
Bayesian Analysis (2014) 9, Number 4, pp. 859–882

Adaptive Priors Based on Splines with
Random Knots

Eduard Belitser ∗ and Paulo Serra †

Abstract. Splines are useful building blocks when constructing priors on non-
parametric models indexed by functions. Recently it has been established in the
literature that hierarchical adaptive priors based on splines with a random number
of equally spaced knots and random coefficients in the B-spline basis correspond-
ing to those knots lead, under some conditions, to optimal posterior contraction
rates, over certain smoothness functional classes. In this paper we extend these
results for when the location of the knots is also endowed with a prior. This
has already been a common practice in Markov chain Monte Carlo applications,
but a theoretical basis in terms of adaptive contraction rates was missing. Under
some mild assumptions, we establish a result that provides sufficient conditions
for adaptive contraction rates in a range of models, over certain functional classes
of smoothness up to the order of the splines that are used. We also present some
numerical results illustrating how such a prior adapts to inhomogeneous variability
(smoothness) of the function in the context of nonparametric regression.

Keywords: Adaptive prior, Bayesian non-parametric, optimal contraction rate,
spline, random knots.

1 Introduction

The Bayesian approach in statistics has become quite popular in recent years as an alter-
native to classical frequentist methods. The main appeal of the Bayesian methodology
is its conceptual simplicity: given a model for the observed data X ∼ Pf , f ∈ F , some
space of functions, put a prior on the unknown parameter f and draw inferences based
on the resulting posterior Π(f |X). Knowledge about the model under study can also
be incorporated into the inference procedure via the prior. However, some seemingly
“correct” priors can lead to unreasonable posteriors, especially in nonparametric mod-
els. It is therefore desirable to place ourselves in a setting where it is possible to assess
the quality of the resulting posterior from some objective point of view. This gave rise
to the development of the notion of contraction rate (cf. Ghosal et al. 2000), a Bayesian
analog of a convergence rate: data is assumed to come from a fixed probability measure
P0 = Pf0 for a “true” f0 ∈ F ; the contraction rate is then the smallest radius such that
the posterior mass in a ball (with respect to an appropriate distance) of probability
measures around P0 converges to 1 in P0-probability as some information index such as
a sample size goes to infinity.

Some general results about posterior contraction rates establish sufficient conditions
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on prior distributions such that the resulting posteriors attain a certain contraction rate.
In this spirit, when studying specific priors, some authors now choose to present their
results in the form of say meta-theorems which claim that sufficient conditions (such as
the ones in Ghosal et al. 2000) required to attain a certain range of contraction rates
hold for their choice of prior; cf. de Jonge and van Zanten (2012), Shen and Ghosal
(2012), van der Vaart and van Zanten (2008) and further references therein. We adopt
this practice here as well.

In the case where f0 is a function from some functional space of smoothness α, the
posterior contraction rate is typically compared to the convergence rate of the minimax
risk (called optimal rate) over that space in the estimation problem. For example, if
we observe a sample of size n and want to estimate a univariate α-smooth function,
the typical optimal rate (e.g., density or regression function from the Hölder class) is of
order n−α/(2α+1), possibly up to a logarithmic factor depending on the risk function. If
the smoothness parameter α is unknown, and one wants to build estimators which attain
the optimal rate corresponding to α but do not depend explicitly on α, one speaks of an
adaptation problem. In a Bayesian context, the adaptation problem consists in finding a
prior which leads to the optimal posterior contraction rate (usually up to a logarithmic
factor) for any α-smooth function of interest and does not depend on the smoothness
parameter α. Such priors are called rate adaptive. There is a growing number of papers,
where this problem has been studied in different settings; cf. de Jonge and van Zanten
(2012), Shen and Ghosal (2012), van der Vaart and van Zanten (2008), van der Vaart
and van Zanten (2009) and Belitser and Ghosal (2003) among others.

Splines, in particular, can be used when constructing adaptive priors. A spline (cf.
de Boor 1978) is a piecewise polynomial function designed to have a certain level of
smoothness which is referred to as its order. Splines are easy to store, differentiate,
integrate and evaluate on a computer, and are extensively used in practice for con-
structing good, parsimonious approximations of smooth functions. The points at which
the different polynomial pieces of a spline connect are called knots. If an order (read:
maximal polynomial degree) and a set of knots is fixed, then the space of all splines
with that order and those knots forms a linear space which admits a basis of so called
B-splines. Any spline of a fixed order is consequently characterized by a set of knots
and its coordinates in the B-splines basis corresponding to those knots. Randomly
generating a number of knots and, given those, generating random coordinates in the
corresponding B-spline basis with equally spaced knots results in a random spline whose
law can be used as a prior. If, given the number of knots, the coordinates in the cor-
responding B-spline basis are chosen to be independent and normally distributed, then
the resulting spline has a conditionally Gaussian law and was studied by de Jonge and
van Zanten (2012) by using Reproducing Kernel Hilbert Space techniques. Shen and
Ghosal (2012) propose a more general, random series prior: the coefficients in the series
are not necessarily independent or Gaussian and a basis other than the B-spline basis
can also be used.

The case where the locations of the knots are also random is not covered by the
results of either de Jonge and van Zanten (2012) or Shen and Ghosal (2012). However
when practitioners put a prior on the number of knots they almost invariably also
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put a prior on the locations of the knots (e.g., Denison et al. 1998, Di Matteo et al.
2001, Sharef et al. 2010) – a Poisson process is a popular choice. Their motivation
for allowing arbitrarily located knots seems to be twofold. Firstly, this is attractive
from the implementation point of view: designing reversible jump Markov chain Monte
Carlo (MCMC) samplers is much simpler if any collection of knots is allowed since
new knots can be inserted at arbitrary positions causing only localized changes in the
spline. Secondly, the resulting posterior based on the prior with random locations of the
knots is expected to be more adaptive with respect to inhomogeneous smoothness of the
function of interest: the function may not have a fixed level of smoothness throughout
its support, it may consist of rough and smooth pieces. To sustain an adequate level
of accuracy over the whole support, more knots are needed in rough pieces and less in
smooth ones. Therefore, to make it at least possible for the resulting posterior to pick
up eventual spatial features of the function, the prior has to be flexible enough to model
random locations of the knots.

In this paper, we extend the results of de Jonge and van Zanten (2012), and those
of Shen and Ghosal (2012) with respect to the prior with random knots: we add one
more level to the hierarchical spline prior by putting a prior on the location of the knots
of the spline as well, making, in fact, the basis functions also random. Under some
mild assumptions on the proposed hierarchical spline prior, we establish our main result
for the proposed prior, providing sufficient conditions for adaptive, optimal contraction
rates of the resulting posterior in a range of models (among others: density estimation,
nonparametric regression, binary regression, Poisson regression, and classification). In
doing so, we provide a theoretical basis for the common practice of using randomly
located knots in spline based priors. Another interesting feature of a prior with random
knot locations is that it leads to the posterior of the knots vector which provides (some
sort of empirical Bayes) inference on the variability (smoothness inhomogeneity) of the
underlying function. We present some numerical results illustrating how such a prior
adapts to inhomogeneous variability (smoothness) of the function in the context of
nonparametric regression.

2 Notation and preliminaries on splines

First we introduce some notation. For d ∈ N and 1 ≤ p < ∞ denote by ‖x‖p =(∑d
i=1 |xi|p

)1/p
the lp-norm of x = (x1, . . . , xd) ∈ Rd and by ‖x‖∞ = maxi=1,...,d |xi|.

For 1 ≤ p < ∞ let the Lp-norm of a function f on [0,1] be ‖f‖p =
( ∫ 1

0
|f(x)|p dx)1/p

and ‖f‖∞ = supx∈[0,1] |f(x)|.

We use . (respectively &) to denote smaller (respectively greater) or equal up to a
constant, the symbols a ∨ b and a ∧ b stand for max{a, b} and min{a, b} respectively.
The covering number N(ε, S, d) of a subset S of a metric space with balls of size ε is
the smallest number of balls (with respect to distance d) of radius ε needed to cover S.

