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Cluster Analysis, Model Selection, and Prior
Distributions on Models

George Casella ∗ Eĺıas Moreno † and F. Javier Girón ‡

Abstract. Clustering is an important and challenging statistical problem for which
there is an extensive literature. Modeling approaches include mixture models
and product partition models. Here we develop a product partition model and a
Bayesian model selection procedure based on Bayes factors from intrinsic priors.
We also find that the choice of the prior on model space is of utmost importance,
almost overshadowing the other parts of the clustering problem, and we examine
the behavior of the model posterior probabilities based on different model space
priors. We find, somewhat surprisingly, that procedures based on the often-used
uniform prior (in which all models are given the same prior probability) lead to
inconsistent model selection procedures. We examine other priors, and find that
the Ewens-Pitman prior and a new prior, the hierarchical uniform prior, lead to
consistent model selection procedures and have other desirable properties. Lastly,
we compare the procedures on a range of examples.

Keywords: Bayesian model selection, Consistency, Hierarchical models, Intrinsic
priors, Product partition models, Stochastic search

1 Introduction

Suppose that Y is an observable random variable with sampling distribution in a class
of parametric densities F = {f(y|θ), θ ∈ Θ}, where Θ is in the space Rk, k ≥ 1, and we
observe a sample of n independent data y = (y1, y2, ..., yn) coming from the densities in
the class F. An interesting problem for its wide range of applications, and theoretical
challenges, arises when we look at the sample as being split into clusters, where all
of the observations in a cluster come from the same sample density f(y|θ), and the
parameter θ of the density changes across clusters. The clustering problem consists of
making inference on the number of clusters in the sample and the location of the sample
observations into these clusters.

Assuming that a family of sampling models F has been chosen, two difficulties appear
in the clustering problem. A first one is the assessment of the prior distribution for
the discrete parameters, the number of clusters and the partitions of the sample into
these clusters. There is also the assessment of the prior for the (usually) continuous
parameters θ of the densities of the partitions. Because of the typical lack of substantive
prior information on these parameters, we often do not have enough information for a
precise formulation of the priors. This leads us to propose the use of objective priors.
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A second difficulty is that of computing the very many posterior model probabilities
of the sampling models involved, even when the sample size is moderate. For instance,
for a sample size as small as 20, the number of possible models (partitions) is as large
as 51724158235372, which makes it infeasible to compute all of the posterior model
probabilities, although fortunately only a small number of models will have nonnegligible
posterior probabilities. Therefore, there is a need to develop an efficient stochastic search
algorithm for computing posterior probabilities for those models having nonnegligible
posterior probabilities.

1.1 Background

The literature on clustering is enormous. There are many ways to approach the problem,
and here we take a model-based approach that can be divided into approaches based on
mixture models (see, for instance, Fraley and Raftery (2002) , Fraley and Raftery (2007)
and references therein), and approaches based on product partition models (PPMs). The
latter is a model-based approach introduced by Hartigan (1990) and Barry and Hartigan
(1992) (see Booth et al. 2008, and references therein). In this paper the sampling models
for clustering are also product partition models constructed with normal regression
models, and objective priors for models and for model parameters will be introduced.

In recent clustering approaches, Dirichlet distributions and PPMs are used as a prior
for the clusters in the hierarchical Bayesian framework. Quintana and Iglesias (2003)
propose an algorithm for the explicit construction of clusters based on PPM-type priors
for partitions of experimental units. They noted that the proposed model is quite
flexible because PPMs can be used to express a wide variety of prior distributions on
partitions.

Lau and Green (2007) propose a general formulation for Bayesian model-based clus-
tering that is optimal with respect to a specified loss function. They compare the new
method to some recently discussed methods involving stochastic search or hierarchical
clustering under the Dirichlet process by maximizing the posterior probability. In a
somewhat different approach, Booth et al. (2008) propose a stochastic search algorithm
driven by a mixture of two Metropolis-Hastings algorithms, one for small scale changes
to individual objects and another for large scale moves involving entire clusters.

Here, we find that the choice of the prior over the model space (or equivalently over
the partitions), is of utmost importance, almost overshadowing the other parts of the
clustering problem. We examine a number of priors, the Ewens-Pitman, the Jensen-
Liu, the typical default uniform prior, where every model has the same prior probability,
and a new prior, the hierarchical uniform prior. We find that the Jensen-Liu and the
uniform prior lead to inconsistent Bayesian procedures, while the Ewens-Pitman and
the hierarchical uniform prior do not suffer from this disadvantage. For the continuous
parameters we use intrinsic priors, and combine all pieces to evaluate the models using
their posterior probabilities.
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Table 1: Clusters Found in the Galaxy Data

Roeder (1990) at least 3, no more than 7 (Confidence set)

Richardson and Green (1997) 6 has highest posterior probability

Roeder and Wasserman (1997) The posterior clearly supports three groups

Lau and Green (2007) Optimal number of clusters is three

Wang and Dunson (2011) Five clusters

1.2 An Example

As an example of our concerns, we revisit the famous galaxy data of Postman et al.
(1986), first analyzed by Roeder (1990). The data consist of measurements of velocities,
in 103 km/sec, of 82 galaxies from a survey of the Corona Borealis region. Many
researchers have looked at this data set, looking for clusters. Table 1 gives a summary
of some findings. All of the analyses are in consensus that there are at least 3, and
no more than 7 clusters. This is also in accord with the belief of the astronomers, as
Postman et al. (1986) says “The unfilled survey alone samples the galaxy distribution
more directly associated with the Cor Bor supercluster (the six rich Abell clusters ...”

As a simple approach to finding clusters in the galaxy data, we do the following:

1. Evaluate a partition using the Bayesian information criterion (BIC).

2. Use a uniform prior distribution on the set of models.

3. Run a stochastic search to minimize BIC.

This seemingly reasonable procedure found 11 clusters in the data, in fact, the top
ten models all contained 11 clusters (Table 2 and Figure 1). This is totally opposite
to the consensus analyses, as BIC put too many clusters in the interior velocities. The
question is: what caused BIC to find so many clusters, especially because BIC is known
to favor small models? The answer that we found, and the culprit that causes the shift
to too many clusters, is the uniform prior on model space.

1.3 Summary

The rest of the paper is organized as follows. In Section 2 we describe the structure
of the clustering problem and a description of the densities of the PPMs approach
taken here. In Section 3 we provide priors for the discrete parameters, the partitions
and the number of clusters, and Section 4 develops intrinsic priors for the continuous
parameters, illustrated with the case of linear models. The model priors are evaluated
in Section 5, where we obtain our consistency and inconsistency results. We describe
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Table 2: Results of the stochastic search using BIC to evaluate the partitions with
a uniform prior on model space. It shows the exp of the BIC value for the top five
partitions, each with 11 clusters.

Rank # Clusters exp(−BIC)× 10−71

1 11 49.53
2 11 33.13
3 11 20.19
4 11 15.48
5 11 14.39

our search algorithm in Section 6, a variation of the biased random walk of Booth et al.
(2008), and in Section 7 we illustrate the performance of our procedure on both real
and simulated data. Finally, Section 8 contains a concluding discussion, and there is a
technical appendix with proofs of theorems.

2 Partitions, Configurations and Posterior Probabilities

We begin by formally describing the structure of the clustering problem, defining the
terms that we will be using in the subsequent analyses. We start with a sample y =
(y1, y2, . . . yn). For given p, we define a partition of the sample into p clusters by the

vector rp = (r
(p)
1 , ..., r

(p)
n ), where r

(p)
i , i = 1, . . . n, is an integer between 1 and p denoting

the cluster to which yi is assigned.

We next look at an example to clarify the definitions, and we will refer to Figure
2. Let Rp represent the set of partitions of the sample into p clusters, which we call
the cluster class. The number of partitions in Rp is given by the Stirling number of the
second kind, S(n, p). The four cluster classes of Figure 2 each have a Stirling number
of partitions. The total number of partitions of the sample R = ∪pRp is given by the
Bell number, Bn =

∑n
p=1 S(n, p), which in the case of Figure 2 is 15.

For the partitions in Rp let ni be the number of components of the sample located
in the ith cluster for i = 1, 2, ..., p. Since the labels of the clusters are irrelevant, the
number of ordered partitions of the sample of size n into p clusters S(n, p) can be written
as

S(n, p) =
∑

n1+...+np=n
1≤n1≤...≤np

(
n

n1 · · ·np

)
1

R(n1, ..., np)
, (1)

where
(

n
n1···np

)
is the multinomial coefficient and R(n1, ..., np) =

∏n
i=1[

∑p
j=1 I(nj = i)]!

corrects the count by considering the redundant strings corresponding to the vector
(n1, ..., np). For instance, for the vector (n1, ..., np) such that n1 = ... = np−4 < np−3 =
np−2 < np−1 = np, we have that R(n1, ..., np) = (p− 4)!2!2!.
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Figure 1: Clustering velocities of 82 galaxies, where the x axes are the galaxy and the
y axes its velocity.

Denoting the set of partitions for a fixed vector (n1, ..., np) by Rp;n1,...,np , we can
express the class Rp as

Rp = ∪n1+...+np=n
1≤n1≤...≤np

Rp;n1,...,np ,

where Rp;n1,...,np denotes a configuration class, that is, the class of partitions in Rp that
have the same configuration (n1, ..., np). The number of partitions in a configuration
class is given by the corresponding term in (1), that is

Number of partitions in Rp;n1,...,np =

(
n

n1 · · ·np

)
1

R(n1, ..., np)
. (2)

As we see in Figure 2, a cluster class Rp can have more than one configuration
class; for p = 2 there are two configuration classes. In general, the number of con-
figuration classes within Rp is the number of ways the integer n can be partitioned
into p parts, which we denote by b(n, p). This number does not seem to have a closed
form expression as a function of p and n. However, it can be shown (see, for instance,
http://mathworld.wolfram.com/PartitionFunctionP.html) that b(n, p) satisfies the re-
cursive equation

b(n, p) = b(n− 1, p− 1) + b(n− p, p), 1 ≤ p ≤ n, (3)
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Figure 2: The structure of the clustering problem for n = 4. There are 15 possible
partitions (models), the Bell number for n = 4. In each of the cluster classes, p =
1, 2, 3, 4 there are 1, 7, 6, 1 partitions, the Stirling numbers of the second kind. Within
the cluster class for p = 2 there are two configuration classes, corresponding to the
configurations y|yyy and yy|yy. The number of partitions in each configuration class is
given in (2), and the number of configuration classes in each cluster class is b(n, p) of
(3).

p = 1 p = 2 p = 3 p = 4
R1 R2 R3 R4

y1y2y3y4

y1|y2y3y4 y1y2|y3y4

y2|y1y3y4 y1y3|y2y4

y3|y1y2y4 y1y4|y2y3

y4|y1y2y3

y1|y2|y3y4

y1|y3|y2y4

y1|y4|y2y3

y2|y3|y1y4

y2|y4|y1y3

y3|y4|y1y2

y1|y2|y3|y4

with b(n, 1) = 1, and b(n, n) = 1. The number b(n, p) can be large, even for moderate
values of n and p, for instance b(80, 35) = 89037. However, it is much smaller than
S(80, 35), which has 82 digits.

