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BIAS CORRECTION IN MULTIVARIATE EXTREMES1
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Université Lyon 1∗ and Erasmus University†

The estimation of the extremal dependence structure is spoiled by the im-
pact of the bias, which increases with the number of observations used for the
estimation. Already known in the univariate setting, the bias correction proce-
dure is studied in this paper under the multivariate framework. New families
of estimators of the stable tail dependence function are obtained. They are
asymptotically unbiased versions of the empirical estimator introduced by
Huang [Statistics of bivariate extremes (1992) Erasmus Univ.]. Since the new
estimators have a regular behavior with respect to the number of observations,
it is possible to deduce aggregated versions so that the choice of the threshold
is substantially simplified. An extensive simulation study is provided as well
as an application on real data.

1. Introduction. Estimating extreme risks in a multivariate framework is
highly connected with the estimation of the extremal dependence structure. This
structure can be described via the stable tail dependence function (s.t.d.f.) L, first
introduced by Huang (1992). For any arbitrary dimension d , consider a multivari-
ate vector (X(1), . . . ,X(d)) with continuous marginal cumulative distribution func-
tions (c.d.f.) F1, . . . ,Fd . The s.t.d.f. is defined for each positive reals x1, . . . , xd as

lim
t→∞ tP

{
1 − F1

(
X(1)) ≤ t−1x1 or . . . or 1 − Fd

(
X(d)) ≤ t−1xd

}
= L(x1, . . . , xd).

Assuming that such a limit exists and is nondegenerate is equivalent to the classi-
cal assumption of existence of a multivariate domain of attraction for the compo-
nentwise maxima; see, for example, de Haan and Ferreira (2006), Chapter 7. The
previous limit can be rewritten as

lim
t→∞ t

[
1 − F

{
F−1

1

(
1 − t−1x1

)
, . . . ,F−1

d

(
1 − t−1xd

)}] = L(x1, . . . , xd),(1)

where F denotes the multivariate c.d.f. of the vector (X(1), . . . ,X(d)), and for
j = 1, . . . , d , F−1

j (t) = inf{z ∈ R :Fj(z) ≥ t}. Consider a sample of size n drawn
from F and an intermediate sequence, that is to say a sequence k = k(n) tending
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to infinity as n → ∞, with k/n → 0. Denote by x = (x1, . . . , xd) a vector of the
positive quadrant Rd+ = {(x1, . . . , xd) :xj ≥ 0, j = 1, . . . , d} and by X

(j)
k,n the kth

order statistics among n realizations of the margins X(j). The empirical estimator
of L(x) is obtained from (1), replacing F by its empirical version, t by n/k, and
F−1

j (1− t−1xj ) for j = 1, . . . , d by its empirical counterpart X
(j)

n−[nt−1xj ],n, so that

L̂k(x) = 1

k

n∑
i=1

1{X(1)
i ≥X

(1)
n−[kx1]+1,n or ... or X

(d)
i ≥X

(d)
n−[kxd ]+1,n}.(2)

See Huang (1992) for pioneering works on this estimator. Under suitable condi-
tions, it can be shown (see Section 2) that the estimator L̂k(x) has the following
asymptotic expansion:

L̂k(x) − L(x) ≈ ZL(x)√
k

+ α(n/k)M(x),(3)

where ZL is a continuous centered Gaussian process, α is a function that tends
to 0 at infinity and M is a continuous function. In particular

√
k{L̂k(x) − L(x)}

can be approximated in distribution by ZL(x), provided that
√

kα(n/k) tends to
0 as n tends to infinity. This condition imposes a slow rate of convergence of
the estimator L̂k(x), so one would be interested in relaxing this hypothesis. As a
counterpart, as soon as

√
kα(n/k) tends to a nonnull constant λ, an asymptotic

bias appears and is explicitely given by λM(x). The aim of this paper is to provide
a procedure that reduces the asymptotic bias. The latter will be estimated and then
subtracted from the empirical estimator. This kind of approach has been considered
in the univariate setting for the bias correction of the extreme value index with
unknown sign by Cai, de Haan and Zhou (2013). Refer also to Peng (1998, 2010)
Fraga Alves, de Haan and Lin (2003), Gomes, de Haan and Rodrigues (2008) and
Caeiro, Gomes and Rodrigues (2009) for previous contributions on this problem.
Note finally that the case of dependent sequences has been recently studied by
de Haan, Mercadier and Zhou (2014).