Now we provide some preliminaries on splines, which can be found, for example,
in Schumaker (2007). A function is called a spline of order q ∈ N, with respect to a
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certain partition of its support, if it is q− 2 times continuously differentiable and when
restricted to each interval in this partition, coincides with a polynomial of degree at
most q − 1. Consider q ∈ N, q ≥ 2, which will be fixed throughout the remainder of
this text. For any j ∈ N, such that j ≥ q let Kj = {(k1, . . . , kj−q) ∈ (0, 1)j−q : 0 <
k1 < · · · < kj−q < 1}. We will refer to a vector k = kj ∈ Kj as a set of inner knots;
the index j in kj will sometimes be used to emphasize the dependence on j. A vector
k ∈ Kj will be said to induce the partition

{
[k0, k1), [k1, k2), . . . , [kj−q, kj−q+1]

}
, with

k0 = 0 and kj−q+1 = 1. For any k ∈ Kj we will call M(k) = maxj−q+1
i=1 |ki − ki−1|

the mesh size of the partition induced by k and m(k) = minj−q+1
i=1 |ki − ki−1| the

sparseness of the partition induced by k. For a k ∈ Kj , denote by Sk = Skq the
linear space of splines of order q on [0, 1] with simple knots k (see the definition of
knot multiplicity in Schumaker (2007)). This space has dimension j and admits a
basis of so called B-splines {Bk1 , . . . , Bkj }. The construction of {Bk1 , . . . , Bkj } involves
the knots k−q+1, . . . , k−1, k0, k1, . . . , kj−q, kj−q+1, kj−q+2, . . . , kj , with arbitrary extra
knots k−q+1 ≤ · · · ≤ k−1 ≤ k0 = 0 and 1 = kj−q+1 ≤ kj−q+2 ≤ · · · ≤ kj . Usually
one takes k−q+1 = · · · = k−1 = k0 = 0 and 1 = kj−q+1 = · · · = kj , and we adopt this
choice here as well. These basis functions are nonnegative: Bki (x) ≥ 0, for all x ∈ [0, 1].
Besides, they have local support and form a partition of unity:

Bki (x) = 0 for x 6∈ [k−q+i, ki],

j∑
i=1

Bki (x) = 1 for all x ∈ [0, 1]. (1)

To refer explicitly to the coordinates a = (a1, . . . , aj) ∈ Rj of a spline in a specific

B-spline basis with inner knots k, we write sa,k(x) =
∑j
i=1 aiB

k
i (x), x ∈ [0, 1]. Since∑j

i=1B
k
i (x) = 1, it is easy to see that for any sa,k, sb,k ∈ Skq

‖sa,k − sb,k‖2 ≤ ‖sa,k − sb,k‖∞ ≤ ‖a− b‖∞ ≤ ‖a− b‖2. (2)

Splines have good approximation properties for sufficiently smooth functions pro-
vided they are defined on a partition with appropriately small mesh size. We say that
a function f on [0, 1] belongs to a generic smoothness class Fα, α > 0, if f is Lipschitz,
i.e., f ∈ L(κα, Lα) = {f : |f(x1) − f(x2)| ≤ Lα|x1 − x2|κα , x1, x2 ∈ [0, 1]} for some
κα, Lα > 0, and for any set of inner knots k there exists a spline sa,k ∈ Skq such that
for some bounded Cf

‖f − sa,k‖∞ ≤ CfMα(k). (3)

A leading example of a smoothness class Fα is the Hölder space Hα = Hα(L, [0, 1]),
0 < α ≤ q, which is the collection of all functions f that have bounded derivatives up
to order α0 = bαc = max{z ∈ Z : z < α} and such that the α0-th derivative satisfies
the Hölder condition |f (α0)(x) − f (α0)(y)| ≤ L|x − y|α−α0 , for L > 0 and x, y ∈ [0, 1].
In this case, a well-known spline approximation result (cf. de Boor 1978) states that (3)
holds with Cf = Cq‖f (α)‖∞ for some constant Cq depending only on q. Other examples
of smoothness classes for which the approximation property (3) holds include α-times
continuously differentiable functions, Sobolev and Besov spaces; cf. Theorems 6.21, 6.25
and 6.31 in Schumaker (2007).
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3 Main Result

We begin by describing a hierarchical prior on S = Sq = ∪∞j=q ∪k∈Kj Skq : first draw
a number J ∈ N, J ≥ q; then, given J , generate independently (J − q) inner knots
KJ ∈ Kj and also independently, J B-spline coefficients θ ∈ RJ . Our prior on S will be
the law of the random spline sθ,KJ

. We impose the following conditions on this prior.
For c1, c2 > 0, 0 ≤ t1, t2 ≤ 1 and all sufficiently large j,

P(J > j) . exp
(
− c1j logt1 j

)
, (4)

P(J = j) & exp
(
− c2j logt2 j

)
. (5)

For some τ ≥ 1, c3 > 0, 0 ≤ t3 ≤ 1, and all j ≥ q,

P
(
m(Kj) < δ(j)|J = j

)
= 0, (6)

P
(
M(Kj) ≤ τ/j|J = j

)
& exp

(
− c3j logt3 j

)
, (7)

where δ(i) is a positive, strictly decreasing function on N. Without loss of generality
assume that δ(i) ≤ 1, i ∈ N. For each j ≥ q, the conditional distribution of θ ∈ Rj
satisfies the following condition: for any M > 0 there exists c0 = c0(M) such that

P
(
‖θ − θ0‖∞ ≤ ε|J = j

)
& exp

(
− c0j log(1/ε)

)
(8)

for all ε > 0 and all θ0 ∈ Rj such that ‖θ0‖∞ ≤M .

For examples of particular choices on the components of our hierarchical prior which
verify these conditions we refer the reader to Section 5.

Denote Cj(M) = [−M,M ]j . The following theorem is our main result.

Theorem 1. Let ‖f0‖∞ < M and f0 ∈ Fα so that (3) holds with Cf0
. Let εn, ε̄n be

two positive sequences such that εn ≥ ε̄n, εn → 0 as n→∞ and nε̄2n > 1. Assume that
there exist sequences Jn, J̄n > q, Mn ≥ 1 and a constant cM ≥ c1 satisfying:

Jn log
[ JnMn

εnδ(Jn)

]
. nε2n, (9)

nε̄2n ≤ Jn logt1 Jn, P
(
θ 6∈ Cj(Mn)|J = j

)
. exp(−cMnε̄2n), q ≤ j ≤ Jn, (10)[ ε̄n

ταCf0

]−1/α

≤ J̄n, logt2∨t3 J̄n . log
1

ε̄n
. (11)

Let Sn = ∪Jnj=q ∪k∈Kδ(j)j

{
sθ,k ∈ Skq : ‖θ‖∞ ≤ Mn

}
, where Kδj = {k ∈ Kj : m(k) ≥ δ}.

Then it holds that

logN(εn,Sn, ‖ · ‖2) . nε2n, (12)

P
(
sθ,KJ

6∈ Sn
)
. exp

{
− c1nε̄2n

}
, (13)

P
(
‖sθ,KJ

− f0‖∞ ≤ 2ε̄n
)
& exp

{
− (c0(M) + c2 + c3)J̄n log(1/ε̄n)

}
. (14)
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Proof. First we establish (12). Let Ln(j) = 4Mnj(q + 1)(δ(j))−(q+1) and j > q. Let
{θ1, . . . ,θm1

} be an εn/2-net of the set {θ ∈ Rj : ‖θ‖∞ ≤Mn} and let {x1, . . . ,xm2
} be

an εn/(2Ln(j))-net of Kδ(j)j ⊆ {x ∈ Rj−q : x ∈ (0, 1)j−q}, both with respect to the ‖·‖∞-
norm. Then, by using (2) and Lemma 2 (Lemma 2 is applicable since εn/(2Ln(j)) ≤
2/(q − 1) for sufficiently large n), {sθk,xl , k = 1, . . . ,m1, l = 1, . . .m2} forms an εn-net
of ∪

k∈Kδ(j)j

{
sθ,k ∈ Skq : ‖θ‖∞ ≤ Mn

}
with respect to the ‖ · ‖∞-norm. By using this

fact, we obtain for sufficiently large n that

N
(
εn,Sn, ‖ · ‖2

)
≤ N

(
εn,Sn, ‖ · ‖∞

)
≤

Jn∑
j=q

N
(
εn,∪k∈Kδ(j)j

{
sθ,k ∈ Skq : ‖θ‖∞ ≤Mn

}
, ‖ · ‖∞

)

≤
Jn∑
j=q

[
N
(εn

2
,
{
θ ∈ Rj : ‖θ‖∞ ≤Mn

}
, ‖ · ‖∞

)
N
( εn

2Ln(j)
, (0, 1)j−q, ‖ · ‖∞

)]
≤ Jn

[2Mn

εn

]Jn[2Ln(Jn)

εn

]Jn−q
≤ Jn

(16(q + 1)M2
nJn

ε2n(δ(Jn))q+1

)Jn
.