Given a partition rp = (r
(p)
1 , . . . , r

(p)
n ) the sampling density of the data y conditional

on a given partition rp is

f(y|p, rp, θp) =

p∏
j=1

∏
i:ri=j

f(yi|θj) =

n∏
i=1

f(yi|θr(p)i
), (4)

where θp = (θ
r
(p)
1
, ..., θ

r
(p)
′

) is an unknown parameter and the components θ
r
(p)
i

indicate

the density in F where the data yi comes from. We will suppress the superscript (p) in

r
(p)
i if there is no confusion, and the likelihood will be simply written as

∏n
i=1 f(yi|θri).

The partition r1 = (1, 1, ..., 1) corresponds to the case where there is only one clus-
ter in the sample. Its corresponding likelihood function is given by f(y|1, r1, θ) =∏n
i=1 f(yi|θ), θ ∈ Θ.

To complete the specification of the models, we need a prior distribution π for
the parameters p, rp, θp so the generic Bayesian model Mrp is given as {f(y|p, rp, θp),
π(p, rp, θp|n)}. A natural decomposition of this prior distribution is π(p, rp, θp|n) =
π(θp|p, rp, n) π(p, rp|n). The posterior probability of the configuration rp in the class
Rp, conditional on p clusters, is given by

π(rp|y,p, n) =
π(rp|p, n)m(y|rp, p, n)∑

rp∈Rp π(rp|p, n)m(y|rp, p, n)
, if rp ∈ Rp,
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where m(y|rp, p, n) =
∫
f(y|p, rp, θp)π(θp|p, rp, n)dθp, is the marginal of the data un-

der the partition (p, rp). Without loss of generality, since f(y|1, r1, θ) is nested in
f(y|p, rp, θp) it is convenient to write this posterior probability as

π(rp|y,p, n) =
π(rp|p, n) Brpr1(y)∑

rp∈Rp π(rp|p, n)Brpr1(y)
, if rp ∈ Rp,

where Brp,r1(y) = m(y|rp, n)/m(y|r1, n) represents the Bayes factor for comparing
model Mrp against the model for only one cluster, Mr1 .

In the class of all models R the posterior probability of model Mrp is given by

π(p, rp|y) =
π(p, rp|n) Brpr1(y)∑n

p=1

∑
rp∈Rp π(p, rp|n) Brpr1(y)

, if rp ∈ R. (5)

The posterior probability of p clusters is

π(p|y) =

∑
rp∈Rp π(p, rp|n) Brpr1(y)∑n

p=1

∑
rp∈Rp π(p, rp|n)Brpr1(y)

, 1 ≤ p ≤ n. (6)

We note that Br1r1(y) = 1. The advantage of writing these posterior probabilities in
terms of Bayes factors for nested models is that there are available objective priors for
the model parameters to define them.

In passing we note that using only these Bayes factors we can also compare the
non-nested models contained in the class R. Indeed, the Bayes factor for comparing
models Mrp and Mrq , for arbitrary p and q, is given by Brprq (y) = Brpr1(y)/Brqr1(y).

3 Priors on the Discrete Parameters: The Number of
Clusters and Partitions

In this section we concentrate on priors over the models, π(p, rp|n), which can be fac-
torized as π(p, rp|n) = π(rp|p, n)π(p|n). In this representation it will be seen that the
prior distribution on the partitions π(rp|p, n) plays a much more relevant role than the
prior distribution on the number of clusters π(p|n). Although both factors depend on n,
the former is much more sensitive to n than the latter, as the size of the cluster classes
grows exponentially with n. We consider here four priors on (p, rp) which are motivated
by reasonable but different assumptions.

3.1 The Uniform Prior

The first prior one may use, in the absence of information about the models, is the
uniform prior, which gives the same probability to every model, that is,

πU (p, rp|n) =
1

Bn
, (7)
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where Bn is the Bell number. As we will see, this seemingly innocuous choice can have
unforseen consequences.

3.2 The Ewens-Pitman Prior

The Dirichlet random process provides a distribution for (p, rp) given by

πEP (p, rp|λ, n) =
Γ(λ)

Γ(n+ λ)
λp

p∏
j=1

Γ(nj), p = 1, ..., n, rp ∈ Rp, (8)

where λ is an unknown positive hyperparameter which has to be assessed. This prior has
been used extensively (Crowley 1997; Quintana and Iglesias 2003; Booth et al. 2008;
Jensen and Liu 2008; McCullagh and Yang 2006). A detailed scheme to derive the
prior (8) is presented in McCullagh and Yang (2006). They also note that the limit, as
p→∞, is the Ewens process (Ewens 1972; Ishwaran and Zarepour 2002; Pitman 1996),
also called the Chinese restaurant process (Aldous 1985; Pitman 1996).1

We note that the difference among the partitions rp in Rp;n1,...,np is simply the
different ways we assign ni components of the sample of size n to the density labeled by
θi, for i = 1, ..., p. This implies that a priori these exchangeable partitions should have
the same probability, and from the Ewens-Pitman prior it follows that the distribution
πEP (rp|Rp;n1,...,np , n) is uniform.

3.3 The Jensen-Liu Prior

An alternative prior is that given by Jensen and Liu (2008),

πJL(p, rp|λ, n) ∝ λp−1(λ+ p)

p∏
i=1

(λ+ i)−ni , (9)

where λ is an unknown positive hyperparameter which has to be assessed. According
to the authors “it favors equal allocations of observations, that is, the prior probability
that a new observation is placed in any one of the existing clusters is uniform.” We note
that the distribution πJL(rp|Rp;n1,...,np , n) is uniform.

3.4 The Hierarchical Uniform Prior (HUP)

One of our goals is to develop an objective prior for models, and to do so we consider
the structure of the cluster problem as described in Section 2. Thus, we first split the
entire set of partitions by conditioning on the number of clusters, and also split these
sets into subsets of partitions having the same configurations. To carry out our prior
specification, we start from the decomposition

π(p, rp|n) = π(rp|Rp;n1,...,np , n)π(Rp;n1,...,np |p, n)π(p|n).

1We have referred to this distribution in a variety of ways, and each way has received criticism from
some quarter. We believe that Ewens-Pitman allocates the correct degree of recognition.
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Since the partitions rp in Rp;n1,...,np are exchangeable, from (2) we have that

πHU (rp|Rp;n1,...,np , n) =

(
n

n1 · · ·np

)−1

R(n1, ..., np), rp ∈ Rp;n1,...,np .

Next, we make the assumption that the sets of partitions Rp;n1,...,np in Rp obtained as
the vector (n1, ..., np) varies are a priori equally likely. The reason is that the likelihoods
of the partitions in Rp are of the same complexity, that is contain p different sampling
models, regardless of the configuration class Rp;n1,...,np . Then, recalling (3), it follows
that

πHU (Rp;n1,...,np |p, n) = b(n, p)−1. (10)

To complete the specification of the prior π(p, rp|n) we need to construct π(p|n).
For doing that we observe that when analyzing a cluster problem of a sample of size
n the extreme case of having n clusters should be given a priori a smaller probability
than that given to any other case. Extending this argument for any n, it might be
reasonable that the prior distribution on the number of clusters p be, in a smooth way,
a decreasing function of p. A candidate for π(p|n) might then be a truncated Poisson
distribution P(p|λ), where λ is an unknown parameter. Assuming the default improper
Jeffreys distribution for λ, πJ(λ) ∝ λ−1/2, the marginal distribution for p is given
by
∫
P(p|λ)πJ(λ)dλ which we now truncate to the set {1, ..., n}. This prior is rather

close to the uniform prior in the sense that it has a very flat tail, and consequently for
large n it will dilute the prior probabilities in {1, ..., n}. A way to derive a prior for p
with thinner tail than the above one is obtained by replacing the Jeffreys prior πJ(λ)
with the intrinsic prior πI(λ|λ0 = 1) constructed by testing the Poisson null hypothesis
H0 : λ = λ0 versus H1 : λ ∈ R+. This prior, given by Moreno (2005), is

πI(λ|λ0 = 1) =
λ−1/2

Γ(1/2)
e−(λ+1)

0F1(1/2, λ),

where 0F1( 1
2 , λ) denotes the confluent hypergeometric function. The reason for taking

λ0 = 1 is that the one cluster model is the reference model throughout the analysis.
The resulting marginal intrinsic distribution for p is

πI(p|n) =
mI(p)∑n
p=1m

I(p)
, p = 1, ..., n, mI(p) =

∫ ∞
0

λp e−λ

p!
πI(λ|λ0 = 1) dλ. (11)

This prior does not incorporate any subjective prior information on p. If meaningful
prior information is available we certainly should take the prior accordingly.

Figure 3 shows a plot of the Poisson-Intrinsic prior mI(p|n = 20) along with the
Poisson-Jeffreys prior. There we see that the drop in prior probabilities, as we move
from one cluster, is very flat for the Poisson-Jeffreys prior, but steeper for the Poisson-
Intrinsic prior.

Then, using (11) together with the development above, we obtain the prior distri-
bution for (p, rp), for rp ∈ Rp and p = 1, ..., n,

πHUP (p, rp|n) =

(
n

n1 · · ·np

)−1

R(n1, ..., np) b(n, p)
−1 mI(p)∑n

p=1m
I(p)

.
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Figure 3: Prior probabilities from the Poisson-Intrinsic prior of (11) (left panel), and
the Poisson-Jeffreys prior (right panel), n = 20.

3.5 Comparisons

Both the Ewens-Pitman and Jensen-Liu priors require specification of the hyperparam-
eter λ. For Ewens-Pitman, it is known that the expected prior number of clusters is
given by

E(p|λ, n) =

n∑
p=1

λ

λ+ p− 1
.

Thus, large values of λ will lead to a larger number of clusters, and the value of the
prior probabilities is quite sensitive to the choice of λ, so that the selection of this
hyperparameter is important. (In Quintana and Iglesias (2003) the distribution (8) was
ruled out due to its sensitivity to λ; see their Table 2, page 570.) Rather than presenting
a lengthy sensitivity analysis of these priors, we just want to illustrate their performance
with a small numerical example; further comparisons are in Section 5. Table 3 shows
prior probability specifications for two configuration classes for n = 10.

A priori it does not seem to us that we would have any reason to assign different
probabilities to the configurations {1, 3, 6} and {2, 3, 5} as they are of the same com-
plexity, i.e., the likelihood function of any partition having configuration either {1, 3, 6}
or {2, 3, 5} contains only three different densities, but this is what is done by the Uni-
form, the Jensen-Liu and the Ewens-Pitman priors as Table 3 illustrates for λ = 1. The
fact that there are 840 partitions corresponding to the configuration {1, 3, 6}, and 2525
partitions corresponding to {2, 3, 5} only explains the numbers for the uniform prior in
Table 3. Moreover, the preferences reverse, with Ewens-Pitman and Jensen-Liu favoring



G. Casella, E. Moreno and F. J. Girón 623

Table 3: Prior probabilities for exchangeable partition sets in R3 for n = 10. The
designation {1, 3, 6} refers to having three clusters with 1, 3 and 6 observations; {2, 3, 5}
has 2, 3 and 5 observations. (Both Ewens-Pitman and Jensen-Liu have λ = 1.)

