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Stratified Graphical Models - Context-Specific
Independence in Graphical Models

Henrik Nyman * and Johan Pensar T and Timo Koski ¥ and Jukka Corander

Abstract. Theory of graphical models has matured over more than three decades
to provide the backbone for several classes of models that are used in a myriad of
applications such as genetic mapping of diseases, credit risk evaluation, reliability
and computer security. Despite their generic applicability and wide adoption, the
constraints imposed by undirected graphical models and Bayesian networks have
also been recognized to be unnecessarily stringent under certain circumstances.
This observation has led to the proposal of several generalizations that aim at
more relaxed constraints by which the models can impose local or context-specific
dependence structures. Here we consider an additional class of such models, termed
stratified graphical models. We develop a method for Bayesian learning of these
models by deriving an analytical expression for the marginal likelihood of data un-
der a specific subclass of decomposable stratified models. A non-reversible Markov
chain Monte Carlo approach is further used to identify models that are highly
supported by the posterior distribution over the model space. Our method is il-
lustrated and compared with ordinary graphical models through application to
several real and synthetic datasets.

Keywords: Graphical Model, Context-Specific Interaction Model, Markov Chain
Monte Carlo, Bayesian Model Learning, Multivariate Discrete Distribution

1 Introduction

Along the path of development of the statistical theory of graphical models (GMs)
largely set by the classic works of Darroch et al. (1980) and Lauritzen and Wermuth
(1989), multifaceted generalizations of the original Markov dependence concepts have
flourished as the field gained momentum. Despite the versatility of graphical models
to encode the dependence structure over a set of discrete variables, there are several
alternative model classes that are motivated by the failure of GMs to capture some
forms of dependence or independence. For instance, hierarchical log-linear models that
lack a direct graphical model representation were considered extensively already before
the theory of graphical models took a concrete form, see for instance Haberman (1974),
Bishop et al. (2007), and more recently Hara et al. (2012). A particular challenge related
to such models is the burdensome interpretation, which is one of the core advantages of
graphical models.
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884 Stratified Graphical Models

An observation independently made in several enhancements of the theory of graph-
ical models for discrete multivariate distributions is that the use of the basic concept of
conditional independence may casually hide the existence of multiple local or context-
dependent independencies. Using the theory of log-linear models for contingency tables
as their basis, Corander (2003b), Eriksen (1999, 2005), and Hgjsgaard (2003, 2004)
introduced a variety of ways to generalize graphical models. The common notion in
these models is that the conditional independence is replaced by an independence that
holds only in a subspace of the outcome space of the variables included in a partic-
ular condition. Such restrictions may for instance be imposed in a recursive fashion
as in Hgjsgaard (2004), in which case a variable that has been included in a context
to split contingency tables into subsets where distinct dependence structures are im-
posed, can no longer itself be a subject to a local independence statement conditional
on other variables. Completely independently of these developments found in the sta-
tistical literature, the machine learning community has witnessed the development of
context-dependent Bayesian networks in Boutilier et al. (1996), Friedman and Gold-
szmidt (1996), and Koller and Friedman (2009). The recursive approach has been
considered also in this setting, as Boutilier et al. (1996) introduced trees of conditional
probability tables which form the backbone of Bayesian networks.

The above cited methods for obtaining a context-specific dependence structure for
a set of variables impose rather extensive restrictions. In order to simplify statistical
inference about the model parameters and learning of the model structure, we here aim
at loosening the restrictions by introducing a larger and more general class of stratified
graphical models (SGMs), expanding the results of Corander (2003b). The notion of
stratification referred to here is distinct from that used in Geiger et al. (2001), who
considered stratified exponential families for graphical models with hidden variables. In
our framework stratification refers instead solely to observed variables. SGMs offer the
advantage that context-specific independencies can be read directly off the graphs, pro-
moting the comprehension of the dependence structure. We consider Bayesian inference
for the class of SGMs and show that marginal likelihoods can be calculated analytically
for a subclass of decomposable models. Learning of model structures associated with
high posterior probabilities is performed using the non-reversible Markov chain Monte
Carlo (MCMC) algorithm introduced in Corander et al. (2008).

This paper is organized as follows. SGMs are formally introduced in Section 2. An
analytical expression for the marginal likelihood given a decomposable SGM is derived
in Section 3. In Section 4 we present an MCMC-based search algorithm which is used
to discover models associated with high posterior probabilities. Several synthetic and
real datasets are used to illustrate the potential of SGMs in Section 5. The final section
provides some concluding remarks along with some ideas for future research related to
these models.
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2 Stratified Graphical Models

To enable the presentation of SGMs, some of the central concepts from the theory of
graphical models are first introduced. For a comprehensive account of the statistical and
computational theory of probabilistic graphical models, see Whittaker (1990), Lauritzen
(1996), and Koller and Friedman (2009). While the terms node and variable are closely
related when considering graphical models, we will in this article strive to use the
notation X5 when referring to the variable associated to node 6. Let G = G(A, E), be
an undirected graph, consisting of a set of nodes A, which represent a set of random
variables, and of a set of undirected edges E C {A x A}. It is assumed throughout
this article that all considered variables are binary. However, the introduced theory can
readily be extended to finite discrete variables.

For a subset of nodes A C A, G4 = G(A, E4) is a subgraph of G, such that the
nodes in G4 are equal to A and the edge set comprises those edges of the original graph
for which both nodes are in A, i.e. E4 = {A x A} N E. The outcome space for the
variables X 4, where A C A, is denoted by X4 and an element in this space by x4 € X4.
Given our restriction to binary variables, the cardinality |X4| of X4 equals 2141 Two
nodes v and § are adjacent in a graph if {7, 0} € F, that is an edge exists between them.
A path in a graph is a sequence of nodes such that for each successive pair within the
sequence the nodes are adjacent. A cycle is a path that starts and ends with the same
node. A chord in a cycle is an edge between two non-consecutive nodes in the cycle.
Two sets of nodes A and B are said to be separated by a third set of nodes S if every
path between nodes in A and nodes in B contains at least one node in S. A graph is
defined as complete when all pairs of nodes in the graph are adjacent.