The nonparametric estimation of the extremal dependence structure has been
widely studied in the bivariate case; see, for instance, Huang (1992), Einmahl,
de Haan and Sinha (1997), Capéraà and Fougères (2000), Abdous and Ghoudi
(2005), Guillotte, Perron and Segers (2011) and Bücher, Dette and Volgushev
(2011). Bias correction problems in the bivariate context received less attention
than in the univariate setting. To the best of our knowledge, it seems to be reduced
to Beirlant, Dierckx and Guillou (2011) and Goegebeur and Guillou (2013), who
consider the estimation of bivariate joint tails, which differs slightly from our task.

As for the multivariate framework, de Haan and Resnick (1993) introduces
the empirical estimator. General approaches under parametric assumptions on the
function L have been developed, for example, by Coles and Tawn (1991), Joe,
Smith and Weissman (1992), Einmahl, Krajina and Segers (2008) and Einmahl,
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Krajina and Segers (2012). Apparently, no procedure correcting the bias can be
found in the literature for dimension greater than two. The objective of this article
is to fill this gap. Note that our method does not only consist of applying the uni-
variate bias procedure at several points. Indeed, the bias is no longer a parametric
function, so that the new feature is mainly the fact that we are able to estimate and
then subtract a function with an unknown form. Two families of asymptotically
unbiased estimators of the s.t.d.f. are proposed, and their theoretical behaviors are
studied. A practical advantage of these new estimators is that they can be aggre-
gated, thus reducing the variability.

The paper is organized as follows: Section 2 contains hypotheses and first re-
sults. The bias reduction procedure is described in Section 3, and the main the-
oretical results are presented therein. Several theoretical models are exhibited in
Section 4 that satisfy the required assumptions. Section 5 illustrates the perfor-
mance of the new estimators on both simulated and real data. The estimation of
side components is postponed up to Section 6. The proofs are relegated to Sec-
tion 8.

2. Notation, assumptions and first results. Let X1 = (X
(1)
1 , . . . ,X

(d)
1 ), . . . ,

Xn = (X
(1)
n , . . . ,X

(d)
n ) be independent and identically distributed multivariate ran-

dom vectors with c.d.f. F and continuous marginal c.d.f.’s Fj for j = 1, . . . , d .
Suppose F is in the domain of attraction of an extreme value distribution with
c.d.f. G. We recall that it supposes the existence for j = 1, . . . , d of sequences
a

(j)
n > 0, b

(j)
n of real numbers and a c.d.f. G with nondegenerate marginals such

that

lim
n→∞P

(
max

{
X

(1)
1 , . . . ,X(1)

n

} ≤ a(1)
n x1 + b(1)

n , . . . ,

max
{
X

(d)
1 , . . . ,X(d)

n

} ≤ a(d)
n xd + b(d)

n

) = G(x)

for all points x where G is continuous. Denote by Gj the j th marginal c.d.f. of G.
It is possible to show that the domain of attraction condition can be expressed as
condition (1) along with the convergence of the marginal distributions to the Gj ’s,
and that

L(x) = − logG
({− logG1}−1(x1), . . . , {− logGd}−1(xd)

)
.(4)

Let μ be the measure defined by

μ
{
A(x)

} := L(x),(5)

where A(x) := {u ∈ R
d+: there exists j such that uj > xj } for any vector x ∈R

d+.
Several conditions are now described. The first two have been introduced by

de Haan and Resnick (1993):

– The first-order condition consists of assuming that the limit given in (1) exists,
and that the convergence is uniform on any [0, T ]d , for T > 0.
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– The second-order condition consists of assuming the existence of a positive
function α, such that α(t) → 0 as t → ∞, and a nonnull function M such that
for all x with positive coordinates,

lim
t→∞

1

α(t)

{
t
[
1 − F

{
F−1

1

(
1 − t−1x1

)
, . . . ,F−1

d

(
1 − t−1xd

)}] − L(x)
}

(6)
= M(x),

uniformly on any [0, T ]d , for T > 0.
– The third-order condition consists of assuming the existence of a positive func-

tion β , such that β(t) → 0 as t → ∞, and a nonnull function N such that for all
x with positive coordinates,

lim
t→∞

1

β(t)

{
t[1 − F {F−1

1 (1 − t−1x1), . . . ,F
−1
d (1 − t−1xd)}] − L(x)

α(t)
− M(x)

}

(7)
= N(x),

uniformly on any [0, T ]d , for T > 0. This implicitly requires that N is not a
multiple of the function M ; see Remark 2.

