graph models, Dobra
et al. (2011) report that it takes approximately 1.5 days to fit a problem of 48 nodes on
a dual-core 2.8 Ghz computer under C; Wang and Li (2012) report approximately two
days for a 100 node problem under MATLAB; and Cheng and Lenkoski (2012) report
a computing time of 1–20 seconds per one-edge update for a 150 node problem using
a 400 core server with 3.2 GHz CPU under R and C++. In covariance graph models,
Silva and Ghahramani (2009) fit problems up to 13 nodes and conclude that “further
improvements are necessary for larger problems.”

To scale up with dimension, this paper develops a new approach called stochastic
search structure learning (SSSL) to efficiently determine covariance and concentration
graph models. The central idea behind SSSL is the use of continuous shrinkage priors
characterized by binary latent indicators in order to avoid the normalizing constant
approximation and to allow block updates of graphs. The use of continuous shrink-
age priors contrasts point-mass priors at zeros that are used essentially by all existing
methods for Bayesian structure learning in these two graphical models.

The motivation for the SSSL comes from the successful developments of continuous
shrinkage priors in several related problems. In regression analysis, continuous shrinkage
priors were used in the seminal paper by George and McCulloch (1993) in the form of
a two component normal mixture for selecting important predictors and these priors
have recently garnered substantial research attention as a computationally attractive
alternative for regularizing many regression coefficients (e.g., Park and Casella 2008;
Griffin and Brown 2010; Armagan et al. 2013). In estimation of covariance matrices, they
are used for regularizing concentration elements and have been shown to provide fast and
accurate estimates of covariance matrices (Wang, 2012; Khondker et al., 2013). In factor
analysis, they are used instead of point-mass priors (Carvalho et al., 2008) for modeling
factor loading matrices, efficiently handling hundreds of variables (Bhattacharya and
Dunson, 2011).

Nevertheless, the current work is fundamentally different from the aforementioned
works. The research focus here is the structure learning of graphs, which is distinct
from regression analysis, factor analysis, and the pure covariance estimation problem
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that solely performs parameter estimation without the structure learning of graphs. Al-
though continuous shrinkage priors generally perform very well in these problems, little
is known about their performance in problems of structure learning. Because graphs are
directly determined by covariance matrices, the positive definiteness of any covariance
matrices poses methodological challenges to investigating prior properties, as well as to
the construction of efficient stochastic search algorithms. The paper’s main contribu-
tions are the development and exploration of two classes of continuous shrinkage priors
for learning undirected and bi-directed graphs, as well as two efficient block Gibbs sam-
plers for carrying out the corresponding structure learning tasks that fit problems of
one or two hundred variables within a few minutes.

2 Background on graphical models

Assume that y = (y1, y2, . . . , yp)
′ is a p-dimensional random vector following a multi-

variate normal distribution N(0,Σ) with mean of zero and covariance matrix Σ ≡ (σij).
Let Ω ≡ (ωij) = Σ−1 be the concentration matrix. Covariance and concentration graph
models are immediately related to Σ and Ω, respectively. Let Y be the n × p data
matrix consisting of n independent samples of y and let S = Y′Y. The theory and
existing methods for structure learning are briefly reviewed in the next two sections.

2.1 Concentration graph models

Concentration graph models (Dempster, 1972) consider the concentration matrix Ω
and encode conditional dependence using an undirected graph G = (V,E), where V =
{1, 2, . . . , p} is a non-empty set of vertices and E ⊆ {(i, j) : i < j} is a set of edges
representing unordered pairs of vertices. The graph G can also be indexed by a set of
p(p− 1)/2 binary variables Z = (zij)i<j , where zij = 1 or 0 according to whether edge
(i, j) belongs to E and not. Theoretically, the following properties are equivalent:

zij = 0 ⇔ (i, j) /∈ E ⇔ yi ⊥⊥ yj | y−(ij) ⇔ ωij = 0,

where y−(ij) is the random vector containing all elements in y except for yi and yj , and
“⇔” reads as “if and only if”.

In the Bayesian paradigm, concentration graph models are usually modeled through
hierarchical priors consisting of the following: (i) the conjugate G-Wishart prior Ω ∼
WG(b,D) (Dawid and Lauritzen, 1993; Roverato, 2002) for Ω given the graph Z; and
(ii) independent Bernoulli priors for each edge-inclusion indicator zij with inclusion
probability π:

p(Ω | Z) = IGW (b,D,Z)−1|Ω| b−2
2 exp{−1

2
tr(DΩ)}1{Ω∈M+(Z)}, (1)

p(Z) =
∏
i<j

{
πzij (1− π)1−zij

}
, (2)

where b is the degrees-of-freedom parameter, D is the location parameter, IGW (b,D,Z)
is the normalizing constant, and M+(Z) is the cone of symmetric positive definite
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matrices with off-diagonal entries ωij = 0 whenever zij = 0. As for the hyperparam-
eters, common choices are b = 3,D = Ip with Ip being the p × p identity matrix and
π = 2/(p − 1) (Jones et al., 2005). Under (1)–(2), some methods (e.g., Jones et al.
2005; Scott and Carvalho 2008; Lenkoski and Dobra 2011) learn Z directly through its
posterior distribution over the model space p(Z | Y) ∝ p(Y | Z)p(Z). Other methods
learn Z indirectly through sampling over the joint space of graphs and concentration
matrices p(Ω,Z | Y) (Giudici and Green, 1999; Dobra et al., 2011; Wang and Li, 2012).
Regardless of the types of algorithms, two shared features of these methods cause the
framework (1)–(2) to be inefficient for larger p problems. The first of these features
is that graphs are updated in a one-edge-at-a-time manner, meaning that sweeping
through all possible edges requires a loop of O(p2) iterations. The second feature is
that the normalizing constant IGW (b,D,Z) for non-decomposable graphs requires ap-
proximation. The commonly used Monte Carlo approximation proposed by Atay-Kayis
and Massam (2005) is not only unstable in some situations but also requires a matrix
completion step of time complexity O(Mp4) for M Monte Carlo samples, making these
methods unacceptably slow in large graphs. Recent works by Wang and Li (2012) and
Cheng and Lenkoski (2012) propose the use of exchange algorithms to avoid the Monte
Carlo approximation. However, the computational burden remains daunting; empirical
experiments in these papers suggest it would take several days to complete the fitting
for problems of p ≈ 100 on a desktop computer.

In the classical formulation, concentration graphs are induced by imposing a graphi-
cal lasso penalty on Ω in order to encourage zeros in the penalized maximum likelihood
estimates of Ω (e.g., Yuan and Lin 2007; Friedman et al. 2008; Rothman et al. 2008).
In particular, the standard graphical lasso problem is to maximize the penalized log-
likelihood

log(detΩ)− tr(
S

n
Ω)− ρ||Ω||1,

over the space of positive definite matrices M+, with ρ ≥ 0 as the shrinkage parameter
and ||Ω||1 =

∑
1≤i,j≤p |ωij | as the L1-norm of Ω. The graphical lasso problem has a

Bayesian interpretation (Wang, 2012). Its estimator is equivalent to the maximum a
posteriori estimation under the following prior for Ω:

p(Ω) = C−1
∏

1≤i,j≤p

{
exp(−λ|ωij |)

}
1Ω∈M+ , (3)

where C is the normalizing constant. By exploiting the scale mixture of normal repre-
sentation, Wang (2012) shows that fitting (3) is very efficient using block Gibbs samplers
for up to the lower hundreds of variables.