A graph is defined as decomposable if all cycles found in the graph containing four
or more unique nodes contain at least one chord. A clique in a graph is a set of nodes
A such that the subgraph G4 is complete. A maximal clique C is a clique for which
there exists no set of nodes C* such that C' C C* and G+ is also complete. The set of
maximal cliques in the graph G will be denoted by C(G). The set of separators, S(G), in
the decomposable graph G can be obtained through intersections of the maximal cliques
of G ordered in terms of a junction tree, see e.g. Golumbic (2004). A graphical model
can be defined as the pair G = G(A, E) and the joint distribution Pa on the variables
Xa, such that P factorizes according to G (see equation (1) for decomposable graphs).
Given only the graph of a GM it is possible to ascertain if two sets of random variables
X 4 and X g are conditionally independent given another set of variables Xg, due to the
global Markov property

X4 L Xp|Xg, if S separates A from B in G.

A statement of conditional independence of two variables X5 and X, given Xg imposes
fairly strong restrictions to the joint distribution since the condition P(Xs, X, | Xg) =
P(Xs| Xs)P(X, | Xg) must hold for any joint outcome of the variables Xg. The idea
common to context-specific independence models is to lift some of those restrictions
to achieve more flexibility in terms of model structure. Exactly which restrictions are
allowed to be simultaneously lifted varies considerably over the proposed model classes.
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Consider a GM with the complete graph spanning three nodes (1,2, 3), which spec-
ifies that there are no conditional independencies among the variables X, X5, and X3.
However, if the probability P(X; = 1, Xy = x2, X3 = x3) factorizes into the product
P(X; =1)P(Xy =z2| X1 = 1)P(X3 = z3| X1 = 1) for all outcomes zo € {0,1}, 23 €
{0,1}, then a simplification of the joint distribution is hiding beneath the graph. This
simplification can be included in the graph by labeling the edge {2,3} with the stratum
where the context-specific independence Xo L X3|X; = 1 of the two variables holds,
as illustrated in Figure 1la.

a)

X;=1

Figure 1: Graphical representation of the dependence structures of three variables. In
(a) the stratum X; = 1 is shown as a label on the edge {2,3}, in (b) strata X; = 1
and Xs = 1 are shown as labels on the edges {2,3} and {1, 3}, respectively, in (c) an
undirected graph with the maximal cliques {1,2} and {3} is shown.

The following is a formal definition of what is intended by a stratum.

Definition 1. Stratum. Let the pair (G, Pa) be a GM for A. For all {6,v} € E, let
L5~y denote the set of nodes adjacent to both 6 and ~y. For a non-empty Lis .y, define
the stratum of the edge {0,7} as the subset Li5.y of outcomes Try., € Xig.,, for
which X5 and X, are independent gien Xp , = xr; ., .e. Lisay = {2r,.,, €
sy Xo L XS [ XLy =21

A label on an edge in a graph is a graphical representation of a corresponding
stratum. The idea of context-specific independence generalizes readily to a situation
where multiple strata for distinct pairs of variables are considered. Figure 1b displays
the complete graph for three nodes with the edges {2,3} and {1,3} labeled with the
strata X7 = 1 and X5 = 1, respectively. In addition to the context-specific independence
statement present in Figure la, here we have the simultaneous restriction that X; L
X3|X2 = ]., such that P(Xl = CCl,XQ = l,Xg = fE3) = P(X2 = 1)P(X1 = 1 |X2 =
1)P(X3 = x3| X2 = 1) for all outcomes z1 € {0,1}, 23 € {0,1}. This pair of restrictions
does not imply that P(X3 = x3) = P(X3 = 23| X1 = 1, X2 = 1) as would be the case
given the graph in Figure lc. It does, however, imply that the information contained
about X3 in the knowledge that X; = 1 and X5 = 1 must be the same, i.e. P(X3 =
Zg‘Xl :1):P(X3:1'3|X2:1):P(X3:QS3|X1 :1,X2:1)

The following definition is a slight modification from Corander (2003b, p. 496) and
formalizes an extension to ordinary graphical models. The defined class of models allows
for simultaneous context-specific independence to be represented using a set of strata,
partitioning the outcome space of the variables Xa.
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Definition 2. Stratified graphical model (SGM). A stratified graphical model is defined
by the triple (G, L, Pa), where G is the underlying graph, L equals the joint collection of
all strata Lys .y for the edges of G, and Pa is a joint distribution on A which factorizes
according to the restrictions imposed by G and L.

The pair (G, L) consisting of the graph G with the labeled edges determined by
L will be referred to as a stratified graph (SG), usually denoted by Gr. When the
collection of strata L is empty, G equals G. Figure la illustrates an SG with G
equal to the complete graph and L including the single stratum L3y = {X; = 1}.
Correspondingly, the SG shown in Figure 1b has the same underlying graph with the
two strata L = {Lo3y = {X1 = 1}, L33y = {X2 = 1}}. A stratified graph induces a
specific dependence structure.

Definition 3. Dependence structure. The dependence structure induced by an SG is
defined as the collection of all marginal, conditional and context-specific independencies
that are imposed as restrictions on the probability distribution by the SG.

Definition 4. Faithful distribution. A distribution Pa is defined as faithful to an SG
if it contains exactly the same marginal, conditional and context-specific independencies
that are present in the dependence structure induced by the SG.

Consider a distribution Pa that is faithful to the SG in Figure 1b. While Pa also
factorizes according to the restrictions imposed by the SG in Figure 1a it is not faithful
to it as it contains the context-specific independence X; 1 X3| X5 = 1 which cannot
be induced from the SG in Figure la.

The remainder of this section will be used to determine a framework that will allow
for the derivation of an analytical expression of the marginal likelihood of a dataset
given a stratified graph. Unfortunately, this will involve introducing a set of restrictions
to the SG, resulting in a subclass of decomposable SGMs. The restrictions imposed here
are, however, far less extensive then those imposed in Corander (2003b). In addition,
Corander (2003b) did not consider structural learning of the context-specific graphs
by using posterior probabilities, instead a simpler approach with penalized predictive
entropies was adopted for such inference.

Consider a stratified graph with a decomposable underlying graph G having the
maximal cliques C(G) and separators S(G). The SG is defined as decomposable if no
labels are assigned to edges in any separator and in every maximal clique all labeled
edges have at least one node in common.

