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Compound Poisson Processes, Latent Shrinkage
Priors and Bayesian Nonconvex Penalization

Zhihua Zhang∗ and Jin Li†

Abstract. In this paper we discuss Bayesian nonconvex penalization for sparse
learning problems. We explore a nonparametric formulation for latent shrinkage
parameters using subordinators which are one-dimensional Lévy processes. We
particularly study a family of continuous compound Poisson subordinators and
a family of discrete compound Poisson subordinators. We exemplify four specific
subordinators: Gamma, Poisson, negative binomial and squared Bessel subordi-
nators. The Laplace exponents of the subordinators are Bernstein functions, so
they can be used as sparsity-inducing nonconvex penalty functions. We exploit
these subordinators in regression problems, yielding a hierarchical model with
multiple regularization parameters. We devise ECME (Expectation/Conditional
Maximization Either) algorithms to simultaneously estimate regression coefficients
and regularization parameters. The empirical evaluation of simulated data shows
that our approach is feasible and effective in high-dimensional data analysis.

Keywords: nonconvex penalization, subordinators, latent shrinkage parameters,
Bernstein functions, ECME algorithms.

1 Introduction

Variable selection methods based on penalty theory have received great attention in
high-dimensional data analysis. A principled approach is due to the lasso of Tibshirani
(1996), which uses the �1-norm penalty. Tibshirani (1996) also pointed out that the lasso
estimate can be viewed as the mode of the posterior distribution. Indeed, the �1 penalty
can be transformed into the Laplace prior. Moreover, this prior can be expressed as a
Gaussian scale mixture. This has thus led to Bayesian developments of the lasso and
its variants (Figueiredo, 2003; Park and Casella, 2008; Hans, 2009; Kyung et al., 2010;
Griffin and Brown, 2010; Li and Lin, 2010).

There has also been work on nonconvex penalization under a parametric Bayesian
framework. Zou and Li (2008) derived their local linear approximation (LLA) algorithm
by combining the expectation maximization (EM) algorithm with an inverse Laplace
transform. In particular, they showed that the �q penalty with 0 < q < 1 can be obtained
by mixing the Laplace distribution with a stable density. Other authors have shown
that the prior induced from a penalty, called the nonconvex LOG penalty and defined
in equation (2) below, has an interpretation as a scale mixture of Laplace distributions
with an inverse Gamma mixing distribution (Cevher, 2009; Garrigues and Olshausen,
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2010; Lee et al., 2010; Armagan et al., 2013). Recently, Zhang et al. (2012) extended
this class of Laplace variance mixtures by using a generalized inverse Gaussian mixing
distribution. Related methods include the Bayesian hyper-lasso (Griffin and Brown,
2011), the horseshoe model (Carvalho et al., 2010, 2009) and the Dirichlet Laplace
prior (Bhattacharya et al., 2012).

In parallel, nonparametric Bayesian approaches have been applied to variable selec-
tion (Ghahramani et al., 2006). For example, in the infinite Gamma Poisson model (Tit-
sias, 2007) negative binomial processes are used to describe non-negative integer valued
matrices, yielding a nonparametric Bayesian feature selection approach under an unsu-
pervised learning setting. The beta-Bernoulli process provides a nonparametric Bayesian
tool in sparsity modeling (Thibaux and Jordan, 2007; Broderick et al., 2012; Paisley and
Carin, 2009; Teh and Görür, 2009). Additionally, Caron and Doucet (2008) proposed
a nonparametric approach for normal variance mixtures and showed that the approach
is closely related to Lévy processes. Later on, Polson and Scott (2012) constructed
sparse priors using increments of subordinators, which embeds finite dimensional nor-
mal variance mixtures in infinite ones. Thus, this provides a new framework for the
construction of sparsity-inducing priors. Specifically, Polson and Scott (2012) discussed
the use of α-stable subordinators and inverted-beta subordinators for modeling joint
priors of regression coefficients. Zhang and Tu (2012) established the connection of two
nonconvex penalty functions, which are referred to as LOG and EXP and defined in
equations (2) and (3) below, with the Laplace transforms of the Gamma and Poisson
subordinators. A subordinator is a one-dimensional Lévy process that is almost surely
non-decreasing (Sato, 1999).

In this paper we further study the application of subordinators in Bayesian non-
convex penalization problems under supervised learning scenarios. Differing from the
previous treatments, we model latent shrinkage parameters using subordinators which
are defined as stochastic processes of regularization parameters. In particular, we con-
sider two families of compound Poisson subordinators: continuous compound Poisson
subordinators based on a Gamma random variable (Aalen, 1992) and discrete compound
Poisson subordinators based on a logarithmic random variable (Sato, 1999). The cor-
responding Lévy measures are generalized Gamma (Brix, 1999) and Poisson measures,
respectively. We show that both the Gamma and Poisson subordinators are limiting
cases of these two families of the compound Poisson subordinators.

Since the Laplace exponent of a subordinator is a Bernstein function, we have two
families of nonconvex penalty functions, whose limiting cases are the nonconvex LOG
and EXP. Additionally, these two families of nonconvex penalty functions can be defined
via composition of LOG and EXP, while the continuous and discrete compound Poisson
subordinators are mixtures of Gamma and Poisson processes.

Recall that the latent shrinkage parameter is a stochastic process of the regular-
ization parameter. We formulate a hierarchical model with multiple regularization pa-
rameters, giving rise to a Bayesian approach for nonconvex penalization. To reduce
computational expenses, we devise an ECME (for “Expectation/Conditional Maximiza-
tion Either”) algorithm (Liu and Rubin, 1994) which can adaptively adjust the local
regularization parameters in finding the sparse solution simultaneously.
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The remainder of the paper is organized as follows. Section 2 reviews the use of
Lévy processes in Bayesian sparse learning problems. In Section 3 we study two families
of compound Poisson processes. In Section 4 we apply the Lévy processes to Bayesian
linear regression and devise an ECME algorithm for finding the sparse solution. We
conduct empirical evaluations using simulated data in Section 5, and conclude our work
in Section 6.

2 Problem Formulation

Our work is based on the notion of Bernstein and completely monotone functions as
well as subordinators.

Definition 1. Let g ∈ C∞(0,∞) with g ≥ 0. The function g is said to be completely
monotone if (−1)ng(n) ≥ 0 for all n ∈ N and Bernstein if (−1)ng(n) ≤ 0 for all n ∈ N.

Roughly speaking, a subordinator is a one-dimensional Lévy process that is non-
decreasing almost surely. Our work is mainly motivated by the property of subordinators
given in Lemma 1 (Sato, 1999; Applebaum, 2004).

Lemma 1. If T = {T (t) : t ≥ 0} is a subordinator, then the Laplace transform of its
density takes the form

E
(
e−sT (t)

)
=

∫ ∞

0

e−sηfT (t)(η)dη � e−tΨ(s) for s > 0,

where fT (t) is the density of T (t) and Ψ, defined on (0,∞), is referred to as the Laplace
exponent of the subordinator and has the following representation

Ψ(s) = βs+

∫ ∞

0

[
1− e−su

]
ν(du). (1)

Here β ≥ 0 and ν is the Lévy measure such that
∫∞
0

min(u, 1)ν(du) < ∞.

Conversely, if Ψ is an arbitrary mapping from (0,∞) → (0,∞) given by expression
(1), then e−tΨ(s) is the Laplace transform of the density of a subordinator.

