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Bayesian Structure Learning in Sparse Gaussian
Graphical Models

A. Mohammadi∗ and E. C. Wit†

Abstract. Decoding complex relationships among large numbers of variables with
relatively few observations is one of the crucial issues in science. One approach
to this problem is Gaussian graphical modeling, which describes conditional in-
dependence of variables through the presence or absence of edges in the underly-
ing graph. In this paper, we introduce a novel and efficient Bayesian framework
for Gaussian graphical model determination which is a trans-dimensional Markov
Chain Monte Carlo (MCMC) approach based on a continuous-time birth-death
process. We cover the theory and computational details of the method. It is easy
to implement and computationally feasible for high-dimensional graphs. We show
our method outperforms alternative Bayesian approaches in terms of convergence,
mixing in the graph space and computing time. Unlike frequentist approaches, it
gives a principled and, in practice, sensible approach for structure learning. We il-
lustrate the efficiency of the method on a broad range of simulated data. We then
apply the method on large-scale real applications from human and mammary
gland gene expression studies to show its empirical usefulness. In addition, we
implemented the method in the R package BDgraph which is freely available at
http://CRAN.R-project.org/package=BDgraph.

Keywords: Bayesian model selection, Sparse Gaussian graphical models,
Non-decomposable graphs, Birth-death process, Markov chain Monte Carlo,
G-Wishart.

1 Introduction

Statistical inference of complex relationships among large numbers of variables with a
relatively small number of observations appears in many circumstances. Biologists want
to recover the underlying genomic network between thousands of genes, based on at most
a few hundred observations. In market basket analysis analysts try to find relationships
between only a small number of purchases of individual customers (Giudici and Castelo,
2003). One approach to these tasks is probabilistic graphical modeling (Lauritzen, 1996),
which is based on the conditional independencies between variables. Graphical models
offer fundamental tools to describe the underlying conditional correlation structure.
They have recently gained in popularity in both statistics and machine learning with
the rise of high-dimensional data (Jones et al., 2005; Dobra et al., 2011a; Meinshausen
and Bühlmann, 2006; Wang and Li, 2012; Friedman et al., 2008; Ravikumar et al., 2010;
Zhao and Yu, 2006; Wang, 2012, 2014). For the purpose of performing structure learning,
Bayesian approaches provide a straightforward tool, explicitly incorporating underlying
graph uncertainty.
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In this paper, we focus on Bayesian structure learning in Gaussian graphical models
for both decomposable and non-decomposable cases. Gaussian graphical determination
can be viewed as a covariance selection problem (Dempster, 1972), where the non-zero
entries in the off-diagonal of the precision matrix correspond to the edges in the graph.
For a p-dimensional variable there are in total 2p(p−1)/2 possible conditional indepen-
dence graphs. Even with a moderate number of variables, the model space is astronomi-
cal in size. The methodological problem as the dimension grows includes searching over
the graph space to identify high posterior regions. High-dimensional regimes, such as
genetic networks, have hundreds of nodes, resulting in over 10100 possible graphs. This
motivates us to construct an efficient search algorithm which explores the graph space
to distinguish important edges from irrelevant ones and detect the underlying graph
with high accuracy. One solution is the trans-dimensional MCMC methodology (Green,
2003).

In the trans-dimensional MCMC methodology, the MCMC algorithm explores the
model space to identify high posterior probability models and estimate the parameters
simultaneously. A special case is the reversible-jump MCMC (RJMCMC) approach,
proposed by Green (1995). This method constructs an ergodic discrete-time Markov
chain whose stationary distribution is taken to be the joint posterior distribution of the
model and the parameters. The process transits among models using an acceptance
probability, which guarantees convergence to the target posterior distribution. If this
probability is high, the process efficiently explores the model space. However, for the
high-dimensional regime this is not always efficient. Giudici and Green (1999) extended
this method for the decomposable Gaussian graphical models. Dobra et al. (2011a)
developed it based on the Cholesky decomposition of the precision matrix. Lenkoski
(2013), Wang and Li (2012), and Cheng et al. (2012) developed an RJMCMC algo-
rithm, which combined the exchange algorithm (Murray et al., 2012) and the double
Metropolis-Hastings algorithm (Liang, 2010) to avoid the intractable normalizing con-
stant calculation.

An alternative trans-dimensional MCMC methodology is the birth-death MCMC
(BDMCMC) approach, which is based on a continuous time Markov process. In this
method, the time between jumps to a larger dimension (birth) or a smaller one (death)
is taken to be a random variable with a specific rate. The choice of birth and death
rates determines the birth-death process, and is made in such a way that the stationary
distribution is precisely the posterior distribution of interest. Contrary to the RJMCMC
approach, moves between models are always accepted, which makes the BDMCMC
approach extremely efficient. In the context of finite mixture distributions with variable
dimension this method has been used (Stephens, 2000), following earlier proposals by
Ripley (1977) and Geyer and Møller (1994).

The main contribution of this paper is to introduce a novel Bayesian framework for
Gaussian graphical model determination and design a BDMCMC algorithm to perform
both structure learning (graph estimation) and parameter learning (parameters estima-
tion). In our BDMCMC method, we add or remove edges via birth or death events. The
birth and death events are modeled as independent Poisson processes. Therefore, the
time between two successive birth or death events has an exponential distribution. The
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birth and death events occur in continuous time and the relative rates at which they
occur determine the stationary distribution of the process. The relationships between
these rates and the stationary distribution is formalized in Section 3 (Theorem 3.1).

The outline of this paper is as follows. In Section 2, we introduce the notation and
preliminary background material such as suitable prior distributions for the graph and
precision matrix. In Section 3, we propose our Bayesian framework and design our
BDMCMC algorithm. In addition, this section contains the specific implementation of
our method, including an efficient way for computing the birth and death rates of our
algorithm and a direct sampler algorithm from G-Wishart distribution for the preci-
sion matrix. In Section 4, we show the performance of the proposed method in several
comprehensive simulation studies and large-scale real-world examples from human gene
expression data and a mouse mammary gland microarray experiment.

2 Bayesian Gaussian graphical models

We introduce some notation and the structure of undirected Gaussian graphical models;
for a comprehensive introduction see Lauritzen (1996). Let G = (V,E) be an undirected
graph, where V = {1, 2, ..., p} is the set of nodes and E ⊂ V × V is the set of existing
edges. Let

W = {(i, j) | i, j ∈ V, i < j} ,

and E = W\E denotes the set of non-existing edges. We define a zero mean Gaussian
graphical model with respect to the graph G as

MG =
{
Np(0,Σ) | K = Σ−1 ∈ PG

}
,

where PG denotes the space of p × p positive definite matrices with entries (i, j) equal
to zero whenever (i, j) ∈ E. Let x = (x1, ...,xn) be an independent and identically
distributed sample of size n from model MG. Then, the likelihood is

P (x|K,G) ∝ |K|n/2 exp
{
−1

2
tr(KS)

}
, (1)

where S = x′x.

The joint posterior distribution is given as

P (G,K|x) ∝ P (x|G,K)P (K|G)P (G). (2)

For the prior distribution of the graph there are many options, of which we propose two.
In the absence of any prior beliefs related to the graph structure, one case is a discrete
uniform distribution over the graph space G,

P (G) =
1

|G| , for each G ∈ G.
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Alternatively, we propose a truncated Poisson distribution on the graph size |E| with
parameter γ,

p(G) ∝ γ|E|

|E|! , for each G = (V,E) ∈ G.

Other choices of priors for the graph structure involve modelling the joint state of the
edges as a multivariate discrete distribution (Carvalho et al., 2009) and (Scutari, 2013),
encouraging sparse graphs (Jones et al., 2005) or having multiple testing correction
properties (Scott and Berger, 2006).