Definition 5. Decomposable SG. Let (G, L) constitute an SG with G being decompos-
able. Further, let E;, denote the set of all labeled edges, Ec the set of all edges in the
mazimal clique C', and Eg the set of all edges in the separators of G. The SG is defined
as decomposable if

ErNEs=9,

and
E,NEc=@ or () {64} # @ forall CeC(@).
{5,’)/}EELOEC
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An SGM where (G, L) constitutes a decomposable SG is termed a decomposable
SGM. The graphs depicted in Figures la and 1b are examples of decomposable SGs.
Figure 2 displays three SGs with identical underlying graphs, where it is assumed that
the nodes are ordered topologically. This entails that it is not necessary to include
the variables in the graphical representation of a stratum. Instead of writing a label as
(X1 =0, X5 =0), it is sufficient to write (0, 0), as it is uniquely determined which nodes
are adjacent to both nodes in the labeled edge. The SG in Figure 2a is decomposable,
the SGs in Figures 2b and 2c¢ are not. The graph in Figure 2b is not decomposable since
the maximal clique {1,2,3,4} contains the labeled edges {1,2} and {3,4} which have
no nodes in common. The graph in Figure 2c contains the labeled edge {1,4} which
also constitutes the separator of maximal cliques {1, 2, 3,4} and {1,4,5}.

Figure 2: Three SGs with the same underlying graph. The graph in (a) is decomposable,
the graphs in (b) and (c) are not.

As shown in the next section, for a decomposable stratified graph it is possible to
calculate the marginal likelihood of a dataset analytically using a modification of the
procedure introduced by Cooper and Herskovits (1992). This is due to the fact that a
joint distribution faithful to a decomposable SG possesses a minimal factorization.

Definition 6. Minimal factorization. Consider an outcome xa € Xa of the variables
m Xa, and a subset Xq C XaA. Given an ordering of the variables in Xq, let ngg
P(Xs = 25| Xas) = xas)) be a factorization of the probability P(Xq = xq). Fach
set A(0) is a subset of Bs, where Bs denotes the complete set of nodes for which all
variables in X p, precede Xs in the ordering. The set Bs is defined as empty if X5 is the
first variable in the ordering. If a factor P(Xs = x5 | X a5y = a(s)) is such that there
exists a non-empty subset D C A(S) for which X5 L Xp | Xa\ipusy = Ta\{pus}, the
factor contains a false dependency. A factorization that contains no false dependencies
s defined as a minimal factorization. A distribution such that the probability of any
outcome xa can be factorized using minimal factorizations is said to possess a minimal
factorization.

If we for instance look at the graph in Figure 1c we can deduce that P(X; = x1, X =
x9, X3 = x3) can be factorized both as

P(X1 = .Tl)P(XQ = X9 |X1 = JUl)P(Xg = $3|X1 = .1‘1,X2 = 332),

and
P(X1 = CCl)P(XQ = T2 ‘Xl = IEl)P(Xg = 933).



H. Nyman and J. Pensar and T. Koski and J. Corander 889

However, the first factorization does not constitute a minimal factorization since X3 L
(X1, X5).

Theorem 1. A distribution that is faithful to a decomposable stratified graph possesses
a minimal factorization.

Proof. See Appendix.

There do exist distributions, faithful to non-decomposable SGs, that possess minimal
factorizations. However, these distributions are induced by SGs where not only the edges
on which labels may be placed, but also the labels themselves follow very strict restric-
tions. To avoid adding such constraints, while ensuring that the marginal likelihood of
a dataset can be analytically calculated, the restrictions imposed by decomposable SGs
are required.

3 Calculating the Marginal Likelihood for Decomposable
Stratified Graphs

Let X denote a data matrix of n binary vectors, each containing d = |A| elements. We
use X 4 to denote the set of variables {Xs : § € A} and correspondingly X 4 to denote
the subset of X for the variables X 4. A probability distribution over the outcome
space X4 is determined by a parameter vector § € © where every element 6; specifies
the probability of a specific outcome x(j) € X4. The number of such outcomes will
subsequently be denoted by k. Bayesian inference about undirected graphs and stratified
graphs is derived using the posterior distribution over the model space. Given a prior
distribution P(G) (or P(GpL)), over a model space, the posterior equals P(G|X) =
P(X|G)P(G)/ Y qeg P(X|G)P(G), where P(X|G) is the marginal likelihood of the
data given a graph, and G is the model space.

For an arbitrary decomposable graph G, the joint distribution Pa(Xa) factorizes as

Pa(Xa) = Hecc@Tel0) 1)
HSeS(G) PS(XS)
where C(G) and S(G) denote the maximal cliques and separators, respectively, of G.
Using a prior distribution for the model parameters that also enjoys the Markov prop-
erties with respect to GG, the marginal likelihood of the data X factorizes accordingly
(Dawid and Lauritzen 1993)

HCEC(G) Po(Xo)
HSeS(G) Ps(Xs)’

P(X|@G) = (2)

where for any subset A C A of nodes P4(X4) denotes the corresponding marginal
likelihood of the subset X 4 of data. By a suitable choice of prior distribution, these

marginal likelihoods can be calculated analytically as follows. Let n(j) be the number
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of occurrences of the outcome xg) in the dataset X 4 and let the probabilities determin-
ing the corresponding distribution have the Dirichlet(aa,, ..., a4, ) distribution as the

prior. Then, the marginal likelihood of X 4 equals

o0 = [ T =i

where 74(0) is the density function of the Dirichlet prior distribution. By the standard
properties of the Dirichlet integral, the marginal likelihood can be further written as

ko ()
Py(Xy) = H A nA h aA ), (3)

Z:1

where I' denotes the gamma function and

k
a= g o,
i=1

The above result can be utilized as the basis when developing a corresponding expression
for decomposable SGs. For these graphs each maximal clique and separator can be
considered separately, and the factorization in (1) used. This is due to the fact that for
a decomposable SG the nodes in a labeled edge {0,v} and the nodes in Lg; 3 all belong
to the same maximal clique, as labels may not be placed on separators. Hence, a label
on an edge in one maximal clique cannot imply changes to the dependence between
variables corresponding to any other maximal clique. Given a maximal clique and its
associated labels defined in G, it is necessary to define a factorization of the distribution
Po(X¢) using a sequence of conditional distributions. To achieve this we introduce, in
accordance with the proof of Theorem 1, a particular ordering of the variables in the
maximal clique such that the variable corresponding to the node which all labeled edges
have in common is last in the ordering. In the case where all labeled edges have two nodes
in common, the last variable in the ordering can be chosen arbitrarily between them,
and in the case with no labeled edges the ordering of the variables is arbitrary. When
the factorization is based on such an ordering, it becomes clear which dependencies can
be excluded from the last conditional distribution and it can be guaranteed that no false
dependencies are employed.