It is well known that the Laplace exponent Ψ is Bernstein and the corresponding
Laplace transform exp(−tΨ(s)) is completely monotone for any t ≥ 0 (Applebaum,
2004). Moreover, any function g : (0,∞) → R, with g(0) = 0, is a Bernstein function
if and only if it has the representation as in expression (1). Clearly, Ψ as defined in
expression (1) satisfies Ψ(0) = 0. As a result, Ψ is nonnegative, nondecreasing and
concave on (0,∞).

2.1 Subordinators for Nonconvex Penalty Functions

We are given a set of training data {(xi, yi) : i = 1, . . . , n}, where the xi ∈ R
p are the

input vectors and the yi are the corresponding outputs. We now discuss the following
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linear regression model:
y = Xb+ ε,

where y = (y1, . . . , yn)
T , X = [x1, . . . ,xn]

T , and ε is a Gaussian error vector N(0, σIn).
We aim at finding a sparse estimate of the vector of regression coefficients b = (b1, . . . ,
bp)

T by using a Bayesian nonconvex approach.

In particular, we consider the following hierarchical model for the regression coeffi-
cients bj ’s:

p(bj |ηj , σ) ∝ exp(−ηj |bj |/σ),

[ηj ]
iid∼ p(ηj),

σ ∼ IG(ασ/2, βσ/2),

where the ηj ’s are referred to as latent shrinkage parameters, and the inverse Gamma
prior has the following parametrization:

IG(ασ/2, βσ/2) =
(βσ/2)

ασ/2

Γ(ασ

2 )
σ−(ασ

2 +1) exp
(
−βσ

2σ

)
.

Furthermore, we regard ηj as T (tj), that is, ηj = T (tj). Here {T (t) : t ≥ 0} is defined
as a subordinator.

Let Ψ(s), defined on (0,∞), be the Laplace exponent of the subordinator. Taking
s = |b|, it can be shown that Ψ(|b|) defines a nonconvex penalty function of b on
(−∞,∞). Moreover, Ψ(|b|) is nondifferentiable at the origin because Ψ′(0+) > 0 and
Ψ′(0−) < 0. Thus, it is able to induce sparsity. In this regard, exp(−tΨ(|b|)) forms a
prior for b. From Lemma 1 it follows that the prior can be defined via the Laplace
transform. In summary, we have the following theorem.

Theorem 1. Let Ψ be a nonzero Bernstein function on (0,∞). If lim
s→0+

Ψ(s) = 0, then

Ψ(|b|) is a nondifferentiable and nonconvex function of b on (−∞,∞). Furthermore,

exp(−tΨ(|b|)) =
∫ ∞

0

exp(−|b|η)fT (t)(η)dη, t ≥ 0,

where {T (t) : t ≥ 0} is some subordinator.

Recall that T (t) is defined as the latent shrinkage parameter η and in Section 4
we will see that t plays the same role as the regularization parameter (or tuning hy-
perparameter). Thus, there is an important connection between the latent shrinkage
parameter and the corresponding regularization parameter; that is, η = T (t). Because
ηj = T (tj), each latent shrinkage parameter ηj corresponds to a local regularization
parameter tj . Therefore we have a nonparametric Bayesian formulation for the latent
shrinkage parameters ηj ’s.

It is also worth pointing out that

exp(−tΨ(|b|)) = 2

∫ ∞

0

L(b|0, (2η)−1)η−1fT (t)(η)dη,
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where L(b|u, η) denotes a Laplace distribution with density given by

p(b|u, η) = 1

4η
exp

(
− 1

2η
|b− u|

)
.

Thus, if 0 <
∫∞
0

η−1fT (t)(η)dη = M < ∞, then fT∗(t) � η−1fT (t)(η)/M defines the
proper density of some random variable (denoted T ∗(t)). Subsequently, we obtain a
proper prior exp(−tΨ(|b|))/M for b. Moreover, this prior can be regarded as a Laplace
scale mixture, i.e., the mixture of L(b|0, (2η)−1) with mixing distribution fT∗(t)(η). If∫∞
0

η−1fT (t)(η)dη = ∞, then fT∗(t) is not a proper density. Thus, exp(−tΨ(|b|)) is
also improper as a prior of b. However, we still treat exp(−tΨ(|b|)) as the mixture of
L(b|0, (2η)−1) with mixing distribution fT∗(t)(η). In this case, we employ the terminol-
ogy of pseudo-priors for the density, which is also used by Polson and Scott (2011).

2.2 The Gamma and Poisson Subordinators

Obviously, Ψ(s) = s is Bernstein. It is an extreme case, because we have that β = 1,
ν(du) = δ0(u)du and that fT (t)(·) = δt(·), where δt(·) denotes the Dirac Delta measure
at t, which corresponds to the deterministic process T (t) = t. We can exclude this case
by assuming β = 0 in expression (1) to obtain a strictly concave Bernstein function. In

fact, we can impose the condition lim
s→∞

Ψ(s)
s = 0. This in turn leads to β = 0 due to

lim
s→∞

Ψ(s)
s = β. In this paper we exploit Laplace exponents in nonconvex penalization

problems. For this purpose, we will only consider a subordinator without drift, i.e.,

β = 0. Equivalently, we always assume that lim
s→∞

Ψ(s)
s = 0.

We here take the nonconvex LOG and EXP penalties as two concrete examples (also
see Zhang and Tu, 2012). The LOG penalty is defined by

Ψ(s) =
1

ξ
log

(
γs+1

)
, γ, ξ > 0, (2)

while the EXP penalty is given by

Ψ(s) =
1

ξ
(1− exp(−γs)), γ, ξ > 0. (3)

Clearly, these two functions are Bernstein on (0,∞). Moreover, they satisfy Ψ(0) = 0

and lim
s→∞

Ψ(s)
s = lim

s→∞
Ψ′(s) = 0. It is also directly verified that

1

ξ
log

(
γs+1

)
=

∫ ∞

0

[
1− exp(−su)

]
ν(du),

where the Lévy measure ν is given by

ν(du) =
1

ξu
exp(−u/γ)du.
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The corresponding subordinator {T (t) : t ≥ 0} is a Gamma subordinator, because each
T (t) follows a Gamma distribution with parameters (t/ξ, γ), with density given by

fT (t)(η) =
γ− t

ξ

Γ(t/ξ)
η

t
ξ−1 exp(−γ−1η) (also denoted Ga(t/ξ, γ)).

We also note that the corresponding pseudo-prior is given by

exp(−tΨ(|b|)) =
(
γ|b|+1

)−t/ξ ∝
∫ ∞

0

L(b|0, η−1)η−1fT (t)(η)dη.

Furthermore, if t > ξ, the pseudo-prior is a proper distribution, which is the mixture of
L(b|0, η−1) with mixing distribution Ga(η|ξ−1t−1, γ).

As for the EXP penalty, the Lévy measure is ν(du) = ξ−1δγ(u)du. Since∫
R

[
1− exp(−γ|b|)

]
db = ∞,

then ξ−1[1 − exp(−γ|b|)] is an improper prior of b. Additionally, {T (t) : t ≥ 0} is
a Poisson subordinator. Specifically, T (t) is a Poisson distribution with intensity 1/ξ
taking values on the set {kγ : k ∈ N ∪ {0}}. That is,

Pr(T (t) = kγ) =
(t/ξ)k

k!
e−t/ξ, for k = 0, 1, 2, . . . (4)

which we denote by T (t) ∼ Po(1/ξ).