For the prior distribution of the precision matrix, we use the G-Wishart (Roverato,
2002; Letac and Massam, 2007), which is attractive since it represents the conjugate
prior for normally distributed data. It places no probability mass on zero entries of
the precision matrix. A zero-constrained random matrix K ∈ PG has the G-Wishart
distribution WG(b,D), if

P (K|G) =
1

IG(b,D)
|K|(b−2)/2 exp

{
−1

2
tr(DK)

}
,

where b > 2 is the degree of freedom, D is a symmetric positive definite matrix, and
IG(b,D) is the normalizing constant,

IG(b,D) =

∫
PG

|K|(b−2)/2 exp

{
−1

2
tr(DK)

}
dK.

When G is complete the G-Wishart distribution WG(b,D) reduces to the Wishart dis-
tribution Wp(b,D), hence, its normalizing constant has an explicit form (Muirhead,
1982). If G is decomposable, we can explicitly calculate IG(b,D) (Roverato, 2002). For
non-decomposable graphs, however, IG(b,D) does not have an explicit form; we can nu-
merically approximate IG(b,D) by the Monte Carlo method (Atay-Kayis and Massam,
2005) or Laplace approximation (Lenkoski and Dobra, 2011).

The G-Wishart prior is conjugate to the likelihood (1), hence, conditional on graph
G and observed data x, the posterior distribution of K is

P (K|x, G) =
1

IG(b∗, D∗)
|K|(b∗−2)/2 exp

{
−1

2
tr(D∗K)

}
,

where b∗ = b+ n and D∗ = D + S, that is, WG(b
∗, D∗).

Other choices of priors for the precision matrix are considered on a class of shrinkage
priors (Wang and Pillai, 2013) using the graphical lasso approach (Wang, 2012, 2014).
They place constant priors for the nonzero entries of the precision matrix and no prob-
ability mass on zero entries.

In the following section, we describe an efficient trans-dimensional MCMC sampler
scheme for our joint posterior distribution (2).
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3 The birth-death MCMC method

Here, we determine a continuous time birth-death Markov process particularly for Gaus-

sian graphical model selection. The process explores over the graph space by adding or

removing an edge in a birth or death event. The birth and death rates of edges occur in

continuous time with the rates determined by the stationary distribution of the process.

Suppose the birth-death process at time t is at state (G,K) in which G = (V,E)

with precision matrix K ∈ PG. Let Ω = ∪ G∈G
K∈PG

(G,K) where G denotes the set of all

possible graphs. We consider the following continuous time birth-death Markov process

on Ω:

Death: Each edge e ∈ E dies independently of the others as a Poisson process with

a rate δe(K). Thus, the overall death rate is δ(K) =
∑

e∈E δe(K). If the death of an

edge e = (i, j) ∈ E occurs, then the process jumps to a new state (G−e,K−e) in which

G−e = (V,E \ {e}), and K−e ∈ PG−e . We assume K−e is equal to matrix K except for

the entries in positions {(i, j), (j, i), (j, j)}. Note we can distinguish i from j, since by

our definition of an edge i < j.

Birth: A new edge e ∈ E is born independently of the others as a Poisson process

with a rate βe(K). Thus, the overall birth rate is β(K) =
∑

e∈E βe(K). If the birth

of an edge e = (i, j) ∈ E occurs, then the process jumps to a new state (G+e,K+e) in

which G+e = (V,E ∪ {e}), and K+e ∈ PG+e . We assume K+e is equal to matrix K

except for the entries in positions {(i, j), (j, i), (j, j)}.

The birth and death processes are independent Poisson processes. Thus, the time

between two successive events is exponentially distributed, with mean 1/(β(K)+δ(K)).

Therefore, the probability of a next birth/death event is

P (birth for edge e) =
βe(K)

β(K) + δ(K)
, for each e ∈ E, (3)

P (death for edge e) =
δe(K)

β(K) + δ(K)
, for each e ∈ E. (4)

The following theorem gives a sufficient condition for which the stationary distribu-

tion of our birth-death process is precisely the joint posterior distribution of the graph

and precision matrix.

Theorem 3.1. The above birth-death process has stationary distribution P (K,G|x), if
for each e ∈ W

δe(K)P (G,K \ (kij , kjj)|x) = βe(K
−e)P (G−e,K−e \ kjj |x). (5)

Proof. Our proof is based on the theory derived by Preston (1976, Section 7 and

8). Preston proposed a special birth-death process, in which the birth and death rates
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are functions of the state. The process evolves by two types of jumps: a birth is defined

as the appearance of a single individual, whereas a death is the removal of a single

individual. This process converges to a unique stationary distribution, if the balance

conditions hold (Preston, 1976, Theorem 7.1). We construct our method in such a way

that the stationary distribution equals the joint posterior distribution of the graph and

the precision matrix. See the appendix for a detailed proof.

3.1 Proposed BDMCMC algorithm

Our proposed BDMCMC algorithm is based on a specific choice of birth and death rates

that satisfies Theorem 3.1. Suppose we consider the birth and death rates as

βe(K) =
P (G+e,K+e \ (kij , kjj)|x)

P (G,K \ kjj |x)
, for each e ∈ E, (6)

δe(K) =
P (G−e,K−e \ kjj |x)
P (G,K \ (kij , kjj)|x)

, for each e ∈ E. (7)

Based on the above rates, we determine our BDMCMC algorithm as below.

Algorithm 3.1. BDMCMC algorithm. Given a graph G = (V,E) with a precision
matrix K, iterate the following steps:

Step 1. Birth and death process

1.1. Calculate the birth rates by (6) and β(K) =
∑

e∈E βe(K),

1.2. Calculate the death rates by (7) and δ(K) =
∑

e∈E δe(K),

1.3. Calculate the waiting time by w(K) = 1/(β(K) + δ(K)),

1.4. Simulate the type of jump (birth or death) by (3) and (4).

Step 2. According to the type of jump, sample from the new precision matrix.

The main computational parts of our BDMCMC algorithm are computing the birth

and death rates (steps 1.1 and 1.2) and sampling from the posterior distribution of the

precision matrix (step 2). In Section 3.2, we illustrate how to calculate the birth and

death rates. In Section 3.3, we explain a direct sampling algorithm from the G-Wishart

distribution for sampling from the posterior distribution of the precision matrix.

In our continuous time BDMCMC algorithm we sample in each step of jumping to

the new state (e.g. {t1, t2, t3, ...} in Figure 1). For inference, we put the weight on each

state to effectively compute the sample mean as a Rao-Blackwellized estimator (Cappé

et al., 2003, subsection 2.5); See e.g. (13). The weights are equal to the length of the
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waiting time in each state ( e.g. {w1, w2, w3, ...} in Figure 1). Based on these waiting
times, we estimate the posterior distribution of the graphs, which are the proportion to
the total waiting times of each graph (see Figure 1 in the right and Figure 3). For more
detail about sampling from continuous time Markov processes see Cappé et al. (2003,
subsection 2.5).

Figure 1: (Left) Continuous time BDMCMC algorithm where {t1, t2, t3, ...} are jumping
times and {w1, w2, w3, ...} are waiting times. (Right) Posterior probability estimation
of the graphs based on the proportions of their waiting times.

3.2 Step1: Computing the birth and death rates

In step 1 of our BDMCMC algorithm, the main task is calculating the birth and death
rates (steps 1.1 and 1.2); Other steps are straightforward. Here, we illustrate how to
calculate the death rates. The birth rates are calculated in a similar manner, since both
birth and death rates (6) and (7) are the ratio of the conditional posterior densities.