Prior Probabilities
Configuration Ewens-Pitman Hierarchical Uniform Uniform Jensen-Liu
{1, 3, 6} 0.17 0.14 0.09 0.15
{2, 3, 5} 0.10 0.14 0.27 0.08

{1, 3, 6}, and the uniform prior favoring {2, 3, 5}.

An important difference between the HUP and the other priors is that the HUP is
the only one that assignes equal probability to the configuration classes contained in
Rp. We note that the four priors assume for π(rp|Rp;n1,...,np , n) a uniform distribution.

4 Intrinsic Priors for the Continuous Parameters θp

As we noted in Section 3, for computing the Bayes factors Brp,r1(y) , rp ∈ R, prior
distributions for the continuous parameters θ and θp are needed. The usual objective
choices are the reference priors πN (θ) and πN (θp) associated with the sampling models
f(y|1, r1, θ) and f(y|p, rp, θp), respectively (Berger et al. 2009). However, these priors
are typically improper, and while this is not an inconvenience for estimating θ and θp,
it is a serious problem for model comparison, as they leave the Bayes factor Brp,r1(y)
defined only up to an arbitrary multiplicative constant.

Fortunately, the sampling model f(y|1, r1, θ) is nested in f(y|p, rp, θp) and then the
reference priors can be converted into the so-called intrinsic priors (Berger and Pericchi
1996b; Moreno 1997; Moreno et al. 1998), for which not only is the Bayes factor well-
defined, but also the intrinsic prior for θp concentrates probability mass around θ, a
desirable condition for model comparison (known as the Savage continuity condition).
Furthermore, the intrinsic priors have been proved to behave well in a wide variety of
problems (Berger and Pericchi 1996a; Berger and Mortera 1999; Kim and Sun 2000;
Casella and Moreno 2005, 2009; Girón et al. 2006; Moreno 2005; Moreno et al. 2010;
Casella et al. 2009, among others). The intrinsic prior for the parameter θp, conditional
on an arbitrary but fixed point θ, is given by

πI(θp|θ) = πN (θp|rp)Ey(`p)|θp
f(y|1, r1, θ)∫

f(y(`p)|p, rp, θp)πN (θp)dθp
,

where the expectation is taken with respect to the sampling distribution f(y(`p)|p, rp, θp)
with y(`p) a vector of dimension `p = kp + 1. Here `p denotes the minimal training
sample size needed for estimating θp with the prior πN (θp). It can be easily checked
that πI(θp|θ) is a probability distribution. The unconditional intrinsic prior for θp is
given by πI(θp) =

∫
πI(θp|θ)πN (θ)dθ,and the pair

(
πN (θ), πI(θp)

)
is the intrinsic prior
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for comparing models Mr1 and Mrp . We note that they are improper priors whose
moments typically do not exist, which seems to be a reasonable property for objec-
tive priors, although they are well-calibrated priors in the sense that both depend on a
unique arbitrary multiplicative constant, the arbitrary constant inherited from πN (θ),
which cancels out in the ratio. Therefore, the Bayes factor for intrinsic priors

Brpr1(y) =

∫
f(y|p, rp, θp)πI(θp)dθp∫
f(y|1, r1, θ)πN (θ)dθ

, rp ∈ R,

is free of arbitrary constants, needs neither subjective input nor actual (data-dependent)
training samples, and is completely automatic.

4.1 The Case of Linear Models

We now consider the case where the class of parametric sample densities, F, is the class
of linear models with k regressors. For example, suppose that the sample (y1, ..., yn)
follows a normal linear model

y = Xβ + ε, ε ∼ Nn(ε|0, τ2In),

where X is an n×k design matrix of full rank, β is a vector of regression coefficients with
dimension k, and τ2 is the common variance of the error terms. This is the sampling
model for one cluster in the sample and, in the notation of the preceding section, we
have

f(y|1, r1, β, τ) = Nn(y|Xβ, τ2In).

The reference prior for the parameters of this model is πN (β, τ) = c/τ, where c is an
arbitrary positive constant. Without loss of generality, suppose we split the sample into
p clusters, where one cluster is formed with the first n1 components of the sample, a
second cluster is formed with the second n2 components, and so on. These clusters
correspond to the partition of the sample as y′ = (y′1, ...,y

′
p) and the corresponding

partition of the design matrix as

X =


X1

· · ·

Xp

 ,

where Xi has dimensions ni × k. Then, the sampling model for p clusters is given by

f(y|p, rp, β1, ..., βp, σp) =

p∏
i=1

Nn(yi|Xiβi, σ
2
pIni),

assuming that σ2
p is the common variance of the p clusters model.
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We note that the model for p clusters can be written as the linear model y = Vγ+η,
where V is the following lower triangular n× kp design matrix

V =


X1 0 · · · 0
X2 X2 · · · 0
...

... · · ·
...

Xp Xp · · · Xp

 ,

γ being the k×p vector γ′ = (γ′1, . . . , γ
′
p), where γ1 = β1, γ2 = β2−β1, . . . , γp = βp−βp−1

are k dimensional vectors, and the random vector η is distributed as Nn(η|0, σ2
pIn).

Thus, the sampling model for p clusters is now given by f(y|p, rp, γ1, . . . , γp, σp) =
Nn(y|Vγ, σ2

pIn). Since f(y|1, r1, β, τ) is nested in f(y|p, rp, γ1, . . . , γp, σp), by simply
making β1 = β2 = · · · = β or, equivalently, γ1 = β, γ2 = · · · = γp = 0, direct applica-
tion of the standard intrinsic methodology gives the intrinsic prior for the parameters
(γ1, . . . , γp, σp) conditional on a fixed point (β, τ), as

πI(γ1, . . . , γp, σp|β, τ) =
2

πτ(1 + σ2
p/τ

2)
Npk(γ|(Xβ,0, . . . ,0)′, (σ2

p + τ2)W−1),

where W−1 = n/(pk+ 1)(V′V)−1. Note that the conditional intrinsic prior is centered
at the null model (the one cluster model), and its covariance structure depends on the
covariance matrix of the model of p clusters only. The unconditional intrinsic priors are
given by the pair (πN (β, τ), πI(γ1, . . . , γp, σp)), where

πI(γ1, . . . , γp, σp) =

∫
πI(γ1, . . . , γp, σp|β, τ)πN (β, τ) dγ dτ. (12)

4.2 Bayes Factors for Intrinsic Priors

The objective intrinsic Bayesian model for one cluster is

Mr1 : {Nn(y|Xβ, τ2In), πN (β, τ)},

and for p clusters

Mrp : {Nn(y|Vγ, σ2
pIn), πI(γ1, . . . , γp, σp)},

where πI(γ1, . . . , γp, σp) is given in (12). To compute the Bayes factor of model Mrp

versus model Mr1 , we note that the residual sum of squares of a partition, with cluster
sizes (n1, ..., np), is equal to RSSn1,...,np = y′(I−HV)y, where HV = V(V

′
V)−1V′.

Simple but cumbersome algebra shows that, due to the lower diagonal structure of the
matrix V, the residual sum of squares for that partition, with cluster sizes (n1, ..., np),
can be written as

RSSn1,...,np =

p∑
i=1

RSSni ,

where RSSni is the residual sum of squares from the regression in the ith cluster. Some
lengthy calculations render a quite simple form for the Bayes factor for intrinsic priors.
The following theorem summarizes the result.



626 Cluster Analysis and Model Selection

Theorem 1. The Bayes factor for the model Mrp versus model Mr1 is given by

Brpr1(y) =
2

π
(pk + 1)(p−1)k/2

∫ π/2

0

sin(p−1)k ϕ (n+ (pk + 1) sin2 ϕ)(n−pk)/2

(nRrp + (pk + 1) sin2 ϕ)(n−k)/2
dϕ (13)

where the statistic Rrp is

Rrp =
RSSn1

+ . . .+RSSnp
RSSn

,

with RSSni = y′i(I −Hi)yi, i = 1, ..., p, RSSn = y′(I −H)y, and Hi and H the hat
matrices associated with Xi and X, respectively.

Proof. The marginal under model rp is given by

mrp(y) =

∫ {∫ {∫
Nn(y|Xβ, τ2In)πI(γ1, . . . , γp, σp|β, τ) dγ

}
πN (β, τ) dβ

}
dσp dτ.

The integral with respect to γ and β can be done in closed form, and a change of
variables from (σp, τ) to polar coordinates gives the above expression for the Bayes
factor.

Substituting the Bayes factor for the intrinsic priors (13) in expressions (5) and
(6), the intrinsic posterior probability of model Mrp and the posterior probability of
p clusters in the sample, are obtained. We want to note that with a large number of
observations, the factor Rrp in (13) can get very close to zero, causing numerical prob-
lems in computation (the integral is returned as infinite). However, the transformation
t = pk+1

Rrp
sin2(ϕ) results in a representation that is numerically very stable, and allows

for doing all computations on the log scale.

Lastly, there is one technicality to note. If a partition contains a value of ni with
ni < k then, of course, the regression cannot be fit in that cluster. We proceed by fitting
the largest model feasible in that particular partition, with the limiting case being a
cluster of size 1, to which we assign Var(Y ) as the residual sum of squares. (One might
consider assigning a residual sum of squares of zero to such a cluster, but this unduly
rewards clusters of size 1.)

5 The Effect of the Prior on the Consistency of the
Bayesian Procedure

It is well-known that for regular sampling models, the Bayesian model selection proce-
dure is consistent when the dimension of the sampling model is fixed and comparisons
are pairwise. In that case consistency of the Bayesian model selection procedure is
inherited from the consistency of the Bayes factor, because the model prior does not
play any role in the consistency of the procedure. However, when the dimension of the
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model grows with the sample size, the model prior plays an important role for obtaining
consistency, and this is the case in clustering. As we will see, the choice of the prior
on model space is of major importance in determining the asymptotic behavior of a
clustering procedure. Surprisingly, the actual choice of Bayes factor is of almost no con-
sequence in determining consistency, as many Bayes factors have the same asymptotic
representation.

In this section we look at the asymptotic behavior of Bayesian clustering procedures
when using the four model priors of Section 3. Perhaps the most surprising result is
that the uniform prior, which gives the same prior probability to every model, and the
Jensen-Liu prior, that allocates a new observation uniformly in any one of the existing
clusters, lead to inconsistent Bayesian procedures. Furthermore, this is the case when
sampling from the simpler model, and the number of clusters is finite, a situation in
which consistency is typically obtained for a Bayesian testing procedure. This behavior
is explained by observing that, in clustering, the model prior depends on the sample
size and, as the sample size tends to infinity, the speed of convergence of the prior to
its limit compared with that of the Bayes factor is now crucial.