The last relation and (9) imply (12):

logN
(
εn,Sn, ‖ · ‖2

)
. Jn log

[ JnMn

εnδ(Jn)

]
. nε2n.

Now we check (13). From the definition of Sn, the relations (4), (6) and (10), it
follows that

P
(
sθ,KJ

6∈ Sn
)
≤ P

(
{J > Jn} ∪

[
{q ≤ J ≤ Jn} ∩

(
{m(Kj) < δ(j)} ∪ {θ 6∈ Cj(Mn)}

)])
≤ P

(
J > Jn

)
+

Jn∑
j=q

P
(
J = j

)(
P
(
m(Kj) < δ(j)|J = j

)
+ P

(
θ 6∈ Cj(Mn)|J = j

))
. exp

{
− c1Jn logt1 Jn

}
+ 0 + exp

{
− cMnε̄2n

}
. exp

{
− c1nε̄2n

}
.

It remains to prove (14). First note that, by using (3) and (11), for all j ≥ J̄n and

for all sets of knots kj ∈ Kj such that M(kj) ≤ τ/j, there exists a spline sθ0,kj ∈ S
kj
q

(of course, θ0 = θ0(kj) = θ0(kj , f0)) such that

‖f0 − sθ0,kj‖∞ ≤ Cf0M
α(kj) ≤ Cf0τ

αJ̄−αn ≤ ε̄n. (15)

Since ‖f0‖∞ < M , there exists an ε > 0 such that the spline sθ0,kj from (15) satisfies
‖sθ0,kj‖∞ ≤ M − ε for sufficiently large n. Besides, J̄n must grow with n in view of
(11). Then, according to Lemma 3, there exists a δ = δ(Fα, ε) such that, for sufficiently
large n, ‖θ0(kj)‖∞ ≤M for all sets of knots kj ∈ Kj such that M(kj) ≤ τ/J̄n ≤ δ and
j ≥ J̄n.
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Introduce the events: Ej1 = {M(Kj) ≤ τ/j}, Ej2 = {‖f0 − sθ0(Kj),Kj
‖∞ ≤ ε̄n},

Ej3 = {‖θ0(Kj) − θ‖∞ ≤ ε̄n}, Ej4 = {‖f0 − sθ,Kj
‖∞ ≤ 2ε̄n} and Ej5 = {‖θ0(Kj)‖∞ ≤

M}. Using the argument from the previous paragraph, the triangle inequality, (2) and
(15), we obtain that

EJ̄n1 ⊆ EJ̄n2 , EJ̄n1 ⊆ EJ̄n5 , Ej2 ∩ E
j
3 ⊆ E

j
4, j ≥ q. (16)

Combining (5), (7), (8), (11) and (16), we prove (14):

P
(
‖sθ,KJ

− f0‖∞ ≤ 2ε̄n
)

= P(EJ4 ) ≥ P(J = J̄n)P
(
EJ̄n4 |J = J̄n)

≥ P(J = J̄n)P
(
EJ̄n2 ∩ E

J̄n
3 |J = J̄n)

≥ P(J = J̄n)P
(
EJ̄n1 ∩ E

J̄n
3 ∩ E

J̄n
5 |J = J̄n

)
= P(J = J̄n)E

[
P
(
EJ̄n1 ∩ E

J̄n
3 ∩ E

J̄n
5 |J = J̄n,KJ̄n

)]
= P(J = J̄n)E

[
I{KJ̄n ∈ E

J̄n
1 ∩ E

J̄n
5 }P

(
EJ̄n3 |J = J̄n,KJ̄n

)]
≥ P(J = J̄n)P

(
EJ̄n1 |J = J̄n

)
inf

‖θ0‖∞≤M
P
(
‖θ − θ0‖∞ ≤ ε̄n|J = J̄n

)
& exp

(
− (c2 + c3)J̄n logt2∨t3 J̄n

)
exp

(
− c0(M)J̄n log(1/ε̄n)

)
& exp

(
− (c0(M) + c2 + c3)J̄n log(1/ε̄n)

)
.

Remark 1. Condition (6) is used in the proof of Theorem 1 exclusively to enforce∑J
j=q P

(
J = j

)
P
(
m(Kj) < δ(j)|J = j

)
to be zero, when proving (13). Inspection of the

proof shows however that, instead of condition (6), it would suffice to require this sum
to be upper-bounded by a multiple of exp

{
− c1nε̄2n

}
. Although this would be a weaker

requirement, typically the sequence ε̄n will depend on the unknown smoothness α. To
avoid the dependence on ε̄n, a slightly stronger condition (based on the fact that nε̄2n
is of a smaller order than n as n → ∞) can be proposed. Namely, if condition (6) is
replaced by

Jn∑
j=q

P
(
J = j

)
P
(
m(Kj) < δ(j)|J = j

)
≤ c5 exp(−c4n), (6’)

for some c4, c5 > 0 and a function δ(·) as in (6), then the conclusions of Theorem 1
remain valid as long as Jn is a sequence satisfying (9) and (10); cf. Section 5 for a
comparison of (6) and (6’).

Remark 2. If the range of the underlying curve f0 is contained in some known interval
[a, b] ⊂ R, then, according to Lemma 3 and the proof of property (14), the prior on
θ ∈ Rj can be chosen to be supported on, say, [a− 1, b+ 1]j so that (8) has to hold only
for θ0 ∈ [a−1, b+1]j. Condition (10) will trivially be satisfied for Mn > (1−a)∨(b+1).

Remark 3. If (26) is assumed instead of (7), the proof of (14) can then be simplified
a lot, as in this case one can condition on the event {KJ̄n = k̄J̄n} so that θ0 = θ0(k̄J̄n)
becomes fixed and P(EJ1 |J = J̄n,KJ̄n = k̄J̄n) = 1.
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4 Implications of the main result

We clarify now the relevance of our result. Consider a family of models P =
{
Pf :

f ∈ FA
}

, FA = ∪α∈AFα, with densities pf with respect to some common dominating

measure. Assume that we observe a sample X(n) = (X1, . . . , Xn) ∼ p
(n)
f0

, Xi
ind∼ pf0

,
f0 ∈ Fα for some unknown smoothness α ∈ A. The Bayesian approach consists of

putting a prior measure Π on F ⊆ FA which, together with the likelihood p
(n)
f , leads

to the posterior distribution Π(·|X(n)) via Bayes’ formula:

Π
(
A|X(n)

)
=

∫
A
p

(n)
f (X(n)) dΠ(f)∫

F p
(n)
f (X(n)) dΠ(f)

for a measurable A ⊆ F . The asymptotic behavior of the posterior distribution can be
studied from the point of view of the probability measure P0 = Pf0 ; see Ghosal et al.
(2000).

For two densities pf and pg with f, g ∈ FA, define the (squared) Hellinger met-

ric h2(pf , pg) = 2
(
1 − Eg

√
pf (X)/pg(X)

)
, Kullback-Leibler divergence K(pf , pg) =

−Eg log
(
pf (X)/pg(X)

)
and the Csiszár f -divergence V (pf , pg) = Eg log2

(
pf (X)/pg(X)

)
.