For each e = (i, j) ∈ E, the numerator of the death rate is

P (G−e,K−e \ kjj |x) =
P (G−e,K−e|x)

P (kjj |K−e \ kjj , G−e,x)
.

The full conditional posterior for kjj is (see Roverato 2002, Lemma 1)

kjj − c |K−e \ kjj , G−e,x ∼ W (b∗, D∗
jj),

where c = Kj,V \j(KV \j,V \j)
−1KV \j,j . Following Wang and Li (2012) and some simpli-

fication, we have

P(G−e,K−e\kjj |x)=
P(G)

P(x)

I(b∗, D∗
jj)

IG−e(b,D)
|K0

V \j,V \j |(b
∗−2)/2 exp

{
−1

2
tr(K0D∗)

}
, (8)
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where I(b∗, D∗
jj) is the normalizing constant of a G-Wishart distribution for p = 1 and

K0 = K except for an entry 0 in the positions (i, j) and (j, i), and an entry c in the
position (j, j).

For the denominator of the death rate we have

P (G,K \ (kij , kjj)|x) =
P (G,K|x)

P ((kij , kjj)|K \ (kij , kjj), G,x)
,

in which we need the full conditional distribution of (kij , kjj). We can obtain the
conditional posterior of (kii, kij , kjj) and by further conditioning on kii and using the
proposition in the appendix, we can evaluate the full conditional distribution of (kij , kjj).
Following Wang and Li (2012) and some simplification, we have

P(K\(kij , kjj), G|x)=P (G)

P(x)

J(b∗,D∗
ee,K)

IG(b,D)
|K1

V \e,V \e|(b
∗−2)/2exp

{
−1

2
tr(K1D∗)

}
, (9)

where

J(b∗, D∗
ee,K)=(

2π

D∗
jj

)
1
2 I(b∗, D∗

jj)(kii − k1ii)
b∗−2

2 exp

{
−1

2
(D∗

ii −
D∗2

ij

D∗
jj

)(kii − k1ii)

}
,

and K1 = K except for the entries Ke,V \e(KV \e,V \e)
−1KV \e,e in the positions corre-

sponding to e = (i, j).

By plugging (8) and (9) into the death rates (7), we have

δe(K) =
P (G−e)

P (G)

IG(b,D)

IG−e(b,D)
H(K,D∗, e), (10)

in which

H(K,D∗, e) = (
D∗

jj

2π(kii − k1ii)
)

1
2

× exp

{
−1

2

[
tr(D∗(K0−K1))− (D∗

ii−
D∗2

ij

D∗
jj

)(kii−k1ii)

]}
. (11)

For computing the above death rates, we require the prior normalizing constants which is
the main computational part. Calculation time for the remaining elements is extremely
fast.

Coping with evaluation of prior normalizing constants

Murray et al. (2012) proved that the exchange algorithm based on exact sampling is a
powerful tool for general MCMC algorithms in which their likelihoods have additional
parameter-dependent normalization terms, such as the posterior over parameters of an
undirected graphical model. Wang and Li (2012) and Lenkoski (2013) illustrate how to
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use the concept behind the exchange algorithm to circumvent intractable normalizing

constants as in (10). With the existence of a direct sampler of G-Wishart, Lenkoski

(2013) used a modification of the exchange algorithm to cope with the ratio of prior

normalizing constants.

Suppose that (G,K) is the current state of our algorithm and we would like to

calculate the death rates (10), first we sample K̃ according to WG(b,D) via an exact

sampler, Algorithm 3.2 below. Then, we replace the death rates with

δe(K) =
P (G−e)

P (G)

H(K,D∗, e)

H(K̃,D, e)
, (12)

in which the intractable prior normalizing constants have been replaced by an evaluation

of H (given in (11)) in the prior, evaluated at K̃; For theoretical justifications of this

procedure, see Murray et al. (2012) and Liang (2010).

3.3 Step 2: Direct sampler from precision matrix

Lenkoski (2013) developed an exact sampler method for the precision matrix, which

borrows ideas from Hastie et al. (2009). The algorithm is as follows.

Algorithm 3.2. Direct sampler from precision matrix Lenkoski (2013). Given a
graph G = (V,E) with precision matrix K and Σ = K−1 :

Step 1. Set Ω = Σ.
Step 2. Repeat for i = 1, ..., p, until convergence:

2.1 Let Ni ⊂ V be the set of neighbors of node i in graph G. Form ΩNi and ΣNi,i

and solve
β̂∗
i = Ω−1

Ni
ΣNi,i,

2.2 Form β̂i ∈ Rp−1 by padding the elements of β̂∗
i to the appropriate locations

and zeroes in those locations not connected to i in graph G,

2.3 Update Ωi,−i and Ω−i,i with Ω−i,−iβ̂i.

Step 3. Return K = Ω−1.

Throughout, we use the direct sampler algorithm for sampling from the precision

matrix K.

4 Statistical performance

Here we present the results for three comprehensive simulation studies and two applica-

tions to real data sets. In Section 4.1, we show that our method outperforms alternative
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Bayesian approaches in terms of convergence, mixing in the graph space and computing

time; Moreover, the model selection properties compare favorably with frequentist al-

ternatives. In Section 4.2, we illustrate our method on a large-scale real data set related

to the human gene expression data. In Section 4.3, we demonstrate the extension of our

method to graphical models which involve time series data. It shows how graphs can be

useful in modeling real-world problems such as gene expression time course data. We

performed all computations with the R package BDgraph, (Mohammadi and Wit, 2013).

4.1 Simulation study

Graph with 6 nodes

We illustrate the performance of our methodology and compare with two alternative

Bayesian methods on a concrete small toy simulation example which comes from Wang

and Li (2012). We consider a data generating mechanism with p = 6 within

MG =
{
N6(0,Σ) | K = Σ−1 ∈ PG

}
,

in which the precision matrix is

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5 0 0 0 0.4

1 0.5 0 0 0

1 0.5 0 0

1 0.5 0

1 0.5

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Just like Wang and Li (2012) we let S = nK−1 where n = 18, which represents 18

samples from the true model MG. As a non-informative prior, we take a uniform

distribution for the graph and a G-Wishart WG(3, I6) for the precision matrix.

To evaluate the performance of our BDMCMC algorithm, we run our BDMCMC

algorithm with 60, 000 iterations and 30, 000 as a burn-in. All the computations for this

example were carried out on an Intel(R) Core(TM) i5 CPU 2.67GHz processor.

We calculate the posterior pairwise edge inclusion probabilities based on the Rao-

Blackwellization (Cappé et al., 2003, subsection 2.5) as

p̂e =

∑N
t=1 I(e ∈ G(t))w(K(t))∑N

t=1 w(K
(t))

, for each e ∈ W , (13)

where N is the number of iterations, I(e ∈ G(t)) is an indicator function, such that

I(e ∈ G(t)) = 1 if e ∈ G(t) and zero otherwise, and w(K(t)) is the waiting time in the
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graph G(t) with the precision matrix K(t); see Figure 1. The posterior pairwise edge
inclusion probabilities for all the edges e = (i, j) ∈ W are

p̂e =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.98 0.05 0.02 0.03 0.92
0 0.99 0.04 0.01 0.04

0 0.99 0.04 0.02
0 0.99 0.06

0 0.98
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The posterior mean of the precision matrix is

K̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.16 0.58 −0.01 0.00 −0.01 0.44
1.18 0.58 −0.01 0.00 −0.01

1.18 0.58 −0.01 0.00
1.18 0.58 −0.01

1.17 0.57
1.16

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We compare the performance of our BDMCMC algorithm with two recently pro-
posed trans-dimensional MCMC approaches. One is the algorithm proposed by Lenkoski
(2013) which we call “Lenkoski”. The other is an algorithm proposed by Wang and Li
(2012) which we call “WL”. The R code for the WL approach is available at http://
r-forge.r-project.org/projects/bgraph/.