In what follows we will assume that the number of clusters p is bounded, that is,
p ≤ T <∞. We could be more general and put a growth rate on the number of clusters
(Moreno et al. 2010) but, in practice, assuming that p is bounded is certainly a realistic
constraint.

For large samples, approximations of Bayes factors for intrinsic priors depend on the
dimensions of the competing models and a pseudodistance between them. If Mi and
Mj are arbitrary general normal linear models, the pseudodistance from Mi to Mj is
defined as

δij =
1

σ2
i

β′i
X′i(In −Hj)Xi

n
βi.

Note that this pseudodistance is defined for every pair of models, not only nested models,
and it is not symmetric. Some useful properties of δpi are the following: (a) The distance
from any model Mi to itself is always 0, (b) if Mi is nested in Mj , then δij = 0, and (c)
if model Mi is nested in Mj , then δki ≥ δkj for any model Mk.

We start with the following lemma, where we recall that the singular class R1;n

contains only the one cluster model Mr1 . (We use the notation [M ] to denote the model
that generated the sample.)

Lemma 1. Suppose that model Mi, of dimension i, is nested in model Mj, of dimension
j, and Mt is the true model. Under the sampling model Mt, as n→∞, the Bayes factor
can be approximated by

Brjri(y) ≈ exp

{(
i− j

2

)
log

(
n

j + 1

)}(
1 + δti
1 + δtj

)n/2
[Mt],

where δti and δtj are the pseudodistances from the true model to models Mi and Mj,
respectively.
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In particular, when sampling from model Mr1 , for large n, the Bayes factor Brpr1(y)
can be approximated by

Brpr1(y) ≈
(
pk + 1

n

)k(p−1)/2

[Mr1 ].

Proof. The first expression immediately follows from Lemma 3 in Girón et al. (2010),
and the second expression follows from noting that δrjr1 is zero for all models Mrj .

Lemma 1 shows that for large n, when sampling from Mr1 , the Bayes factor Brpr1(y)
is constant across partitions rp in the class Rp. Moreover, this asymptotic result is not
limited to intrinsic Bayes factors; for example we know that BIC is asymptotically
equivalent to the intrinsic Bayes factor. Moreover, Casella et al. (2009) show that the
approximation holds for a wide class of priors.

In the following two subsections we analyze the limiting behavior of the four priors
of Section 3, and then examine their effect on the consistency of the resulting Bayes
procedures.

5.1 Limiting Behavior of the Model Priors

For a fixed value of p, we denote by Zn a p-dimensional random vector which takes
values (n1, . . . , np) on the set of integers satisfying the conditions n1 ≤ · · · ≤ np and
n1 + · · ·+ np = n, with distribution

Pr(Zn = (n1, . . . , np)|Rp) = Pr(M(n1,...,np)|Rp),

which represents the prior probability of any model arising from the priors of Section 3
in the set of models Rp. The study of the limiting behavior of the posterior probability
of the configuration classes cannot be done straightforwardly as the sample space where
the random vector Zn takes values changes with the sample size n. If we consider
instead the common space of the simplex Sp, all models can be regarded as points of
this simplex. Thus, we define the random vector Yn = 1

nZn, and study the limiting
behavior of Yn for the different priors. Note that the sample space of Yn is Sp for all
n, and Pr(Yn =

(
n1

n , . . . ,
np
n

)
|Rp) = Pr(Zn = (n1, . . . np)|Rp).

Theorem 2.

(a) For fixed p and the hierarchical uniform prior, Yn = 1
nZn converges in distribution

to a uniform prior on the simplex Sp.

(b) For fixed p and λ and the Ewens-Pitman prior, Yn = 1
nZn converges in distribu-

tion to an improper prior distribution whose density is proportional to

1

x1 · x2 · · · (1− x1 − · · · − xp−1)
, (14)
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restricted to the simplex Sp. Note that this limiting function does not depend on
λ.

(c) For fixed p and the uniform prior, Yn = 1
nZn converges in distribution, and in

probability, to a degenerate distribution concentrated at the vertex ( 1
p , . . . ,

1
p ) of

the simplex Sp.

(d) For fixed p and λ and the Jensen-Liu prior, Yn = 1
nZn converges in distribution,

and in probability, to a degenerate distribution concentrated at the interior point( λHT
p(λ+T ) , . . . ,

λHT
p(λ+1)

)
of the simplex Sp, where λHp denotes the harmonic mean of

λ+ 1, . . . , λ+ p.

Proof. The proof is given in Appendix A.2

Thus, of all four priors, only the HUP converges to a proper distribution. The Ewens-
Pitman prior converges to an improper Dirichlet distribution with parameters equal to
zero although, when sampling from model Mr1 , the limit of the posterior distribution is
proper. What is, perhaps, most distressing is the limiting behavior of the uniform and
Jensen-Liu priors, which degenerate to a point and, thus, could have undo influence in
the clustering algorithm.

5.2 Consistency of Bayes Procedures

We first state two theorems about the consistency of the Bayes procedures when sam-
pling from the one cluster model, for the four priors considered in the paper.

Theorem 3. Suppose that p ≤ T and we use either the uniform prior or the Jensen-Liu
prior on the class of all partitions R = ∪Tp=1Rp. Then, when sampling from Mr1 the
Bayes procedure is inconsistent in both the cluster classes and the configuration classes.
Moreover, in the probability space generated by the cluster classes {Rp, p = 1, ..., T},
the asymptotic posterior distribution of Rp, p = 1, ..., T , is

lim
n→∞

[Mr1 ]Pr(Rp|y) =

{
1, if p = T,
0, if p ≤ T − 1;

thus the largest model is chosen with probability one.

Proof. The proof is given in Appendix A.3

The implications of this theorem are quite interesting, and help explain some of
what we had observed in looking at examples (illustrated in Section 7). With priors like
the uniform, the answers from the cluster algorithm tend to be partitions with a large
number of clusters, and a small number of subjects per cluster.

The situation for the Ewens-Pitman prior and the hierarchical uniform prior is dif-
ferent.
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Theorem 4. Suppose that we use either the Ewens-Pitman prior or the hierarchical
uniform prior on the class of all partitions R = ∪Tp=1Rp. Then, when sampling from
Mr1 , the Bayesian procedure is consistent. That is, in the probability space generated
by the cluster classes {Rp, p = 1, ..., T},

lim
n→∞

[Mr1 ]Pr(R1|y) = 1,

so the correct model is chosen with probability 1.

Proof. The proof is given in Appendix A.4

Thus, both of these priors exhibit good asymptotic behavior. Consider the rate of
convergence of the posterior probability of R1 to one. For the Ewens-Pitman prior

the convergence rate is O
(

logn
np−1

)
, while for the HUP it is O

(
1

np−1

)
. This means that

the convergence rate is faster when using the HUP than with the Ewens-Pitman prior.
The difference is the presence of the log n term. We also note that the rate with the
Ewens-Pitman prior also depends on the value of λ; the larger this value the slower the
consistency under the null.

Unfortunately, the Bayesian procedures for clustering are inconsistent when sampling
from an alternative model Mrt 6= Mr1 . This comes from the fact that model Mrt may
not be distinguishable from model Mr′t

, assuming that both partitions rt and r′t belong
to the same configuration class Rt;n1···nt . To show this assertion let us consider the
simple sampling model N(y|θ, σ2) with no regressors.

Theorem 5. For the normal model with no regressors N(y|θ, σ2), when sampling from
the cluster model Mrt 6= Mr1 , the Bayesian procedure for any exchangeable prior over
the models is inconsistent.

Proof. The proof is given in Appendix A.5

To further analyze consistency in clustering we realize that, as the sample size tends
to infinity, the way we allocate the components of the sample in the clusters is not an
issue, and hence we need only to consider the proportions of the sample in the clusters.
Consequently, as n tends to infinity, the notion of consistency is now specific to the class
of partitions having a limiting configuration (n1/n, ..., np/n)→ (ν1, . . . , νp), as n→∞.
The interpretation of model Mν1...,νp is that observations are assigned to clusters in the
proportion ν1, . . . , νp.

This also implies that, as n → ∞, the model Mrp is not distinguishable from
Mr′p , assuming that both partitions rp and r′p belong to the same configuration class
Rp;n1,...,np . Consequently, as n tends to infinity, consistency will be examined in the
probability space generated by the configuration classes {Rp;n1,...,np , n1 ≤ ... ≤ np,
n1 + ... + np = n, p = 1, 2, ...}, and in the probability space generated by the cluster
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classes {Rp, p = 1, ..., T}. We also note that configuration classes, and their limits,
can be identified with points in the simplex Sp = {ν = (ν1, . . . .νp−1); 0 ≤ ν1 ≤ · · · ≤
νp−1, and ν1 + · · · + νp−1 < 1}, and cluster classes Rp with the simplex Sp. This is
illustrated in Figure 4, where we show the cluster classes and models for p = 3. The
cluster class R3 is the entire simplex, while R2 and R1 are an edge and a vertex, re-
spectively. The model M1/3,1/3,1/3, the extreme right vertex of the simplex, is the limit
of the uniform prior. Of course, this is extendable to higher dimensional simplexes.

For simplicity, we restrict our analysis to the case of at most two clusters, i.e. T = 2.

Let Mν denote a two cluster model with a proportion ν of the data in the first cluster
and a proportion 1− ν in the second cluster, where ν ∈ S2 = (0, 1/2]. This means that
the observations in the first cluster come from a normal model N(θ1, τ

2), and the rest
from the normal model N(θ2, τ

2), where θ1 6= θ2. Thus, the two cluster sampling model
is

Mν =

{ ∏n1

j=1N(yj |θ1, τ
2), if n1/n ≤ ν,∏n

j=n1+1N(yj |θ2, τ
2), if n1/n > ν.

Note that the one cluster model is a particular case of Mν when ν = 0.

The pseudodistance from model Mν to model Mν′ , with ν, ν′ ∈ [0, 1/2], turns out to
be

δνν′ =

{
d |ν − ν′| νν′ if ν′ ≥ ν,
d |ν − ν′| 1−ν

1−ν′ , if ν′ ≤ ν,

where d = (θ1 − θ2)2/τ2 is the Kullback-Leibler distance between the sampling models
N(y|θ1, τ

2) and N(y|θ2, τ
2).

The next theorem shows that, even for sensible priors, posterior probability consis-
tency for the configuration classes does not hold.

Theorem 6. When sampling from model Mν , with ν ∈ (0, 1/2], posterior consistency
of the configuration classes, for the Ewens-Pitman, hierarchical uniform, uniform and
Jensen-Liu priors, does not hold. Furthermore, for the Ewens-Pitman and hierarchical
uniform priors there is a strictly positive upperbound of the posterior probability of any
configuration class (including the true one) strictly less than 1. For the uniform prior
and the Jensen-Liu prior the posterior probability of the true configuration class goes
to 0.