Define also the ball B(εn, f0) =
{
f ∈ F : K(f, f0) ≤ ε2, V (f, f0) ≤ ε2

}
.

The following theorem is a version of Theorem 2.1 from Ghosal and van der Vaart
(2001) which makes a statement about the asymptotic behavior of a posterior measure.

Theorem 2 (Theorem 2.1 of Ghosal et al. 2000). Let Πn be a sequence of priors on
F . Suppose that for two positive sequences κn ≥ κ̄n such that nκ̄2

n →∞ and κn → 0 as
n→∞, sets Fn ⊆ F and constants b1, b2, b3, b4 > 0, the following conditions hold:

logN
(
κn,Fn, h

)
≤ b1nκ2

n, (17)

Πn(F\Fn) ≤ b2e−(b3+4)nκ̄2
n , (18)

Πn(B(κ̄n, f0)) ≥ b4e−b3nκ̄
2
n . (19)

Then, for large enough M > 0, Πn

(
f ∈ F : h(pf , pf0

) ≥Mκn|X(n)
)
→ 0 as n→∞ in

Pf0
-probability.

The conditions of this theorem require the existence of a sieve Fn with small entropy
(17) which contains most of the prior mass (18) and with enough prior mass around the
parameter f0 which indexes the “true” underlying measure of the data. Assume now
that the models in P are such that for d2 being h2, K or V , d2(pf , pf0

) . ‖f − f0‖22.
If in addition one can prove that in the considered model h(pf , pf0

) & ‖f − f0‖2, then
Theorem 2 delivers a contraction rate εn with respect to the L2-distance as well. Some
examples of models for which the above relations between norms can be established
are, among others, white noise, density estimation, non-parametric regression, binary
regression, Poisson regression and classification; cf. Ghosal et al. (2000), de Jonge and
van Zanten (2012), Shen and Ghosal (2012). We should note here that it requires a fair
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piece of effort to implement this idea for many concrete models, only for the white noise
model are the above relations between norms straightforward. Once these relations
between norms are established, one can apply our meta-theorem (Theorem 1) to obtain
an adaptive contraction rate which essentially verifies (17)–(19) for our spline-based
prior. We summarize this in the following theorem.

Theorem 3. Let Π be the spline prior described in Section 3. Consider a family of
models P =

{
Pf : f ∈ FA

}
, FA = ∪α∈AFα, with densities pf with respect to some

common dominating measure. Assume also that the models in P are such that for d2

being h2, K or V , d2(pf , pf0) . ‖f − f0‖22. Take an i.i.d. sample X(n) = (X1, . . . , Xn),
Xi ∼ pf0

, f0 ∈ Fα, ‖f0‖∞ < M , for some unknown smoothness α ∈ A, α ≤ q.
Consider a prior Π which verifies (4) through (8) for certain constants c1, c2, c3, t1, t2
and t3. Assume that at least one of the two conditions, α > 1 or t2 ∧ t3 < 1, is fulfilled.

Then, for large enough C > 0, Π
(
f ∈ F : h(pf , pf0

) ≥ Crn|X(n)
)
→ 0 as n → ∞

in P0-probability for rn = n−α/(2α+1)(log n)α/(2α+1)+(1−t1)/2. If h(pf , pf0
) & ‖f − f0‖2

then in the previous statement the Hellinger distance may be replaced by the L2 distance
and the statement remains valid.

Proof. We have that for some constant ρ > 0 and F = S, Fn = Sn,

N
(
κn,Fn, h

)
≤ N(κn/ρ,Fn, ‖ · ‖2), (20)

Π(F\Fn) = P
(
sθ,KJ

6∈ Fn
)
, (21)

Π(B(κ̄n, f0)) ≥ P
(
‖sθ,KJ

− f0‖∞ ≤ κ̄n/ρ
)
. (22)

The first inequality follows from the fact that by assumption h(pf , pg) ≤ ρ‖f − g‖2 and
so a κ/ρ-cover of Fn according to ‖ · ‖2 induces a κ-cover of Fn according to h. Then,
since for d2 being K or V , d2(pf , pf0

) ≤ ρ‖f − f0‖22, we have B(κ̄n, f0) ⊃
{
f ∈ F :

‖f − f0‖2 ≤ κ̄/ρ
}

and the last inequality follows.

By assumption f0 ∈ Fα satisfies the conditions of Theorem 1; assume (3) holds
for some Cf0 . Consider then a prior that satisfies (4)–(8). Let us present a choice of
quantities Mn, δ(j), Jn, J̄n, εn and ε̄n which meet conditions (9)–(11). First of all,
sequence Mn can be taken as a polynomial in n (for instance, for normal or exponential
conditional priors for θ ∈ Rj in (10)) and 1/δ(j) as a polynomial in j. Next, note that
there is no J̄n that satisfies (11) if both α ≤ 1 and t2 ∧ t3 = 1 hold. If either α > 1

or t2 ∧ t3 < 1, then the best possible choices are J̄n = J̄n(C1) = τC
1/α
f0

(ε̄n(C1))−1/α

so that the first inequality of (11) is satisfied, ε̄n = ε̄n(C1) = C1(log n/n)α/(2α+1)

for sufficiently large C1 ≥ 1 so that the second inequality of (11) is satisfied, Jn =
C2n

1/(2α+1)(log n)2α/(2α+1)−t1 for sufficiently large C2 (any C2 ≥ C2
1 will do) so that

the first inequality of (10) is satisfied, and finally,

εn = C3n
−α/(2α+1)(log n)α/(2α+1)+(1−t1)/2

for sufficiently large C3 so that (9) is satisfied. Since these quantities satisfy (9)–(11),
Theorem 1 implies conditions (12)–(14) for the quantities defined above. Besides, we
take constants C1, C2, C3 so big that (13) and (14) also hold for ε̄n(

√
C1) and J̄n(

√
C1).
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Now, take κn = 2ρεn and κ̄n = 2ρε̄n(
√
C1). Then it follows from (12) and (20) that

N
(
κn,Fn, h

)
≤ N(κn/ρ,Fn, ‖ · ‖2) = N(εn,Fn, ‖ · ‖2) . nε2n . nκ2

n. (23)

Next, using (21) and (13) for ε̄n(C1) and J̄n(C1), we obtain that

Π(F\Fn) = P
(
sθ,KJ

6∈ Fn
)
. exp

{
− c1nε̄2n(C1)

}
= exp

{
− c1(2ρ)−2C1nκ̄

2
n

}
≤ exp

{
− 5nκ̄2

n

}
(24)

for sufficiently large C1. Denote K = (c0(M) + c2 + c3)τC
1/α
f0

(2ρ)−2α/(2α+ 1), then

(c0(M) + c2 + c3)J̄n(
√
C1) log(1/ε̄n(

√
C1)) = KC

−(1+1/α)
1 nκ̄2

n(1 + o(1))

as n→∞. The last relation, (22) and (14) for ε̄n(
√
C1) and J̄n(

√
C1) imply that

Π(B(κ̄n, f0)) ≥ P
(
‖sθ,KJ

− f0‖∞ ≤ 2ε̄n(
√
C1)
)

& exp
{
− (c0(M) + c2 + c3)J̄n(

√
C1) log(1/ε̄n(

√
C1))

}
& exp

{
−KC−(1+1/α)

1 nκ̄2
n

}
≥ exp

{
− nκ̄2

n

}
(25)

for sufficiently large C1. Thus, for sufficiently large C1 (and C2, C3), relations (17)–(19)
follow from (23), (24) and (25) respectively.

Finally, applying Theorem 2 (since (17)–(19) are fulfilled), we conclude that the
contraction rate of the resulting posterior is at most εn, which appears to be optimal
(up to a logarithmic factor) in a minimax sense over the Hölder class Hα (also over
α-smooth Sobolev class).

Remark 4. A priori, it may be unknown whether α > 1 or not, or it may be simply
known that α ≤ 1. We can however always ensure the condition t2 ∧ t3 < 1 by an
appropriate choice of prior. For example, we take a geometric prior on J so that t2 = 0
and a prior on Kj such that (26) (which implies (7)) holds with, say, t3 = 0.