Compared to other Bayesian approaches, our BDMCMC algorithm is highly efficient
due to its fast convergence speed. One useful test of convergence is given by the plot of
the cumulative occupancy fraction for all possible edges, shown in Figure 2. Figure 2(a)
shows that our BDMCMC algorithm converges after approximately 10, 000 iterations.
Figure 2(b) and 2(c) show that the Lenkoski algorithm converges after approximately
30, 000, whereas the WL algorithm still does not converge after 60, 000 iterations.

Figure 3 reports the estimated posterior distribution of the graphs for BDMCMC,
WL, and Linkoski algorithm, respectively. Figure 3(a) indicates that our algorithm
visited around 450 different graphs and the estimated posterior distribution of the true
graph is 0.66, which is the graph with the highest posterior probability. Figure 3(b)
shows that the Lenkoski algorithm visited around 400 different graphs and the estimated
posterior distribution of the true graph is 0.40. Figure 3(c) shows that the WL algorithm
visited only 23 different graphs and the estimated posterior distribution of the true graph
is 0.35.

To assess the performance of the graph structure, we compute the posterior proba-
bility of the true graph, and the calibration error (CE) measure, defined as follows

CE =
∑
e∈W

|p̂e − I(e ∈ Gtrue)|, (14)

where, for each e ∈ W , p̂e is the posterior pairwise edge inclusion probability in (13)
and Gtrue is the true graph. The CE is positive with a minimum at 0 and smaller is
better.

http://r-forge.r-project.org/projects/bgraph/
http://r-forge.r-project.org/projects/bgraph/
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Figure 2: Plot of the cumulative occupancy fractions of all possible edges to check
convergence in simulation example 4.1; BDMCMC algorithm in 2(a), Lenkoski algo-
rithm(Lenkoski, 2013) in 2(b), and WL algorithm in Wang and Li (2012) 2(c).

Table 1 reports comparisons of our method with two other Bayesian approaches (WL

and Lenkoski), reporting the mean values and standard errors in parentheses. We repeat

the entire simulation 50 times. The first and second columns show the performance of

the algorithms. Our algorithm performs better due to its faster convergence feature.

The third column shows the acceptance probability (α) which is the probability of

moving to a new graphical model. The fourth column shows that our algorithm is

slower than the Lenkoski algorithm and faster than the WL approach. It can be argued

that to make a fair comparison our method takes 60, 000 samples in 25 minutes while e.g.

Lenkoski algorithm in 14 minutes takes only 60, 000× 0.058 = 3, 480 efficient samples.

For fair comparison we performed all simulations in R. However, our package BDgraph

efficiently implements the algorithm with C++ code linked to R. For 60, 000 iterations,

our C++ code takes only 17 seconds instead of 25 minutes in R, which means around

90 times faster than the R code. It makes our algorithm computationally feasible for

high-dimensional graphs.

P(true G | data) CE α CPU time (min)
BDMCMC 0.66 (0.00) 0.47 (0.01) 1 25 (0.14)
Lenkoski 0.36 (0.02) 1.17 (0.08) 0.058 (0.001) 14 (0.13)
WL 0.33 (0.12) 1.25 (0.46) 0.003 (0.0003) 37 (0.64)

Table 1: Summary of performance measures in simulation example 4.1 for BDMCMC
approach, Lenkoski (Lenkoski, 2013), and WL (Wang and Li, 2012). The table presents
the average posterior probability of the true graph, the average calibration error (CE)
which is defined in (14), the average acceptance probability (α), and the average com-
puting time in minutes, with 50 replications and standard deviations in parentheses.
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Figure 3: Plot of the estimated posterior probability of graphs in simulation example
4.1; BDMCMC algorithm in 3(a), Lenkoski algorithm (Lenkoski, 2013) in 3(b), and WL
algorithm (Wang and Li, 2012) in 3(c).

Extensive comparison with Bayesian methods

We perform here a comprehensive simulation with respect to different graph structures
to evaluate the performance of our Bayesian method and compare it with two recently
proposed trans-dimensional MCMC algorithms; WL (Wang and Li, 2012) and Lenkoski
(Lenkoski, 2013). Corresponding to different sparsity patterns, we consider 7 different
kinds of synthetic graphical models:

1. Circle: A graph with kii = 1, ki,i−1 = ki−1,i = 0.5, and k1p = kp1 = 0.4, and
kij = 0 otherwise.

2. Star: A graph in which every node is connected to the first node, with kii = 1,
k1i = ki1 = 0.1, and kij = 0 otherwise.

3. AR(1): A graph with σij = 0.7|i−j|.

4. AR(2): A graph with kii = 1, ki,i−1 = ki−1,i = 0.5, and ki,i−2 = ki−2,i = 0.25,
and kij = 0 otherwise.

5. Random: A graph in which the edge set E is randomly generated from independent
Bernoulli distributions with probability 2/(p−1) and the corresponding precision
matrix is generated from K ∼ WG(3, Ip).

6. Cluster: A graph in which the number of clusters is max {2, [p/20]}. Each cluster
has the same structure as a random graph. The corresponding precision matrix is
generated from K ∼ WG(3, Ip).

7. Scale-free: A graph which is generated by using the B-A algorithm (Albert and
Barabási, 2002). The resulting graph has p−1 edges. The corresponding precision
matrix is generated from K ∼ WG(3, Ip).
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For each graphical model, we consider four different scenarios: (1) dimension p = 10

and sample size n = 30, (2) p = 10 and n = 100, (3) p = 50 and n = 100, (4) p = 50

and n = 500.

For each generated sample, we fit our Bayesian method and two other Bayesian

approaches (WL and Lenkoski) with a uniform prior for the graph and the G-Wishart

prior WG(3, Ip) for the precision matrix. We run those three algorithms with the same

starting points with 60, 000 iterations and 30, 000 as a burn in. Computation for this

example was performed in parallel on 235 batch nodes with 12 cores and 24 GB of

memory, running Linux.

To assess the performance of the graph structure, we compute the calibration error

(CE) measure defined in (14) and the F1-score measure (Baldi et al., 2000; Powers, 2011)

which is defined as follows

F1-score =
2TP

2TP + FP + FN
, (15)

where TP, FP, and FN are the number of true positives, false positives, and false

negatives, respectively. The F1-score lies between 0 and 1, where 1 stands for perfect

identification and 0 for bad identification.

Table 2 reports comparisons of our method with two other Bayesian approaches,

where we repeat the experiments 50 times and report the average F1-score and CE

with their standard errors in parentheses. Our method performs well overall as its

F1-score and its CE are the best in most of the cases, mainly because of its fast

convergence rate. Both our method and the Lenkoski approach perform better com-

pared to the WL approach. The main reason is that the WL approach uses a double

Metropolis-Hastings (based on a block Gibbs sampler), which is an approximation of

the exchange algorithm. On the other hand, both our method and the Lenkoski ap-

proach use the exchange algorithm based on exact sampling from the precision matrix.

As we expected, the Lenkoski approach converges slower compared to our method.