Proof. The proof is given in Appendix A.6

We note that we have really proved that the posterior probability is concentrated
around the true sampling model, for the Ewens-Pitman and the hierarchical uniform
priors, even though no model —not even the true one— has posterior probability equal
to 1. This suggests a weaker form of consistency based on the convergence in probability
to one of the posterior distribution of the true configuration class.
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Figure 4: The simplex for p = 3 is in grey. The point in red represents the cluster
class R1, that is, the one cluster model, while the blue line represents R2. The rest
of the simplex represents the cluster class R3. Note that cluster class R1 is a vertex
(extreme point) of the simplex, the cluster class R2 is an edge, and the model which
assigns an equal proportion to the three cluster configuration is also an extreme point
of the simplex.

To prove the next theorem, we adapt the notation of subsection 5.1 to the case where
p = 2. In particular, as n2 = n − n1, Zn is now a random variable which takes the
values n1 such that 1 ≤ n1 ≤ bn/2c,

Pr(Zn = n1) = Pr(R2;n1,n2 |y).

The random variable Yn = 1
nZn now takes values on the simplex S2, with distribution

Pr
(
Yn =

n1

n

)
= Pr(R2;n1,n2

|y),

and its asymptotic behavior for the four different priors will be considered in Theorem
7.

Theorem 7. When sampling from any two cluster model Mν , with ν ∈ (0, 1/2], the
Bayes procedures for the Ewens-Pitman prior and the hierarchical uniform priors are
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“weakly” consistent, that is the posterior distribution of the random variable Yn con-
verges in distribution —or in probability— to the value ν. Further, the Bayes procedures
for the uniform and the Jensen-Liu priors are not weakly consistent.

Proof. The proof is given in Appendix A.7

Remark 1. Although the asymptotic behavior of the Bayes procedure for the Ewens-
Pitman and the hierarchical uniform priors is the same, for small sample sizes there can
be substantial differences in the distributon of Yn, specially when the true model Mν is
close to the one-cluster model, i.e. when ν is near 0. The reason is, as has been pointed
out before, than the Ewens-Pitman prior slightly favors the one cluster model when the
sample size is small.

6 Search Algorithm

Here we develop a hybrid search algorithm, using a Metropolis-Hastings (MH) algorithm
that has stationary distribution proportional to the Bayes factor times the prior odds.
The hybrid algorithm is a mixture of a random walk and a jump. We use a random
walk component to be able to explore locally, and the jump allows escape from regions
with small Bayes factors.

In setting up the algorithm there is one immediate computational problem, that of
calculating the correct probabilities for the MH ratio. In the random walk piece we
solve this problem by using the biased random walk of Booth et al. (2008). Suppose, for

example, that at iteration t we have the partition r
(t)

p(t)
. We now generate a candidate

partition r′p′ from a distribution G, and accept the move with probability

min

 π(p, r′p|n)Brp′r1

π(p, r
(t)

p(t)
|n)B

r
(t)

p(t)
r1

G(r
(t)

p(t)
|r′p′)

G(r′p′ |r
(t)

p(t)
)
, 1


where π(p, r′p|n) is the prior, and the Bayes factor Brp′ ,r1 is given in (13). The compu-
tational problem arises in calculating the ratio of candidate probabilities, which could
entail summing over an enormous number of partitions. However, the biased random
walk has the property that G(x|y) = G(y|x), and thus these terms cancel from the MH
ratio. (Details and properties of the biased random walk are discussed in Booth et al.
(2008), so here we will just give a brief description.)

Biased Random Walk

With the current iteration at r
(t)

p(t)
, we generate a candidate r′p′ as:

1. If p = 1, choose an observation at random from all n observations, and move the
chosen observation to its own cluster. The new configuration is r′p′ .
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2. If p > 1, choose an observation at random from all n observations.

(a) If the object is a singleton cluster, move it to one of the p− 1 other clusters
with probability 1/(p− 1).

(b) If the object is not a singleton cluster, move it to one of the p − 1 other
clusters, or to its own (new) cluster, each with probability 1/p.

This is the biased random walk which, although similar to a nearest neighbor random

walk, has the property that the probability of the move r
(t)

p(t)
→ r′p′ is the same as

the probability of the move r′p′ → r
(t)

p(t)
, eliminating the necessity for calculating these

probabilities in the Metropolis-Hastings algorithm.

Unfortunately, the mixing from the biased random walk is too slow for clustering
large, or even medium, data sets. If we are in a good portion of the space then the
random walk will explore that portion, but we also need to be able to escape from areas
with small Bayes factors. To do so we have a second piece in the search algorithm, a
jump based on sampling from the Ewens-Pitman distribution of (8). We can sample
from this distribution using a number of algorithms (see Neal 2000, for example), but
we will draw our candidate using the algorithm of Kyung et al. (2010), which has been
shown to mix better than many of its competitors. (Note that using the Ewens-Pitman
distribution to drive a search has nothing to do with the choice of model space priors.)

Jumping with the Ewens-Pitman Distribution

We use the Ewens-Pitman distribution to generate a random jump because it is easy

to calculate the Metropolis-Hastings correction. With the current iteration at r
(t)

p(t)
, we

generate a candidate r′p′ as follows: Start with np = (n1, . . . np) obtained from r
(t)

p(t)
, and

draw q from the Dirichlet distribution

q ∼ f(q|np) =
Γ(2n)∏p

j=1 Γ(nj + 1)

p∏
j=1

q
nj
j . (15)

Given q, we draw n′p′ from

n′p′ ∼ P (n′p′ |q) ∼
Γ(n)

Γ(n+λ)λ
p′
∏p′

j=1 Γ(n′j)
(

n
n′1 ··· n′p′

)∏p′

j=1 q
n′j
j∑

n
Γ(n)

Γ(n+λ)λ
p
∏p
j=1 Γ(nj)

(
n

n1 ··· np

)∏p
j=1 q

nj
j

. (16)

It has been established (see Kyung et al. (2010)) that the Ewens-Pitman distribution (8)
is the stationary distribution of the transition kernelK(np,n

′
p′) =

∫
q
P (n′p′ |q)f(q|np) dq.

Moreover, to sample from this distribution we can generate a candidate according
to the multinomial distribution

(
n

n1 ··· np

)∏p
j=1 q

nj
j and apply an MH step with ratio

K(np,n
′
p′ )

K(n′
p′ ,np) = λp

′−p
∏p′
j=1 Γ(n′j)∏p
j=1 Γ(nj)

.
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Figure 5: Sample path of MCMC algorithm. The left panel shows 1000 Bayes factors
(scaled by the maximum) and the right panel shows the corresponding autocorrelations.
The acceptance rate of the Metropolis-Hastings algorithm was 22%.

Finally, we take our search to be a mixture of the biased random walk and the jump,
choosing the biased random walk with probability a, set by the user. In our searches
we have taken a = .75.

Figure 5 shows a sample of the Metropolis-Hastings search used for the first Galaxy
example. The acceptance rate was 22%, in line with the recommendations of Roberts
et al. (1997).

7 Examples

In this section we give a number of examples to illustrate the working of the clustering
algorithm, and examine the effect of the choice of the prior on model space. We start
with the well known Galaxy data (Roeder 1990) as a benchmark. We then look at some
simulated examples, where we check that the HUP intrinsic Bayesian procedure gives
the highest weight to the correct model, and then we look at the effectiveness of the
search algorithm. We then apply our method to two data sets, and provide comparisons
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with other algorithms.

7.1 Galaxy Data

The Galaxy data consists of 82 observations on the velocity (km/second) of 82 galaxies
in the Corona Borealis Region. It is well accepted that there are between 5 and 7 clusters
in the data (Richardson and Green 1997; Jasra et al. 2005). Using an intercept-only
model, we ran our algorithm with HUP and uniform weights.

The results are displayed in Figure 6, where we see that the search with HUP weights
gave five clusters in the top partition with Bayes factor=6.2 × 1010, while the second
partition, which differs by the switching of one galaxy, has Bayes factor=4.9×1010. The
top 25 partitions in the search all had 5 clusters. In contrast, the unweighted uniform
search found partitions with 9 clusters, which by consensus is too many clusters. From
the results in Section 5, this performance is expected.

7.2 Evaluating the Models

Next we evaluate the ability of the HUP intrinsic Bayes procedure to find the best
model, regardless of the search algorithm. We look at two examples, for n = 7 and
n = 9, where we can enumerate all of the models. We generate the data from the model

Yij ∼ N(µi, 1), j = 1, . . . , ni, i = 1, . . . , k, µi = i, (17)

where
∑
i ni = n, n = 7 or 9.

For a particular configuration of n and ni we generated 25 data sets. For each data
set we calculated all of the Bayes factors. For n = 7 there are 877 distinct partitions,
and for n = 9 there are 21, 147 distinct partitions. For each of the 25 data sets we
checked if the posterior odds of a model using the uniform prior, the Ewens-Pitman
prior with λ = 1, and the HUP prior, was in the top 10 models

The results are shown in Table 4, where we see excellent performance of the Bayes
factors with HUP weights. The Ewens-Pitman weight does well except when there
are many small clusters, such as (1, 1, 1, 2, 2), being dominated by the HUP weights.
However, for these cases the unweighted Bayes factor does the best, reflecting its bias
toward partitions with a large number of clusters. However, these are the only cases
where the unweighted Bayes factor does better than the HUP weights.

The comparison with K-means shows that K-means has a very difficult time in
identifying the true model. Since K-means only returns one partition, we could not
calculate percentiles, but instead gave it ten tries to identify the true model. We also
helped out K-means by starting with the correct number of clusters, that is, telling it
to find a partition with the same number of clusters as the true cluster. Even with this
help its performance was well below that of the Bayes factors.
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Figure 6: Galaxy data (Roeder 1990), 82 observations. The left panel shows the top
two clusters from the search algorithm with HUP weights on the Bayes factors, with
red lines delimiting the clusters. The right panel shows the top two clusters from the
search algorithm with unweighted Bayes factors, with blue lines delimiting the clusters.
In each panel the top and bottom clusters differ by one observation marking a shift
point in the long middle string. The stochastic search was run for 50, 000 iterations.

7.3 Simulated Regression Data

Next we give an example of the search algorithm using data simulated from the regres-
sion model

Yi ∼ β0 + β1xi + εi, i = 1, . . . , ni, εi ∼ N(0, 1) (18)

with

First ni observations : β0 = −1, β1 = −2

Second ni observations : β0 = 2, β1 = 0

Third ni observations : β0 = −1, β1 = 3

and the xi are generated uniformly in (0, 10). We actually did a large number of
simulations, using data sets of different sizes and different configurations. Here we only
present a typical result; the other simulations were very similar.
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Table 4: For n = 7 and n = 9, 25 data sets were generated from the indicated config-
uration class and Bayes factors were calculated for every partition of n = 7 or n = 9
observations. For the posterior odds columns, the number is the average percentile of
the posterior odds for the true model. For K-means we calculated the proportion of
times that K-means found the true partition out of ten tries. K-means was always
started at the number of clusters in the true partition.