A comparison between the two Bayesian methods (1)–(2) and (3) helps to explain the
intuition behind the proposed SSSL. Model (1)–(2) explicitly treats a graph Z as an un-
known parameter and considers its posterior distribution, which leads to straightforward
Bayesian inferences about graphs. However, it is slow to run due to the one-edge-at-a-
time updating and the normalizing constant approximation. In contrast, Model (3) uses
continuous priors, enabling a fast block Gibbs sampler that updates Ω one column at
a time and avoids normalizing constant evaluation. However, no graphs are used in the
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formulation, and thus this approach does not constitute a formal Bayesian treatment of
structure learning. Still, a better approach might be developed by using the best aspects
of the two methods. That is, such a method would allow explicit structure learning, as
in (1)–(2), while maintaining good scalability, as in (3). This possibility is exactly the
key of SSSL. Similar insights also apply to the covariance graph models described below.

2.2 Covariance graph models

Covariance graph models (Cox and Wermuth, 1993) consider the covariance matrix Σ
and encode the marginal dependence using a bi-directed graph G = (V,E), where each
edge has bi-directed arrows instead of the full line used by an undirected graph. Similar
to concentration graph models, the covariance graph G can also be indexed by binary
variables Z = (zij)i<j . Theoretically, the following properties are equivalent:

zij = 0 ⇔ (i, j) /∈ E ⇔ yi ⊥⊥ yj ⇔ σij = 0.

In the Bayesian framework, structure learning again relies on the general hierarchical
priors p(Σ,Z) = p(Ω | Z)p(Z). For p(Σ | Z), Silva and Ghahramani (2009) propose the
conjugate G-inverse Wishart prior Σ ∼ IWG(b,D) with the density as:

p(Σ | Z) = I−1
GIW(b,D,Z)|Σ|−

b+2p
2 exp{−1

2
tr(DΣ−1)}1Σ∈M+(Z), (4)

where b specifies the degrees of freedom, D is the location parameter, and IGIW (b,D,Z)
is the normalizing constant. Structure learning is then carried out through the marginal
likelihood function p(Y | Z) = (2π)−np/2IGIW(b+ n,D+ S,Z)/IGIW(b,D,Z). Unfor-
tunately, the key quantity of the normalizing constant IGIW(b,D,Z) is analytically in-
tractable, even for decomposable graphs. Silva and Ghahramani (2009) propose a Monte
Carlo approximation via an importance sampling algorithm, which becomes computa-
tionally infeasible for p beyond a few dozen. Their empirical experiments are thus lim-
ited to small problems (i.e., p < 20). Later, Khare and Rajaratnam (2011) investigate
a broad class of priors for decomposable covariance graph models that embed (4) as
a special case. They also derive closed-form normalizing constants for decomposable
homogeneous graphs which account for only a tiny portion of the overall graph space.
Despite these advances, the important question of scalability to higher dimensional
problems remains almost untouched.

In the classical framework, the earlier literature focuses on maximum likelihood
estimates and likelihood ratio test procedures (e.g., Kauermann 1996; Wermuth et al.
2006; Chaudhuri et al. 2007). Later, two general types of approaches are proposed
to estimate zeros in the covariance elements. The first is the thresholding procedure,
which sets σij to be zero if its sample estimate is below a threshold (Bickel and Levina,
2008; Rothman et al., 2009; Cai and Liu, 2011). Another approach is motivated by the
lasso-type procedures. Bien and Tibshirani (2011) propose a covariance graphical lasso
procedure for simultaneously estimating covariance matrix and marginal dependence
structures. Their method is to minimize the following objective function:

log(detΣ) + tr(
S

n
Σ−1) + ρ||Σ||1, (5)
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over the space of positive definite matrices M+, with ρ ≥ 0 as the shrinkage parameter.

In comparison with thresholding and likelihood ratio testing methods, this approach has

the advantage of guaranteeing the positive definiteness of the estimated Σ. Although a

Bayesian version of (5) has not been explored previously, its derivation is straightforward

through the prior

p(Σ) = C−1
∏

1≤i,j≤p

{
exp(−λ|σij |)

}
1Σ∈M+ , (6)

In light of the excellent performance of the Bayesian concentration graphical lasso (3)

reported in Wang (2012), we hypothesize that (6) shares similar performances. In fact,

we have developed a block Gibbs sampler for (6) and found that it gives a shrinkage

estimation of Σ and is computationally efficient, although it provides no explicit treat-

ment of the graph Z. The detailed algorithm and results are not reported in this paper

but are available upon request. Comparing (4) and (6) suggests that again, the different

strengths of (4) and (6) might be combined to provide a better approach for structure

learning in covariance graph models.

3 Continuous spike and slab priors for positive definite
matrices

Let A = (aij)p×p denote a p-dimensional covariance or concentration matrix; that is,

A = Σ or Ω. SSSL uses the following new prior for A:

p(A) = {C(θ)}−1
∏
i<j

{
(1− π)N(aij | 0, v20) + πN(aij | 0, v21)

}∏
i

Exp(aii |
λ

2
)1{A∈M+}, (7)

where N(a | 0, v2) is the density function of a normal random variable with mean 0

and variance v2 evaluated at a, Exp(a | λ) represents the exponential density function

of the form p(a) = λ exp(−λx)1a>0, and 1{·} is the indicator function. The parameter

spaces are v0 > 0, v1 > 0, λ > 0 and π ∈ (0, 1), and the set of all parameters is

denoted as θ = {v0, v1, π, λ}. The values of v0 and v1 are further set to be small and

large, respectively. The term C(θ) represents the normalizing constant that ensures the

integration of the density function p(A) over the space M+ is one, and it depends on θ.

The first product symbol multiplies p(p−1)/2 terms of two-component normal mixture

densities for the off-diagonal elements, connecting this prior to the classical and Bayesian

graphical lasso methods through the familiar framework of normal mixture priors for aij .

The second product symbol multiplies p terms of exponential densities for the diagonal

elements. The two-component normal mixture density plays a critical role in structure

learning, as will be clear below.

Prior (7) can be defined by introducing binary latent variables Z ≡ (zij)i<j ∈ Z ≡
{0, 1}p(p−1)/2 and a hierarchical model:
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p(A | Z, θ) = {C(Z, v0, v1, λ)}−1
∏
i<j

N(aij | 0, v2zij )
∏
i

Exp(aii |
λ

2
), (8)

p(Z | θ) = {C(θ)}−1C(Z, v0, v1, λ)
∏
i<j

{
πzij (1− π)1−zij

}
, (9)

where vzij = v0 or v1 if zij = 0 or 1. The intricacy here is the two terms of C(Z, v0, v1, λ).
Note that C(Z, v0, v1, λ) ∈ (0, 1) because it is equal to the integration of the product of
normal densities and exponential densities over a constrained space M+. Thus, (8) and
(9) are proper distributions. The joint distribution of (A,Z) acts to cancel out the two
terms of C(Z, v0, v1, λ) and results in a marginal distribution of A, as in (7).