5 Examples of Priors

We give now examples of particular choices for the several components of our hierarchical
prior which verify conditions (4)–(8), (6’) and the second relation in (10).

As for the prior on the number of basis functions, assumptions (4) and (5) hold for
the geometric, Poisson and negative binomial distributions; cf. Shen and Ghosal (2012)
(assumption (5) is slightly different from the corresponding assumption (B1) in Shen
and Ghosal 2012). Assumption (8), in turn, will trivially hold if we assume, for example,
the coordinates of θ ∈ Rj to be (conditionally on J = j) independent and identically
distributed according to a density φ uniformly bounded away from zero on the interval
[−M,M ]. On the other hand, the prior distribution on θ ∈ Rj (conditionally on J = j)
should have sufficiently light tails so that the second requirement in (10) holds for a
sequence Mn that converges to infinity as n → ∞ not faster than polynomially in n.
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It can easily be checked for normal and Gamma densities φ. Let us consider standard
normal φ. As q ≤ j ≤ Jn and taking Mn = n, we immediately derive the required
relation:

P
(
θ 6∈ Cj(Mn)|J = j

)
≤ jP(|θ1| ≥Mn|J = j) ≤ Jn2 exp(−M2

n/2)√
2πMn

≤ exp(−cMnε̄2n).

There is an ample choice of priors on KJ , given J = j, which satisfy condition
(6). First note that this condition enforces the prior on the location of the knots, for
each J = j, to be such that, with probability 1, adjacent knots are at least δ(j) apart.
The function 1/δ(j) can be taken as a polynomial in j of high degree which makes the
requirement less restrictive. If a certain sequence εn verifies the conditions of Theorem
1, then an increase in the exponent of 1/δ(j) can be accommodated by making εn larger
by a multiplicative factor (cf. condition (9)).

A simple choice for the prior on KJ , given J = j, is to pick (j − q) knots uniformly
at random, without replacement, on a uniform δ(j)-sparse grid. This construction is
possible if δ is chosen in such a way that b1/δ(j)c > j − q for all j. Another way is to
generate the (j− q) inner knots in Kj sequentially in the following way: add a knot K1

uniformly at random on the interval [δ(j), 1−δ(j)], then a knot K2 uniformly at random
on the interval [δ(j), 1−δ(j)]\(K1−δ(j),K1 +δ(j)) and so on. Finally, take the ordered
Kj = (K(1), . . . ,K(j−q)). This construction is always possible if 1/δ(j) > 2(j − q). If J
is Poisson distributed, these points are simply distributed like a homogeneous Poisson
process, conditioned to have all points at least δ(J) apart. Clearly, condition (6) is
satisfied for these two constructions since all prior mass is concentrated on partitions
with sparseness larger than δ(j).

It is also easy to see that condition (7) is verified for the knot vectors obtained from
one of these two constructions. In fact, condition (7) is trivially fulfilled if, for some
0 ≤ t3 < 1,

P(Kj = k̄j) & exp
(
− c3j logt3 j

)
, (26)

where k̄j ∈ Kj is the set of (j−q) equally spaced inner knots. This suggests a mechanism
to assure that any prior which verifies (6) can be slightly modified to also verify (7):
given J = j, generate a Bernoulli random variable X with success probability, say,
exp(−c3j logt3 j); if X = 1, then takeKj = k̄j , otherwise pick the knots inKj according
to any procedure which verifies (6), for instance, one of the two procedures described
above. The resulting prior will trivially satisfy both (6) and (7).

Condition (6) necessarily excludes some knot vectors from the support of the prior
(and then also from the support of the posterior). It is therefore of interest to design a
weaker alternative for condition (6). Condition (6’) plays this role in that it allows priors
on K which can have any set of knots of [0, 1] in its support. Assuming condition (6’)
instead of (6) consequently allows us to put positive mass on any vector of simple knots
in a straightforward way: generate a Bernoulli random variable with success probability
1 − c5 exp(−c4n); if X = 1 take Kj = k̄j ; if X = 0, then take an arbitrary Kj (for
example, independent, uniformly distributed points on [0, 1]). If we take 1/δ(j) = j and
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τ ≥ q, then conditions (6’) and (7) are verified. This procedure, although simple, does
place little prior mass on knot vectors with inhomogeneous distributions.

An alternative, less degenerate prior which verifies (6’) and (7) can be obtained in
the following way. Given J = j, first generate a Bernoulli random variable X1 with
success probability c5 exp(−c4n); if X1 = 1 distribute the (j − q) knots arbitrarily; if
X1 = 0, then generate another Bernoulli random variable X2 with success probability
exp(−j); if X2 = 1, then take (j− q) equally spaced knots k̄j ; if X2 = 0, then place the
knots in such a way that (6) is verified. This procedure allows good control of the prior
on the knots while not excluding arbitrary knot vectors.

Note that the priors described above which verify (4)–(8) do not depend on the
sample size n, as prescribed by the Bayesian paradigm. Condition (6’) is a weaker
requirement than condition (6), but it will introduce a dependence on the sample size
n in the prior.

Remark 5. The common practice, in applications, of endowing the location of the
knots with a Poisson process prior results in a prior that does not verify assumption
(6). Assumption (6’), however, will be satisfied if the prior is modified in such a way
that a large enough prior mass is assigned to an equally spaced knot vector.

6 Numerical Results

In this section we present some numerical results. By applying the reversible jump
Markov chain Monte Carlo (RJMCMC) method introduced first by Green (1995), we
compare the performance of two hierarchical priors in the nonparametric regression
model. Both priors are based on splines, as described in Section 3, and they satisfy
conditions (4)–(8). The first prior has equally spaced knots and the second has randomly
located knots; we therefore refer to these priors as the fixed knots prior and the free
knots prior. We also look into the possibility of using data driven priors on the knots
based on some sort of two stage empirical Bayes procedure. We say that vector x =
(x1, . . . , xd) ∈ Rd is ordered if x1 ≤ . . . ≤ xd.

Consider n = 1000 observations X(n) = {(ti, Yi), i = 1, . . . , n} from the non-
parametric regression model with regular design points t(n) = (t1, . . . , tn), ti = i/n:

Yi = f(ti) + ξi, i = 1, . . . , n, (M)

where the ξi’s are independent standard Gaussian random variables. It is well known
that the relations between appropriate norms required to apply Theorem 3 hold for the
model (M). The regression function f(·) is taken to be the so called Doppler function

f(t) = 10
√
t(1− t) sin

(
2π · 1.05

t+ 0.05

)
, t ∈ [0, 1], (27)

which we plot in Figure 1 together with the observations from the model (M). This
function is infinitely many times differentiable on (0, 1) but has a high variability region
in a small vicinity of zero.
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Figure 1: Simulated data from model (M) used in this section (in blue) and the true regression
function (in red).

Now we describe the two priors, the fixed knots prior and the free knots prior. In
both hierarchical priors we endow J with a (shifted, with support starting with q ≥ 2)
Poisson prior with mean ν and on each spline coefficient we put a uniform prior on
[−M,M ]. In the fixed knots prior, given J = j, the j − q inner knots are taken to be
equally spaced: ki = i/(j − q+ 1), i = 1, . . . , j − q. In the free knots prior, given J = j,
first generate U1, . . . , Uj−q, uniformly on

[
0, 1− (j − q + 1)δ(j)

)
with δ(j) = 1/j2, and

let U(1) ≤ . . . ≤ U(j−q). Next, take the knot vector Kj with entries Ki,j = U(i) + iδ(j),

i = 1, . . . , j−q. We represent the fixed knots posterior density as π̄
(
j,kj ,θj |X(n)

)
and

the free knots posterior as π̃
(
j,kj ,θj |X(n)

)
. We have

π̄
(
j,kj ,θj |X(n)

)
∝ ϕn

(
X(n) − sθj ,kj (t(n))

)
νj−q (2M)−j ,

π̃
(
j,kj ,θj |X(n)

)
∝ ϕn

(
X(n) − sθj ,kj (t(n))

)
νj−q (2M)−j

(
1− (j − q + 1)δ(j)

)j−q
,

where ϕn is the density of n independent standard Gaussian random variables and
sθj ,kj (t

(n)) = (sθj ,kj (t1), . . . , sθj ,kj (tn)) represents the spline sθj ,kj evaluated at the

design points t(n).