Posterior Odds
Configuration Class Uniform Ewens-Pitman HUP K-means

(7) 0.942 0.999 0.999 −−−
(3, 4) 0.919 0.971 0.945 0.440

n = 7 (2, 2, 3) 0.908 0.826 0.919 0.470

(1, 2, 2, 2) 0.787 0.446 0.713 0.390

(1, 1, 1, 2, 2) 0.426 0.131 0.402 0.450

(9) 0.949 1.000 1.000 −−−
(3, 3, 3) 0.927 0.922 0.846 0.140

n = 9 (2, 3, 4) 0.902 0.933 0.909 0.270

(2, 2, 2, 3) 0.967 0.809 0.939 0.160

(1, 2, 3, 3) 0.875 0.755 0.734 0.210

(1, 2, 2, 2, 2) 0.944 0.469 0.891 0.130

Our example has ni = 10, and we use the data shown in Figure 7. The algorithm
was run for 50, 000 iterations and representative partitions, from the top 25 using HUP
weights, and the top 25 using unweighted Bayes factors, are shown in the Figure.

First note that when looking at the data without clusters identified (upper left panel)
it is quite difficult to discern what the true clusters might be. The lower left panel shows
that least squares, with knowledge of the true clusters, does reasonably well. In this
light, the performance of the Bayes factor with HUP weights is quite remarkable. The
top 25 partitions all had either 2 or 3 clusters, and the two partitions that we show
are representative. The three cluster partition, in particular, does a very good job of
recovering the underlying structure.

Similar to what we saw with the galaxy data, this example shows that searching
large data sets without prior weights on the partitions leads to finding partitions with
too many clusters. The rightmost panels in Figure 7 are representative of the top 25
partitions from the unweighted Bayes factor search, all of which had seven clusters.
The underlying structure is not recovered. As mentioned before, one reason why we are
doing cluster analysis is to find partitions with a small number of meaningful clusters.
As of now it seems that the best way to accomplish this is to have HUP weights on the
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Figure 7: Simulated data (n = 30) from model (18). The upper leftmost panel shows
the data without cluster labels. The lower leftmost panel shows the cluster-identified
data along with the true models (grey) and the least squares fit based on knowing
the cluster membership. The middle panels show typical results from the search with
HUP weights, and the right panels show typical results from unweighted searches. The
stochastic search was run for 50, 000 iterations.

partitions.

7.4 Analyses and Comparisons

In this section we look at two different data sets, from Economics and Biostatistics. We
see that in all cases the HUP Intrinsic Bayes procedure performs extremely well, not
only giving reasonable answers in its own right, but also comparing favorably with other
approaches.
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Figure 8: Results from the analysis of the Concha y Toro data. From left to right
the panels correspond to Quintana and Iglesias, Intrinsic Bayes with HUP weights,
and Mclust, respectively. The top panels show scatterplots of the stock index against
growth, with the plotting character corresponding to the cluster identifier. The lower
panels show the regression fit to the largest cluster, plotting the remaining points as
outliers.

Chilean Stock Market

Quintana and Iglesias (2003) (QI) analyze economic data pertaining to the winemaker
Concha y Toro. This is simple linear regression data, using a model of the form

yi = β0 + β1xi + εi,

where y = the Concha y Toro stock return, and x = a stock market index, similar to
the US Dow-Jones Index. The data are fully described by QI.

QI use a version of their full PPM model set up for outlier detection, as they are
interested in seeing if the Concha y Toro returns follow the market. The model they fit
has a common slope parameter, and they use individual intercepts to create the clusters.
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They use a PPM Gibbs sampler with the algorithm of Bush and MacEachern (1996).
For a variety of parameter choices their analysis supports partitioning the data into a
small number of clusters, three or four, where one cluster is very large (signifying the
data without outliers) and the other clusters are very small, containing the outliers.
The partition that they obtained, assuming normal errors, is displayed in Figure 8.

We ran the data with our algorithm using only default settings and HUP weights,
that is, we did not tune the model for outliers. The results from that analysis are also
shown in Figure 8. We found four clusters, one large one containing the data without
outliers, and three others which can clearly be considered outliers. Thus, our default
analysis gives results that were very similar to those of QI, with the exception that our
algorithm was only set up to find clusters, not specifically to find outliers.

Finally, we also ran Mclust on the data, which also found three clusters. However,
it did not find one large one and two small ones but rather two large ones and one small
one. The larger cluster from Mclust had a slope similar to the large clusters found by
QI and the HUP Bayes procedure, but the second largest cluster found by Mclust was
not found by the others; both QI and HUP Bayes put those observations into the first
cluster.

Developmental Toxicology Data

We look at the data analyzed by Dunson et al. (2003), and many other authors (see the
references therein). It is data of a developmental toxicity study of ethylene glycol in
mice conducted by the National Toxicology Program, and first reported in Price et al.
(1985). During pregnancy, mice were exposed to four levels of ethylene glycol (0, 0.75,
1.5, and 3 mg/kg). The response of interest is the fetal weight of the babies. Other
covariates were measured but here, like Dunson et al. (2003), we focus on two others
(in addition to dose level): litter size, and a 0− 1 indicator of malformations.

After removing some observations with missing data, the remaining data set had
n = 1048 observations. We ran a stochastic search for 50, 000 iterations using the
Bayes factors with HUP weights; we did not use the unweighted Bayes factor due to its
previous poor performance. The results are shown in Figure 9, which shows a partition
that is typical of the top 10. All of the top 10 partitions had five clusters, and there
was little difference among them.

The five clusters are quite interesting, showing that the partition aligns the mice
on the intercepts, with fetal weight increasing as we move from Cluster 1 to Cluster 5
and with the slopes having little effect. The effect of dose level is similar in the clusters
(parallel lines), decreasing the fetal weight slightly at higher doses. However, it is clear
that in this partition the effect of the ethylene glycol dose is independent of the fetal
weight. Also, the effect of litter size on fetal weight is also minimal in the partition.
The only substantial slope effects are in Cluster 1 for the litter size and malformation.
There we see an effect of increasing weight with litter size, and that zero malformations
align with the lower fetal weight mice, and increased malformations are associated with
higher fetal weights. However, in the other clusters, where all fetal weights are higher,
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Figure 9: Results from the cluster analysis of the developmental toxicology data. Shown
are the results of the partition with the highest posterior odds; the top 10 partitions all
had five clusters. The upper left panel shows the data identified by cluster assignment,
and the remaining panels show the slopes of the clusters for each of the three explanatory
variables. The stochastic search was run for 50, 000 iterations. The cluster sizes are
(23, 341, 187, 301, 196). (For clarity, not all points are plotted in the clusters, and they
are jiggled.)

there is no effect due to malformation.
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8 Discussion

We have presented an objective Bayesian analysis for clustering based on product parti-
tion models using a model selection approach. Our major finding concerns the sensitivity
of the procedure to the choice of the prior on model space.

We have seen that the “default” uniform prior on models and the Jensen-Liu prior
lead not only to inconsistent procedures, but also to small sample performance that is not
desirable. The Ewens-Pitman prior and the hierarchical uniform prior lead to Bayesian
consistent procedures under the null and weakly consistent under the alternative. In
the absence of prior information our preferred prior over the models is the hierarchical
uniform prior that arises from a decomposition of the set of partitions of the sample in
classes dictated by the number of clusters. Each class has also been split in subclasses
where in each subclass we group all the partitions that only differ by a permutation of the
components of the sample, and thus come from the same sampling model. This alleviates
the difficulty of assigning a prior to the partitions inside the classes. A truncated
Poisson-Intrinsic prior has been chosen for the number of clusters; it gives decreasing
probability to partitions with higher numbers of clusters, and has performed well in our
evaluations.

We also note the following about clustering priors:

1. Cluster analysis is useful, and will only result in useful inferences, when the answer
contains a relatively small number of clusters. The prior should move us toward
partitions with a small number of clusters, so the clusters themselves are large.
Some advantages of the Ewens-Pitman (λ) prior in clustering are that it is easy
to implement in Gibbs sampling schemes, and the expected number of clusters
is known to be an increasing function of λ which permits to elicit the parameter
assuming that meaningful prior information on the number of clusters is available.

2. Even if the truth is that there are a large number of clusters (say 500 observations
have 70 true clusters) this results in a useless inference. In such a case it is better
to find partitions with a small number of clusters that explain a large portion of
the variability.

3. The limit results of Theorem 2 point out the behavior of the four priors considered.
The fact that only the HUP converges to a proper prior tells us that it is correctly
compensating for the increasing number of models, which the other priors do not
do. Furthermore, even when the Ewens-Pitman prior is in the limit an improper
distribution, the limit of its posterior distribution is proper.

Other points that we would like to emphasize are:

4. The findings in our examples are consistent with the theory. The HUP produces
partitions with a small number of clusters, while the unweighted Bayes factors
almost always return a configuration with a large number of small clusters.

5. We can apply some of our previous results (Casella et al. 2009; Moreno et al. 2010)
to show that our procedure is consistent for choosing between two nested cluster
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models, as for instance Mrp and Mr1 , assuming that one of them is the true one.
In such a pairwise comparison the prior on model space plays no role, as there are
only two models. Pairwise consistency holds when the number of clusters grows
at the rate p = O(nα) for α < 1, and for α = 1 when the models Mr1 and Mrp

are not too close, that is when δrpr1 is greater than a positive number which can
be specified (Moreno et al. 2010).

6. Lemma 1 shows that for large n and when sampling from Mr1 , the Bayes factor
Brpr1(y) is constant across partitions rp in the class Rp. This asymptotic result
is not limited to intrinsic Bayes factors; for example we know that BIC is asymp-
totically equivalent to the intrinsic Bayes factor. Moreover, Casella et al. (2009)
show that the approximation holds for a wide class of priors.

7. When sampling from a model Mrt different from Mr1the asymptotic approxima-
tion of a generic Bayes factor Brpr1(y) is no longer constant across partitions in
Rp but depends on the pseudo-distances between the true model Mrt to any Mrp ,
which in turn depends on the design matrices of the models. In this case con-
sistency involves very stringent conditions on the design matrices and distances
which have a difficult interpretation. However, a weaker form of consistency under
the alternative is also satisfied for either the Ewens-Pitman or the HUP over the
models.
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Appendix

Appendix A Technical Details

In this section we prove the asymptotic results in Theorems 2, 3, and 4. We begin
with some preliminary lemmas that are needed, and then give detailed proofs of the
theorems.

A.1 Preliminary Lemmas

Lemma 2. For every p = 1, . . . , under the conditions n1 ≤ · · · ≤ np, and
∑p
i=1 ni = n,

the sum of the series

∑(
n

n1 . . . np

)
(λ+ 1)−n1 . . . (λ+ p)−np ≈ O

(
λHp
p

)−n
,

where λHp is the harmonic mean of (λ+ 1)−1, . . . , (λ+ p)−1.