The rationale behind using Z for structure learning is as follows. For an appropriately
chosen small value of v0, the event zij = 0 means that aij comes from the concentrated
component N(0, v20), and so aij is likely to be close to zero and can reasonably be
estimated as zero. For an appropriately chosen large value of v1, the event zij = 1
means that aij comes from the diffuse component N(0, v21) and so aij can be estimated
to be substantially different from zero. Because zeros in A determine missing edges in
graphs, the latent binary variables Z can be viewed as edge-inclusion indicators. Given
data Y, the posterior distribution of Z provides information about graphical model
structures. The remaining questions are then how to specify parameters θ and how to
perform posterior computations.

3.1 Choice of π

From (9), the hyperparameter π controls the prior distribution of the edge-inclusion
indicators in Z. The choice of π should thus reflect the prior belief about what the
graphs will be in the final model. In practice, such prior information is often summarized
via the marginal prior edge-inclusion probability Pr(zij = 1). Specifically, a prior for
Z is chosen such that the implied edge-inclusion probability of edge (i, j) meets the
prior belief about the chance of the existence of edge (i, j). For example, the common
choice Pr(zij = 1) = 2/(p − 1) reflects the prior belief that the expected number of
edges is approximately

(
p
2

)
Pr(zij = 1) = p. Another important reason that Pr(zij = 1)

is used for calibrating priors over Z is that the posterior inference about Z is usually
based upon the marginal posterior probability of Pr(zij = 1 | Y). For example, the
median probability graph, the graph consisting of those edges whose marginal edge-
inclusion probability exceeds 0.5, is often used to estimate G (Wang, 2010). Focusing
on the marginal edge-inclusion probability allows us to understand how the posterior
truly responds to the data.

Calibrating π according to Pr(zij = 1) requires knowledge of the relation between
Pr(zij = 1) and π. From (9), the explicit form of Pr(zij = 1) as a function of π is
unavailable because of the intractable term C(Z, v0, v1, λ). A comparison between (9)
and (2) helps illustrate the issue. Removing C(Z, v0, v1, λ) from (9) turns it into (2) but
will not cancel out the term C(Z, v0, v1, λ) in (8) for the posterior distribution of Z.
Tedious and unstable numerical integration is then necessary to evaluate C(Z, v0, v1, λ)
at each iteration of sampling Z. Inserting C(Z, v0, v1, λ) into (9) cancels C(Z, v0, v1, λ)
in (8) in the posterior, thus facilitating computation, yet concerns might be raised
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about such a “fortunate” cancelation. For example, Murray (2007) notes that a prior
that cancels out an intractable normalizing constant in the likelihood would depend
on the number of data points and would also be so extreme that it would dominate
posterior inferences. These two concerns appear to be not problematic in our case. The
prior (9) is for the hyperparameter Z, rather than for the parameter directly involved
in the likelihood; thus it does not depend on sample size. Instead, the prior also only
introduces mild bias without dominating the inferences, as shown below.

To investigate whether the cancelation of C(Z, v0, v1, λ) causes the prior to be too
extreme, we compute Pr(zij = 1) numerically from Monte Carlo samples generated
by the algorithm in Section 4.1. In (8)–(9), we first fix π = 2/(p − 1), v0 = 0.05, and
λ = 1, and then vary the dimension p ∈ {50, 100, 150, 200, 250} and v1 = hv0 with
h ∈ {10, 50, 100}. Panel (a) of Figure 1 displays these estimated Pr(zij = 1) as a
function of p for different h values. As a reference, the curve Pr(zij = 1) = 2/(p − 1)
is also plotted. The most noticeable pattern is that all three curves representing the
implied Pr(zij = 1) from (9) are below the reference curve, suggesting that there is
a downward bias introduced by C(Z, v0, v1, λ) on Pr(zij = 1). The bias is introduced
by the fact that the positive definite constraint on A favors a small v0, specified by
zij = 0, over a large v1, specified by zij = 1. We also see that the bias is larger at larger
values of h, at which the impact of positive definite constraints is more significant.
Next, we fix p = 150, h = 50, and λ = 1 and vary v0 ∈ {0.02, 0.05, 0.1} and π ∈
{2/(p − 1), 4/(p − 1), 6/(p − 1), 8/(p − 1), 10/(p − 1)}. Panel (b) of Figure 1 displays
these implied Pr(zij = 1) as a function of π for different v0 values. Again, as a reference,
the curve Pr(zij = 1) = π is plotted. The downward bias of Pr(zij = 1) relative
to π continues to exist and is larger at larger values of v0 or π because the positive
definite constraint on A forces zij = 0 to be chosen more often when v0 or π is large.

Figure 1: The implied prior marginal edge-inclusion probability Pr(zij = 1) from the
prior (8)–(9) as a function of p at different h (left) and a function of π at different
v0 (right), together with two reference curves of Pr(zij = 1) = 2/(p − 1) (left) and of
Pr(zij = 1) = π (right).
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Figure 2: The univariate density of p(aij | zij) for different values of h and v0.

Nevertheless, the downward bias seems to be gentle, as Pr(zij = 1) is never extremely
small; consequently the prior (8)–(9) is able to let the data reflect the Z if the likelihood
is strong.

Another concern is that the lack of analytical relation between Pr(zij = 1) and π
might raise challenges against the incorporation of prior information about Pr(zij = 1)
into π. This problem can be side-stepped by prior simulation and interpolation. Take a
p = 150 node problem as an example. If the popular choice Pr(zij = 1) = 2/(p − 1) =
0.013 is desirable, interpolating the points (π,Pr(zij = 1)) in Panel (b) of Figure 1
suggests that π should be set approximately at 0.018, 0.027, and 0.048 for v0 = 0.02,
0.05, and 0.1, respectively. Our view is that obtaining these points under prior (8)–
(9) is much faster than evaluating C(Z, v0, v1, λ) at each configuration of Z under the
traditional prior (2).

3.2 Choice of v0 and v1

From (8), the choice of v0 should be such that if the data supports zij = 0 over zij = 1,
then aij is small enough to be replaced by zero. The choice of v1 should be such that,
if the data favor zij = 1 against zij = 0, then aij can be accurately estimated to
be substantially different from zero. One general strategy for choosing v0 and v1, as
recommended by George and McCulloch (1993), is based on the concept of practical
significance. Specifically, suppose a small δ can be chosen such that |aij | < δ might be
regarded as practically insignificantly different from zero. Incorporating such a prior
belief is then achieved by choosing v0 and v1, such that the density p(aij | zij = 0) is
larger than the density p(aij | zij = 1), precisely within the interval (−δ, δ). An explicit
expression of v0 as a function of δ and h can be derived when p(aij | zij) are normal.
However, the implied distribution p(aij | zij) from (8)–(9) is neither normal nor even
analytically tractable. A numerical study will illustrate some aspects of p(aij | zij).