We implement RJMCMC procedures for these two priors to sample from the corre-
sponding posteriors. A generic state of the sampler is a vector

(
j,kj ,θj

)
∈ N×Rj−q×Rj .

To sample from the posterior corresponding to the fixed knots prior, we consider three
types of moves: a) changing the coefficients of a spline, b) adding a knot and c) remov-
ing a knot. In addition to these moves, the sampler for the posterior corresponding to
the free knots prior has an extra move: d) changing the location of the knots. These
moves are attempted with probabilities pa, pb, pc, pd (pa+pb+pc+pd = 1) respectively,
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which are parameters of the sampler.

A move of type a) corresponds to jumping from the state
(
j,kj ,θj

)
to a proposal(

j,kj ,ϑj
)

where ϑj = θj + ηau and u is a vector of j independent standard normal
random variables. This move is attempted with probability pa. Both ηa and pa are
parameters of the sampler. Moves of type d) correspond to jumping from the state(
j,kj ,θj

)
to a proposal

(
j,κj ,θj

)
where κj is obtained from kj by perturbing its i-

th entry, with the index i chosen uniformly at random, and then ordering the resulting
vector. The perturbation is κi,j = ki,j+ηdv, with v a standard normal random variable.
This move is attempted with probability pd and again, both ηd and pd are parameters
of the sampler. The acceptance probabilities for moves of type a) and moves of type d)
are given by, respectively,

min

(
1,
π
(
j,kj ,ϑj |X(n)

)
π
(
j,kj ,θj |X(n)

) ) and min

(
1,
π̃
(
j,κj ,θj |X(n)

)
π̃
(
j,kj ,θj |X(n)

)),
where π is either π̄ or π̃.

Now we specify how proposals for moves of type b), where we add an extra knot to
the current state of the chain

(
j,kj ,θj

)
, are designed. The proposal will, for both priors,

be a state
(
j+1,κj+1,ϑj+1

)
. For the fixed knots prior we propose κi,j+1 = i/(j−q+2),

for i = 1, . . . , j−q+1. For the free knots prior, generate a new knot k uniformly on (0, 1)
so that k ∈ [ki−1,j , ki,j ] (with k0,j = 0 and kj−q+1,j = 1) for some i ∈ {1, . . . , j− q+ 1},
and propose κj+1 = (k1,j , . . . , ki−1,j , k, ki,j , . . . , kj−q,j).

For moves of type b), it remains to describe how the coefficient vector ϑj+1 is gener-
ated in the proposal. Whatever the vector κj+1 is, for the sake of comparing the priors,
the procedure for proposing ϑj+1 is the same for both priors. To ease the notation, we
abbreviate the current state and the proposed state as

(
j,k,θ

)
and

(
j+ 1,κ,ϑ

)
, where

both κ and ϑ have one more element than k and θ, respectively. The coefficients ϑ will
be obtained via (perturbed) interpolation at j + 1 points t = tj+1 = (t1, . . . , tj+1). Of
these j + 1 points, j − q + 2 points are taken to be the midpoints of the intervals com-
prised between the adjacent points of the vector (0,κ, 1) ∈ [0, 1]j−q+3; the remaining
q − 1 points are the first q − 1 elements from the list 0, 1, κ1, κj−q+1, κ2, κj−q, κ3, . . . .
The vector t is assumed to be ordered.

Consider now the (j+ 1)× (j+ 1) matrices C = Cj(κ, t) with (i, l)-entry Bκl (ti) and
the (j+1)×j matrices D = Dj(k, t) with (i, l)-entry Bkl (ti). One can show that for our
choice of interpolation points C and D are of full column rank. For a matrix M denote
by L(M) the linear space spanned by the columns of matrix M . Then L(C) = Rj+1,
L(D) ⊆ Rj+1 with dim(L(D)) = j. Let w ∈ L(D)⊥ (the orthogonal complement of
L(D) so that DTw = 0) which is unique up to scaling. Clearly, the interpolation
problem sϑ,κ(t) = sθ,k(t) corresponds to the system of linear equations Cϑ = Dθ.
Because of the mismatch in the dimensions of θ and of ϑ, this relation between θ and ϑ
is not a bijection. Indeed, θ = (DTD)−1DTCϑρ for all ϑρ = ϑρ(θ) = C−1(Dθ + ρw),
ρ ∈ R.

Assume that by default all vectors are column vectors. Our proposal for ϑ is the
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following linear function that matches the dimensions of θ and ϑ:

ϑ = g(θ, ρ) = C−1
(
Dw

)( θ
ηρ+ ρ̊

)
,

where ρ is a standard Gaussian random variable, η > 0 and ρ̊ = ρ̊(θ) is taken to be

ρ̊(θ) = arg min
ρ∈R
‖sϑρ(θ),κ − sθ,k‖2 =

〈sω1,κ, sθ,k − sω2,κ〉
〈sω1,κ, sω1,κ〉

,

ω1 = C−1w, ω2 = C−1Dθ and 〈s1, s2〉 represents the inner product
∫ 1

0
s1(t)s2(t)dt.

The interpretation of ρ̊ is that our proposal for sϑ,κ is “centered” (cf. Brooks et al.
2003) around a good approximation sϑρ̊,κ of the previous state sθ,k. This central state
sϑρ̊,κ can be seen as an ideal interpolator.

It is straightforward to check that the Jacobian matrix of the mapping g is

Jg = Jg(η) = C−1
[(
Dηw

)
+
(
w . . .w

)
diag

(
∇θρ̊(θ), η

)]
,

where diag(v) denotes a square matrix with the entries of v in its main diagonal and
∇θρ̊(θ) is the gradient of ρ̊(θ) with respect to θ. Note that the determinant of this
Jacobian does not depend on the gradient of ρ̊ and is given by

det
(
Jg
)

=
η det

[
(Dw)

]
det
(
C
) .

We then take η = ηb det
(
C
)
/ det

[
(Dw)

]
, where ηb becomes a parameter of the sampler.

We propose moves of type b) and c) with probabilities pb,j and pc,j , respectively,
which depend on j, pa and pd (0 < pa + pd < 1): pb,j = (1 − pa − pd)/2, pc,j =
(1− pa − pd)/2, j ≥ q and pb,q−1 = (1− pa − pd), pc,q−1 = 0; for the fixed knots prior
take pd = 0. These choices make sure if there are no inner knots in the current state,
no knot is removed. For moves of type b), the acceptance probability of the proposed
state

(
j + 1,κ,ϑ

)
is as follows:

min

(
1,
π̄
(
j + 1,κ,ϑ |X(n)

)
pc,j+1

π̄
(
j,k,θ |X(n)

)
pb,jϕ1(ρ)

ηb

)
and

min

(
1,
π̃
(
j + 1,κ,ϑ |X(n)

)
pc,j+1(j − q + 1)−1

π̃
(
j,k,θ |X(n)

)
pb,jϕ1(ρ)

ηb

)
,

for the fixed knots prior and the free knots prior, respectively. Moves of type c) are
simply the reverse move to a move of type b), so we omit the details. For this type of
move, we remove one knot from the current state of the chain, uniformly at random,
and recompute the spline coefficients via the inverse of the mapping g.

We let both MCMC samplers run for the same number of iterations, both starting
from the state

(
40, (1/37, 2/37, . . . , 36/37),0

)
which corresponds to a constant function
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equal to zero with 38 equally spaced inner knots. We then collect 10.000 states from
each chain. The results of the MCMC procedures are given in Figures 2 and 3. In both
priors we use cubic splines (q = 4) and n = 1000. We take for the fixed knots prior
ν = 40, M = 15, pa = 0.5, pd = 0, ηa = 1.12× 10−1, ηb = 3× 10−2 and ηd = 0. For the
free knots prior, we choose ν = 40, M = 15, pa = 0.66, pd = 0.33, ηa = 1.18 × 10−1,
ηb = 6× 10−3 and ηd = 4× 10−2.
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Figure 2: Results of the MCMC sampler for the fixed knots prior: posterior mean and respec-
tive 95% point-wise credible bands (in blue) and the true regression function (in red).