3 Compound Poisson Subordinators

In this section we explore the application of compound Poisson subordinators in con-
structing nonconvex penalty functions. Let {Z(k) : k ∈ N} be a sequence of independent
and identically distributed (i.i.d.) real valued random variables with common law μZ ,
and let K ∈ N∪{0} be a Poisson process with intensity λ that is independent of all the
Z(k). Then T (t) � Z(K(1))+ · · ·+Z(K(t)), for t ≥ 0, follows a compound Poisson dis-
tribution with density fT (t)(η) (denoted CP(λt, μZ)), and hence {T (t) : t ≥ 0} is called
a compound Poisson process. A compound Poisson process is a subordinator if and only
if the Z(k) are nonnegative random variables (Sato, 1999). It is worth pointing out that
if {T (t) : t ≥ 0} is the Poisson subordinator given in expression (4), it is equivalent to
saying that T (t) follows CP(t/ξ, δγ).

We particularly study two families of nonnegative random variables Z(i): nonnega-
tive continuous random variables and nonnegative discrete random variables. Accord-
ingly, we have continuous and discrete compound Poisson subordinators {T (t) : t ≥ 0}.
We will show that both the Gamma and Poisson subordinators are limiting cases of the
compound Poisson subordinators.
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3.1 Compound Poisson Gamma Subordinators

In the first family Z(i) is a Gamma random variable. In particular, let λ = ρ+1
ρξ and

the Z(i) be i.i.d. from the Ga
(
ρ, ρ+1

γ

)
distribution, where ρ > 0, ξ > 0 and γ > 0. The

compound Poisson subordinator can be written as follows

T (t) =

{
Z(K(1)) + · · ·+ Z(K(t)) if K(t) > 0,
0 if K(t) = 0.

The density of the subordinator is then given by

fT (t)(η) = exp
(
− (ρ+1)t

ρξ

){
δ0(η)+ exp

(
− (ρ+1)η

γ

) ∞∑
k=1

(ρ+1)k(ρ+1)( tξ )
k( ηγ )

kρ

k!ρkΓ(kρ)η

}
. (5)

We denote it by PG(t/ξ, γ, ρ). The mean and variance are

E(T (t)) =
γt

ξ
and Var(T (t)) =

γ2t

ξ
,

respectively. The Laplace transform is given by

E(exp(−sT (t))) = exp(−tΨρ(s)),

where Ψρ is a Bernstein function of the form

Ψρ(s) =
ρ+1

ρξ

[
1−

(
1 +

γ

ρ+1
s
)−ρ

]
. (6)

The corresponding Lévy measure is given by

ν(du) =
γ

ξ

((ρ+1)/γ)ρ+1

Γ(ρ+1)
uρ−1 exp

(
−ρ+1

γ
u
)
du. (7)

Notice that ξ
γuν(du) is a Gamma measure for the random variable u. Thus, the Lévy

measure ν(du) is referred to as a generalized Gamma measure (Brix, 1999).

The Bernstein function Ψρ(s) was studied by Aalen (1992) for survival analysis.
However, we consider its application in sparsity modeling. It is clear that Ψρ(s) for

ρ > 0 and γ > 0 satisfies the conditions Ψρ(0) = 0 and lim
s→∞

Ψρ(s)
s = 0. Also, Ψρ(|b|) is a

nonnegative and nonconvex function of b on (−∞,∞), and it is an increasing function
of |b| on [0,∞). Moreover, Ψρ(|b|) is continuous w.r.t. b but nondifferentiable at the
origin. This implies that Ψρ(|b|) can be treated as a sparsity-inducing penalty.

We are interested in the limiting cases that ρ = 0 and ρ = +∞.

Proposition 1. Let PG(t/ξ, γ, ρ), Ψρ(s) and ν(du) be defined by expressions (5), (6)
and (7), respectively. Then

(1) lim
ρ→0+

Ψρ(s) =
1
ξ log

(
γs+1

)
and lim

ρ→∞
Ψρ(s) =

1
ξ (1− exp(−γs));
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(2) lim
ρ→0+

PG(t/ξ, γ, ρ) = Ga(t/ξ, γ) and lim
ρ→∞

PG(t/ξ, γ, ρ) = CP(t/ξ, δγ);

(3) lim
ρ→0+

ν(du) = 1
ξu exp(−u

γ )du and lim
ρ→∞

ν(du) = 1
ξ δγ(u)du.

This proposition can be obtained by using direct algebraic computations. Proposi-
tion 1 tells us that the limiting cases yield the nonconvex LOG and EXP functions.
Moreover, we see that T (t) converges in distribution to a Gamma random variable with
shape t/ξ and scale γ, as ρ → 0+, and to a Poisson random variable with mean t/ξ, as
ρ → ∞.

It is well known that Ψ0 degenerates to the LOG function (Aalen, 1992; Brix, 1999).
Here we have shown that Ψρ approaches to EXP as ρ → ∞. We list another special
example in Table 1 when ρ = 1. We refer to the corresponding penalty as a linear-
fractional (LFR) function. For notational simplicity, we respectively replace γ/2 and
ξ/2 by γ and ξ in the LFR function. The density of the subordinator for the LFR
function is given by

fT (t)(η) = e−
t
ξ

{
δ0(η) + e−

η
γ

√
t/ξI1

(
2
√
tη/(ξγ)

)
γ
√
η/γ

}
.

We thus say each T (t) follows a squared Bessel process without drift (Yuan and Kalbfleisch,
2000), which is a mixture of a Dirac delta measure and a randomized Gamma distribu-
tion (Feller, 1971). We denote the density of T (t) by SB(t/ξ, γ).

Table 1: Bernstein functions LOG, EXP, LFR, and CEL, defined on [0,∞), and the
corresponding Lévy measures and subordinators (ξ > 0 and γ > 0).

Bernstein Functions Lévy Measures ν(du) Subordinators T (t) Priors

LOGΨ0(s) = Φ0(s) =
1
ξ
log

(
γs+1

)
1
ξu

exp(−u
γ
)du Ga(t/ξ, γ) Propera

EXP Ψ∞(s) = Φ∞(s) = 1
ξ
[1− exp(−γs)] 1

ξ
δγ(u)du CP(t/ξ, δkγ) Improper

LFR Ψ1(s) =
1
ξ

γs
γs+1

1
ξγ

exp(−u
γ
)du SB(t/ξ, γ) Improper

CEL Φ1(s) =
1
ξ
log[2− exp(−γs)] 1

ξ

∑∞
k=1

1
k2k

δkγ(u)du NB(t/ξ, 1/2, δkγ) Improper
aIt is proper only when t > ξ.