Figure 2 draws the Monte Carlo estimated density of p(aij | zij = 0) and p(aij |
zij = 1) for several settings of v0 and h. In all cases, there is a clear separation between
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p(aij | zij = 0) and p(aij | zij = 1), with a larger h resulting in a sharper separation. This

property of separation between a small and a large variance component is the essence

of the prior for structural learning that aims to separate small and large aijs. Clearly,

the marginal densities are no longer normal. For example, the density of p(aij | zij = 0)

is more spiky than that of N(0, v0); the difference between p(aij | zij = 1) when h = 50

and h = 100 is less clear than the difference between N(0, 2500v20) and N(0, 10000v20).

The lack of an explicit form of p(aij | zij) makes the strategies of analytically calculating

v0 from the threshold δ infeasible. Numerical methods that estimate p(aij | zij) from

Markov chain Monte Carlo (MCMC) samples might be used to choose v0 according to

δ from a range of possible values.

Another perspective is that, when v0 is chosen to be very small and h is chosen

to be very large, the prior for aij is close to a point-mass mixture that selects any

aij �= 0 as an edge. Because the point-mass mixture prior provides a noninformative

method of structure learning when the threshold δ cannot be meaningfully specified,

it makes sense to choose v0 to be as small as possible, but not so small that it could

cause MCMC convergence issues, and to choose v1 to allow for reasonable values of aij .

In our experiments with standardized data, MCMC converges quickly and mixes quite

well, as long as v0 ≥ 0.01 and h ≤ 1000.

3.3 Choice of λ

The value of λ controls the distribution of the diagonal elements aii. Because the data

are usually standardized, a choice of λ = 1 assigns substantial probability to the entire

region of plausible values of aii, without overconcentration or overdispersion. From

our experience, the data generally contain sufficient information about the diagonal

elements, and the structure learning results are insensitive to a range of λ values, such

as λ = 5 and 10.

4 Fast block Gibbs samplers

The primary advantage of the SSSL prior (8)–(9) over traditional approaches is its

scalability to larger p problems. The reduction in computing time comes from two

improvements. One is that (8)–(9) enable block updates of all p(p− 1)/2 edge-inclusion

indicators in Z simultaneously, while other methods only update one edge-inclusion

indicator zij at a time. The other is that there is no need of a Monte Carlo approximation

of the intractable constants, while all of the other methods require some sort of Monte

Carlo integration to evaluate any graph. The general sampling scheme for generating

posterior samples of graphs is to sample from the joint distribution p(A,Z | Y) by

iteratively generating from p(A | Z,Y) and p(Z | A,Y). The first conditional p(A |
Z,Y) is sampled in a column-wise manner and the second conditional p(Z | A,Y) is

generated all at once. The details depend on whether A = Ω for concentration graph

models or A = Σ for covariance graph models, and they are described below.
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4.1 Block Gibbs samplers for concentration graph models

Consider concentration graph models with A = Ω in the hierarchical prior (8)–(9).
To sample from p(Ω | Z,Y), the following proposition provides necessary conditional
distributions. The proof is in the Appendix.

Proposition 1. Suppose A = Ω in the hierarchical prior (8)–(9). Focus on the last
column and row. Let V = (v2zij ) be a p× p symmetric matrix with zeros in the diagonal

entries and (v2ij)i<j in the upper diagonal entries. Partition Ω,S = Y′Y and V as
follows:

Ω =

(
Ω11,ω12

ω′
12, ω22

)
, S =

(
S11, s12
s′12, s22

)
, V =

(
V11,v12

v′
12, 0

)
. (10)

Consider a change of variables: (ω12, ω22) → (u = ω12, v = ω22 − ω′
12Ω

−1
11 ω12). We

then have the full conditionals:

(u | −) ∼ N(−Cs12,C), and (v | −) ∼ Ga(
n

2
+ 1,

s22 + λ

2
), (11)

where C = {(s22 + λ)Ω−1
11 + diag(v−1

12 )}−1.

Permuting any column to be updated to the last one and using (11) will lead to a
simple block Gibbs step for generating (Ω | Z,Y). For p(Z | Ω,Y), prior (8)–(9) implies
all zij are independent Bernoulli with probability

Pr(zij = 1 | Ω,Y) =
N(ωij | 0, v21)π

N(ωij | 0, v21)π + N(ωij | 0, v20)(1− π)
. (12)

A closer look at the conditional distributions of the last column u = ω12 in (11) and
the corresponding edge-inclusion indicator vector γ ≡ (γ1, . . . , γp−1)

′ = (z1p, . . . , zp−1,p)
′

in (12) reveals something interesting. These distributions look like the Gibbs samplers
used in the stochastic search variable selection (SSVS) algorithm (George and McCul-
loch, 1993). Indeed, consider β ≡ (β1, . . . , βp−1)

′ = −u and note that s22 = n for
standardized data. If Ω−1

11 = 1
nS11 and λ = 0, then (11) implies that

(β | z12,Y) ∼ N

[{
S11 + diag(v−1

12 )
}−1

s12,
{
S11 + diag(v−1

12 )
}−1

]
,

and (12) implies that

Pr(γj = 1 | β) = N(βj | 0, v21)π
N(βj | 0, v21)π + N(βj | 0, v20)(1− π)

, j = 1, . . . , p− 1,

which are exactly the Gibbs sampler of SSVS for the p-th variable. Thus, the problem
of SSSL for concentration graph models can be viewed as a p-coupled SSVS regression
problem, as the use of Ω−1

11 in the conditional distribution of ω12 in place of S11 shares
information across p regressions in a coherent fashion. This interesting connection has
not been noted elsewhere, to the best of our knowledge.
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4.2 Block Gibbs samplers for covariance graph models

Now, consider covariance graph models with A = Σ in the hierarchical prior (8)–(9).
To sample from p(Σ | Z,Y), the following proposition provides necessary conditional
distributions; its proof is in the Appendix.

Proposition 2. Suppose A = Σ in the hierarchical prior (8)–(9). Focus on the last
column and row. Let V = (v2zij ) be a p× p symmetric matrix with zeros in the diagonal

entries and (v2zij )i<j in the upper diagonal entries. Partition Σ,S and V as follows:

Σ =

(
Σ11,σ12

σ′
12, σ22

)
, S =

(
S11, s12
s′12, s22

)
, V =

(
V11,v12

v′
12, 0

)
. (13)

Consider a change of variables: (σ12, σ22) → (u = σ12, v = σ22−σ′
12Σ

−1
11 σ12). We then

have the full conditionals:

(u | Y,Z,Σ11, v) ∼ N

[{
B+ diag(v−1

12 )
}−1

w, {B+ diag(v−1
12 )

}−1
]
,

(v | Y,Z,Σ11,u) ∼ GIG(1− n/2, λ,u′Σ−1
11 S11Σ

−1
11 u− 2s′12Σ

−1
11 u+ s22), (14)

where B = Σ−1
11 S11Σ

−1
11 v

−1 + λΣ−1
11 , w = Σ−1

11 s12v
−1, and GIG(q, a, b) denotes the

generalized inverse Gaussian distribution with a probability density function:

p(x) =
(a/b)q/2

2Kq(
√
ab)

x(p−1)e−(ax+b/x)/2,

with Kq as a modified Bessel function of the second kind.