REMARK 1. The function L defined by (1) and that appears in (6) and (7) is
homogeneous of order 1. We refer, for instance, to de Haan and Ferreira (2006),
pages 213 and 236. Most of the estimators constructed in this paper use the ho-
mogeneity property. Note that pointwise convergence in (1) entails uniform con-
vergence on the square [0, T ]d . See, for instance, de Haan and Ferreira (2006),
page 237.

REMARK 2. If N = c ·M for some constant c, the relation can be reformulated
as

lim
t→∞

1

β(t)

{
t[1 − F {F−1

1 (1 − t−1x1), . . . ,F
−1
d (1 − t−1xd)}] − L(x)

α(t)(1 + cβ(t))
− M(x)

}

= 0,

which we want to exclude. We refer to de Haan and Ferreira [(2006), page 385],
to see that the same complication turns up in the one-dimensional case.

REMARK 3. The functions M and N involved in the second and third-order
conditions satisfy some usual properties; see, for example, de Haan and Resnick
(1993). More specifically, one can show that there exist nonpositive reals ρ and ρ ′
such that α (resp., β) is a regularly varying function of order ρ (resp., ρ ′), that is,
α(tz)/α(t) → zρ when t → ∞, for each positive z. Besides, M is homogeneous
of order 1 − ρ, that is to say M(rx) = r1−ρM(x), for each positive r and x with
positive coordinates. Finally, the function N is homogeneous of order 1 − ρ − ρ ′.
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REMARK 4. An interesting situation to consider is when the c.d.f. F is in the
domain of attraction of an extreme value distribution G with independent compo-
nents, that is, G = ∏d

j=1 Gj . Such a c.d.f. is said to have the property of asymptotic
independence. In this case, the function M is the limit of the joint tail of the dis-
tribution, and in dimension 2, the coefficient of tail dependence η introduced by
Ledford and Tawn (1996), Ledford and Tawn (1997) equals 1/(1 − ρ), where ρ is
defined in Remark 3.

In this paper, we will handle two sets of assumptions. First consider:

(A2) – the second-order condition is satisfied, so that (6) holds;
– the coefficient of regular variation ρ of the function α defined in (6) is

negative;
– the function M defined in (6) is continuous.

These hypotheses allow us to get the asymptotic uniform behavior of L̂k , the em-
pirical estimator of L defined by (2), as detailed in the following proposition.

PROPOSITION 1. Let X1, . . . ,Xn be independent multivariate random vectors
in R

d with common joint c.d.f. F and continuous marginal c.d.f.’s Fj for j =
1, . . . , d . Assume that the set of conditions (A2) holds. Suppose further that the
first-order partial derivatives of L (denoted by ∂jL for j = 1, . . . , d) exist and that
∂jL is continuous on the set of points {x = (x1, . . . , xd) ∈ R

d+ :xj > 0}. Consider

L̂k the estimator of L defined by (2) where k is such that
√

kα(n/k) → ∞. Then
as n tends to infinity, we get

sup
0≤x1,...,xd≤T

∣∣∣∣ 1

α(n/k)

{
L̂k(x) − L(x)

} − M(x)

∣∣∣∣ P−→ 0.

Under stronger assumptions, and for some choice of the intermediate sequence,
the asymptotic distribution of the previous stochastic process can be obtained after
multiplication by the rate

√
kα(n/k). For a positive T , let D([0, T ]d) be the space

of real valued functions that are right-continuous with left-limits. Now introduce
the conditions:

(A3) – the third-order condition is satisfied, so that (6) and (7) hold;
– the coefficients of regular variation ρ and ρ ′ of the functions α and β

defined in (6) and (7) are negative;
– the function M defined in (6) is differentiable and N defined in (7) is

continuous.