Proof. To evaluate the sum, multiply and divide by (
∑p
i=1

1
λ+i )

n. Sum the resulting
multinomial to get

∑(
n

n1 · · ·np

)
(λ+ 1)−n1 . . . (λ+ p)−np =

(
p∑
i=1

1

λ+ i

)n
≈ O

(
λHp
p

)−n
.

Lemma 3. For every p the sum

S =
∑
Cp

1

n1 × · · · × np
,

where Cp = {(n1, ..., np) : n1 ≤ · · · ≤ np,
∑p
i=1 ni = n}, is of order O(n−1(log n)p−1).

Proof. Denote xi = ni/n, for i = 1, . . . , p− 1. Then we can write the sum S as

S = n−p
∑ 1

x1 · x2 · · · (1− x1 − x2 − · · · − xp−1)
,

where the multiple sum is extended for xi = 1/n, . . . , 1 − 1/n in steps of size 1/n, for
i = 1, . . . , p − 1. Now, the sum can be approximated, for large values of n, by the
multiple integral

np−1

∫ 1−1/n

1/n

· · ·
∫ 1−1/n

1/n

1

x1 · x2 · · · (1− x1 − x2 − · · · − xp−1)
dx1 . . . dxp−1 = np−1I,
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where the factor np−1 is the adjustment due to the 1/n step for each variable, and I is
the integral.. Thus, the original sum is∑ 1

n1 · · · · · np
≈ n−1I.

To evaluate the integral, consider the change of variables

θ1 = x1, θi =
xi

1−
∑i−1
j=1 xj

, i = 2, . . . , p− 1.

As the Jacobean J of the variables (x1, . . . , xp−1) with respect to the new variables

(θ1, . . . , θp−1) is J =
∏p−1
i=1

(
1−

∑i−1
j=1 xj

)
, the integral I in terms of the new variables

can be written as

I =

∫ 1− 1
n

1
n

. . .

∫ 1− 1
n−p+2

1
n−p+2

1

θ1 · θ2 · · · · · θp−1
dθ1 . . . dθp−1

which is equal to

I =

p−1∏
i=1

∫ 1− 1
n−i+1

1
n−i+1

1

θ i
dθi =

p−1∏
i=1

log(n− i) ∼ O((log n)p−1).

A.2 Proof of Theorem 2

For part (a), the proof is immediate as the distribution of Yn on the simplex Sp is
a discrete uniform distribution on the points of the simplex of the form

(
n1

n , . . . ,
np
n

)
,

where n1 ≤ · · · ≤ np and n1 + · · · + np = 1. From the definition of the hierarchical
uniform prior,

Pr(Yn =
(n1

n
, . . . ,

np
n

)
|Rp) = Pr(Rp;n1,...,np |Rp) =

1

b(n, p)
≈ p!

np−1
,

and this discrete uniform prior on the lattice

Lp = {
(n1

n
, . . . ,

np
n

)
, n1 ≤ · · · ≤ np, n1 + · · ·+ np = 1,

converges in distribution to a continuous uniform distribution on the simplex, which is
a Dirichlet D(1, . . . , 1) truncated at the simplex Sp.

For part (b), for the Ewens-Pitman prior, it follows that the prior probability of
Rp;n1,...,np , given p and λ, is

Pr(Rp;n1...np |Rp) ∝
(

n

n1 · · ·np

)
×

p∏
i=1

Γ(ni) =
1

n1 · · · · · np
.
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Thus, the distribution of Yn on the simplex Sp is

Pr
(
Yn =

(n1

n
, . . . ,

np
n

)∣∣∣Sp) ∝ 1
n1

n · · · · ·
np
n

.

It is clear from the form of the probability mass function of the discrete random
vector Yn, that the limiting distribution is given by the function (2).

For part (c), we can discard the redundancy term R(n1, . . . , np) for large n, as it is of
an order of magnitude much smaller than

(
n

n1...np

)
. We then write the prior probability

of Rp;n1,...,np as

Pr(Rp;n1,...,np |Rp) ∝
(

n

n1 · · ·np

)
.

This implies that

Pr(Zn =
(
n1, . . . , np

)
|Rp) ∝

(
n

n1 · · ·np

)
.

But, because of the proportionality symbol, we can write the preceding as

Pr(Zn =
(
n1, . . . , np

)
|Rp) ∝

(
n

n1 · · ·np

)(
1

p

)n
=

(
n

n1 · · ·np

)(
1

p

)n1

· · ·
(

1

p

)np
,

and this means that the unrestricted Zn follows a multinomial distribution with param-
eters n and p = (1/p, . . . , 1/p).

For large n, because of the restriction n1 +· · ·+np = n, this multinomial distribution
can be approximated by a multivariate normal distribution with the same mean vector
and covariance matrix, that is,

Zn ≈ Np(n(1/p, . . . , 1/p)t,Σp),

where the covariance matrix Σp = (n/p2)(pI − J), where J is a matrix of ones. Thus,
the distribution of Yn can be approximated by the following multivariate normal dis-
tribution

Yn ≈ Np
(

(1/p, . . . , 1/p)t,
1

n2
Σp

)
,

which converges to the degenerate random variable at mean vector ( 1
p , . . . ,

1
p ), as the

covariance matrix of Yn converges to the null matrix.

For part (d), from the expression of the Jensen-Liu prior (9), it follows that the prior
probability of Rp;n1,...,np , given p and λ, can be written

Pr(Zn = (n1, . . . , np)|Rp) = Pr(Rp;n1...np |Rp) ∝
(

n

n1 · · ·np

) p∏
i=1

(
(λ+ i)−1∑
i′(λ+ i′)−1

)ni
.

Thus, the distribution of Zn is the following multinomial distribution

Zn ∼M
(
n;

(λ+ 1)−1∑
i′(λ+ i′)−1

, . . . ,
(λ+ p)−1∑
i′(λ+ i′)−1

)
,
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and, for large n, the distribution of Yn can be approximated by the following multi-
variate normal distribution

Yn ≈ Np
(

(λ+ 1)−1∑
i′(λ+ i′)−1

, . . . ,
(λ+ p)−1∑
i′(λ+ i′)−1

)′
,

1

n2
Σp,λ

)
,

which converges to a random variable degenerate at the mean vector as the covariance
matrix of Yn converges to the null matrix.

Note. The Jensen-Liu prior restricted to the simplex shows a similar behavior to
the uniform prior on the set of all cluster models with at most T clusters, and both
are inconsistent. Indeed, when λ goes to infinity, the Jensen-Liu prior converges to the
Uniform prior on the set of all cluster models for all p ≤ T .

A.3 Proof of Theorem 3

Uniform Prior First, we will prove that the posterior probability of RT converges to 1,
when n goes to infinity. The uniform prior on the set of all models results in the prior

distribution on the cluster classes Pr(Rp) ∝ S
(p)
n , which can be approximated for large

n by Pr(Rp) ≈ pn

p! .

Applying Bayes theorem, we have that, for p = 1, . . . , T

Pr(Rp|y) ∝ Pr(Rp)×Bp 1(y) ∝ pn

p!

(
k p+ 1

n

)k(p−1)/2

.

Therefore, normalizing the Bayes factors, we have that as n→∞,

Pr(Rp|y) =

pn

p!

(
k p+1
n

)k(p−1)/2∑T
p=1

pn

p!

(
k p+1
n

)k(p−1)/2
→
{

0 for p = 1, . . . , T − 1,
1 for p = T .

To show inconsistency in the configuration classes, we have to show that within
RT the posterior distribution of the models does not converge in distribution to the
degenerate distribution corresponding to the vertex R1. In fact, from Theorem 2, under
the uniform prior on the set of all models, this posterior distribution converges to the
degenerate distribution on the equal size T clusters δ( 1

T ,...,
1
T ) ∈ RT . This completes the

proof for the uniform distribution.

Jensen-Liu From (9) it is easy to see that the marginal prior of p or, equivalently Rp, is

Pr(Rp) ∝ λp−1(λ+ p)
∑(

n

n1 . . . np

)
(λ+ 1)−n1 . . . (λ+ p)−np .

Using the asymptotic approximation of Lemma 2 the prior can be approximated by

Pr(Rp) ∝ λp−1(λ+ p)

(
λHp
p

)−n
.
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Recalling the expression for the Bayes factor given in Lemma 1, we have from Bayes
Theorem, for p = 1, . . . , T,

Pr(Rp|y) ∝ Pr(Rp)×Bp 1(y) ∝ λp−1(λ+ p)

(
λHp
p

)−n(
k p+ 1

n

)k(p−1)/2

.

The leading term of the posterior probability is (λHp /p)
−n, which is an increasing func-

tion of p for every n. Normalizing the posterior probabilities we finally get

Pr(Rp|y)→
{

0 for p = 1, . . . , T − 1,
1 for p = T .

It is also the case that within the cluster class RT the posterior distribution of the
models does not converge in distribution to the degenerate distribution corresponding
to the vertex R1. In fact, from Theorem 2, this posterior distribution converges to
the degenerate distribution of the model M( λH

T
p(λ+T )

,...,
λH
T

p(λ+1)

) ∈ RT . This completes the

proof.

Note that the limiting distribution in this case depends on the value of the para-
menter λ of the Jensen-Liu prior. Further, as λ increases, the limiting distribution
converges to the T -cluster model with equal size clusters.

A.4 Proof of Theorem 4

Hierarchical Uniform Prior We will prove that the posterior distribution of R1 converges
to 1, when n goes to infinity. By Bayes theorem, and the fact that the prior over the
cluster classes R1, . . . ,Rp is uniform, we have that, for p = 1, . . . , T ,

Pr(Rp|y) ∝ Pr(Rp)×Bp 1(y) ∝ Bp 1(y) =

(
k p+ 1

n

)k(p−1)/2

.

Therefore, normalizing the Bayes factors, we have that, as n→∞,

Pr(Rp|y) =

(
k p+1
n

)k(p−1)/2∑T
p=1

(
k p+1
n

)k(p−1)/2
→
{

0 for p = 2, . . . , T ,
1 for p = 1.

Ewens-Pitman Prior From (8), the joint prior for p and rp, we can calculate the marginal
prior of p or, equivalently Rp, as

Pr(Rp) ∝ λp−1np−1
∑ 1

n1 · · · · · np
.

Again recalling Lemma 1, Bayes Theorem yields, for p = 1, . . . , T ,

Pr(Rp|y) ∝ Pr(Rp)×Bp 1(y) ∝ λp−1np−1
∑ 1

n1 · · · · · np

(
k p+ 1

n

)k(p−1)/2

.
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Using Lemma 3, we can approximate the posterior by

Pr(Rp|y) ≈ Cpλp−1n−1(log n)p−1

(
k p+ 1

n

)k(p−1)/2

≈ Kp,k,λ n
−1(n−k/2 log n)p−1,

where Cp is a finite positive constant depending on p and Kp,k,λ is a positive constant
depending on p, k and λ. It is now clear that, as n→∞,

Pr(Rp|y)→
{

0 for p = 2, . . . , T ,
1 for p = 1.