Surprisingly, Proposition (2) shows that the conditional distribution of any column
(row) in Σ is also multivariate normal. This suggests direct column-wise block Gibbs
updates of Σ. Sampling from p(Z | Σ,Y) is similar to that in (12) for p(Z | Ω,Y) with
only the modification of replacing ωij with σij .

5 Effectiveness of the new methods

5.1 Computational efficiency

The computational speed and the scalability of SSSL block Gibbs samplers are evaluated
empirically. The data of dimension p ∈ {50, 100, 150, 200, 250} and sample size n = 2p
are first generated from N(0, Ip) and then standardized. The samplers are implemented
under the hyperparameters v0 = 0.05, h = 50, π = 2/(p − 1) and λ = 1. All chains are
initialized at the sample covariance matrix. All computations are implemented on a six-
core CPU 3.33GHz desktop using MATLAB. For each run, we measure the time it takes
the block Gibbs sampler to sweep across all columns (rows) once, which is called one
iteration. One iteration actually updates each element aij twice: once when updating
column i and again when updating column j. This property improves its efficiency. The
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solid and dashed curves in Figure 3 display the minutes taken for 1000 iterations versus
p for covariance graph models and concentration graph models respectively.

Overall, the SSSL algorithms run fast. Covariance graph models take approximately
2 and 9 minutes to generate 1000 iterations for p = 100 and 200; concentration graph
models take even less time, approximately 1.2 and 5 minutes. The relatively slower speed
of covariance graph models is due to a few more matrix inversion steps in updating the
columns in Σ. We also measure the mixing of the MCMC output by calculating the
inefficiency factor 1+2

∑∞
k=1 ρ(k) where ρ(k) is the sample autocorrelation at lag k. We

use 5000 samples after 2000 burn-ins and K lags in the estimation of the inefficiency
factors, where K = argmink{ρ(k) < 2/

√
M,k ≥ 1} with M = 5000 being the total

number of saved iterations. The median inefficiency factor among all of the elements of
Ω was 1 when p = 100, further suggesting the efficiency of SSSL. In our experience, a
MCMC sample of 5000 iterations after 2000 burnins usually generates reliable results
in terms of Monte Carlo errors for p = 100 node problems, meaning that the computing
time is usually less than 10 minutes, far less than the few days of computing time
required by the existing methods.

Figure 3: Time in minutes for 1000 iterations of SSSL versus dimension p for covariance
graph models (solid) and concentration graph models (dashed).

5.2 Structure learning accuracy

The preceding section shows tremendous computational gains of SSSL over existing
methods. This section evaluates these methods on their structure learning performance
using two synthetic scenarios, both of which are motivated by real-world applications.

Scenario 1. The first scenario mimics the dependence pattern of daily currency
exchange rate returns, which has been previously analyzed via concentration graph
models (Carvalho and West, 2007; Wang et al., 2011). We use two different synthetic
datasets for the two types of graphical models. For concentration graph models, Jones
et al. (2005) generated a simulated dataset of p = 12 and n = 250 that mimics the
exchange rate return pattern. We use their original dataset downloaded from their
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website. The true underlying concentration graph has 13 edges and is given by Figure
2 of Jones et al. (2005). For covariance graph models, we estimate a sparse covariance
matrix with 13 edges based on the data of Jones et al. (2005) and then use this sparse
covariance matrix to generate n = 250 samples. The true sparse covariance matrix is as
follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.239 0.117 0.031
0.117 1.554

0.362 0.002
0.002 0.199 0.094

0.094 0.349 -0.036
0.295 -0.229 0.002
-0.229 0.715

0.031 0.002 0.164 0.112 -0.028 -0.008
0.112 0.518 -0.193 -0.090
-0.028 -0.193 0.379 0.167
-0.008 -0.090 0.167 0.159

-0.036 0.207

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To assess the performance of structure learning, we compute the number of true
positives (TP) and the number of false positives (FP). We begin by evaluating some
benchmark models against which to compare SSSL. For concentration graph models,
we consider the classical adaptive graphical lasso (Fan et al., 2009) and the Bayesian
G-Wishart prior WG(3, Ip) in (1). For covariance graph models, we consider the classical
adaptive thresholding (Cai and Liu, 2011) and the Bayesian G-inverse Wishart prior
IWG(3, Ip) in (4). The two classical methods require some tuning parameters, which
are chosen by 10-fold cross-validation. The adaptive graphical lasso has TP = 8 and
FP = 7 for concentration graph models and the adaptive thresholding has TP = 13 and
FP = 45 for covariance graph models. They seem to favor less sparse models, most likely
because the sample size is large relative to the dimensions. The two Bayesian methods
are implemented under the priors of graphs (2) with π = 2/(p−1). They perform better
than the classical methods. The G-Wishart has TP = 9 and FP = 1 for concentration
graph models, and the G-inverse Wishart has TP = 7 and FP = 0 for covariance graph
models.

We investigate the performance of SSSL by considering a range of hyperparameter
values that represent different prior beliefs about graphs: π ∈ {2/(p−1), 4/(p−1), 0.5},
h ∈ {10, 50, 100}, and v0 ∈ {0.02, 0.05, 0.1}. Under each hyperparameter setting, a
sample of 10000 iterations is used to estimate the posterior median graph, which is
then compared against the true underlying graph. Table 1 and 2 summarize TP and FP
for concentration and covariance graphs respectively. Within each table, patterns can
be observed by comparing results across different values of one hyperparameter while
fixing the others. For v0, a larger value lowers both TP and FP because v0 is positively
related to the threshold of practical significance that aij can be treated as zero. For π,
a larger value increases both TP and FP, and the case of π = 0.5 seems to produce
graphs that are too dense and have high FP, especially for the concentration graph
models in Table 1. For h, increasing h reduces both TP and FP, partly because h is
positively related to the threshold that aij can be practically treated as zero and in part
because h is negatively related to the implied prior edge-inclusion probability Pr(zij)
as discussed in Panel (a) of Figure 1. Next, comparing the results in Tables 1–2 with
the two Bayesian benchmarks reported above, we can see that SSSL is competitive. For
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example, Table 2 shows that, except for the extreme cases of π = 0.5 that favor graphs
that are too dense or cases of v0 = 0.1 that favor graphs that are too sparse, SSSL
has approximately the same TP = 7 and FP = 0 as the G-inverse Wishart method for
covariance graph models.

Table 1: Summary of performance measures under different hyperparameters for a p =
12 concentration graph example. As for benchmarks, the classical adaptive graphical
lasso has TP=8 and FP=7; the Bayesian G-Wishart has TP=9 and FP=1.