PROPOSITION 2. Assume that the conditions of Proposition 1 are fulfilled and
that the set of conditions (A3) hold. Consider L̂k the estimator of L defined by (2)
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where k is such that
√

kα(n/k) → ∞ and
√

kα(n/k)β(n/k) → 0. Then as n tends
to infinity,

√
k

{
L̂k(x) − L(x) − α

(
n

k

)
M(x)

}
d→ ZL(x),(8)

in D([0, T ]d) for every T > 0, where

ZL(x) := WL(x) −
d∑

j=1

WL(xj ej )∂jL(x).(9)

The process WL above is a continuous centered Gaussian process with covari-
ance structure E[WL(x)WL(y)] = μ{R(x) ∩ R(y)} given in terms of the measure
μ defined by (5) and of R(x) = {u ∈ R

d+: there exists j such that 0 ≤ uj ≤ xj }.
REMARK 5. A difference between the previous result and Theorem 7.2.2 of

de Haan and Ferreira (2006) consists of the choice of the intermediate sequence
that is larger here. Indeed, we suppose |√kα(n/k)| → ∞ whereas they choose
k(n) = o(n−2ρ/(1−2ρ)), which implies

√
kα(n/k) → 0. Our choice requires the

more informative second-order condition (6). A nonnull asymptotic bias appears
in our framework.

REMARK 6. The conditions on k, α and β required in Proposition 2 are not
too restrictive: because of the regular variation of α and β , they are implied by the
choice k(n) = nκ , with κ ∈ (− 2ρ

1−2ρ
,− 2(ρ+ρ′)

1−2(ρ+ρ′) ).

3. Bias reduction procedure. As pointed out in Remark 5, a nonnull asymp-
totic bias α(n/k)M(x) appears from Proposition 2. The bias reduction procedure
will consist of subtracting the estimated asymptotic bias obtained in Section 3.1.
The key ingredient is the homogeneity of the functions L and M mentioned in
Remarks 1 and 3. This homogeneity will also provide other constructions to get
rid of the asymptotic bias.

3.1. Estimation of the asymptotic bias of L̂k . Equation (8) suggests a natural
correction of L̂k as soon as an estimator of α(n/k)M(x) is available. In order to
take advantage of the homogeneity of L, let us introduce a positive scale parameter
a which allows to contract or to dilate the observed points. We denote

L̂k,a(x) := a−1L̂k(ax)(10)

and

	̂k,a(x) := L̂k,a(x) − L̂k(x).(11)

From (8) one gets
√

k

{
L̂k,a(x) − L(x) − α

(
n

k

)
a−ρM(x)

}
d→ a−1ZL(ax),(12)
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in D([0, T ]d) for every T > 0. Equations (11) and Proposition 1 yield as n tends
to infinity,

	̂k,a(x)

α(n/k)

P−→ (
a−ρ − 1

)
M(x).(13)

Fixing a such that a−ρ − 1 = 1, a natural estimator of the asymptotic bias of
L̂k(x) is thus 	̂k,2−1/ρ̂ (x), where ρ̂ is an estimator of ρ. Recall that the unknown
parameter ρ is the regular variation index of the function α involved in the-second
order condition. Let kρ be an intermediate sequence that represents the number of
order statistics used in the estimator ρ̂. Assume that kρ � k where k = k(n) is the
sequence used in Proposition 2. A first asymptotically unbiased estimator of L(x)

can be defined as
◦
Lk,1,kρ (x) := L̂k(x) − 	̂k,2−1/ρ̂ (x).(14)

The asymptotic behavior of this estimator is provided in Theorem 3 and Remark 8.
We refer the reader to Section 6 for more details concerning the estimation of ρ.

3.2. Estimation of the asymptotic bias of L̂k,a . The previous construction
can be easily generalized by correcting the estimator L̂k,a instead of L̂k . Indeed,
from (12) one can see that the asymptotic bias of L̂k,a(x) is α(n

k
)a−ρM(x). Recall

that when n tends to infinity, one has for any positive real b,

	̂k,b(x)

α(n/k)

P−→ (
b−ρ − 1

)
M(x).