For both priors, we compute the proposed spline coefficients in the same way (de-
scribed above), for the sake of comparing their performance. This is, however, not
strictly necessary for the free knots prior. In this case, the insertion of a new knot has
only a local effect on the spline: if all coefficients are kept the same, it is simple to
propose a reasonable procedure for the new coefficient associated with the new added
B-spline. In the case of the free knots prior, adding and removing knots from the current
state of the chain can be made in a straightforward and computationally efficient way
which does not involve recomputing all of the coefficients of the spline in the proposal.

As the simulations results in Figures 2 and 3 show, the free knots prior seems to
outperform the fixed knots prior: the free knots posterior detects better the high and
low variability regions of the regression function and facilitates the placement of more
knots in the high variability region. In its turn, the fixed knots prior uses roughly 25%
more knots to actually achieve a worse fit: 29 knots for the fixed knots posterior against
about 23 knots for the free knots posterior. The fixed knots posterior fails to assign
a number of knots that is compatible with the (inhomogeneous) structure of the true
regression function f over the whole interval [0, 1]. As a consequence, the posterior
seems to compromise on a number of knots which is clearly not sufficient for the high
variability region close to zero (resulting in oversmoothing) and excessive for the low
variability region close to 1 (undersmoothing the data).
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Figure 3: Results of the MCMC sampler for the free knots hierarchical prior. Above: posterior
mean and respective 95% point-wise credible bands (in blue) and the true regression function
(in red). Below: histogram of all the knots in all the sampled states.

Bayesian analysis based on the free knots prior has the advantage of providing rel-
evant information about how the posterior chooses to place the knots. The bottom
display of Figure 3 clearly shows a concentration of knots close to 0. This concentra-
tion, accompanied with the wider credible bands in the top display, suggests that the
regression function is more variable (“volatile”) in this region. Interestingly, the free
knots posterior puts no mass on a sufficiently small vicinity of zero, which is sensible
as well: clearly, it is impossible to reasonably estimate the Doppler function in a small
vicinity of zero for a finite sample size n. This posterior distribution on knots loca-
tions can be used to make an inference on the variability (smoothness inhomogeneity,
volatility) of the underlying function and to try and improve estimation procedures.

In fact, this leads to the following data-driven, empirical procedure for selecting
a more appropriate prior on the location of the knots: sample j − q knots from the
empirical knot distribution presented in the bottom display of Figure 3 instead of our
original prior on knots. We re-ran the MCMC procedure using such a prior on the knots.
Actually, since some regions of the support had no knots, we constructed a new empirical
(Bayes) prior for drawing one knot by mixing the distribution presented in the histogram
in Figure 3 with a uniform distribution on [0, 1], with a small mixture weight. This was
done to assign a positive (although small) mass to the knot locations over the entire
support of the regression function. The results are given in Figure 4. This data driven
prior, at least in our numerical study, does not seem to improve significantly upon the
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Figure 4: Results of the MCMC sampler for the free knots prior with a data driven prior on
the knots locations. On the right side we display the same figures as on the left side, but on
the interval [0, 0.1]. Above: posterior mean and respective 95% point-wise credible bands (in
blue) and the true regression function for comparison (in red). Below: histogram of all the
knots in all the sampled states.

free knots prior. This might simply mean that the free knots prior is already managing
the location of the spline knots adequately, and reinforcing this via a data driven prior
does not give an extra advantage in the inference procedure. Note that Theorem 1 may
still be applied to such a data driven prior so that the resulting posterior retains (at
least) the same theoretical properties as the free knots posterior.

Remark 6. To summarize the above discussion, one can obtain the two stage sampler
via the following procedure: a) split the dataset into two sets of observations; b) at the
first stage, run the MCMC procedure on half of the data to obtain the posterior for the
knots and use this to construct an empirical distribution for the knots; c) construct a
new prior, using the empirical distribution of the knots obtained from the first sampler,
possibly mixed (with a small mixture weight) with some “regular” prior distribution on
knots (for example, the prior on knots from the first stage); d) at the second stage, run
the MCMC sampler on the remaining data with the prior described in c).
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7 Concluding Remarks

Practitioners have already been using random knots when applying Bayesian methods
in spline regression models, but a theoretical basis in terms of adaptive contraction rates
was missing. In this paper, we provided theoretical justification of the random knots
techniques for a rather general setting, which covers many known specific situations.
Next, we specified certain conditions on the prior of the knots so that the resulting
posterior is of the optimal rate, and at the same time it allows to model inhomogeneous
variability of the curve adequately. Simulation results demonstrate that it is possible
to design reversible jump MCMC algorithms to sample from the posterior that results
from using the priors we consider in the paper. The procedure delivers results in a
reasonable time horizon. Sampling from the posterior for the locations of knots might
also provide useful information about the local regularity of the curve being estimated.

Empirical Bayes procedures are also quite popular among practitioners and, as sug-
gested by a reviewer, it may provide an alternative approach to knot selection. One
could treat the number and the locations of the knots as parameters of the prior distri-
bution, and try to find their estimators by using, for example, a marginal likelihood for
the knots which can be obtained by integrating out all other parameters of the model.
However, as far as we know, the empirical Bayes approach for choosing the knots has
never been treated theoretically in the literature and perhaps for good reason – a proper
theoretical treatment of this approach in at least some generality seems to be a very
complicated problem at the moment. The state of the art is not advanced enough in
this area, one needs to develop an appropriate framework. It seems also that stringent
conditions on the likelihood in the model are needed. In fact, theoretical treatment of
empirical Bayes procedures in terms of optimal posterior contraction rates is already
very challenging in the simplest nonparametric model (Gaussian white noise model),
when the hyper-parameter is just one dimensional, as is demonstrated by Szabó et al.
2013. In our case, the hyper-parameter, the locations of the knots, would even have

growing dimension.

As to the computational aspect of empirical Bayes methods for selecting the knots,
clearly such methods can bypass sampling algorithms. This does not mean that the
issue of computational complexity is resolved. Loosely speaking, the more flexibility (in
our case, choosing the knots) we want to model, the more complexity we will have to
deal with, either full Bayes or empirical Bayes. An empirical Bayes procedure invariably
involves solving some optimization problem – typically, the maximization of the marginal
likelihood with respect to the knots. The marginal likelihood must be computable,
which can be achieved by using either approximations (e.g., Laplace approximation) or
conjugate priors. This limits the range of models and priors for which the empirical
Bayes approach can be applied. Another computational difficulty is that the marginal
likelihood cannot be assured to be a convex function of the knots. The parameter space
over which this problem has to be solved is of growing dimension, whereas solving a
non-convex optimization problem is in general not computationally feasible even in low
dimensions. It seems that in some situations an empirical Bayes approach can lead to
computationally attractive procedures, further research in this area is needed.
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8 Technical results

In this section we collect some technical results. Lemmas 1 and 2 are needed to bound
the entropy number of the sieves Sn in Theorem 1. Lemma 3 claims in essence that if
some bounds on the range of the function f0 are known, then this knowledge can be
incorporated into the prior on the coefficients θ.

Theorem 4.26 of Schumaker (2007) claims that if all the inner knots of a B-spline
are simple, then the B-spline is continuous, uniformly over its support, with respect to
its knots. In Lemma 2 we establish a slightly stronger result (a Lipschitz-type prop-
erty): if we take two splines with the same coefficients in their respective B-spline
basis, then the L∞ distance between the splines can be bounded by a multiple of
the l∞ distance between the two sets of knots, as long as the sets of knots are suf-
ficiently sparse. First, we present a preliminary lemma. Denote the (r + 1)-th order
divided difference of a function h over the points t1 ≤ · · · ≤ tr+1 as [t1, . . . , tr+1]h =
([t2, . . . , tr+1]h − [t1, . . . , tr]h)/(tr+1 − t1), with [ti]h = h(ti). If t1 = · · · = tr+1, then
define [t1, . . . , tr+1]h = h(r)(t1)/r! for a function h with enough derivatives at t1.