π = 2/(p − 1) π = 4/(p − 1) π = 0.5
v0 h = 10 h = 50 h = 100 h = 10 h = 50 h = 100 h = 10 h = 50 h = 100

Number of true positives (TP)
0.02 9 9 9 10 10 10 10 10 10
0.05 10 9 9 10 10 9 10 10 10
0.1 9 8 8 10 8 8 10 9 8

Number of false positives (FP)
0.02 3 2 0 7 3 1 14 4 3
0.05 2 0 0 4 1 0 8 2 0
0.1 1 0 0 1 0 0 4 0 0

Table 2: Summary of performance measures under different hyperparameters for a
p = 12 covariance graph example. As for benchmarks, the classical adaptive thresholding
has TP=13 and FP=45; the Bayesian G-inverse Wishart has TP=7 and FP=0.

π = 2/(p − 1) π = 4/(p − 1) π = 0.5
v0 h = 10 h = 50 h = 100 h = 10 h = 50 h = 100 h = 10 h = 50 h = 100

Number of true positives (TP)
0.02 7 7 7 8 7 7 9 7 7
0.05 7 7 6 7 7 7 7 7 7
0.1 5 3 3 6 5 4 7 5 5

Number of false positives (FP)
0.02 0 0 0 1 0 0 5 0 0
0.05 0 0 0 0 0 0 0 0 0
0.1 0 0 0 0 0 0 0 0 0

Scenario 2. The second scenario mimics the dependence pattern of gene expression
data, for which graphical models are used extensively to understand the underlying
biological relationships. The real data are the breast cancer data (Jones et al., 2005;
Castelo and Roverato, 2006), which contain p = 150 genes related to the estrogen
receptor pathway. Similar to the first scenario, we generate two synthetic datasets for
the two graphical models. For concentration graph models, we first estimate a sparse
concentration matrix with 179 edges based on the real data, and then generate a sample
of 200 observations from this estimated sparse concentration matrix. For covariance
graph models, we estimate a sparse covariance matrix with 101 edges based on the
real data and then use this sparse covariance matrix to generate a synthetic data of
n = 200 samples. Panels (a) and (b) of Figure 4 display the frequencies of the non-zero
partial correlations and correlations implied by these two underlying sparse matrices,
respectively. Among the nonzero elements, 13% of the partial correlations and 60% of
the correlations are within 0.1.

We repeat the same procedures of fitting the benchmark and proposed models as
in Scenario 1. As for benchmarks, the adaptive graphical lasso has TP = 145 and
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Figure 4: Histograms showing the empirical frequency of the non-zero elements of the
partial correlation matrix for the first dataset (left) and of the nonzero elements of the
correlation matrix for the second dataset (right) in Scenario 2 of p = 150.

FP = 929 for concentration graph models, and the adaptive thresholding has TP = 14
and FP = 12 for covariance graph models. The G-Wishart prior has TP = 105 and
FP = 2 and takes about four days to run. The evaluation of the G-inverse Wishart is
worth elaborating since existing experiments are conducted in smaller p settings and
little is known about its performance in high-dimensional problems.

The original model fitting algorithm for the G-inverse Wishart relies on the compu-
tationally expensive importance sampling for approximating the normalizing constant
and thus is slow and numerically instable for this p=150 dataset. Silva (2013) develops
a new approximation that requires no Monte Carlo integration, which greatly speeds up
the computation. The MATLAB routine implementing his algorithm is publicly avail-
able on that paper’s website. We adopt these functions with one modification that sets
the edge-inclusion probability to be 2/(p−1). The algorithm takes about 2 hours to com-
plete 1000 sweeps, which is substantially slower than SSSL that costs about 5 minutes –
see Figure 3. Since both SSSL and Silva (2013) require no Monte Carlo approximation,
the difference in run time is a result of the fact that the SSSL’s block update of Z is
faster than Silva (2013)’s one-edge-at-a-time update.

Using the posterior median graph as an estimate of G, the G-inverse Wishart prior
IWG(3, I) produces TP = 3 and FP = 3. These two numbers are surprisingly small. An
exploration of the G-inverse Wishart distribution provides some explanations. The main
reason is that when G is sparse and p is large, the G-inverse Wishart prior inadvertently
enforces the free elements in Σ towards zero and hence exerts a strong prior influence
on the posterior distribution. To see this, suppose G is empty, then (4) implies that the
diagonal elements {σii} follow independent inverse Gamma distributions

p(σii | b) ∝ σ
− b+2p

2
ii exp{− dii

2σii
}, i = 1, . . . , p,
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which clearly depend on the dimension p and converge to zero rapidly as p increases
for a fixed b. Now suppose G is arbitrarily sparse. Although the theoretical marginal
distributions of the free elements in Σ are unknown, the distribution of {σii} under
an empty graph leads us to conjecture that the free elements in Σ could be extremely
concentrated around zero for large p as well. In our p = 150 example, a simulation from
IWG(3, Ip) under the ground truth G that contains 101 edges supports this conjecture.
The estimated prior mean of these 101 off-diagonal free elements {σij} is in the range
of −6×10−6 and 6×10−6; the estimated prior standard deviation is between 1.9×10−4

and 2.3× 10−4. Such a tightly concentrated prior provides little probability support for
the true graph. The implication on structure learning is that the Bayes factor might
not truly respond to the data, but largely reflect prior prejudices that σij are extremely
small. In other words, the overly concentrated prior does not allow the data to speak
about G and consequently the posterior distribution of G is dominated by its prior. In
fact, the posterior sample mean and standard deviation of the number of edges in Z
computed from the MCMC output of Silva (2013) are 170 and 12.9, which are close
to the prior expected number of edges, computed as

(
p
2

)
× 2

p−1 = 150 and its standard

deviation, computed as
√(

p
2

)
× 2

p−1 × (1− 2
p−1 ) = 12.16.

The fundamental cause of this strong prior influence is perhaps that the parameter
space {b : b > 0} assumed by Silva and Ghahramani (2009) is too restrictive. It might be
reasonable to let the parameter space depend on G. For example, the standard inverse-
Wishart theory implies that the parameter space should be {b : b > 2 − 2p} when G
is empty and so b could be even negative, and {b : b > 0} when G is full. Hierarchical
models that allow the value of b to be G-dependent might be helpful. A thorough
examination along these lines is beyond the scope of the current paper. However, it is
probably safe to conclude that further investigation should be called upon to follow the
innovative framework of Silva and Ghahramani (2009).

As for SSSL, Tables 3 and 4 summarize its performance. When the results are com-
pared across different levels of one hyperparameter, the general relations between TP
or FP and a hyperparameter are similar to those in Scenario 1. In fact, the patterns
appear to be more significant in Scenario 2 because priors have greater influences in
this relatively small sample size problem. When compared with benchmarks, SSSL is
competitive. For concentration graph models, Table 3 suggests that, except for a few
extreme priors that favor overly dense graphs, SSSL produces much sparser graphs than
the classical adaptive graphical lasso, for which FP = 929 is too high. When v0 = 0.02,
SSSL is also comparable to the Bayesian G-Wishart prior. When v0 increases, TP drops
quickly because many signals are weak (Figure 4) and are thus treated as practically
insignificant by SSSL. For covariance graph models, Table 4 suggests that SSSL gener-
ally performs better than the adaptive thresholding. The only exceptions are cases in
which the hyperparameters favor overly dense graphs (e.g., π = 0.5) or overly sparse
graphs (e.g., v0 = 0.1).