Thus fixing b such that b−ρ − 1 = a−ρ will help to cancel the asymptotic bias. It
yields the following asymptotically unbiased estimator of L:

◦
Lk,a,kρ (x) := L̂k,a(x) − 	̂k,(a−ρ̂+1)−1/ρ̂ (x).(15)

THEOREM 3. Assume that the conditions of Proposition 2 are fulfilled, and
consider the estimator of L defined by (15). Let kρ be an intermediate sequence
such that

√
kρα(n/kρ)(ρ̂ − ρ) converges in distribution. Suppose also that k is

such that k = o(kρ),
√

kα(n/k) → ∞ and
√

kα(n/k)β(n/k) → 0. Under these
assumptions, as n tends to infinity,

√
k
{ ◦
Lk,a,kρ (x) − L(x)

} d→ ◦
Ya(x),(16)

in D([0, T ]d) for every T > 0, where
◦
Ya is a continuous centered Gaussian process

defined by
◦
Ya(x) := ZL(x) − b−1ZL(bx) + a−1ZL(ax)

with covariance E[ ◦
Ya(x)

◦
Ya(y)] = E[ZL(x)ZL(y)](1 − b−1/2 + a−1/2)2 and b =

(a−ρ + 1)−1/ρ .
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REMARK 7. The assumption that
√

kρα(n/kρ)(ρ̂ − ρ) converges in distribu-
tion will be reconsidered in Section 6.

REMARK 8. Theorem 3 remains true when a = 1 and thus characterizes the
asymptotic behavior of the estimator given in (14). For this particular choice of a,
the covariance reduces to E[ZL(x)ZL(y)](2 − 21/2ρ)2.

3.3. An alternative estimation of the asymptotic bias of L̂k,a . The procedure
of bias reduction introduced in the previous section requires the estimation of the
second-order parameter ρ. It is actually possible to avoid it, making use of com-
binations of estimators of L. The asymptotic bias of L̂k,a(x) is α(n

k
)a−ρM(x), as

already noted from (12). Making use of (13) and homogeneity of M , one gets as n

tends to infinity,

	̂kρ,a(ax)

	̂kρ,a(ax) − a	̂kρ,a(x)

P−→ a−ρ

a−ρ − 1
,

for any intermediate sequence kρ that satisfies
√

kρα(n/kρ) → ∞. The expression

	̂k,a(x)
	̂kρ,a(ax)

	̂kρ,a(ax) − a	̂kρ,a(x)

can thus be used as an estimator of the asymptotic bias of L̂k,a(x). After simplifi-
cations, this leads to a new family of asymptotically unbiased estimators of L(x)

by substracting the estimated bias from L̂k,a(x), namely

L̃k,a,kρ (x) = L̂k(x)	̂kρ,a(ax) − L̂k(ax)	̂kρ,a(x)

	̂kρ,a(ax) − a	̂kρ,a(x)
,(17)

which is well defined for any real number a such that 0 < a < 1.

THEOREM 4. Assume that the conditions of Proposition 2 are fulfilled, and
consider the estimator of L defined by (17). Let kρ be an intermediate se-
quence such that

√
kρα(n/kρ)(ρ̂ − ρ) converges in distribution. Suppose also

that k is such that k = o(kρ),
√

kα(n/k) → ∞,
√

k = O(
√

kρα(n/kρ)) and√
kα(n/k)β(n/k) → 0. Assume moreover that the function M never vanishes ex-

cept on the axes. Then, as n tends to infinity,
√

k
{
L̃k,a,kρ (x) − L(x)

} d→ Ỹa(x),(18)

in D([ε, T ]d) for every ε > 0 and T > 0, where Ỹa is a continuous centered
Gaussian process with covariance E[Ỹa(x)Ỹa(y)] given by E[ZL(x)ZL(y)](a−ρ −
1)−2(a−ρ − a−1/2)2.
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REMARK 9. The covariance function specified above is decreasing with re-
spect to the parameter a for any fixed value of ρ. This suggests at first glance to
choose a close to 1 in order to reduce the asymptotic variance of Ỹa , but this would
give a degenerate form of (17). See Section 5 for practical considerations for the
choice of a.