The reason seems to be the dependence of the Lenkoski approach on the choice of

the tuning parameter, σ2
g (Lenkoski, 2013, step 3 in algorithm p. 124). In our sim-

ulation, we found that the convergence rate (as well acceptance probability) of the

Lenkoski algorithm depends on the choice of σ2
g . Here we choose σ2

g = 0.1 as a de-

fault. From a theoretical point of view, both our BDMCMC and the Lenkoski algo-

rithms converge to the true posterior distribution, if we run them a sufficient amount

of time. Thus, the results from this table just indicate how quickly the algorithms con-

verge.
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F1-score CE
BDMCMC Lenkoski WL BDMCMC Lenkoski WL

p=10 & n=30

circle 0.95 (0.00) 0.93 (0.01) 0.24 (0.01) 2.5 (1.6) 4.9 (2.1) 15.8 (5)
star 0.15 (0.02) 0.17 (0.02) 0.16 (0.01) 11.3 (2.1) 14 (1.4) 13.6 (3.4)
AR1 0.90 (0.01) 0.70 (0.01) 0.34 (0.02) 4.4 (2.2) 9.7 (2.4) 12.5 (8.8)
AR2 0.56 (0.01) 0.59 (0.02) 0.36 (0.01) 11.5 (3.5) 12.8 (3.1) 16.3 (6.2)
random 0.57 (0.03) 0.50 (0.01) 0.34 (0.01) 11.4 (8.0) 15.3 (6.3) 14.1 (14.0)
cluster 0.61 (0.02) 0.49 (0.01) 0.33 (0.01) 10.3 (9.4) 14.3 (7.3) 13.5 (9.8)
scale-free 0.53 (0.03) 0.45 (0.02) 0.31 (0.02) 11.8 (8.8) 15.6 (6.9) 13.3 (6.5)

p=10 & n=100

circle 0.99 (0.00) 0.98 (0.00) 0.26 (0.01) 1.0 (0.4) 2.2 (0.5) 15.6 (6.7)
star 0.21 (0.02) 0.18 (0.02) 0.25 (0.02) 9.3 (1.6) 11.4 (1.3) 11.4 (3.4)
AR1 0.98 (0.00) 0.95 (0.00) 0.34 (0.01) 1.5 (0.4) 5.2 (0.5) 13.0 (5.7)
AR2 0.89 (0.01) 0.90 (0.01) 0.47 (0.01) 4.1 (3.7) 5.6 (2.7) 14.0 (7.5)
random 0.76 (0.01) 0.65 (0.02) 0.35 (0.01) 7.0 (5.6) 10.7 (6.3) 13.8 (10.5)
cluster 0.74 (0.02) 0.67 (0.02) 0.37 (0.02) 6.4 (7.2) 9.9 (7.8) 12.4 (9.4)
scale-free 0.69 (0.02) 0.56 (0.02) 0.33 (0.02) 7.9 (8.0) 11.6 (7.0) 13.0 (7.8)

p=50 & n=100

circle 0.99 (0.01) 0.55 (0.10) 0.00 (0.00) 2.5(0.9) 75.3 (7.2) 50 (0.0)
star 0.17 (0.04) 0.09 (0.04) 0.00 (0.00) 68.8 (4.4) 166.7 (4.5) 49 (0.0)
AR1 0.86 (0.04) 0.33 (0.09) 0.00 (0.00) 19.0 (4.5) 159.1 (5.4) 49 (0.0)
AR2 0.86 (0.04) 0.49 (0.17) 0.00 (0.00) 28.6 (5.7) 117.5 (5.4) 97 (0.0)
random 0.51 (0.09) 0.21 (0.07) 0.00 (0.00) 73.2 (18.5) 250.6 (36.7) 49.2 (5.6)
cluster 0.55 (0.11) 0.18 (0.07) 0.00 (0.00) 72.8 (18.2) 246.0 (44.4) 47.8 (8.4)
scale-free 0.49 (0.11) 0.19 (0.07) 0.00 (0.00) 72.4 (22.5) 243.1 (47.8) 49 (0.0)

p=50 & n=500

circle 1.00 (0.01) 0.72 (0.09) 0.00 (0.00) 1.7 (0.6) 55.8 (5.4) 50 (0.0)
star 0.65 (0.05) 0.35 (0.05) 0.00 (0.00) 31.7 (4.5) 92.3 (3.6) 49 (0.0)
AR1 0.94 (0.02) 0.54 (0.07) 0.00 (0.00) 7.2 (1.9) 84.9 (4.0) 49 (0.0)
AR2 0.98 (0.01) 0.78 (0.11) 0.00 (0.00) 4.8 (1.8) 61.7 (4.4) 97 (0.0)
random 0.73 (0.09) 0.34 (0.10) 0.00 (0.00) 34.3 (11.2) 149.3 (28.8) 50.7 (7.0)
cluster 0.74 (0.09) 0.32 (0.13) 0.00 (0.00) 32.2 (10.6) 142.2 (27.3) 48.5 (5.9)
scale-free 0.73 (0.10) 0.33 (0.08) 0.00 (0.00) 35.3 (13.6) 151.7 (26.9) 49 (0.0)

Table 2: Summary of performance measures in simulation example 4.1 for BDMCMC
approach, Lenkoski (Lenkoski, 2013), and WL (Wang and Li, 2012). The table presents
the F1-score, which is defined in (15) and CE, which is defined in (14), for different mod-
els with 50 replications and standard deviations in parentheses. The F1-score reaches
its best score at 1 and its worst at 0. The CE is positive valued for which 0 is minimum
and smaller is better. The best models for both F1-score and CE are boldfaced.

Table 3 reports the average running time and acceptance probability (α) with their

standard errors in parentheses across all 7 graphs with their 50 replications. It shows

that our method compared to the Lenkoski approach is slower. The reason is that our

method scans through all possible edges for calculating the birth/death rates, which

is computationally expensive. On the other hand, in the Lenkoski algorithm, a new

graph is selected by randomly choosing one edge which is computationally fast but

not efficient. The table shows that the acceptance probability (α) for both WL and

Lenkoski is small especially for the WL approach. Note the α here is the probability
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that the algorithm moves to a new graphical model and it is not related to the double

Metropolis-Hastings algorithm. The α in the WL approach is extremely small and it

should be the cause of the approximation which has been used for the ratio of prior

normalizing constants. As Murray et al. (2012) pointed out these kinds of algorithms

can suffer high rejection rates. For the Lenkoski approach the α is relatively small, but

compared with the WL method is much better. As in the Lenkoski approach, a new

graph is proposed by randomly choosing one edge, yielding a relatively small acceptance

probability.

BDMCMC Lenkoski WL

p = 10
α 1 0.114 (0.001) 8.8e-06 (4.6e-11)
Time 97 (628) 40 (225) 380 (11361)

p = 50
α 1 0.089 (0.045) 0.0000 (0.0000)
Time 5408 (1694) 1193 (1000) 9650 (1925)

Table 3: Comparison of our BDMCMC algorithm with the WL approach (Wang and Li,
2012) and Lenkoski approach (Lenkoski, 2013). It presents the average computing time
in minutes and the average probability of acceptance (α) with their standard deviations
in parentheses.

Comparison with frequentist methods

We also compare the performance of our Bayesian method with two popular frequentist

methods, the graphical lasso (glasso) (Friedman et al., 2008) and Meinshausen-Buhlmann

graph estimation (mb) (Meinshausen and Bühlmann, 2006). We consider the same 7

graphical models with the same scenarios in the previous example.

For each generated sample, we fit our Bayesian method with a uniform prior for the

graph and the G-Wishart prior WG(3, Ip) for the precision matrix. To fit the glasso and

mb methods, however, we must specify a regularization parameter λ that controls the

sparsity of the graph. The choice of λ is critical since different λ’s may lead to different

graphs. We consider the glasso method with three different regularization parameter

selection approaches, which are the stability approach to regularization selection (stars)

(Liu et al., 2010), rotation information criterion (ric) (Zhao et al., 2012), and the ex-

tended Bayesian information criterion (ebic) (Foygel and Drton, 2010). Similarly, we

consider the mb method with two regularization parameter selection approaches, namely

stars and the ric. We repeat all the experiments 50 times.