An alternative way of formulating the factorization process for a maximal clique
is to consider the variables that precede the variable Xy in the ordering as parents of
X5, denoted by Xrr,. Hence, except for the last variable in the ordering, all variables
depend in their conditional distribution on each of the values of their parents. For the
last variable some outcomes of its parents will have the same effect and these values
can consequently be grouped together, as is done using default tables or conditional
probability tables by Friedman and Goldszmidt (1996) and Boutilier et al. (1996). As an
example, consider the SG in Figure 1a, where the parent outcomes (X; = 1, X5 = 0) and
(X1 =1,X5 =1) for X3 are grouped together. Correspondingly, for the SG in Figure
1b, the parent outcomes (X; = 1, X5 = 0), (X; = 1,Xe = 1), and (X; = 0, X3 = 1)
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are grouped together. This means that there are effectively only two distinguishable
parent combinations for X3, comprising of {(X1 =1,X2=0),(X; =1,X2=1),(X; =
O7X2 = 1)} and {(X1 = 07X2 = 0)}

Using the ordering of variables discussed above the marginal likelihood Po(X¢) for
a maximal clique of a decomposable SG can be calculated using a modified version of
the formula introduced by Cooper and Herskovits (1992) for the marginal likelihood of a
Bayesian network. The use of this formula is made possible by the fact that distributions
faithful to decomposable SGs possess a minimal factorization, as stated in Theorem 1.
Our modification is defined as

I kj i)l
- Dis 10‘le) F(n(%‘ |7Tj) + i)
o 1;[ 1;[ )+ S agit) i H (o) ’ )

where d equals the number of variables in the maximal clique C, ¢; is the number of
distinguishable parent combinations for variable X; (i.e. there are ¢; distinct conditional
distributions for variable X;), k; is the number of possible outcomes for variable X;,
oy is the hyperparameter corresponding to the outcome i of variable X; given that
the parental combination of X; equals [, n(ﬂ'é) is the number of observations of the
combination [ for the parents of variable X, and finally, n(z}|7}) is the number of
observations where the outcome of variable X is ¢ given that the observed outcome of
the parents of X; equals [. Note that in this context a parent configuration [ is not
necessarily comprised of a single outcome of the parents of variable X, but rather a
group of outcomes with an equivalent effect on X;.

The hyperparameters of the Dirichlet distribution are determined by imposing the
following two requirements:

1. The resulting value of Pn(X() is independent of the initial ordering of the vari-
ables in the clique.

2. In the absence of strata the value of Po(X¢) is identical to that given by (3) when
the hyperparameters in the corresponding prior distribution are set equal to 1.

These two requirements can be satisfied by the following choice of hyperparameters,

B kA
Qi = Q51 = ﬁ7
where k again equals |X¢|, m; is the total number of possible outcomes for the parents
of variable X; and k; is the number of possible outcomes for variable X;. Further,
Aji equals the number of outcomes for the parents of variable X; in group | with an
equivalent effect on Xj, if X; is the last variable in the ordering. Otherwise, A;; equals
one. Equation 4 can also be used to calculate Po(X¢) where C is a non-maximal clique
containing no labeled edges. As a result, Ps(Xg) can be calculated using (4), as any
separator S € S(G) comprises a clique. Using the hyperparameters defined above, the
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values Pg(Xg) and Po(X¢), where C is a maximal clique containing no labeled edges,
can be calculated using either (3) or (4) as these will yield the same results.

An essential additional element of learning decomposable SGs given a dataset is to
ensure model identifiability. There may exist several different decomposable SGs that
all induce the same dependence structure. As an example we can consider the SG in
Figure 2a. Here, adding the label (0,1) to the edge {2,3} would merge the parent
outcomes (X; = 0,Xy =0,X4 = 1) and (X; = 0,Xs = 1,X, = 1) of X5. However,
these two outcomes have already indirectly been merged by the existing labels. The
label (0,0) on the edge {2,3} merges parent outcomes (X; = 0, X5 = 0, X4 = 0) and
(X1 =0,X2 =1,X, =0). The label (0,0) on the edge {3,4} merges parent outcomes
(X1 =0,X2 =0,X4 =0) and (X; = 0,X2 = 0,Xy = 1). And the label (0,1) on
the edge {3,4} merges parent outcomes (X; = 0,X2 =1, Xy = 0) and (X; = 0,Xs =
1,X4 = 1). Meaning that the outcomes {(X; = 0,Xs = 0,X, = 0),(X; = 0, X5 =
0,X,=1),(X1=0,X2=1,X,=0),(X; =0,X2 =1, X, = 1)} already form a group
with all outcomes having identical effect on X3, thus the inclusion of the label (0, 1) to
the edge {2, 3} does not alter the dependence structure. To exclude this possibility, we
introduce the concept of mazimal regular SGs.

Definition 7. Maximal reqular SG. A decomposable SG is defined as maximal reqular
if no elements may be added to L without altering the dependence structure. Further,
the stratum associated with each edge {d,~v} must be a proper subset of XLs,-

An SGM where (G, L) constitutes a maximal regular SG is termed a maximal regular
SGM. The regularity refers to the condition that an edge cannot be excluded completely
from the graph as in an ordinary GM, by setting L5,y = XL, ,,. Maximal regular
SGs constitute a subset of maximal SGs. In contrast to the class of all SGs, maximal
regular SGs always induce different dependence structures.

Theorem 2. The dependence structure induced by two mazimal regular SGs, G} =
(G1,L1) and G% = (Ga, L2), are identical if and only if G1 = G2 and Ly = Lo.

Proof. Assume that there exists an edge {J, v} that is present in G; but absent in Go,
this implies that X5 L X, | XA\(Xs U X,,). Considering that G is decomposable, this
means that X5 L X, |XL{M}7 where L5y is the set of nodes adjacent to both § and
v in G4, which is equivalent to X5 L X, |XL<M} € Xr,,.,- Hence L5y = XL,
contradicting the assumption that G} is maximal regular. Thus, it must hold that
G1 = G49. Assume next that the stratum E%M} € L, contains an element TLiso, which
is not present in 5%5,7} € L. This implies that X5 1 X, |XL{M} =TLs and that
the element zp, , can be added to E% P without altering the dependence structure
induced by G2, leading to a contradiction as G2 cannot be a maximal regular SG. O

When learning SGs from data, we will restrict the attention to the class of maximal
regular SGs. This means that we can avoid confusion over models having different
appearances while leading to the same marginal likelihood due to identical dependence
structures induced by them.