3.2 Negative Binomial Subordinators

In the second case, we consider a family of discrete compound Poisson subordinators.
Particularly, Z(i) is discrete and takes values on {kα : k ∈ N ∪ {0}}. And it is defined
as logarithmic distribution log(1−q), where α 
= 0 and q ∈ (0, 1), with probability mass
function given by

Pr(Z(i) = kα) = − (1− q)k

k log(q)
.
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Moreover, we let K(t) have a Poisson distribution with intensity −(ρ+1) log(q)/ξ, where
ρ > 0. Then T (t) is distributed according to a negative binomial (NB) distribution (Sato,
1999). The probability mass function of T (t) is given by

Pr(T (t) = kα) =
Γ(k+(ρ+ 1)t/ξ)

k!Γ((ρ+ 1)t/ξ)
q

(ρ+1)t
ξ (1− q)k, (8)

which is denoted as NB((ρ+1)t/ξ, q, δkα). We thus say that T (t) follows an NB subor-
dinator. Let q = ρ

ρ+1 and α = ρ
ρ+1γ. It can be verified that NB

(
(ρ+1)t/ξ, ρ

ρ+1 , δ kγρ
ρ+1

)
has the same mean and variance as the PG(t/ξ, γ, ρ) distribution. The corresponding
Laplace transform then gives rise to a new family of Bernstein functions, which is given
by

Φρ(s) �
ρ+1

ξ
log

[1+ρ

ρ
− 1

ρ
exp(− ρ

ρ+1
γs)

]
. (9)

We refer to this family of Bernstein functions as compound EXP-LOG (CEL) functions.
The first-order derivative of Φρ(s) w.r.t. s is given by

Φ′
ρ(s) =

γ

ξ

ρ exp(− ρ
ρ+1γs)

1+ρ− exp(− ρ
ρ+1γs)

.

The Lévy measure for Φρ(s) is given by

ν(du) =
ρ+ 1

ξ

∞∑
k=1

1

k(1+ρ)k
δ kγρ

ρ+1
(u)du. (10)

The proof is given in Appendix 1. We call this Lévy measure a generalized Poisson
measure relative to the generalized Gamma measure.

Like Ψρ(s), Φρ(s) can define a family of sparsity-inducing nonconvex penalties. Also,

Φρ(s) for ρ > 0, ξ > 0 and γ > 0 satisfies the conditions Φρ(0) = 0, lim
s→∞

Φρ(s)
s = 0 and

lim
s→0

Φ′
ρ(s) =

γ
ξ . We present a special CEL function Φ1 as well as the corresponding T (t)

and ν(du) in Table 1, where we replace ξ/2 and γ/2 by ξ and γ for notational simplicity.
We now consider the limiting cases.

Proposition 2. Assume ν(du) is defined by expression (10) for fixed ξ > 0 and γ > 0.
Then we have that

(a) lim
ρ→∞

Φρ(s) =
1
ξ (1− exp(−γs)) and lim

ρ→0+
Φρ(s) =

1
ξ log(1 + γs).

(b) lim
ρ→∞

Φ′
ρ(s) =

γ
ξ exp(−γs) and lim

ρ→0+
Φ′

ρ(s) =
γ
ξ

1
1+γs .

(c) lim
ρ→∞

ν(du) = 1
ξ δγ(u)du and lim

ρ→0+
ν(du) = 1

ξu exp(−u
γ )du.
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(d) lim
ρ→∞

NB
(
(ρ+1)t/ξ, ρ/(ρ+1), δkργ/(ρ+1)

)
= CP(t/ξ, δγ) and

lim
ρ→0+

Pr(T (t) ≤ η) =

∫ η

0

γ−t/ξ

Γ(t/ξ)
u

t
ξ−1 exp(−u

γ
)du.

Notice that

lim
ρ→0+

∫ ∞

0

exp(−us)uν(du) = lim
ρ→0+

Φ′
ρ(s) =

γ

ξ

1

1+γs
=

1

ξ

∫ ∞

0

exp
(
−us−u

γ

)
du.

This shows that ν(du) converges to 1
ξu

−1 exp(−u
γ ), as ρ → 0. Analogously, we obtain the

second part of Proposition 2-(d), which implies that as ρ → 0, T (t) converges in distri-
bution to a Gamma random variable with shape parameter t/ξ and scale parameter γ.
An alternative proof is given in Appendix 2.

Proposition 2 shows that Φρ(s) degenerates to EXP as ρ → ∞, while to LOG as
ρ → 0. This shows an interesting connection between Ψρ(s) in expression (6) and Φρ(s)
in expression (9); that is, they have the same limiting behaviors.

3.3 Gamma/Poisson Mixture Processes

We note that for ρ > 0,

Ψρ(s) =
ρ+1

ρξ

[
1− exp

(
−ρ log(

γs

ρ+1
+ 1)

)]

which is a composition of the LOG and EXP functions, and that

Φρ(s) =
ρ+1

ξ
log

[
1+

1

ρ
(1− exp(− ρ

ρ+1
γs))

]

which is a composition of the EXP and LOG functions. In fact, the composition of any
two Bernstein functions is still Bernstein. Thus, the composition is also the Laplace
exponent of some subordinator, which is then a mixture of the subordinators corre-
sponding to the original two Bernstein functions (Sato, 1999). This leads us to an
alternative derivation for the subordinators corresponding to Ψρ and Φρ. That is, we
have the following theorem whose proof is given in Appendix 3.

Theorem 2. The subordinator T (t) associated with Ψρ(s) is distributed according to
the mixture of Ga(kρ, γ/(ρ+1)) distributions with Po(k|(ρ+1)t/(ρξ)) mixing, while T (t)
associated with Φρ(s) is distributed according to the mixture of CP(λ, δkργ/(ρ+1)) distri-
butions with Ga(λ|(ρ+1)t/ξ, 1/ρ) mixing.

Additionally, the following theorem illustrates a limiting property of the subordina-
tors as γ approaches 0.
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Theorem 3. Let ρ be a fixed constant on [0,∞].

(a) If T (t) ∼ PG(t/ξ, γ, ρ) where ξ = ρ+1
ρ

[
1 − (1+ γ

ρ+1 )
−ρ

]
or ξ = γ, then T (t)

converges in probability to t, as γ → 0.

(b) If T (t) ∼ NB((ρ+1)t/ξ, ρ/(ρ+1), δkργ/(ρ+1)) where

ξ = (ρ+1) log
[
1+

1

ρ
(1− exp(− ρ

ρ+1
γ))

]
or ξ = γ, then T (t) converges in probability to t, as γ → 0.

The proof is given in Appendix 4. Since “T (t) converges in probability to t” implies
“T (t) converges in distribution to t,” we have that

lim
γ→0

PG(t/ξ, γ, ρ)
d
= δt and lim

γ→0
NB((ρ+1)t/ξ, ρ/(ρ+1), δkργ/(ρ+1))

d
= δt.

Finally, consider the four nonconvex penalty function given in Table 1. We present
the following property. That is, when ξ = γ and for any fixed γ > 0, we have

1

γ
log[2− exp(−γs)] ≤ s

γs+1
≤ 1

γ
[1− exp(−γs)] ≤ 1

γ
log

(
γs+1

)
≤ s, (11)

with equality only when s = 0. The proof is given in Appendix 5. This property is also
illustrated in Figure 1.

4 Bayesian Linear Regression with Latent Subordinators

We apply the compound Poisson subordinators to the Bayesian sparse learning problem
given in Section 2. Defining T (t) = η, we rewrite the hierarchical representation for the
joint prior of the bj under the regression framework. That is, we assume that

[bj |ηj , σ] ind∼ L(bj |0, σ(2ηj)−1),

fT∗(tj)(ηj) ∝ η−1
j fT (tj)(ηj),

which implies that

p(bj , ηj |tj , σ) ∝ σ−1 exp
(
− ηj

σ
|bj |

)
fT (tj)(ηj).