A.5 Proof of Theorem 5

In fact, we prove that for any large but fixed sample size n, the posterior probability of
the true model Mrt given the data y, Pr(Mrt |y, n) can be made as small as desired by
choosing n sufficiently large. In fact,

Pr(Mrt |y, n) =
1

1 + ST (n)
, [Mrt ],

where

ST (n) =

T∑
p=1

∑
n1≤···≤np

n1+···+np=n

∑
rp∈Rp;n1,...,np

rp 6=rt

Brprt(y)
π(p, rp|n)

π(t, rt|n)
.

Under Mrt , and using Lemma 1, the Bayes factor Br′trt
(y) = Br′tr1

(y)/Brtr1(y) can
be approximated for large values of n, by

Br′trt
(y) ≈

(
1 + δrtrt
1 + δrtr′t

)n/2
= 1,

as the pseudodistance δrtr′t from the true model Mrt to any other model Mr′t
, in the

configuration class Rt;n1···nt is equal to 0. Further, for any exchangeable prior on the
models π(p, rp|n) we have that

π(t, r′t|n)

π(t, rt|n)
= 1, for r′t, rt ∈ Rt;n1···nt ,

and hence

ST (n) >
∑

r′t∈Rt;n1···nt
r′t 6=rt

Br′trt
(y)

π(t, r′t|λ, n)

π(t, rt|λ, n)
=

(
n

n1 . . . nt

)
− 1 > 0, [Mrt ].

As ST (n) goes to infinity as n increases, the posterior probability of the true model goes
to zero, and this proves the theorem. In fact, the posterior probability of any model in
the configuration class Rt;n1···nt goes to zero.
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A.6 Proof of Theorem 6

First we prove that, when sampling from any model Mν in R2, the limit of the posterior
probability of this set of configuration classes is 1, when n goes to infinity.

Note that the pseudodistance from any model in the configuration class Rp;n1···np
to any other model in the configuration class Rq;n′1···n′q does not depend on the par-
ticular models chosen within these classes, as the pseudodistance only depends on the
corresponding design matrices, whose elements only consist of 0’s and 1’s, as there are
no regressors. In our case, this fact implies that the Bayes factors only depend on the
ratio n1/n, and this greatly simplifies the computation of the posterior probabilities of
the configuration classes.

From Lemma 1, we have that under the true model Mν , the Bayes factor for com-
paring Mn1/n and M0, for large values of n, is approximated by

Bn1
n 0 ≈

( 3

n

)1/2
(

1 + δν 0

1 + δν n1/n

)n/2
[Mν ] for all n1 = 1, . . . , n− 1.

Therefore, the posterior distribution of R1 is

Pr(R1|yn) ≈ 1

1 +
∑bn/2c
n1=1

Pr(R2;n1,n2
)

Pr(R1)

(
3
n

)1/2( 1+δν 0

1+δν n1/n

)n/2 .
If we prove that the sum in the denominator

S(τ, n) =

bn/2c∑
n1=1

Pr(R2;n1,n2
)

Pr(R1;n)

( 3

n

)1/2( 1 + δν 0

1 + δν n1/n

)n/2
goes to infinity for the corresponding prior, then the posterior of R1 goes to 0, and
consequently the posterior of R2 goes to 1, when n tends to infinity.

But as the quotient
1 + δν 0

1 + δν n1/n

is strictly greater than 1 for any ν and n1/n in (0, 1/2], the last term of the sum S(τ, n)
grows exponentialy with n. On the other hand, as the prior ratios

Pr(R2;n1,n2)

Pr(R1;n)

are of orderO(log n), O(n), O(2n/2), andO(2n/2) for the Ewens-Pitman, the hierarchical
uniform, the Jensen-Liu and the uniform priors, respectively, the sum S(ν, n) goes to
infinity at an exponential rate.

This result means that we can restrict the study of consistency to the configuration
classses in R2.
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By Bayes theorem, the posterior probability of the configuration classes R2;n1,n2
, for

any prior Pr(R2;n1,n2
) and for large n, is approximated by

Pr(R2;n1,n2 |y) ∝ Pr(R2;n1,n2)(1 + δν n1/n)−n/2.

We first prove the theorem for the hierarchical unform prior. In this case all prior
probabilities are equal; thus the posterior is

PrHU (R2;n1,n2
|y) ∝ (1 + δν n1/n)−n/2.

Whithout loss of generality, assume that n∗1 = ν n; then the “likelihood” (1 +
δν n1/n)−n/2 as a function of n1, can be approximated, in a discrete neighborhood of n∗1
as follows: (

1 + δν n1/n

)−n/2 ≈ exp(−d|n∗1 − n1|/2).

But this approximation is also valid for all values of n1 = 1, . . . , bn/2c as the terms
outside the neighborhood decrease exponentially to 0.

Then, the posterior of the configuration classes can be approximated by

PrHU (R2;n1,n2
|y) ∝ exp(−d|n∗1 − n1|/2))∑bn/2c

n1=1 exp(−d|n∗1 − n1|/2)
.

Now, the sum of the denominator is finite as it can be decomposed into 1, when
n1 = n∗1, and twice the sum of a geometric series whose ratio is exp[−d/2]. Further, its
limit, when n tends to infinity, is

1 +
2 exp[−d/2]

1− exp[−d/2]
.

Thus, an upper bound b(d) of the posterior probability of the configurations is given by
the maximum of exp(−d|n∗1−n1|/2), which is attained at n1 = n∗1 and equals 1, divided
by the preceding limit, that is

0 < b(d) =
ed/2 − 1

ed/2 + 1
< 1, for all d > 0.

The same proof serves for the Ewens-Pitman distribution by noting that the prior

PrEP (R2;n1,n2) ∝ 1

n1(n− n1)

does not influence the posterior for, in this case, the “likelihood” dominates the prior.

This last argument cannot be applied, however, either to the uniform or the Jensen-
Liu priors, as these priors dominate the “likelihood”. In fact, the second part of the
theorem follows from the next one.
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A.7 Proof of Theorem 7

For the EP and HU priors and for large values of n, the distribution of the discrete
random variable Yn,

PrHU
(
Yn =

n1

n

)
∝ (1 + δν n1/n)−n/2

and

PrEP
(
Yn =

n1

n

)
∝ 1

n1(n− n1)
(1 + δν n1/n)−n/2

can be approximated by continuous densities, making the change of variable y = n1/n,
of the form

fEP (y|ν, n) ∝ y−1(1− y)−1 exp
(
− 1

2
dn|y − ν|

)
y, ν ∈ (0, 1/2],

and

fHU (y|ν, n) ∝ exp
(
− 1

2
dn|y − ν|

)
y, ν ∈ (0, 1/2],

respectively.

Both posterior densities are proper even though the asymptotic Ewens-Pitman prior
is improper. Also note that for large n, due to the exponential nature of the com-
mon asymptotic Bayes factor, both densities have the same asymptotic behavior —the
Bayes factor overwhelms the improper prior— and therefore, both densities can be ap-
proximated by a double exponential or Laplace distribution with location parameter
ν and scale parameter 2

dn , that is by a La(y|ν, 2
dn ), truncated at the set (0, 1/2]. As

the variance of the posterior distribution goes to 0, as n tends to infinity, the posterior
distribution of Yn converges in distribution to a degenerate distribution located at ν.
This proves the first part of the therorem.

For the uniform prior, and for large values of n, using the asymptotic normal approx-
imation of the prior in the proof of part c) of Theorem 2, when p = 2, the distribution
of Yn, can be approximated by the continuous density

fU (y|ν, n) ∝ n(y|1/2, 1/4n) exp
(
− 1

2
dn|y − ν|

)
y, ν ∈ (0, 1/2],

where n(y|·, ·) denotes the density function of the corresponding normal distribution.

This posterior density turns out to be proper in the interval (0, 1/2], but does not
correspond to any known distribution. However, it can be shown that for some values
of ν in a certain interval, which depends on d, the posterior can be approximated by
a normal distribution centered at µ(ν, d), a function which does not depend on n, and
variance tending to 0 as n goes to infinity. This implies that the posterior of Yn converges
in probability to a degenerate distribution at µ(ν, d).

The explicit expression of µ(ν, d) is a complicated formula. In fact, it is the solution
in y of the equation

d ν2

y (d ν(y − ν) + x)
= 4− 8y,
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which is the real root of a polynomial equation of third degree.

If, for instance, we assume that d = 1, it can be shown that ν < µ(ν, d) for all
0 < ν < 3/8, and this implies that there cannot be consistency for this range of values
of ν. Interestingly, if ν = 3/8, the procedure is consistent as µ(ν, 1) = ν.

The proof of weak inconsistency for the Jensen-Liu prior follows a similar pattern to
that of the uniform prior. In fact, the asymptotic distribution of the Jensen-Liu prior,
that follows from the proof of part d) in therorem 2 for p = 2, is the normal distribution

N
(
y
∣∣∣ λ+ 2

2λ+ 3
,

(λ+ 1)(λ+ 2)

n (2λ+ 3)2

)
;

thus, the continuous asymptotic approximation to the posterior of Yn is

fJL(y|ν, n) ∝ n
(
y
∣∣∣ λ+ 2

2λ+ 3
,

(λ+ 1)(λ+ 2)

n (2λ+ 3)2

)
exp

(
− 1

2
dn|y − ν|

)
y, ν ∈ (0, 1/2].

This is a proper logconcave density in the interval (0, 1/2] which can be approximated
by a (truncated) normal distribution, the mean of which is ρ(ν, d, λ), a function that
does not depend on n, and its variance goes to 0 as n tends to infinity. This means that
the distribution of Yn converges in probability to a degenerate distribution at ρ(ν, d, λ),
which is the solution in y of the equation

d ν2

y (d ν(y − ν) + x)
=

(2λ+ 3)(2− 3y + λ(2y − 1)

(λ+ 1)(λ+ 2)
.

As before, ρ(ν, d, λ) is the real solution of a polynomial cubic equation.

For most values of λ ∈ (0,∞), and of d ∈ (0,∞), the inequality ν < ρ(ν, d, λ) holds,
implying weak inconsistency. In particular, when λ = 0 and d = 1, then ρ(ν, d, λ) > 1/2,
so that we always have inconsistency for all values of ν. Also note that when λ → ∞,
limλ→∞ ρ(ν, d, λ) = µ(ν, d). This behavior is to be expected as the Jensen-Liu prior
approaches the uniform prior when λ increases to infinity.

Finally, note from the preceding that the Bayes procedures for the uniform and the
Jensen-Liu priors do place most probability (approaching 1 as n goes to infinity) in a
neighborhood of µ(ν, d) and ρ(ν, d, λ) respectively, and this implies that the probability
in a neighborhood of the true model Mν can be made as close to 0 as desired. This
means that the upper bound for the posterior probability of the true model is 0, and
this proves the last part of Theorem 7.
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