H. Nyman and J. Pensar and T. Koski and J. Corander 893

4 Algorithms for Bayesian Learning of SGs

Bayesian learning of graphical models has attained a considerable interest, both in
the statistical and computer science literature, see, e.g. Madigan and Raftery (1994),
Dellaportas and Forster (1999), Giudici and Green (1999), Corander (2003a), Giudici
and Castelo (2003), Koivisto and Sood (2004), and Corander et al. (2008). Our learning
algorithms described below belong to the class of non-reversible Metropolis-Hastings
algorithms, introduced by Corander et al. (2006) and later further generalized and
applied to learning of graphical models in Corander et al. (2008).

Let M denote the finite space of states over which the aim is to approximate the
posterior distribution. In this paper we will run two separate types of searches. In
one search the state space M will consist of all possible sets of labels, satisfying the
restrictions of maximal regular SGs, for a given maximal clique. In the second search
the state space will be the set of decomposable undirected graphs combined with the
optimal set of labels for that graph. For M € M, let Q(-| M) denote the proposal
function used to generate a new candidate state given the current state M. Under
the generic conditions stated in Corander et al. (2008), the probability with which any
particular candidate is picked by Q(-| M) need not be explicitly calculated or known, as
long as it remains unchanged over all the iterations and the resulting chain satisfies the
condition that all states can be reached from any other state in a finite number of steps.
To initialize the algorithm, a starting state My is determined. At iteration ¢t = 1,2, ...
of the non-reversible algorithm, Q(- | M;_;) is used to generate a candidate state M*,
which is accepted with the probability

P(X | M*)P(M*) > | )

min (l’ PX| M, 1) P(M;1)

where P(M) is the prior probability assigned to M. The term P(X|M) denotes the
marginal likelihood of the dataset X given M. If M* is accepted, we set M; = M*,
otherwise we set M; = M;_1.

In contrast to the standard reversible Metropolis-Hastings algorithm, for this non-
reversible algorithm the posterior probability P(M | X) does not equal the stationary
distribution of the Markov chain. Instead, a consistent approximation of P(M | X) is
obtained by considering the space of distinct states M, visited by time ¢ such that

: _ P(X|M)P(M)
Pt(M | X) - ZM’eMt P(X | M’)P(M').

Corander et al. (2008) proved, under rather weak conditions, that this estimator is
consistent, i.e.

Pi(M|X) “3 P(M|X),
as t — oo. As our main interest will lie in finding the posterior optimal state, i.e.

arg max P(M|X)
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it will suffice to identify
arg max P(X|M)P(M).
MeM

The main goal of our search algorithm is to identify the stratified graph G°* optimiz-
ing P(X|GL)P(Gyr). The search is broken down into two parts. Under the assumption
that the optimal set of labels is known for each underlying graph a Markov chain travers-
ing the set of possible underlying graphs will eventually identify G‘zpt. Another search
may be used in order to identify the optimal set of labels given the underlying graph.
It was earlier concluded that the marginal likelihood for a decomposable SG can be
factorized according to (2). Due to this the search for the optimal set of labels can be
conducted separately for each maximal clique.

Given a decomposable underlying graph G with the set of maximal cliques C(G),
a search is conducted to find the optimal set of labels for each clique C' € C(G). The
sets of labels are assigned uniform priors and cancel each other out in the acceptance
probability (5). Using the proposal function defined in Algorithm 1, running a sufficient
amount of iterations, we can be assured to find the optimal set of labels for each maximal
clique. Combining the sets of labels for each maximal clique will result in an optimal
labeling of the underlying graph.

Algorithm 1. Proposal function used to find optimal set of labels for a mazximal clique

C € C(G).

The starting state is defined as the empty set containing no labels. Let L denote the
current set of labels, and LP the set of labels that can be added to L without violating
the restrictions of decomposable stratified graphs.

1. Set the candidate state L* = L.
2. If LP is empty and L is non-empty, delete a randomly chosen label in L*.

3. If L is empty and LP is non-empty, add a randomly chosen label from LP to L*.

4. If both L and LP are non-empty, with probability 0.5 delete a randomly chosen
label in L*, otherwise add a randomly chosen label from LP to L*.

5. If L* satisfies the maximal regular restrictions set it as the candidate state, oth-
erwise repeat steps 1-5.

Using this procedure we can assume that the optimal labeling can be found for any
underlying graph and we can proceed to the search for the best underlying graph with
optimal labeling. In this search, instead of using a uniform prior, we use a prior that

penalizes dense graphs
P(GL) X 2d_f7

where d is the number of nodes in the underlying graph G and f is the number of free
parameters in a distribution Pa faithful to G. This choice of prior is motivated by the
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fact that adding a label to a sparse graph often induces a context-specific independence
in a larger stratum than adding a label to a dense graph. The value 2/~% is a numer-
ically convenient approximation of the number of unique dependence structures that
can be derived by adding labels to an undirected graph. By looking at the conditional
distributions for a variable X5 with parents X, in G, one can see that each parent
outcome can be merged with a set of other outcomes by adding a label, removing a free
parameter from Pa in the process. By adding different labels all but d of the original f
free parameters in Pa can be removed, resulting in 2/ ~¢ different dependence structures.
This is, however, just an approximation as it is not possible to simultaneously remove
any subset of the f — d parameters by including labels. Using the proposal function in
Algorithm 2 we conduct the search for the best underlying graph with optimal labeling.

Algorithm 2. Proposal function used to find the best underlying graph with optimal
set of labels.

The starting state is set to be the graph containing no edges. Let G denote the current
graph with G, = (G, L) being the stratified graph with underlying graph G and optimal
set of labels L.

1. Set the candidate state G* = G.

2. Randomly choose a pair of nodes ¢ and ~. If the edge {d,~} is present in G*
remove it, otherwise add the edge {J,v} to G*.

3. While G* is non-decomposable repeat steps 1 and 2.

The resulting candidate state G* is used along with the corresponding optimal set of
labels L* to form the stratified graph G7 = (G*, L*) which is used when calculating the
acceptance probability according to (5).

In the next section we will use the search operator defined here on a set of synthetic
datasets in order to illustrate its efficiency. We will also apply the search operator to
a set of real datasets. Our results strongly support the use of models that enable the
inclusion of context-specific independencies.

5 lllustration of SG Learning from Data

An SG including seven nodes is shown in Figure 3a. A probability distribution faithful
to this SG is used to generate several sets of data of varying size, this distribution is
available in the form of MATLAB code in the supplementary material.