The joint marginal pseudo-prior of the bj ’s is given by

p∗(b|t, σ) =
p∏

j=1

p∗(bj |tj , σ) =
p∏

j=1

σ−1

∫ ∞

0

exp
(
− ηj

σ
|bj |

)
fT (tj)(ηj)dηj

=

p∏
j=1

σ−1 exp
(
− tjΨ

( |bj |
σ

))
.
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Figure 1: The four nonconvex penalties Ψ(s) in Table 1 with ξ = γ = 1 and Ψ(s) = s.

We will see in Theorem 4 that the full conditional distribution p(b|σ, t,y) is proper.

Thus, the maximum a posteriori (MAP) estimate of b is based on the following opti-

mization problem:

min
b

{1

2
‖y −Xb‖22 + σ

p∑
j=1

tjΨ(|bj |/σ)
}
.

Clearly, the tj ’s are local regularization parameters and the ηj ’s are latent shrinkage

parameters. Moreover, it is interesting that {T (t) : t ≥ 0} (or η) is defined as a subor-

dinator w.r.t. t.

The full conditional distribution p(σ|b,η,y) is conjugate w.r.t. the prior, which is

σ ∼ IG(aσ

2 , bσ
2 ). Specifically, it is an inverse Gamma distribution of the form

p(σ|b,η,y) ∝ 1

σ
n+2p+aσ

2 +1
exp

[
−
bσ + ‖y −Xb‖22 + 2

∑p
j=1 ηj |bj |

2σ

]
.

In the following experiment, we use an improper prior of the form p(σ) ∝ 1
σ (i.e.,

aσ = bσ = 0). Clearly, p(σ|b,η,y) is still an inverse Gamma distribution in this setting.

Additionally, based on

p(b|η, σ,y) ∝ exp
[
− 1

2σ
‖y −Xb‖22

] p∏
j=1

exp(−ηj
σ
|bj |)
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and the proof of Theorem 4 (see Appendix 6), we have that the conditional distribution
p(b|η, σ,y) is proper. However, the absolute terms |bj | make the form of p(b|η, σ,y)
unfamiliar. Thus, a Gibbs sampling algorithm is not readily available and we resort to
an EM algorithm to estimate the model.

4.1 The ECME Estimation Algorithm

Notice that if p∗(bj |tj , σ) is proper, the corresponding normalizing constant is given by

2

∫ ∞

0

σ−1 exp
[
− tjΨ

( |bj |
σ

)]
d|bj | = 2

∫ ∞

0

exp
[
− tjΨ

( |bj |
σ

)]
d(|bj |/σ),

which is independent of σ. Also, the conditional distribution p(ηj |bj , tj , σ) is independent
of the normalizing term. Specifically, we always have that

p(ηj |bj , tj , σ) =
exp

(
− ηj

σ |bj |
)
fT (tj)(ηj)

exp(−tjΨ(|bj |/σ))
,

which is proper.

As shown in Table 1, except for LOG with t > ξ which can be transformed into
a proper prior, the remaining Bernstein functions cannot be transformed into proper
priors. In any case, our posterior computation is directly based on the marginal pseudo-
prior p∗(b|t, σ). We ignore the involved normalizing term, because it is infinite if
p∗(b|t, σ) is improper and it is independent of σ if p∗(b|t, σ) is proper.

Given the kth estimates (b(k), σ(k)) of (b, σ) in the E-step of the EM algorithm, we
compute

Q(b, σ|b(k), σ(k)) � log p(y|b, σ) +
p∑

j=1

∫
log p[bj |ηj , σ]p(ηj |b(k)j , σ(k), tj)dηj + log p(σ)

∝ −n+ ασ

2
log σ−‖y−Xb‖22 + βσ

2σ
− (p+ 1) log σ

− 1

σ

p∑
j=1

|bj |
∫

ηjp(ηj |b(k)j , σ(k), tj)dηj .

Here we omit some terms that are independent of parameters σ and b. In fact, we only

need to compute E(ηj |b(k)j , σ(k)) in the E-step. Considering that

∫ ∞

0

exp
(
− ηj

σ
|bj |

)
fT (tj)(ηj)dηj = exp(−tjΨ(|bj |/σ)),

and taking the derivative w.r.t. |bj | on both sides of the above equation, we have that

w
(k+1)
j � E(ηj |b(k)j , σ(k), tj) = tjΨ

′(|b(k)j |/σ(k)).
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The M-step maximizes Q(b, σ|b(k), σ(k)) w.r.t. (b, σ). In particular, it is obtained
that:

b(k+1) = argmin
b

1

2
‖y−Xb‖22 +

p∑
j=1

w
(k+1)
j |bj |,

σ(k+1) =
1

n+ασ+2p+2

{
‖y−Xb(k+1)‖22 + βσ + 2

p∑
j=1

w
(k+1)
j |b(k+1)

j |
}
.

The above EM algorithm is related to the linear local approximation (LLA) proce-
dure (Zou and Li, 2008). Moreover, it shares the same convergence property given in
Zou and Li (2008) and Zhang et al. (2012).

Subordinators help us to establish a direct connection between the local regulariza-
tion parameters tj ’s and the latent shrinkage parameters ηj ’s (or T (tj)). However, when
we implement the MAP estimation, it is challenging how to select these local regular-
ization parameters. We employ an ECME (for “Expectation/Conditional Maximization
Either”) algorithm (Liu and Rubin, 1994; Polson and Scott, 2010) for learning about
the bj ’s and tj ’s simultaneously. For this purpose, we suggest assigning tj Gamma prior
Ga(αt, 1/βt), namely,

p(tj)=
βαt
t

Γ(αt)
tαt−1
j exp(−βttj),

because the full conditional distribution is also Gamma and given by

[tj |bj , σ] ∼ Ga
(
αt, 1/[Ψ(|bj |/σ) + βt]

)
.

Recall that we here compute the full conditional distribution directly using the marginal
pseudo-prior p∗(bj |tj , σ), because our used Bernstein functions in Table 1 cannot induce
proper priors. However, if p∗(bj |tj , σ) is proper, the corresponding normalizing term
would rely on tj . As a result, the full conditional distribution of tj is possibly no longer
Gamma or even not analytically available.

Figure 2-(a) depicts the hierarchical model for the Bayesian penalized linear re-
gression, and Table 2 gives the ECME procedure where the E-step and CM-step are

respectively identical to the E-step and the M-step of the EM algorithm, with tj = t
(k)
j .

The CME-step updates the tj ’s with

t
(k+1)
j =

αt − 1

Ψ(|b(k)j |/σ(k)) + βt

, j = 1, . . . , p.

In order to make sure that tj > 0, it is necessary to assume that αt > 1. In the following
experiments, we set αt = 10.

We conduct experiments with the prior p(bj) ∝ tjσ
−1/2 exp(−tj(|bj |/σ)1/2) for com-

parison. This prior is induced from the �1/2-norm penalty, so it is a proper specification.
Moreover, the full conditional distribution of tj w.r.t. its Gamma prior Ga(αt, 1/βt) is
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still Gamma; that is,

[tj |bj , σ] ∼ Ga
(
αt+2, 1/(βt+

√
|bj |/σ)

)
.

Thus, the CME-step for updating the tj ’s is given by

t
(k+1)
j =

αt + 1√
|b(k)j |/σ(k) + βt

, j = 1, . . . , p. (12)

The convergence analysis of the ECME algorithm was presented by Liu and Rubin
(1994), who proved that the ECME algorithm retains the monotonicity property from
the standard EM. Moreover, the ECME algorithm based on pseudo-priors was also used
by Polson and Scott (2011).