Table 4 provides comparisons of all approaches, where we report the averaged F1-

score with their standard errors in parentheses. Our Bayesian approach performs well

as its F1-score typically out performs all frequentist methods, except in the unlikely

scenario of a high number of observations where it roughly equals the performance of

the mb method with stars criterion. All the other approaches appear to perform well in

some cases, and fail in other cases. For instance, when p = 50, the mb method with ric

is the best for the AR(1) graph and the worst for the circle graph.
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glasso mb
BDMCMC stars ric ebic stars ric

p=10 & n=30

circle 0.95 (0.00) 0.00 (0.00) 0.01 (0.01) 0.48 (0.00) 0.42 (0.01) 0.01 (0.01)
star 0.15 (0.02) 0.01 (0.00) 0.15 (0.02) 0.00 (0.00) 0.01 (0.02) 0.14 (0.02)
AR1 0.90 (0.01) 0.20 (0.13) 0.61 (0.01) 0.17 (0.07) 0.46 (0.01) 0.83 (0.01)
AR2 0.56 (0.01) 0.09 (0.02) 0.19 (0.02) 0.00 (0.00) 0.07 (0.02) 0.19 (0.02)
random 0.57 (0.03) 0.36 (0.06) 0.48 (0.02) 0.08 (0.04) 0.45 (0.03) 0.53 (0.03)
cluster 0.61 (0.02) 0.45 (0.05) 0.54 (0.02) 0.07 (0.04) 0.50 (0.02) 0.54 (0.02)
scale-free 0.53 (0.03) 0.30 (0.05) 0.4 (0.02) 0.06 (0.02) 0.36 (0.03) 0.46 (0.03)

p=10 & n=100

circle 0.99 (0.00) 0.00 (0.00) 0.50 (0.08) 0.45 (0.00) 0.89 (0.08) 0.81 (0.09)
star 0.21 (0.02) 0.08 (0.02) 0.29 (0.03) 0.01 (0.00) 0.07 (0.03) 0.29 (0.03)
AR1 0.98 (0.00) 0.90 (0.01) 0.57 (0.00) 0.56 (0.00) 0.94 (0.00) 0.85 (0.00)
AR2 0.89 (0.01) 0.34 (0.06) 0.63 (0.00) 0.08 (0.05) 0.41 (0.01) 0.64 (0.01)
random 0.76 (0.01) 0.61 (0.02) 0.57 (0.01) 0.45 (0.07) 0.68 (0.02) 0.61 (0.02)
cluster 0.74 (0.02) 0.66 (0.03) 0.59 (0.02) 0.53 (0.07) 0.68 (0.03) 0.61 (0.03)
scale-free 0.69 (0.02) 0.56 (0.02) 0.48 (0.008) 0.34 (0.07) 0.63 (0.02) 0.52 (0.02)

p=50 & n=100

circle 0.99 (0.01) 0.28 (0.05) 0.00 (0.00) 0.28 (0.01) 0.00 (0.00) 0.00 (0.00)
star 0.17 (0.04) 0.14 (0.06) 0.06 (0.05) 0.00 (0.00) 0.15 (0.04) 0.05 (0.041)
AR1 0.86 (0.04) 0.56 (0.04) 0.59 (0.03) 0.49 (0.05) 0.82 (0.02) 0.98 (0.02)
AR2 0.86 (0.04) 0.59 (0.02) 0.02 (0.02) 0.00 (0.00) 0.66 (0.02) 0.02 (0.02)
random 0.51 (0.09) 0.52 (0.10) 0.40 (0.16) 0.04 (0.13) 0.61 (0.21) 0.49 (0.21)
cluster 0.55 (0.11) 0.54 (0.06) 0.42 (0.18) 0.13 (0.24) 0.64 (0.22) 0.50 (0.22)
scale-free 0.49 (0.11) 0.48 (0.10) 0.32 (0.18) 0.02 (0.09) 0.60 (0.23) 0.40 (0.23)

p=50 & n=500

circle 1.00 (0.01) 0.27 (0.05) 0.00 (0.00) 0.25 (0.01) 0.00 (0.00) 0.00 (0.00)
star 0.65 (0.05) 0.29 (0.12) 0.60 (0.07) 0.01 (0.02) 0.31 (0.07) 0.60 (0.07)
AR1 0.94 (0.02) 0.57 (0.02) 0.54 (0.02) 0.44 (0.02) 0.97 (0.02) 0.98 (0.01)
AR2 0.98 (0.01) 0.69 (0.03) 0.64 (0.01) 0.66 (0.04) 0.89 (0.02) 0.69 (0.02)
random 0.73 (0.09) 0.62 (0.12) 0.46 (0.15) 0.56 (0.13) 0.82 (0.24) 0.61 (0.24)
cluster 0.74 (0.09) 0.65 (0.10) 0.51 (0.17) 0.58 (0.10) 0.82 (0.23) 0.64 (0.23)
scale-free 0.73 (0.10) 0.57 (0.14) 0.41 (0.15) 0.47 (0.15) 0.82 (0.24) 0.62 (0.24)

Table 4: Summary of performance measures in simulation example 4.1 for BDMCMC
approach, glasso (Friedman et al., 2008) with 3 criteria and mb (Meinshausen and
Bühlmann, 2006) method with 2 criteria. The table reports F1-score, which is defined in
(15), for different models with 50 replications and standard deviations are in parentheses.
The F1-score reaches its best score at 1 and its worst at 0. The two top models are
boldfaced.

To assess the performance of the precision matrix estimation, we use the Kullback-
Leibler divergence (Kullback and Leibler, 1951) which is given as follows

KL =
1

2

[
tr
(
K−1
trueK̂

)
− p− log

(
|K̂|

|Ktrue|

)]
, (16)

where Ktrue is the true precision matrix and K̂ is the estimate of the precision matrix.

Table 5 provides a comparison of all methods, where we report the averaged KL
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with their standard errors in parentheses. Based on KL, the overall performance of our

Bayesian approach is good as its KL is the best in all scenarios except one.

glasso
BDMCMC stars ric ebic

p=10 & n=30

circle 0.73 (0.12) 15.84 (0.03) - - 10.34 (1.33)
star 0.57 (0.08) 0.31 (0.00) 0.22 (0.00) 0.33 (0.01)
AR1 0.70 (0.10) 3.63 (0.07) 1.59 (0.06) 2.77 (2.34)
AR2 1.22 (0.07) 1.27 (0.00) 1.26 (0.00) 1.28 (0.00)
random 0.67 (0.08) 8.32 (305) - - 12.44 (1637)
cluster 0.61 (0.06) 4.90 (2.37) 3.74 (3.23) 5.72 (7.35)
scale-free 0.65 (0.07) 5.83 (12.35) - - 6.59 (26.62)

p=10 & n=100

circle 0.14 (0.00) 15.95 (0.01) - - 9.60 (0.56)
star 0.13 (0.00) 0.15 (0.00) 0.10 (0.00) 0.17 (0.00)
AR1 0.12 (0.00) 2.88 (0.16) 0.81 (0.01) 0.37 (0.00)
AR2 0.28 (0.01) 1.24 (0.01) 1.14 (0.00) 1.25 (0.02)
random 0.16 (0.00) 4.47 (1.09) 3.30 (0.76) 3.92 (2.55)
cluster 0.13 (0.00) 4.46 (12.62) 3.62 (8.17) 4.47 (30.31)
scale-free 0.16 (0.00) 4.14 (1.27) 3.01 (0.70) 3.68 (1.94)