In summary, under sensible choices of hyperparameters, such as v0 = 0.02, h = 50,
and π = 2/(p − 1), SSSL is comparable to existing Bayesian methods in terms of
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Table 3: Summary of performance measures under different hyperparameters for a
p = 150 concentration graph example. As for benchmarks, the classical adaptive lasso
has TP=145 and FP=929; the Bayesian G-Wishart has TP=105 and FP=2.

π = 2/(p − 1) π = 4/(p − 1) π = 0.5
v0 h = 10 h = 50 h = 100 h = 10 h = 50 h = 100 h = 10 h = 50 h = 100

Number of true positives (TP)
0.02 106 101 100 110 105 102 162 136 125
0.05 90 82 78 97 89 83 146 117 109
0.1 72 59 56 78 67 58 122 101 93

Number of false positives (FP)
0.02 3 0 0 9 1 0 1533 238 91
0.05 0 0 0 0 0 0 667 39 9
0.1 0 0 0 0 0 0 169 4 0

Table 4: Summary of performance measures under different hyperparameters for a p =
150 covariance graph example. As for benchmarks, the classical adaptive thresholding
has TP=14 and FP=12; the Bayesian G-inverse Wishart cannot run.

π = 2/(p − 1) π = 4/(p − 1) π = 0.5
v0 h = 10 h = 50 h = 100 h = 10 h = 50 h = 100 h = 10 h = 50 h = 100

Number of true positives (TP)
0.02 20 19 15 20 20 17 38 27 24
0.05 12 10 10 14 11 10 27 15 15
0.1 7 6 5 7 7 6 15 11 10

Number of false positives (FP)
0.02 4 1 1 6 3 1 1084 163 69
0.05 0 0 0 0 0 0 229 17 3
0.1 0 0 0 0 0 0 21 0 0

structure learning accuracy. However, SSSL’s computational advantage of sheer speed
and simplicity makes it very attractive for routine uses.

6 Graphs for credit default swap data

This section illustrates the practical utility of graphical models by applying them to
credit default swap (CDS) data. CDS is a credit protection contract in which the buyer
of the protection periodically pays a small amount of money, known as “spread”, to the
seller of protection in exchange for the seller’s payoff to the buyer if the reference entity
defaults on its obligation. The spread depends on the creditworthiness of the reference
entity and thus can be used to monitor how the market views the credit risk of the
reference entity. The aim of this statistical analysis is to understand the cross-sectional
dependence structure of CDS series and thus the joint credit risks of the entities. The
interconnectedness of credit risks is important, as it is an example of the systemic risk
– the risk that many financial institutions fail together.

The data are provided by Markit via Wharton Research Data Services (WRDS)
and comprise daily closing CDS spread quotes for 79 widely traded North American
reference entities from January 2, 2001 through April 23, 2012. The quotes are for five-
year maturity, as five-year maturity is the most widely traded and studied term. The
spread quote is then transformed into log returns for graphical model analysis.
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To assess the variation in the graphs over time, we estimate graphs using a one-
year moving window. In particular, at the end of each month t, we use the daily CDS
returns over the period of month t − 11 to month t to estimate the graph Gt. The
choice of a one-year window is intended to balance the number of observations, as well
as to accommodate the time-varying nature of the graphs. The first estimation period
begins in January 2001 and continues through December 2001, and the last is from
May 2011 to April 2012. In total, there are 89 estimation periods, corresponding to
89 time-varying graphs for each type of graph. We set the prior hyperparameters at
v0 = 0.02, h = 50, π = 2/(p − 1) and λ = 1. The MCMC are run for 10000 iterations
and the first 3000 iterations are discarded. The graphs are estimated by the posterior
median graph.

Figure 5: Time series plots of the estimated numbers of edges for the covariance graph
(solid line), the concentration graph (dashed), and the common graph (dash dotted).

Figure 5 shows changes over time of the estimated number of edges for the two types
of graphs and the number of common edges. The numbers of edges are in the range of 40
and 160 out of a total of 3081 possible edges, indicating a very high level of sparsity. At
each time point, both types of graph reflect about the same level of sparsity. Over time,
they show similar patterns of temporal variations. There is a steady upward trend in the
number of edges starting from mid 2007 for both types of graph. The timing of the rise
of the number of edges is suggestive. Mid-2007 saw the start of the subprime-mortgage
crisis, which was signified by a number of credit events, including bankruptcy and the
significant loss of several banks and mortgage firms, such as Bear Stearns, GM finance,
UBS, HSBC and Countrywide. If the number of edges can be viewed as the “degree of
connectedness” among CDS series, then this observed increase implies that the market
tends to be more integrated during periods of credit crisis and consequently tends to
have a higher systemic risk.

To further illustrate the interpretability of graphs, Figure 6 provides four snapshots
on graph details at two time points, in December 2004 and in December 2008. The
covariance graph for December 2004 (Panel a) has 44 edges and 30 completely isolated
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Figure 6: Estimated graphs of 79 CDS returns at two different time points. The four
panels are: Panel (a), covariance graph in December 2004; Panel (b), covariance graph
in December 2008; Panel (c), concentration graph in December 2004; and Panel (d)
concentration graph in December 2008.

nodes, as opposed to the covariance graph for December 2008 (Panel b), which has 128
edges and no isolated nodes. These differences suggest that the connectedness of the
network rises as the credit risks of many reference entities become linked with each other.
The same message is further confirmed by concentration graphs. The concentration
graph for December 2004 (Panel c) has 55 edges and 20 completely isolated nodes,
while the concentration graph for December 2008 (Panel d) has 135 edges and no isolated
nodes. The increase of connectedness is also manifested by the fact that every pair of
nodes in the concentration graph on December 2008 is connected by a path.

Finally, we zoom into subgraphs involving the American International Group (AIG)
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to study whether the graphs make economic sense at the firm level. AIG provides a good

example for study because it suffered a significant credit deterioration during the 2007–

2008 crisis when its credit ratings were downgraded below “AA” levels in September

2008. Panels (a) and (b) of Figure 7 show the covariance subgraph in December 2004

and in December 2008. The subgraphs show that AIG experienced some interesting

dependence structure shifts between these two periods. In December 2004, AIG formed

a clique with three other major insurance companies: the Metropolitan Life Insurance

Company (MET), the Chubb Corporation (CB) and the Hartford Financial Services

Group (HIG). The credit risks of these four insurance companies are all linked to each

other. By December 2008, the linkages between AIG and the other three insurance com-

panies disappear, while the linkages among the other three firms remain. On the other

hand, AIG is now connected with two non-insurance financial companies, the GE Cap-

ital (GE) and the American Express Company (AXP). The concentration subgraphs of

AIG displayed in Panels (c) and (d) of Figure 7 show similar structural shift patterns as

in the covariance graphs, although here dependence functions differently as conditional

dependence. AIG initially formed a prime component with the other three insurance

firms in December 2004. The connections between AIG and the other insurance firms

were severed in December 2008, and new connections between AIG and GE and between

AIG and AXP arose.