Table 2: The Basic Procedure of the ECME Algorithm

E-step Identical to the E-step of the EM with tj = t
(k)
j .

CM-step Identical to the M-step of the EM with tj = t
(k)
j .

CME-step Set t
(k+1)
j = αt−1

Ψ(|b(k)
j |/σ(k))+βt

.

As we have seen, p(t|y,b, σ) = p(t|b, σ) =
∏p

j=1 p(tj |bj , σ) and p(σ|b,η, t,y) are
proper. In the following theorem, we show that p(b|σ, t,y) and p(b, σ, t|y) are also
proper. Moreover, when the improper prior p(σ) ∝ 1

σ (i.e., ασ = βσ = 0 in the in-
verse Gamma prior) is used, Theorem 4 shows that p(b, σ, t|y) is proper under certain
conditions.

Theorem 4. With the previous prior specifications for b, σ and t, we have that
p(b|σ, t,y), p(b, σ|t,y) and p(b, σ, t|y) are proper. Suppose we use the improper prior
p(σ) ∝ 1

σ for σ. If y /∈ range(X) (the subspace spanned by the columns of X), p(b, σ|t,y)
and p(b, σ, t|y) are proper.

The proof of Theorem 4 is given in Appendix 6. Notice that the proof only requires
that Ψ(s) ≥ 0, and does not involve the other properties of the Bernstein function. In
other words, Theorem 4 is still held for any nonnegative but not necessarily Bernstein
function Ψ. Theorem 4 shows that our ECME algorithm is to find the MAP estimates
of the parameters b and σ as well as the MAP estimates of the local regularization
parameters tj ’s.

In the EM algorithm of Polson and Scott (2012), the authors set t1 = · · · = tp � ν
as a global regularization parameter and assumed it to be prespecified (see Section 5.3
of Polson and Scott, 2012). This in fact leads to a parametric setting for the latent
shrinkage parameters η (Zou and Li, 2008; Cevher, 2009; Garrigues and Olshausen,
2010; Lee et al., 2010; Armagan et al., 2013). However, Polson and Scott (2012) aimed
to construct sparse priors using increments of subordinators. It is worth noting that
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Caron and Doucet (2008) regarded their model as a nonparametric model w.r.t. the
regression coefficients b; that is, they treated b as a stochastic process of T . Thus, the
treatment of Caron and Doucet (2008) is also different from ours.

Figure 2: Graphical representations for hierarchical regression models. (a) Nonparamet-
ric setting for T , i.e., different T have different t; (b) Parametric setting for T , i.e.,
different T share a common ν; (c) nonseparable setting, i.e., one T .

5 Experimental Analysis

We now conduct empirical analysis with our ECME procedure described in Algorithm 1
based on Figure 2-(a). We also implement the setting in Polson and Scott (2012), i.e.,
t1 = · · · = tp � ν and the Tj ’s are independent given ν. Polson and Scott (2012)
suggested that ν is prespecified as the global regularization parameter. In fact, we can
also estimate ν under the ECME algorithm. This setting is described in Figure 2-(b)
and the corresponding ECME algorithm is given in Algorithm 2.

Notice that in the setting t1 = · · · = tp � ν, if the latent shrinkage T (t) is treated as
a stochastic process of t, then the bj ’s share a common T (ν). In this case, the marginal
pseudo-prior for b is nonseparable; that is, p(b) ∝ exp(−ν

ξΨ(‖b‖1/σ)). Figure 2-(c) il-

lustrates the resulting model and the corresponding ECME algorithm (see Algorithm 3)
is also performed.

We refer to the algorithms based on Figures 2-(a), (b) and (c) as “Alg 1,” “Alg
2” and “Alg 3,” respectively. We consider the nonconvex �1/2, LOG, EXP, LFR and
CEL penalties to respectively implement these three algorithms. The CME-step with
the �1/2-norm is based on expression (12). According to Theorem 3, we can set, for
instance, ξ = γ

1+γ in LFR. However, Theorem 3 also shows that when ξ = γ, the two
settings have the same asymptotic properties as γ → 0. That is, the resulting model
approaches the lasso. We thus set ξ = γ in “Alg 1,” and ξ = pγ in both “Alg 2” and
“Alg 3.” The settings are empirically validated to be effective. As we have mentioned,
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Algorithm 1: ECME for Bayesian Regression with Penalty Ψρ(|b|) or Φρ(|b|)

E-step Given the current estimates b(k) and tj = t
(k)
j , compute

w
(k)
j = t

(k)
j Ψ′

ρ(|b(k)j |/σ(k)) or w
(k)
j = t

(k)
j Φ′

ρ(|b(k)j |/σ(k)), j = 1, . . . , p

CM-step Solve the following problem:

b(k+1) = argminb
1
2
‖y−Xb‖22 +

∑p
j=1 w

(k+1)
j |bj |,

σ(k+1) = 1
ασ+n+2p+2

{
βσ + ‖y−Xb(k+1)‖22 + 2

∑p
j=1 w

(k+1)
j |b(k+1)

j |
}
.

CME-step Compute

t
(k+1)
j = αt−1

βt+Ψρ(|b(k)
j |/σ(k))

or t
(k+1)
j = αt−1

βt+Φρ(|b(k)
j |/σ(k))

.

Algorithm 2: ECME for Bayesian Regression with Penalty Ψρ(|b|) or Φρ(|b|)

E-step Given the current estimates b(k) and ν = ν(k), compute

w
(k)
j = ν(k)Ψ′

ρ(|b(k)j |/σ(k)) or w
(k)
j = ν(k)Φ′

ρ(|b(k)j |/σ(k)), j = 1, . . . , p

CM-step Solve the following problem:

b(k+1) = argminb
1
2
‖y−Xb‖22 +

∑p
j=1 w

(k+1)
j |bj |,

σ(k+1) = 1
ασ+n+2p+2

{
βσ + ‖y−Xb(k+1)‖22 + 2

∑p
j=1 w

(k+1)
j |b(k+1)

j |
}
.

CME-step Compute

ν(k+1) = αt−1

βt+
∑p

j=1 Ψρ(|b(k)
j |/σ(k))

or ν(k+1) = αt−1

βt+
∑p

j=1 Φρ(|b(k)
j |/σ(k))

.

Algorithm 3: ECME for Bayesian Regression with Penalty Ψρ(‖b‖1) or Φρ(‖b‖1)

E-step Given the current estimates b(k) and ν = ν(k), compute

w(k) = ν(k)Ψ′(‖b(k)‖1/σ(k)) or w(k) = ν(k)Φ′(‖b(k)‖1/σ(k))
CM-step Solve the following problem:

b(k+1) = argminb
1
2
‖y−Xb‖22 + w(k+1)‖b‖1,

σ(k+1) = 1
ασ+n+2p+2

{
βσ + ‖y−Xb(k+1)‖22 + 2w(k+1)‖b(k+1)‖1

}
.

CME-step Compute

ν(k+1) = αt−1

βt+Ψ(‖b(k)‖1/σ(k))
or ν(k+1) = αt−1

βt+Ψ(‖b(k)‖1/σ(k))
.