When the size of the dataset exceeds 1,000 observations the graphs with the highest
posterior probability found by the search method defined in the previous section usually
coincide with the generating model. However, as the number of observations drops the
optimal graphs start to deviate from the generating graph. The SG in Figure 3b is
representative of the optimal graphs found for datasets including 500 observations. We
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Figure 3: Dependence structures for synthetic dataset. a) Generating SG b) SG when
data contains 500 observations c) SG when data contains 100 observations.

can see that the underlying graph is still the correct one, but a number of extra labels
have been added to clique {1,2,3,4}. The SG in Figure 3c is representative of the
optimal graphs for datasets containing only 100 observations. Here we can see that not
only do the labels differ strongly from those of the generating graph but also that the
underlying graph is missing a couple of edges.

The experiments based on synthetic data confirm that the search algorithms are
performing as expected when the data generating structure is known. However, for small
datasets the observed posterior modes usually differ from the generating model. This
gives rise to an important question, namely, when trying to learn the graph structure
what is the required size of the dataset? For decomposable SGs, as we try to determine
which labels to include, the size of the maximal cliques will be of relevance. The larger
the maximal clique, the larger the set of possible labels, implying that more data is
needed to have high probability of discovering the correct labels. In an effort to deduce
the required number of observations in the dataset for maximal cliques with three, four,
and five nodes we generate multiple datasets of varying size following the dependence
structure induced by the stratified graphs in Figure 4.

Given a dataset the method defined in Section 4 is used to determine the optimal
SG. The Bayes factor is then used to determine how strong the evidence is for the
generating SG in comparison to the optimal SG found in the search. Presumably, as
the number of observations in the data grows the optimal SG will more often coincide
with the generating model, resulting in the Bayes factor equaling 1. In order to get
reliable results the experiment is repeated several times and the mean of the Bayes
factor is reported.

Figures 5a-c contain the values of the Bayes factor for the cases with three to five
variables, respectively. Clearly, the Bayes factors increase as the number of observations
grows and simulations show that they converge to 1 as the number of observations goes
to infinity. However, the convergence seems to be quite slow, especially in the case with
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a)

Figure 4: Dependence structures of distributions used to study the required size of
datasets.
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Figure 5: Plots a-c show the Bayes factor for the generating SG compared to the optimal
SG for datasets generated using distributions faithful to the SGs in Figure 4. Plots d-f
show the corresponding “normalized” Bayes factor.

five variables. This is a fairly obvious result as we are, in a sense, comparing the fit of
the generating SG to the fit of all other possible SGs. In order to get more comparable
values we calculate the n:th root of the Bayes factor, where n is the number of obser-
vations in the dataset. This “normalized” Bayes factor has the intuitive interpretation
of being the amount of evidence produced by a single observation for the generating
model in comparison to the optimal model. The resulting values for the three cases
are shown in Figures 5d-f. We can see that all three curves tend to 1 as the number
of observations grows. For instance, the number of observations needed for the three
curves to reach 0.999 are 210, 1400, and 8000. This is a clear indicator of how rapidly
the need for large datasets grows when the size of the maximal clique grows. For the
clique with three variables the generating labels coincided with the optimal labels at a
fraction of 0.9, using a dataset containing 400 observations. The corresponding fraction
for four variables and data size 2000 is 0.28. In order to correctly identify the set of
generating labels for five variables at a fraction of 0.05 a dataset consisting of roughly
50000 observations is needed, using 100000 observations the fraction rises to 0.5. Con-
sidering that the number of unique label sets, when considering a maximal clique with
five variables, is in the vicinity of 10'° the need for large datasets is not surprising.
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Interestingly, while the considered Bayes factor will exclusively converge to 1 for the
generating SG the same does not hold for the “normalized” Bayes factor. To demon-
strate this consider the case with four variables and the generating SG along with the
graph where the labels have been removed, resulting in an ordinary complete graph with
four nodes, as well as the graph where the labeled edges have been removed, resulting

in an ordinary graph with maximal cliques {1,2,3} and {1,4}.
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Figure 6: Bayes factor (a-c) and “normalized” Bayes factor (d-f) for SG in Figure 4
(a,d), ordinary complete graph (b,e), and ordinary graph with maximal cliques {1, 2,3}
and {1,4} (c,f).

As we can see from Figure 6a the Bayes factor for the generating SG tends to 1,
while the curves for the other two models steadily decrease, Figures 6b-c. Figures 6d-f
show the “normalized” Bayes factor for the three models. While simulations show that
for the ordinary complete graph the curve in Figure 6e converges to 1, clearly the same
does not hold for the curve corresponding to the non-complete graph. While the gener-
ating SG can be considered a hybrid of these two ordinary graphs, this can be viewed
as an indicator that the marginal likelihood, calculated using (2) and (4), penalizes
under-parametrization harder than it does over-parametrization when the number of
observations is large. However, other simulations show that for small datasets graphs
that induce distributions with fewer parameters often result in higher marginal likeli-
hoods.

While the results given here clearly show that large datasets are needed, especially
for graphs containing larger maximal cliques, in order to perform stable inference of
stratified graphs, any general recommendation regarding the number of observations
needed is very difficult to state. Of course, the same holds for ordinary graphical
models as much depends on the considered distribution, if a dependence is very strong
it can be identified from a handful of observations while if the dependence is weak more
observations are required.

Next we will conduct searches for context-specific independencies in real data. The
first dataset includes prognostic factors for coronary heart disease and can be found
in Edwards and Havrdnek (1985). The dataset contains 1841 observations on the six
variables described in Table 1. Using the same setup as for the synthetic data, the
two best decomposable SGs are depicted in Figure 7. They have the log-unnormalized
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Variable Meaning Range
X3 Smoking No=0,Yes=1
X5 Strenuous mental work No=0, Yes=1
X3 Strenuous physical work No=0, Yes =1
Xy Systolic blood pressure > 140 No =0, Yes =
X5 Ratio of beta and alpha lipoproteins > 3 No=0,Yes=1
X Family anamnesis of coronary heart disease No =0, Yes =1

Table 1: Variables in coronary heart disease data.

posterior values of —6715.90 and —6716.66, respectively. The underlying graph in the
optimal decomposable SG coincides with the optimal undirected graph as found by
Corander et al. (2008) and is one of the two graphs suggested by Edwards and Havranek
(1985). The discussion in Whittaker (1990) also suggests the possible inclusion of the
edges {2,5} and {1,2}. Compared to these sources our models are highly similar.
However, in addition to the global independencies, our framework suggests for instance
the context specific independencies X7 L Xy | X5 =1 and Xy L X5|X; =0.