Given that AIG suffered a more severe credit crisis than other insurance companies,

the uncovered network shift might indicate that the CDS market was able to adjust its

view regarding the credit risk of AIG and treat it as unrelated to its peer insurance

firms during the credit crisis. Such timely changes in dependence structures may shed

light on the question of the information efficiency of the CDS market, from a point of

view that is different from the usual analysis of changes in levels.

Figure 7: Subgraphs involving AIG estimated for two different time periods. There are
four snapshots: Panel (a), covariance graph in December 2004; Panel (b), covariance
graph in December 2008; Panel (c), concentration graph in December 2004; and Panel
(d) concentration graph in December 2008. The six subgraph nodes are: American
International Group (AIG); GE Capital (GE); Metropolitan Life Insurance Company
(MET); The Chubb Corporation (CB); Hartford Financial Services Group (HIG); and
American Express Company (AXP).
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7 Conclusion

This paper proposes a new framework for the structure learning of concentration graph
models and covariance graph models. The main goal is to overcome the scalability
limitation of existing methods without sacrificing structure learning accuracy. The key
idea is to use absolutely continuous spike and slab priors instead of the popular point-
mass mixture priors to enable accurate, fast, and simple structure learning. Our analysis
suggests that the accuracy of these new methods is comparable to that of existing
Bayesian methods, but the model-fitting is vastly faster to run and simpler to implement.
Problems with 100–250 nodes can now be fitted in a few minutes, as opposed to a few
days or even numeric infeasibility under existing methods. This remarkable efficiency
will facilitate the application of Bayesian graphical models to large problems and will
provide scalable and effective modular structures for more complicated models.

The focus of the paper is on the structure learning of graphs. A related yet different
question is the parameter estimation of the covariance matrix. Since our priors place zero
probability mass on any sparse matrix containing exact zeros, as opposed to the point-
mass mixture priors, one concern is then about where and how the posterior of Ω or Σ
will concentrate when the true covariance/concentration matrix is sparse. Our limited
experiments suggest that the posterior distribution from the proposed two-component
normals is indeed more dispersed around zero than those from the point-mass mixture
priors. Take the concentration graph in Scenario 1 as an example. Under SSSL, the
average magnitude of the posterior mean estimates of these {ωij} corresponding to the
true zeros in Ω is in the range of 0.0085 and 0.045, depending on the hyperparameters
of (v0, h, π). In contrast, under the G-Wishart prior, the estimates of these {ωij} have
a smaller average magnitude of 0.0040. The small-variance normal shrinks parameters
less aggressively than the point-mass mixture. Although we do not find it problematic
for structure learning, such weaker shrinkage may cause the SSSL’s performance of pa-
rameter estimation to be suboptimal. A refinement is to replace the normal distribution
with distributions having higher densities near zero. The Bayesian shrinkage regres-
sion literature shows that some heavy-tailed distributions offer comparable parameter
estimation performance to the point-mass mixture priors (e.g., Armagan et al. 2013;
Griffin and Brown 2010; Carvalho et al. 2010). Computational tractability of SSSL is
maintained by applying the data-augmentation to the mixture normal representation
of these alternative distributions.

Appendix

Proof of Proposition 1

Clearly, the conditional distribution of Ω given the edge-inclusion indicators Z is

p(Ω | Y,Z) ∝ |Ω|n2 exp{−tr(
1

2
SΩ)}

∏
i<j

{
exp(−

ω2
ij

2v2zij
)

} p∏
i=1

{
exp(−λ

2
ωii)

}
. (15)

Under the partitions (10), the conditional distribution of the last column in Ω is
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p(ω12, ω22 | Y,Z,Ω11) ∝ (ω22 − ω′
12Ω

−1
11 ω12)

n
2

exp
[
− 1

2
{ω′

12D
−1ω12 + 2s′12ω12 + (s22 + λ)ω22}

]
,

where D = diag(v12). Consider a change of variables (u, ω22) → (u = ω12, v = ω22 −
ω′

12Ω
−1
11 ω12), whose Jacobian is a constant not involving (ω12, v). So

p(u, v | Y,Z,Ω11) ∝ v
n
2 exp(−s22 + λ

2
v) exp

(
− 1

2

[
u′{D−1+(s22+λ)Ω−1

11 }u+2s′12u
])

.

This implies that:

(u, v) | (Ω11,Z,Y) ∼ N(−Cs12,C)Ga(
n

2
+ 1,

s22 + λ

2
),

where C = {(s22 + λ)Ω−1
11 +D−1}−1.

Proof of Proposition 2

Given edge-inclusion indicators Z, the conditional posterior distribution of Σ is

p(Σ | Y,Z) ∝ |Σ|−n
2 exp{−1

2
tr(SΣ−1)}

∏
i<j

{
exp(−

σ2
ij

2v2zij
)

} p∏
i=1

{
exp(−λ

2
σii)

}
. (16)

Under partitions (13), consider a transformation (σ12, σ22) → (u = σ12, v = σ22 −
σ′

12Σ
−1
11 σ12), whose Jacobian is a constant not involving (u, v) and apply the block

matrix inversion to Σ using blocks (Σ11,u, v):

Σ−1 =

(
Σ−1

11 +Σ−1
11 uu

′Σ−1
11 v

−1 −Σ−1
11 uv

−1

−u′Σ−1
11 v

−1 v−1

)
. (17)

After removing some constants not involving (u, v), the terms in (16) can be expressed
as a function of (u, v):

|Σ| ∝ v,

tr(SΣ−1) ∝ u′Σ−1
11 S11Σ

−1
11 uv

−1 − 2s′12Σ
−1
11 uv

−1 + s22v
−1,

∏
i<j

{
exp(−

σ2
ij

2v2zij
)

}
∝ exp(−1

2
u′D−1u),

∏
i

{
exp(−λ

2
σii)

}
∝ exp(−1

2
λ(u′Σ−1

11 u+ v)),

where D = diag(v12). Holding all but (u, v) fixed, we can then rewrite the logarithm of
(16) as
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log p(u, v | −) = −1

2

{
nlog(v) + u′Σ−1

11 S11Σ
−1
11 uv

−1 − 2s′12Σ
−1
11 uv

−1 + s22v
−1

+u′D−1u+ λu′Σ−1
11 u+ λv

}
+ constant.

This gives the conditionals of u and v as

(u | Y,Z,Σ11, v) ∼ N

{
(B+D−1)−1w, (B+D−1)−1

}
,

(v | Y,Z,Σ11,u) ∼ GIG(1− n/2, λ,u′Σ−1
11 S11Σ

−1
11 u− 2s′12Σ

−1
11 u+ s22),

where B = Σ−1
11 S11Σ

−1
11 v

−1 + λΣ−1
11 , w = Σ−1

11 s12v
−1 and GIG(q, a, b) denotes the

generalized inverse Gaussian distribution with probability density function:

p(x) =
(a/b)q/2

2Kq(
√
ab)

x(q−1)e−(ax+b/x)/2,

with Kq a modified Bessel function of the second kind.

Supplementary materials

The MATLAB routines implementing all frequentist and Bayesian procedures used in
the paper are available from the author’s web site of the paper at: https://www.msu.
edu/ haowang/RESEARCH/SSSL/sssl.html.
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