γ is a global shrinkage parameter, so we call it the global tuning parameter. In the

experiments, γ and βt are selected via cross validation. As hyperparameters ασ, βσ,

and αt, we simply set ασ = βσ = 0, αt = 10.

Our analysis is based on a set of simulated data, which are generated according to

Mazumder et al. (2011). In particular, we consider the following three data models —

“small,” “medium” and “large.”

Data S: n = 35, p = 30, bS = (0.03, 0.07, 0.1, 0.9, 0.93, 0.97,0)T , and ΣS is a p × p

matrix with 1 on the diagonal and 0.4 on the off-diagonal.
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Table 3: Results of the three algorithms with �1/2, LOG, EXP, LFR and CEL on the
simulated data sets. Here a standardized prediction error (SPE) is used to evaluate
the model prediction ability, and the minimal achievable value for SPE is 1. And “�”

denotes the proportion of correctly predicted zero entries in b, that is, #{i|bi=0 and b̂i=0}
#{i|bi=0} ;

if all the nonzero entries are correctly predicted, this score should be 100%.

SPE(±STD) �(%) SPE(±STD) �(%) SPE(±STD) �(%)

Data S Data M Data L
Alg 1+LOG 1.0914(±0.1703) 98.24 1.1526(±0.1025) 97.42 1.4637(±0.1735) 90.04
Alg 2+LOG 1.1508(±0.1576) 85.25 1.3035(±0.1821) 87.35 1.5084(±0.1676) 88.67
Alg 3+LOG 1.1268(±0.1754) 86.33 1.5524(±0.1437) 91.21 1.5273(±0.1567) 85.25
Alg 1+EXP 1.1106(±0.1287) 98.67 1.1587(±0.1527) 97.98 1.4608(±0.1557) 87.55
Alg 2+EXP 1.1654(±0.1845) 87.36 1.3134(±0.1152) 88.45 1.5586(±0.1802) 85.34
Alg 3+EXP 1.1552(±0.1495) 80.33 1.5047(±0.1376) 93.67 1.5145(±0.1594) 84.56
Alg 1+LFR 1.0985(±0.1824) 98.67 1.1603(±0.1158) 98.34 1.4536(±0.1697) 89.23
Alg 2+LFR 1.1326(±0.1276) 86.35 1.3089(±0.1367) 87.28 1.5183(±0.1507) 85.67
Alg 3+LFR 1.1723(±0.1534) 84.28 1.3972(±0.2356) 88.33 1.5962(±0.1467) 86.53
Alg 1+CEL 1.1238(±0.1145) 96.12 1.1642(±0.1236) 98.26 1.4633(±0.1346) 89.58
Alg 2+CEL 1.1784(±0.1093) 84.67 1.4059(±0.1736) 89.67 1.5903(±0.1785) 85.23
Alg 3+CEL 1.1325(±0.1282) 85.23 1.3762(±0.1475) 90.32 1.5751(±0.1538) 82.65
Alg 1+�1/2 1.2436(±0.1458) 89.55 1.2937(±0.2033) 94.83 1.5032(±0.1633) 85.86
Alg 2+�1/2 1.2591(±0.1961) 79.88 1.5902(±0.2207) 83.50 1.6859(±0.1824) 83.58
Alg 3+�1/2 1.2395(±0.2045) 75.34 1.5630(±0.1642) 80.83 1.6732(±0.1711) 80.67
Lasso 1.3454(±0.3098) 60.17 1.6708(±0.2149) 66.08 1.6839(±0.1825) 71.33

Data M: n = 100, p = 200, bM has 10 non-zeros such that bM20i+1 = 1 and i =

0, 1, · · · , 9, and ΣM = {0.7|i−j|}1≤i,j≤p.

Data L: n = 500, p = 1000, bL = (bM , · · · ,bM ), and ΣL = diag(ΣM , · · · ,ΣM ) (five

blocks).

For each data model, we generate n×p data matrices X such that each row of X is gen-

erated from a multivariate Gaussian distribution with mean 0p and covariance matrix

ΣS , ΣM , or ΣL.

We assume a linear model y = Xb+ ε with multivariate Gaussian predictors X and

Gaussian errors. We choose σ such that the Signal-to-Noise Ratio (SNR) is a specified

value. Following the setting in Mazumder et al. (2011), we use SNR = 3.0 in all the

experiments. We employ a standardized prediction error (SPE) to evaluate the model

prediction ability. The minimal achievable value for SPE is 1. Variable selection accuracy

is measured by the correctly predicted zeros and incorrectly predicted zeros in b̂. The
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SNR and SPE are defined as

SNR =

√
bTΣb

σ
and SPE =

E(y − xb̂)2

σ2
.

For each data model, we generate training data of size n, very large validation
data and test data, each of size 10000. For each algorithm, the optimal global tuning
parameters are chosen by cross validation based on minimizing the average prediction
errors. With the model b̂ computed on the training data, we compute SPE on the test
data. This procedure is repeated 100 times, and we report the average and standard
deviation of SPE and the average of zero-nonzero error. We use “�” to denote the

proportion of correctly predicted zero entries in b, that is, #{i|bi=0 and b̂i=0}
#{i|bi=0} ; if all the

nonzero entries are correctly predicted, this score should be 100%.

We report the results in Table 3. It is seen that our setting in Figure 2-(a) is better
than the other two settings in Figures 2-(b) and (c) in both model prediction accuracy
and variable selection ability. Especially, when the size of the dataset takes large values,
the prediction performance of the second setting becomes worse. The several nonconvex
penalties are competitive, but they outperform the lasso. Moreover, we see that LOG,
EXP, LFR and CEL slightly outperform �1/2. The �1/2 penalty indeed suffers from the
problem of numerical instability during the EM computations. As we know, the priors
induced from LFR, CEL and EXP as well as LOG with t ≤ ξ are improper, but the
prior induced from �1/2 is proper. The experimental results show that these improper
priors work well, even better than the proper case.

Recall that in our approach each regression variable bj corresponds to a distinct
local tuning parameter tj . Thus, it is interesting to empirically investigate the inherent
relationship between bj and tj . Let t̂j be the estimate of tj obtained from our ECME
algorithm (“Alg 1”), and (π1, . . . , πp) be the permutation of (1, . . . , p) such that t̂π1 ≤
· · · ≤ t̂πp . Figure 3 depicts the change of |b̂πj | vs. t̂πj with LOG, EXP, LFR and CEL

on “Data S” and “Data M.” We see that |b̂πj | is decreasing w.r.t. t̂πj . Moreover, |b̂πj |
becomes 0 when t̂πj takes some large value. A similar phenomenon is also observed for
“Data L.” This thus shows that the subordinator is a powerful Bayesian approach for
variable selection.

6 Conclusion

In this paper we have introduced subordinators into the definition of nonconvex penalty
functions. This leads us to a Bayesian approach for constructing sparsity-inducing
pseudo-priors. In particular, we have illustrated the use of two compound Poisson sub-
ordinators: the compound Poisson Gamma subordinator and the negative binomial sub-
ordinator. In addition, we have established the relationship between the two families
of compound Poisson subordinators. That is, we have proved that the two families of
compound Poisson subordinators share the same limiting behaviors. Moreover, their
densities at each time have the same mean and variance.
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Figure 3: The change of |b̂πj | vs. t̂πj on “Data S” and “Data M” where (π1, . . . , πp) is

the permutation of (1, . . . , p) such that t̂π1 ≤ · · · ≤ t̂πp .
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We have developed the ECME algorithms for solving sparse learning problems based
on the nonconvex LOG, EXP, LFR and CEL penalties. We have conducted the exper-
imental comparison with the state-of-the-art approach. The results have shown that
our nonconvex penalization approach is potentially useful in high-dimensional Bayesian
modeling. Our approach can be cast into a point estimation framework. It is also inter-
esting to fit a fully Bayesian framework based on the MCMC estimation. We would like
to address this issue in future work.