The interpretation of the identified SGs is that the knowledge that a person smokes
and has a ratio of beta and alpha lipoproteins less than or equal to 3 will affect the
systolic blood pressure in one way and all the other variations for smoking and ratio of
beta and alpha lipoproteins in another way. A simplified version would be to say that
given that a person has a ratio of beta and alpha lipoproteins larger than 3, whether or
not he smokes is unlikely to affect his systolic blood pressure. Interestingly the labeled
edges are those that some sources suggest should be included in the model whilst other
sources omit them from the model.

a) c 1 o b)
.' 0

Figure 7: SGs with highest posterior probabilities for the heart disease data.

Next we consider a dataset involving 25 variables. This dataset is derived from
the answers given by 1806 candidates in the Finnish parliament elections of 2011, in a
questionnaire issued by the newspaper Helsingin Sanomat (Helsingin Sanomat 2011).
The questionnaire contains a total of 30 questions, of these 25 are on a ordinal scale.
The answers given to these 25 questions by the candidates are transformed to the binary
variables listed in the supplementary material, the resulting dataset is also available as
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supplementary material.

The SG with highest posterior probability is shown in Figure 8. The labels are not
explicitly given in the graph, due to limited space, instead the labeled edges are colored
red. This maximal regular SG contains 72 edges of which 36 are labeled. The graph
contains a total of 87 labels and has a log-unnormalized posterior value of —21949.13.
Conducting a search for the best ordinary graphical model, keeping in mind that undi-
rected graphs are special cases of stratified graphs and therefore the same equations
can be used to attain the log-unnormalized posterior, results in a graph with 70 edges
and a log-unnormalized posterior value of —22043.15. These two graphs share 62 edges,
implying that the induced dependence structures resemble each other to a considerable
degree.

Figure 8: Optimal SG for the parliament election data, labeled edges are colored red.

Figure 9 displays two maximal cliques, found in both the optimal SG and optimal
ordinary graph, with the labels associated with the SG.

The SG in Figure 9a induces a fairly straightforward context-specific dependence



H. Nyman and J. Pensar and T. Koski and J. Corander 901

Figure 9: Two maximal cliques found both in the optimal SG and ordinary graph.

structure. Given that we know a candidate’s opinion on mandatory military service
(variable 12), knowing that the candidate is against equal rights for homosexuals to
adopt children (variable 2) is likely to have the same effect on a candidate’s view on
singing Christian hymns in school (variable 19) as knowing that the candidate is in
favor of economic help packages for struggling Euro countries (variable 8). The context-
specific dependence structure induced by the SG in Figure 9b is much more intricate.
However, a simple fact is that a probability distribution faithful to this component
of the SG includes 21 free parameters, whereas the corresponding ordinary maximal
clique would include 31 free parameters. In total, the optimal SG in Figure 8 induces a
distribution with 324 free parameters while the underlying graph and optimal ordinary
graph induce distributions with 407 and 368 free parameters, respectively. This means
that the SG induces a more elaborate dependence structure using a substantially smaller
number of parameters.

Most maximal cliques found in the parliament elections data contain four or five
nodes, with the largest maximal cliques containing five nodes. As the dataset only
contains 1806 observations the discussion above regarding the required sample size be-
comes relevant. To begin with it is important to notice that the restrictions imposed
by decomposable SGs means that not all edges can be labeled. In the maximal clique
{2,8,12,19} only the edges leading to node 19 may be labeled, similarly for the maximal
clique {2,3,12,17,21} only the edges leading to node 21 may be labeled. This heavily
reduces the set of possible label combinations. In order to ascertain the robustness of
the inferred labels we randomly remove observations from the dataset and see if the
optimal labels change.

Figure 10 shows the average fraction with which the optimal label set given the entire
data coincides with the optimal label set when a varying amount of observations has
been removed from the data. Clearly, the labels for the maximal clique containing four
nodes are much more robust than those for the clique containing five nodes. However,
taking into account the total number of possible label sets the inferred labels seem fairly
robust.

The final dataset considered lists the occurrences of different plants in different states
and territories in North America (Bache and Lichman 2013). The data contains the
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Figure 10: Fraction of the optimal label set estimated from the entire data that coincides
with the optimal label set when an indicated amount of observations have been removed
from the parliament election data (x-axis).

occurrences of 34781 different plants in the 69 states/territories listed in the supplemen-
tary material. The states/territories are ordered such that those that are geographically
close to each other appear close to each other in the ordering. An adjacency matrix is
used to display the resulting SG. Intuitively, the elements close to the diagonal in the
adjacency matrix should more often indicate the presence of an edge than elements far-
ther from the diagonal, since plants are more likely to occur simultaneously in states in
close proximity. Figure 11 contains a plot of the 69-by-69 adjacency matrix representing
the optimal SG found for this data.

. . . .
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40

.
.
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60

Figure 11: Adjacency matrix representing the optimal SG for the plants dataset.

For instance, the black dot on row 1, column 4 indicates that nodes 1 and 4 are
connected by an unlabeled edge. A red dot corresponds to a labeled edge while a green
dot corresponds to an unlabeled edge not in a separator, i.e. an unlabeled edge that
could be labeled without breaking the restriction of decomposable SGs that edges in
separators may not be labeled.

The resulting SG is fairly dense, containing 336 edges and maximal clique sizes
ranging from 4 to 8. The underlying graph also contains some nodes that are adjacent



H. Nyman and J. Pensar and T. Koski and J. Corander 903

to a large portion of the other nodes, seen as vertical and horizontal “lines” in the plot
of the adjacency matrix. While the underlying graph induces a distribution with 4774
free parameters the distribution induced by the SG only contains 4402 free parameters.
An interesting observation that can be made from the adjacency matrix is that node
5 (Alberta) is adjacent to nodes 60, 61, 62, 64, 65, and 66, while node 63 (Alabama)
is adjacent to nodes 1, 2, 3, 4, 6, 7, 8, and 9. This lead to the suspicion that an error
had been made by the creators of the dataset, Alabama and Alberta having swapped
places, further investigations indeed showed this to be the case.