4. Theoretical examples. The aim of this section is to furnish several multi-
variate distributions that satisfy the third-order condition (7). For the sake of sim-
plicity, expressions are displayed in the bivariate setting. We start by focusing on
heavy-tailed margins. In this case, a first possible step to get the pointwise con-
vergence is to obtain, for well-chosen positive reals p and q , an expansion (for t

tending to infinity) of the form

tP
(
X > tpx or Y > tqy

)
= T1(x, y) + α(t)T2(x, y) + α(t)β(t)T3(x, y) + o

(
α(t)β(t)

)
,

with T1(1,1) > 0. One can then identify each term involved in (7) as follows:

L(x, y) = T1
(
a(x), b(y)

)
, M(x, y) = T2

(
a(x), b(y)

)
and

N(x, y) = T3
(
a(x), b(y)

)
,

where

a(x) = x−p{
T1(1,+∞)

}p
, b(x) = x−q{

T1(+∞,1)
}q

.

Applying Resnick [(1986), Corollary 5.18], one can check that in such a frame-
work a form of the bivariate extreme value distribution G is given by

G(x,y) = exp
(
−T1(x, y)

T1(1,1)

)
.

4.1. Powered norm densities. Following the idea of Resnick [(1986), pages
276 and 286] consider first a norm ‖ · ‖, and a cone D of R2, that is to say, a set
such that if (x, y) ∈ D, then (tx, ty) ∈ D for every positive t . Without loss of
generality, suppose that (1,1) ∈ D. Let (X,Y ) be a bivariate random vector with
probability density function given by

f (x, y) := c1D(x, y)

(1 + ‖(x, y)T ‖α)β
,

where c is a normalizing positive constant and where α and β are some positive
real numbers such that αβ > 2. Set AD(x, y) := {(u, v) ∈ D :u > x or v > y}, and
define p := (αβ − 2)−1. One can check that for j = 1,2,3,

Tj (x, y) =
∫∫

AD(x,y)

ccj dudv

‖(u, v)T ‖α(β+j−1)
,

where c1 = 1, c2 = −β and c3 = β(β + 1)/2. The functions M and N are homo-
geneous with order given through ρ = ρ′ = −αp.

Let us discuss some particular choices of the norm:
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– For the L1-norm and α = 1, the model coincides with the bivariate Pareto
of type II distribution, denoted by BPII(β) in this paper, and referred to as
MP(2)(II)(0,1, β − 2) in Kotz, Balakrishnan and Johnson (2000), page 604.
In this case, p = q = (β − 2)−1, and L(x, y) = x + y − (x−p + y−p)−1/p . The
latter s.t.d.f. is known as the negative logistic model, introduced by Joe (1990);
see also Beirlant et al. (2004), page 307.

– When the Euclidean norm is chosen, one recovers the bivariate Cauchy distri-
bution for α = 2, β = 3/2 and p = 1. On the positive quadrant, that means for
D =R

2+, we have c = 2/π , T1(u, v) = c(u−2 +v−2)1/2 and a(x) = b(x) = c/x.
On the whole plane, which means that D = R

2, we get c = 1/(2π), T1(u, v) =
c{u−1 + v−1 + (u−2 + v−2)1/2} and a(x) = b(x) = 2c/x. This can also be seen
as a particular case of the following item.

– The Student distributions with Pearson correlation coefficient θ arise choosing
the norm ‖(x, y)T ‖ = ν−1/2(x2 − 2θxy + y2)1/2, for a positive real number ν,
α = 2, β = (ν +2)/2 and p = ν−1. In this case, the integral form of the function
T1 cannot be totally simplified, and one classically writes the s.t.d.f. as

L(x, y) = (x + y)

[
y

x + y
Fν+1

{
(y/x)1/ν − θ√

1 − θ2

√
ν + 1

}

+ x

x + y
Fν+1

{
(x/y)1/ν − θ√

1 − θ2

√
ν + 1

}]
,

where Fν+1 is the c.d.f. of the univariate Student distribution with ν + 1 de-
grees of freedom. This dependence structure is also obtained for some elliptical
models; see, for example, [Krajina (2012), page 1813] and next subsection.