p=50 & n=100

circle 0.67 (0.13) 117.12 (32.12) - - 115.88 (5.88)
star 1.75 (0.21) 1.05 (0.08) 1.27 (0.07) 1.49 (0.16)
AR1 1.17 (0.23) 8 (1.10) 8.92 (0.50) 6.20 (0.93)
AR2 1.97 (0.33) 6.56 (0.19) 7.29 (0.06) 7.27 (0.09)
random 2.01 (0.42) 20.83 (6.44) - - 30.07 (12.54)
cluster 1.94 (0.42) 19.82 (3.75) - - 26.47 (5.08)
scale-free 1.96 (0.45) 20.91 (6.71) - - 28.98 (8.40)

p=50 & n=500

circle 0.11 (0.01) 111.75 (30.56) - - 111.32 (3.26)
star 0.34 (0.04) 0.78 (0.04) 0.63 (0.03) 0.96 (0.06)
AR1 0.15 (0.02) 4.87 (0.45) 3.51 (0.23) 1.75 (0.08)
AR2 0.19 (0.03) 5.50 (0.2) 6.42 (0.13) 4.01 (0.10)
random 0.26 (0.06) 18.89 (5.58) 17.14 (6.59) 17.80 (8.79)
cluster 0.24 (0.05) 21.09 (21.51) - - 21.34 (28.62)
scale-free 0.25 (0.07) 19.86 (7.69) - - 19.61 (16.65)

Table 5: Summary of performance measures in simulation example 4.1 for BDMCMC
approach and glasso (Friedman et al., 2008) with 3 criteria. The table reports the KL
measure, which is defined in (16), for different models with 50 replications and standard
deviations are in parentheses. The KL is positive valued for which 0 is minimum and
smaller is better. The best models are boldfaced.

4.2 Application to human gene expression data

We apply our proposed method to analyze the large-scale human gene expression data

which was originally described by Bhadra and Mallick (2013); Chen et al. (2008), and

Stranger et al. (2007). The data are collected by Stranger et al. (2007) using Illumina’s

Sentrix Human-6 Expression BeadChips to measure gene expression in B-lymphocyte
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cells from Utah (CEU) individuals of Northern and Western European ancestry. They
consider 60 unrelated individuals whose genotypes are available from the Sanger Insti-
tute website (ftp://ftp.sanger.ac.uk/pub/genevar). The genotype is coded as 0, 1,
and 2 for rare homozygous, heterozygous and homozygous common alleles. Here the
focus is on the 3125 Single Nucleotide Polymorphisms (SNPs) that have been found
in the 5’ UTR (untranslated region) of mRNA (messenger RNA) with a minor allele
frequency ≥ 0.1. There were four replicates for each individual. Since the UTR has been
subject to investigation previously, it should have an important role in the regulation
of the gene expression. The raw data were background corrected and then quantile nor-
malized across replicates of a single individual and then median normalized across all
individuals. We chose the 100 most variable probes among the 47,293 total available
probes corresponding to different Illumina TargetID. Each selected probe corresponds
to a different transcript. Thus, we have n = 60 and p = 100. The data are available
in the R package, BDgraph. Bhadra and Mallick (2013) have analyzed the data by ad-
justing the effect of SNPs using an expression quantitative trait loci (eQTL) mapping
study. They found 54 significant interactions among the 100 traits considered. Previous
studies have shown that these data are an interesting case study to carry out prediction.

We place a uniform distribution as an uninformative prior on the graph and the
G-Wishart WG(3, I100) on the precision matrix. We run our BDMCMC algorithm for
60, 000 iterations with a 30, 000 sweeps burn-in.

The graph with the highest posterior probability is the graph with 281 edges, which
includes almost all the significant interactions discovered by Bhadra and Mallick (2013).
Figure 4.2 shows the selected graph with 86 edges, for which the posterior inclusion
probabilities in (13) is greater then 0.6. Edges in the graph show the interactions among
the genes. Figure 4.3 shows the image of the the all posterior inclusion probabilities for
visualization.

4.3 Extension to time course data

Here, to demonstrate how well our proposed methodology can be extended to other
types of graphical models, we focus on graphical models involving time series data
(Dahlhaus and Eichler, 2003; Abegaz and Wit, 2013). We show how graphs can be
useful in modeling real-world problems such as gene expression time course data.

Suppose we have a T time point longitudinal microarray study across p genes. We
assume a stable dynamic graph structure for the time course data as follows:

xt ∼ Np(f(t),K
−1), for t = 1, ..., T, (17)

in which vector f(t) = {fi(t)}p with fi(t) = β′
ih(t) =

∑m
r=1 βirhr(t), βi = (βi1, ..., βim)′,

h(t) = (h1(t), ..., hm(t))′, and m is the number of basic elements. h(t) is a cubic spline
basis which should be continuous with continuous first and second derivatives (Hastie
et al., 2009, chapter 5). The aim of this model is to find a parsimonious description of
both time dynamics and gene interactions.

For this model, we place a uniform distribution as an uninformative prior on the

ftp://ftp.sanger.ac.uk/pub/genevar
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Figure 4: The inferred graph for the human gene expression data set. It reports the
selected graph with 86 significant edges for which their posterior inclusion probabilities
(13) are more then 0.6.

graph and a G-Wishart WG(3, Ip) on the precision matrix. For a prior distribution for

βi, we choose Np(μ0i, B0i), with i = 1, ..., p. Thus, based on our likelihood and priors,

the conditional distribution of βi is

βi|x,K,G ∼ Np(μi, Bi), (18)

in which

Bi = (B−1
0i +Kii

T∑
t=1

h(t)hT (t))−1,

μi = Bi(B
−1
0i μ0i +

T∑
t=1

h(t)(x′
tKV,i −Ki,V \if−i(t))).

Thus, to account for the time effect in our model, we require one more Gibbs sampling

step in the BDMCMC algorithm for updating βi, for i = 1, ..., p.

To evaluate the efficiency of the method, we focus on the mammary gland gene

expression time course data from Stein et al. (2004). The data reports a large time course
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Figure 5: Image visualization of the posterior pairwise edge inclusion probabilities for
all possible edges in the graph.

Affymetrix microarray experiment across different developmental stages performed by

using mammary tissue from female mice. There are 12, 488 probe sets representing

∼ 8600 genes. In total, the probe sets are measured across 54 arrays with three mice

used at each of 18 time points. The time points are in the four main stages, as follows:

virgin, 6, 10, and 12 weeks; pregnancy, 1, 2, 3, 8.5, 12.5, 14.5, and 17.5; lactation,

1, 3, and 7; involution, 1, 2, 3, 4, and 20. By using cluster analysis, we identify 30

genes which provide the best partition among the developmental stages. Those genes

play a role in the transitions across the main developmental events. The mammary

data is available in the R package smida; for more details about the data see Wit and

McClure (2004, chapter one). Abegaz and Wit (2013) analyze this data based on a

sparse time series chain graphical model. By using our proposed methodology, we infer

the interactions between the crucial genes.

By placing a uniform prior on the graph and the G-Wishart WG(3, I30) on the pre-

cision matrix, we run our BDMCMC algorithm for 60, 000 iterations using 30, 000 as

burn-in. Figure 4.3 shows the selected graph based on the output of our BDMCMC

algorithm. The graph shows the edges with a posterior inclusion probability greater

then 0.6. As we can see in Figure 4.3, the genes with the highest number of edges are

LCN2, HSD17B, CRP1, and RABEP1, which each have 7 edges. Schmidt-Ott et al.

(2007) suggested that gene LCN2 (lipocalin 2) plays an important role in the innate

immune response to bacterial infection and also functions as a growth factor. For the

gene HSD17B (17-β hydroxysteroid dehydrogenase), past studies suggest that this gene

family provides each cell with the necessary mechanisms to control the level of intra-

cellular androgens and/or estrogens (Labrie et al., 1997). Gene CRP1 was identified by

Abegaz and Wit (2013) as a likely hub.
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Figure 6: The inferred graph for the mammary gland gene expression data set. It re-
ports the selected graph with 56 significant edges for which their posterior inclusion
probabilities (13) are more then 0.6.