One advantage with having a large number of observations is that the underlying
graph of the optimal SG tends to be very similar to the optimal ordinary graph. For
this dataset these graphs actually coincide. The score for the optimal ordinary graph
and optimal SG are —368099.84 and —367756.68, respectively. Generally, using the
optimal ordinary graph as the starting point for Algorithm 2 will make the search
process much more effective. For even larger systems, spanning more than 100 variables,
some restrictions may need to be made to the search process. One possible method is
to first identify the optimal ordinary graph and then apply Algorithm 1 exclusively
to that graph, this would also help to guard against over-parametrization. While the
resulting SG may not be the global optimum, this method may still be useful in different
applications, such as predictive classification (Nyman et al. 2014).

As previously shown, the complexity involved with inferring the labels grows rapidly
with the increase in the size of the maximal cliques. For this data, the largest maximal
clique includes 8 nodes. To assess the robustness of the inferred labels the same method
as for the parliament election data is applied. For cliques comprising 4-8 nodes the
optimal label sets for the entire data is compared to the optimal label sets when a
varying amount of observations is removed from the data. Due to the underlying graph
being quite dense it is only possible to place labels on a limited set of edges, as labels
may not be placed on edges in separators. For the considered cliques it is only possible
to place labels on two different edges.

1 —4 variables
—-5 variables

6 variables
0.5- ——7 variables
—-8 variables

! .
0 5000 10 000 15 000 20 000 257600 30 000

Figure 12: Fraction of the optimal label set estimated from the entire data that coincides
with the optimal label set when an indicated amount of observations have been removed
from the plants data (x-axis).

Figure 12 shows the average fraction with which the two considered label sets coin-
cide. Clearly, the fraction tends to decline faster for large cliques, as the set of different
label configurations are much larger for larger cliques, the clique containing six nodes
deviating somewhat from this rule indicating that the inferred labels for that clique are
a bit less robust in comparison. Generally, the results show that the inferred labels are
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fairly robust when taking into account the huge set of applicable label sets.

While it is always possible to find the optimal set of labels given a dataset the
difference between different sets of labels might in some cases be quite small and the
robustness of the inferred labels questionable. One solution to this problem is to consider
not only the optimal label set but a range of different label sets. Another solution is
to add restrictions to the set of labels that are allowed. For instance, the number
of variables used to determine if a label is fulfilled can be restricted. Considering a
maximal clique {1,2,3,4,5,6} and the edge {5,6}, instead of having a label (X; =
21, Xo = 22, X3 = x3, X4y = 24) we could only allow sets of labels where X3 and X, are
unrestricted, effectively reducing the number of possible labels from 16 to 4.

6 Conclusions

The versatility of probabilistic graphical models has become clear through their popu-
larity over a wide variety of application areas. On the other hand, their fairly restrictive
global form of dependence structures has inspired the development of many generaliza-
tions of graphical models where independence can be a function of a context in the out-
come space. In fact, similar developments have taken place for the class of Markov chain
models, where the variable-order and variable-length Markov chains aim at a generaliza-
tion of ordinary higher-order Markov chains where the dependence on the history of the
process is context-specific (Rissanen 1983; Weinberger et al. 1995; Bithlmann and Wyner
1999; Bacallado 2011). Our formulation of the simultaneous context-specific indepen-
dence restrictions allows for the derivation of an analytical Bayesian scoring function for
decomposable SGs, which is particularly useful for fast learning purposes and leads to a
more expressive model class than those considered by Boutilier et al. (1996), Friedman
and Goldszmidt (1996), Corander (2003b), and Koller and Friedman (2009). In the
future it would be fruitful to develop inference methods also for non-decomposable SGs,
which do not enjoy an analytically tractable expression for the marginal likelihood. This
would further reduce the constraints imposed on the dependence structure and allow
for an even more expressive range of context-specific independencies to be explored.
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Supplementary Material

The supplementary material includes the MATLAB code used to generate datasets
with a dependence structure following the stratified graph in Figure 3a, a list of the
questions presented to the candidates of the Finnish parliament elections of 2011 by
Helsingin Sanomat along with the resulting dataset, and a list of the states/territories
included in the plants dataset.

Appendix

Proof of Theorem 1.

Consider a joint distribution, over the variables Xa = (Xi,...,Xq), faithful to a de-
composable SG, G;, = (G,L), and an arbitrary outcome za € Xa. Since G is a
decomposable undirected graph, P(Xa = za) can be factorized (Lauritzen 1996) as

. HC’eC(G) P(Xc =zc)
[lsesq) P(Xs ==s)

P(XA = xA)

For any separator S € S(G) it holds that any variable X5 € Xg is dependent on each
of the other variables in the set X ¢\ Xy, regardless of any context-specific independen-
cies, since decomposable SGs cannot have any labeled edges within separators. This
implies that any factorization of P(Xg = zg) using a sequence of conditional probabil-
ities P(X; = a?l)P(XQ =T |X1 = .Tl) . P(de = T4g |X1 =21,...,Xdg—1 = xdsfl),
where dg = |S|, will be void of false dependencies. The probability P(X¢ = z¢), with
C € C(G) corresponding to the variables (Xy, ..., Xq4.) with do = |C|, can also be fac-
torized using a minimal factorization. Assume that, in accordance with the definition of
decomposable SGs, all the labeled edges have at least one node in common. The corre-
sponding variable is chosen to be the last variable in the ordering, i.e. the variable X ..
In the case where the maximal clique only contains one labeled edge {d,~} the choice
of Xg4, is ambiguous, either we choose X4, = Xs or X4, = X,. It now follows that
the factorization P(Xl = Il,...7Xdc_1 = $dc_1) = P(X1 = Il)P(XQ = T2 |X1 =
z1)...P(Xgo-1 = ®go-1| X1 = 21,...,Xdp—2 = T4,—2) contains no false dependen-
cies. This can be seen from the stratified graph as all pairs of nodes corresponding
to the variables in the set (Xi,...,X4.-1) will be connected by an unlabeled edge.
The final situation to investigate is the conditional probability P(Xg4, = 4. | X1 =
X1y, Xdo—1 = Tde—1)- This factor could potentially contain false dependencies as
the edges leading to the node corresponding to Xy, are allowed to be labeled. However,
given the information that X; = z1,..., Xq.—1 = z4.—1, it is known which dependen-
cies can be excluded in P(Xg, = 24, | X1 = 21,...,Xd4o-1 = Td.—1), as the variables
Xi,...,X4.—1 are the variables that determine whether or not a context established
by the labels in question is satisfied. Hence, it is always possible to avoid introduc-
ing false dependencies for such a clique. This proves that a distribution faithful to a
decomposable SG always possesses a minimal factorization. [J
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