– Other choices for the norm would lead to other distributions. Note that one can
also relax the symmetry condition, considering, for instance, the Mahalanobis
pseudo-norm defined by ‖(x, y)T ‖2 = (x/σ)2 − 2ρ(x/σ)(y/τ) + (y/τ)2 for a
real number ρ such that |ρ| < 1 and some positive real numbers σ and τ .

4.2. Elliptical distributions. Consider the usual representation of the centered
elliptical distribution (X,Y )T = RAU , in terms of a positive random variable R,
a 2 × 2 matrix A such that � = AAT is of full rank, and a bivariate random vector
U independent of R, uniformly distributed on the unit circle of the plane. Assume
that R has a probability density function denoted by gR . One can then express the
probability density function of (X,Y ) as

f (x, y) := 1

|det A|gR

{
(x, y)�−1(x, y)T

}
.

A sufficient condition to satisfy (7) is to assume that the distribution of R belongs
to the Hall and Welsch class [Hall and Welsh (1985)], namely,

P(R > r) = cr−1/γ {
1 + D1r

ρ/γ + D2r
(ρ+ρ1)/γ + o

(
r(ρ+ρ1)/γ

)}
,



BIAS CORRECTION IN MULTIVARIATE EXTREMES 913

with positive real c, nonnull reals D1 and D2 and negative reals ρ and ρ1.
One can check that, for j = 1,2,3,

Tj (x, y) = c

2πγ |det A|
∫∫

{(u,v) : u>x or v>y}
dudv

{(u, v)�−1(u, v)T }1+1/(2γ )+pj
,

where p1 = 0,p2 = −ρ/(2γ ) and p3 = −(ρ + ρ1)/(2γ ).
Assuming for simplicity that � = (1 θ

θ 1

)
, the s.t.d.f. can be written as

L(x, y) = (x + y)

[
y

x + y
F1/γ+1

{
(y/x)γ − θ√

1 − θ2

√
1/γ + 1

}

+ x

x + y
F1/γ+1

{
(x/y)γ − θ√

1 − θ2

√
1/γ + 1

}]
,

which is the form already obtained for the Student distribution in Section 4.1 for
ν = 1/γ . See Demarta and McNeil (2005) for more details. Note finally that for
a general matrix � and the special case gR(r) = c(1 + rα)−β , one recovers the
Mahalanobis pseudo-norm already mentioned in the previous subsection.

When dealing with margins that are not heavy tailed, the calculus is done di-
rectly from (6). The last two examples of bivariate distributions have short and
light tailed margins, respectively.

4.3. Archimax distributions. Consider the bivariate c.d.f. defined for each 0 ≤
u, v ≤ 1 by

F(u, v) = {
1 + L

(
u−1 − 1, v−1 − 1

)}−1
,(19)

given in terms of a s.t.d.f. L. This distribution has standard uniform univariate mar-
gins and corresponds to a particular case of Archimax bivariate copulas introduced
in Capéraà, Fougères and Genest (2000), in which the function φ(t) = t−1 − 1 is
the Clayton Archimedean generator with index 1. Expanding the left-hand side
term of (6) leads to, as t tends to infinity,

t
{
1 − F

(
1 − t−1x,1 − t−1y

)} = L(x, y) + t−1M(x,y) + t−2N(x, y) + o
(
t−2)

,

where

M(x,y) := x2∂1L(x, y) + y2∂2L(x, y) − L2(x, y),

N(x, y) := x4/2∂2
11L(x, y) + x2y2∂2

12L(x, y) + y4/2∂2
22L(x, y)

+ L3(x, y) + (
x3 − 2x2L(x, y)

)
∂1L(x, y)

+ (
y3 − 2y2L(x, y)

)
∂2L(x, y).