Appendix 1: The Lévy Measure of the CEL Function

Consider that

log
[1+ρ

ρ
− 1

ρ
exp(− ρ

1+ρ
γs)

]
= log

[
1− 1

1+ρ
exp(− ρ

1+ρ
γs)

]
− log

[
1− 1

1+ρ

]

=

∞∑
k=1

1

k(1+ρ)k

[
1− exp

(
− ρ

1+ρ
kγs

)]

=

∞∑
k=1

1

k(1+ρ)k

∫ ∞

0

(1− exp(−us))δ ρkγ
1+ρ

(u)du.

We thus have that ν(du) = 1+ρ
ξ

∑∞
k=1

1
k(1+ρ)k

δ ρkγ
1+ρ

(u)du.

Appendix 2: The Proof of Proposition 2

We here give an alternative proof of Proposition 2-(d), which is immediately obtained
from the following lemma.

Lemma 2. Let X take discrete value on N ∪ {0} and follow negative binomial distribu-
tion Nb(r, p). If r converges to a positive constant as p → 0, pX converges in distribution
to a Gamma random variable with shape r and scale 1.

Proof. Since

FpX(x) = Pr(pX ≤ x) =

∞∑
kp ≤ x
k = 0

Γ(k + r)

Γ(r)Γ(k+1)
pr(1− p)k,

we have that
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p→0+

FpX(x) = lim
p→0+
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kp ≤ x
k = 0
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Γ(r)Γ(k+1)
pr(1− p)k
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= lim
p→0+

∞∑
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This leads us to

lim
p→0+

FpX(x) =

∫ x

0

ur−1

Γ(r)
exp(−u)du.

Similarly, we have that

lim
ρ→0

ν(du) =
ρ+ 1
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∞∑
k=1

ρ

kρ(1+ρ)kρ/ρ
δkργ/(1+ρ)du

=
1

ξ

∫ ∞

0

z−1 exp(−z)δzγ(u)dz

=
1

ξ
u−1 exp(−u/γ).

Appendix 3: The Proof of Theorem 2

Proof. Consider a mixture of Ga(η|kν, β) with Po(k|λ) mixing. That is,

p(η) =

∞∑
k=0

Ga(η|kν, β)Po(k|λ)
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= exp(−λ)
{
δ0(η) + exp(− η

β
)

∞∑
k=1

λk(η/β)kν

ηΓ(kν)k!

}
.

Letting λ = ρt
ξ(ρ−1) , ν = ρ− 1 and β = γ

ρ , we have that

p(η) = exp
(
− ρt

ξ(ρ−1)
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δ0(η) + exp
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−ρη
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η−1

∞∑
k=1
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.

We now consider a mixture of Po(k|φλ) with Ga(λ|ψ, 1/β) mixing. That is,

Pr(T (t) = kα) =

∫ ∞

0

Po(k|λφ)Ga(λ|ψ, 1/β)dλ

=

∫ ∞

0

(λφ)k
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k!

φk

(φ+ β)k+ψ
,

which is Nb(T (t)|ψ, β/(β + φ)). Let ψ = (ρ+ 1)t/ξ, φ = 1, β = ρ and q = β
φ+β . Thus,

Pr(T (t) = kα) =
Γ(k+(ρ+1)t/ξ)

k!Γ((ρ+1)t/ξ)
q(ρ+1)t/ξ(1− q)k.

Appendix 4: The Proof of Theorem 3

Proof. Since lim
γ→0

ρ+1
ργ

[
1 − (1 + γ

ρ+1 )
−ρ

]
= 1, we only need to consider the case that

ξ = γ. Recall that PG(t/ξ, γ, ρ), whose mean and variance are

E(T (t)) =
γt

ξ
= t and Var(T (t)) =

γ2t

ξ
= γt

whenever ξ = γ. By Chebyshev’s inequality, we have that

Pr{|T (t)− t| ≥ ε} ≤ γt

ε2
.

Hence, we have that
lim
γ→0

Pr{|T (t)− t| ≥ ε} = 0.

Similarly, we have Part (b).

Appendix 5: The Proof of Proposition in Expression (11)

Proof. We first note that

2 exp(γs) = 2 + 2γs+ (γs)2 +
2

3
(γs)3 + · · · ,
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which implies that 2 exp(γs)− 1− (γs+ 1)2 > 0 for s > 0. Subsequently, we have that
d
ds

[
log(2− exp(−γs))− γs

1+γs

]
≤ 0. As a result, log(2− exp(−γs))− γs

1+γs < 0 for s > 0.

As for γs
γs+1 ≤ 1− exp(−γs), it is directly obtained from that
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= 1− exp(− log(1 + γs)) ≤ 1− exp(−γs).

Since d
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1+γs < 0 for s > 0, we have that
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< 0 for s > 0.

Appendix 6: The Proof of Theorem 4

Proof. First consider that

p(b|σ, t,y) ∝ 1
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To prove that p(b|σ, t,y) is proper, it suffices to obtain that
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It is directly computed that
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yT (In −X(XTX)+XT )y

]
, (13)

where z = (XTX)+XTy and (XTX)+ is the Moore-Penrose pseudo inverse of matrix
XTX (Magnus and Neudecker, 1999). Here we use the well-established properties that
X(XTX)+(XTX) = X and (XTX)+(XTX)(XTX)+ = (XTX)+. Notice that if XTX
is nonsingular, then (XTX)+ = (XTX)−1. In this case, we consider a conventional
multivariate normal distribution N(b|z, σ(XTX)−1). Otherwise, we consider a singular
multivariate normal distribution N(b|z, σ(XTX)+) (Mardia et al., 1979), the density
of which is given by∏q
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.

Here q = rank(X), and λj(X
TX), j = 1, . . . , q, are the positive eigenvalues of XTX. In

any case, we always write N(b|z, σ(XTX)+). Thus,
∫
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We now consider that

p(b, σ|t,y) ∝ σ−(n+ασ+2p
2 +1) exp

[
− ‖y −Xb‖22+βσ

2σ

] p∏
j=1

exp
(
− tjΨ

( |bj |
σ

))
.

Let ν = yT [In − X(XTX)+XT ]y. Since the matrix In − X(XTX)+XT is positive
semidefinite, we obtain ν ≥ 0. Based on expression (13), we can write
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and hence,
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Therefore p(b, σ|t,y) is proper.
Thirdly, we take
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In this case, we compute
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Similar to the previous proof, we also have that∫
F (b, σ, t)dbdσdt < ∞

because
(
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≤ βt
−αt . As a result, p(b, σ, t|y) is proper.

Finally, consider the setting that p(σ) ∝ 1
σ . That is, ασ = 0 and βσ = 0. In this case,

if y /∈ range(X), we obtain ν > 0 and q < n. As a result, we use the inverse Gamma
distribution IG(σ|n+2p−q

2 , ν). Thus, the results still hold.
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