Lemma 1. Let i ∈ {1, . . . , r}, r ≥ 2, (k1, . . . , kr+1) ∈ (0, 1)r+1. Assume kv+1 − kv ≥
δ > 0 for v = 0, . . . , i − 1, i + 1, . . . , r and ki+1 − ki = 0. For fixed x ∈ [0, 1] take
the function h(y) = (x − y)q−1

+ with y ∈ [0, 1] and q ≥ 2. Then the divided difference∣∣[k1, . . . , kr+1]h
∣∣ ≤ 4/δr for x 6= ki and any δ ≤ 2/(q − 1).

Proof. Notice that |h′(y)| = (q − 1)(x − y)q−2
+ ≤ (q − 1) ≤ 2/δ for x 6= y, as q ≥ 2

and δ ≤ 2
q−1 . Next, if v = i − 1,

∣∣[kv+1, kv+2]h
∣∣ = |h′(kv+1)| ≤ 1/δ; if v 6= i − 1,∣∣[kv+1, kv+2]h

∣∣ = |h(kv+2)−h(kv+1)|/|kv+2−kv+1| ≤ 2/δ. We conclude
∣∣[kv+1, kv+2]h

∣∣ ≤
2/δ as long as x 6= ki.

For j = 2, . . . , r, define γj = minv=1,...,r+1−j |kv+j − kv| ≥ (j − 1)δ. Now we make
use of Theorem 2.56 from Schumaker (2007) and the previous bound:

∣∣[k1, . . . , kr+1]h
∣∣ ≤ r−1∑

v=0

(
r − 1

v

)∣∣[kv+1, kv+2]h
∣∣

γ2 . . . γr
≤ 2r

(r − 1)!δr
≤ 4

δr

holds for all x 6= ki. This completes the proof of the Lemma.

Recall that sθ,k(x), x ∈ [0, 1], is a spline of order q ≥ 2 with the coordinates θ in
the B-spline basis and the inner knots vector k.

Lemma 2. Let θ ∈ Rj satisfy ‖θ‖∞ ≤ M and let k,k′ ∈ Kδj = {k ∈ Kj : m(k) ≥ δ}.
Then ‖sθ,k− sθ,k′‖∞ ≤ L‖k−k′‖∞, for L = 4j(q+ 1)Mδ−(q+1) and any δ ≤ 2/(q−1).

Proof. Define kl = (kl1, . . . , k
l
j−q) = (k′1, . . . , k

′
l, kl+1, . . . , kj−q) for l = 0, . . . , j − q, such
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that k0 = k and kj−q = k′. By (1) and the triangle inequality, we get

∥∥sθ,k − sθ,k′∥∥∞ =
∥∥∥ j∑
i=1

θiB
k0

i −
j∑
i=1

θiB
kj−q

i

∥∥∥
∞
≤M

∥∥∥ j∑
i=1

(Bk
0

i −Bk
j−q

i )
∥∥∥
∞

≤ jM max
1≤i≤j

∥∥Bk0

i −Bk
j−q

i

∥∥
∞ ≤ jM max

1≤i≤j

j−q−1∑
l=0

∥∥Bkli −Bkl+1

i

∥∥
∞

≤ (q + 1)jM max
1≤i≤j

max
0≤l≤j−q−1

∥∥Bkli −Bkl+1

i

∥∥
∞.

The last inequality in the above display follows from (1). Indeed, the inner knots of

Bk
l

i and Bk
l+1

i differ only at the (l + 1)-th entry. Therefore, according to (1), for each

i there are at most (q + 1) nonzero terms
∥∥Bkli −Bkl+1

i

∥∥
∞ in the last sum.

Theorem 4.27 of Schumaker (2007) gives explicit expressions for the derivative of a
B-spline with respect to one of its knots. These expressions are in terms of the divided
differences which satisfy the conditions of Lemma 1, so that combining this with Lemma
1 for r = q + 1 (the maximal number of knots in the support of a B-spline) yields that
this derivative is bounded in absolute value by 4δ−(q+1), except at x = kll+1, where it

is not defined. Then, as ‖kl − kl+1‖∞ ≤ ‖k − k′‖∞, we obtain that, for x 6= kll+1,
l = 0, . . . , j − q − 1,

∣∣Bkli (x)−Bk
l+1

i (x)
∣∣ ≤ |kl+1

l+1 − k
l
l+1| sup

kll+1∈(0,1)

∣∣∣∂Bkli (x)

∂kll+1

∣∣∣ ≤ 4‖k − k′‖∞
δq+1

.

Since splines are continuous for all q > 1, so is sθ,k − sθ,k′ and we conclude that the
same bound must also hold for x = kll+1. Combining the above two relations concludes
the proof.

The properties of B-splines allow to relate the range of the coefficients of the ap-
proximating spline to the range of the approximated function. The following lemma
generalizes Lemma 1 of Shen and Ghosal (2012) for non-equally spaced knots.

Lemma 3. Let f ∈ Fα (so that (3) holds), a < b, ε > 0. Assume that f(x) ∈ [a+ε, b−ε]
for all x ∈ [0, 1]. Then there exists a positive constant δ = δ(Fα, ε) such that for any
k ∈ Kj, j ≥ q, such that M(k) ≤ δ, the coefficients a of the approximating spline sa,k
in (3) can be taken to be contained in (a, b).

Proof. Fix q, j and inner knots k, assume I = [a, b], a < b and a + ε < f < b − ε, for
some ε > 0.

We use results from section 4.6 of Schumaker (2007) on dual basis of B-splines. If
Bk1 , . . . , Bkj is the B-spline basis associated with the inner knots k, then there exists a

dual basis λ1, . . . , λj of linear functionals such that, for each i, r = 1, . . . , j, λrB
k
i = 1

if i = r and is 0 otherwise. As a consequence, we obtain that λisa,k = ai, and since∑j
i=1B

k
i (x) = 1, it follows that λic = c for any constant c and all i = 1, . . . , j. This dual
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basis is not necessarily unique and, according to Theorem 4.41 from Schumaker (2007),
can be taken such that |λif | ≤ C1 supx∈Ii |f(x)| where Ii represents the support of Bki
and constant C1 depends only on q. Each Ii consists of at most q adjacent intervals in
the partition induced by k and thus the length of Ii is bounded by qM(k).

Let sa,k be such that (3) is fulfilled for f . Then for any constant c

|ai − c| =
∣∣λisa,k − λif + λif − c

∣∣ ≤ ∣∣λi(sa,k − f)|+ |λi(f − c)
∣∣

≤ C1CfM
α(k) + C1 sup

x∈Ii
|f(x)− c|.

Take c = infx∈Ii f(x) and recall that f ∈ Fα ⊆ L(κα, Lα). Using the Lipschitz property,
we derive that supx∈Ii |f(x) − c| = supx∈Ii f(x) − infx∈Ii f(x) ≤ Lα(qM(k))κα and
therefore

|ai − inf
x∈Ii

f(x)| ≤ C1CfM
α(k) + C1Lα(qM(k))κα ≤ C2M

α∧κα(k).

In the same way, if we take c = supx∈Ii f(x), we derive that supx∈Ii |f(x) − c| ≤
Lα(qM(k))κα and thus

∣∣ai − supx∈Ii f(x)
∣∣ ≤ C2M

α∧κα(k).

Now for δ = (ε/(2C2))1/(α∧κα) conclude that if M(k) ≤ δ, then ai ≥ infx∈Ii f(x)−
C2M

α∧κα(k) ≥ infx∈Ii f(x) − ε/2 > a. For the same choice of δ we have ai ≤
supx∈Ii f(x) + C2M

α∧κα(k) ≤ supx∈Ii f(x) + ε/2 < b.
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