5 Discussion

We introduce a Bayesian approach for graph structure learning based on Gaussian

graphical models using a trans-dimensional MCMCmethodology. The proposed method-

ology is based on the birth-death process. In Theorem 3.1, we derived the conditions

for which the balance conditions of the birth-death MCMC method holds. According to

those conditions we proposed a convenient BDMCMC algorithm, whose stationary dis-

tribution is our joint posterior distribution. We showed that a scalable Bayesian method

exists, which, also in the case of large graphs, is able to distinguish important edges from

irrelevant ones and detect the true model with high accuracy. The resulting graphical

model is reasonably robust to modeling assumptions and the priors used.

As we have shown in our simulation studies (4.1), in Gaussian graphical models, any

kind of trans-dimensional MCMC algorithm which is based on a discrete time Markov

process (such as reversible jump algorithms by Wang and Li, 2012 and Lenkoski, 2013)

could suffer from high rejection rates, especially for high-dimensional graphs. However

in our BDMCMC algorithm, moves between graphs are always accepted. In general,

although our trans-dimensional MCMC algorithm has significant additional computing

cost for birth and death rates, it has clear benefits over reversible jump style moves

when graph structure learning in a non-hierarchical setting is of primary interest.

In Gaussian graphical models, Bayesian structure learning has several computational
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Figure 7: Image visualization of the posterior pairwise edge inclusion probabilities of all
possible edges in the graph.

and methodological issues as the dimension grows: (1) convergence, (2) computation of

the prior normalizing constant, and (3) sampling from the posterior distribution of

the precision matrix. Our Bayesian approach efficiently eliminates these problems. For

convergence, Cappé et al. (2003) demonstrate the strong similarity of reversible jump

and continuous time methodologies by showing that, on appropriate rescaling of time,

the reversible jump chain converges to a limiting continuous time birth-death process.

In Section 4.1 we show the fast convergence feature of our BDMCMC algorithm. For

the second problem, in Subsection 3.2, by using the ideas from Wang and Li (2012)

and Lenkoski (2013) we show that the exchange algorithm circumvents the intractable

normalizing constant. For the third problem, we used the exact sampler algorithm which

was proposed by Lenkoski (2013).

Our proposed method provides a flexible framework to handle the graph structure

and it could be extended to different types of priors for the graph and precision matrix.

In Subsection 4.3, we illustrate how our proposed model can be integrated in types of

graphical models, such as a multivariate time series graphical models. Although we have

focused on normally distributed data, in general, we can extend our proposed method to

other types of graphical models, such as log-linear models (see e.g. Dobra et al., 2011a

and Lenkoski and Dobra, 2011), non-Gaussianity data by using copula transition (see

e.g. Dobra et al., 2011b), or copula regression models (see e.g. Pitt et al., 2006). This

will be considered in future work.
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Appendix 1: Proof of theorem 3.1

Before we derive the detailed balance conditions for our BDMCMC algorithm we intro-
duce some notation.

Assume the process is at state (G,K), in which G = (V,E) with precision matrix
K ∈ PG. The process behavior is defined by the birth rates βe(K), the death rates
δe(K), and the birth and death transition kernels TG

βe
(K; .) and TG

δe
(K; .). For each

e ∈ E, TG
βe
(K; .) denotes the probability that the process jumps from state (G,K) to a

point in the new state ∪K∗∈PG+e (G
+e,K∗). Hence, if F ⊂ PG+e we have

TG
βe
(K;F) =

βe(K)

β(K)

∫
ke:K∪ke∈F

be(ke;K)dke. (19)

Likewise, for each e ∈ E, TG
δe
(K; .) denotes the probability that the process jumps from

state (G,K) to a point in the new state ∪K∗∈PG−e (G
−e,K∗). Therefore, if F ⊂ PG−e

we have

TG
δe(K;F) =

∑
η∈E:K\kη∈F

δη(K)

δ(K)

=
δe(K)

δ(K)
I(K−e ∈ F).

Detailed balance conditions. In our birth-death process, P (K,G|x) satisfies de-
tailed balance conditions if∫

F
δ(K)dP (K,G|x) =

∑
e∈E

∫
PG−e

β(K−e)TG
βe
(K−e;F)dP (K−e, G−e|x), (20)

and ∫
F
β(K)dP (K,G|x) =

∑
e∈E

∫
PG+e

δ(K+e)TG
δe(K

+e;F)dP (K+e, G+e|x), (21)

where F ⊂ PG.

The first expression says edges that enter the set F due to the deaths must be
matched by edges that leave that set due to the births, and vice versa for the second
part.

To prove the first part (20), we have

LHS =

∫
F
δ(K)dP (G,K|x)

=

∫
PG

I(K ∈ F)δ(K)dP (G,K|x)
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=

∫
PG

I(K ∈ F)
∑
e∈E

δe(K)dP (G,K|x)

=
∑
e∈E

∫
PG

I(K ∈ F)δe(K)dP (G,K|x)

=
∑
e∈E

∫
I(K ∈ F)δe(K)P (G,K|x)

p∏
i=1

dkii
∏

(i,j)∈E

dkij .

For the RHS, by using (19) we have

RHS =
∑
e∈E

∫
PG−e

β(K−e)TG
βe
(K−e;F)dP (K−e, G−e|x)

=
∑
e∈E

∫
PG−e

βe(K)

∫
ke:K−e∪ke∈F

be(ke;K)dkedP (K−e, G−e|x)

=
∑
e∈E

∫
PG−e

∫
ke

I(K ∈ F)βe(K)be(ke;K)dkedP (K−e, G−e|x)

=
∑
e∈E

∫
I(K ∈ F)βe(K)be(ke;K)P (K−e, G−e|x)

p∏
i=1

dkii
∏

(i,j)∈E

dkij .

By putting

δe(K)P (G,K|x) = βe(K)be(ke;K)P (K−e, G−e|x),

we have LHS=RHS. Now, in the above equation

P (G,K|x) = P (G,K \ (kij , kjj)|x)P ((kij , kjj)|K \ (kij , kjj), G,x),

and

P (G−e,K−e|x) = P (G−e,K−e \ kjj |x)P (kjj |K−e \ kjj , G−e,x).

We simply choose the proposed density for the new element ke = kij as follows:

be(ke;K) =
P ((kij , kjj)|K \ (kij , kjj), G,x)

P (kjj |K−e \ kjj , G−e,x)
.

Therefore, we reach the expression in Theorem 3.1. The proof for the second part (21)
is the same.

Appendix 2: Proposition

Let A be a 2× 2 random matrix with Wishart distribution W (b,D) as below

P (A) =
1

I(b,D)
|A|(b−2)/2 exp

{
−1

2
tr(DA)

}
,
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where

A =

[
a11 a12
a12 a22

]
, D =

[
d11 d12
d12 d22

]
.

Then

(i) a11 ∼ W (b+ 1, D11.2) where D11.2 = d11 − d−1
22 d

2
21,

(ii)

P (a12, a22|a11) =
P (A)

P (a11)

=
1

J(b,D, a11)
|A|(b−2)/2 exp

{
−1

2
tr(DA)

}
,

where

J(b,D, a11) =

(
2π

d22

) 1
2

I(b, d22)a
(b−1)

2
11 exp

{
−1

2
D11.2a11

}
.

Proof. For proof of part (i), see Muirhead (1982, Theorem 3.2.10). The result for
part (ii) is immediate by using part (i).
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