This allows us to identify ρ = ρ′ = −1. Above, the notation ∂ijL stands for
∂2L/(∂xi ∂xj ).
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4.4. Multivariate symmetric logistic distributions. Consider the c.d.f. defined
by

F(x, y) = exp
{−(

e−x/s + e−y/s)s},(20)

for each x, y ∈ R, which corresponds to the bivariate extreme value distribution
with Gumbel univariate margins F1(x) = F2(x) = exp{−e−x} and symmetric lo-
gistic s.t.d.f. L(x, y) = (x1/s + y1/s)s , where 0 < s ≤ 1. This distribution was
introduced in Tawn (1988); see, for example, Beirlant et al. (2004), page 304. Ex-
panding t[1 − F {F−1

1 (1 − t−1x),F−1
2 (1 − t−1y)}] leads to

L(x, y) + t−1M(x,y) + t−2N(x, y) + o
(
t−2)

,

where

M(x,y) := 1
2

(
xx1/s + yy1/s){L(x, y)

}1−1/s − 1
2

{
L(x, y)

}2
,

N(x, y) := 1

3

(
x2x1/s + y2y1/s){L(x, y)

}1−1/s

+ 1 − s

8s
(xy)1/s(x − y)2{

L(x, y)
}1−2/s

+ 1

3!
{
L(x, y)

}3 − 1

2

(
xx1/s + yy1/s){L(x, y)

}2−1/s
.

This allows us to identify ρ = ρ′ = −1. The identification of second and third-
order terms has previously be derived by Ledford and Tawn (1997).

5. Finite sample performances. The purpose of this section is to evaluate
the performance of the estimators of L introduced in Section 3. For simplicity, we
will focus on dimension 2, and simulate samples from the distributions presented
in Section 4. Thanks to the homogeneity property, one can focus on the estimation
of t �→ L(1 − t, t) for 0 ≤ t ≤ 1, which coincides with the Pickands dependence
function A; see, for example, Beirlant et al. (2004), page 267. Considering first the
estimation at t = 1/2 leads to the definition of aggregated versions of our estima-
tors. These new estimators will be both compared in terms of L1-errors for L or
associated level curves.

5.1. Estimators in practice. Let us start with the estimation of L(1/2,1/2) for
the bivariate Student distribution with 2 degrees of freedom. This model is a par-
ticular case of Sections 4.1 and 4.2. For one sample of size 1000, Figure 1 gives, as
functions of k, the estimation of L at point (1/2,1/2) by L̂k ,

◦
Lk and L̃k , respec-

tively, defined by (2), (15) and (17). For the last two estimators, the parameters
have been tuned as follows: a = 0.4, kρ = 990 and ρ estimated using (22) with
a = r = 0.4. These values have been empirically selected based on intensive simu-
lation, and will be kept throughout the paper. One can check from Figure 1 that the
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FIG. 1. Estimation of L(1/2,1/2) for the bivariate Student(2) law based on a sample of size 1000.

empirical estimator L̂k behaves fairly well in terms of bias for small values of k.
Besides, the bias is efficiently corrected by the two estimators

◦
Lk and L̃k . Since

the bias almost vanishes along the range of k, one can think about reducing the
variance through an aggregation in k (via mean or median) of

◦
Lk or L̃k . This leads

us to consider the two following estimators:
◦
Lagg := Median(

◦
Lk, k = 1, . . . , κn),

L̃agg := Median(L̃k, k = 1, . . . , κn),

where n is the sample size and κn is an appropriate fraction of n. Their performance
will be compared to those of the family {L̂k, k = 1, . . . , n−1}. Simplified notation
{L̂k, k} will be used instead of {L̂k, k = 1, . . . , n − 1}. Because any s.t.d.f. L sat-
isfies max(t,1 − t) ≤ L(1 − t, t) ≤ 1, the competitors have been corrected so that
they satisfy the same inequalities.

REMARK 10. If κn satisfies the condition imposed on kn in Theorems 3 and 4,
then the aggregated estimators

◦
Lagg and L̃agg would inherit the asymptotic proper-

ties of
◦
Lk and L̃k . Indeed, all the estimators jointly converge, since they are based

on a single process.

REMARK 11. In the following simulation study, κn is arbitrarily fixed to n−1.
Such a choice is open to criticism since it does not satisfy the theoretical assump-
tions mentioned in the previous remark. But it is motivated here by the fact that the
bias happened to be efficiently corrected, even for very large values of k, as already
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illustrated on Figure 1. Note, however, that such a choice would not be systemat-
ically the right one. In presence of more complex models such as mixtures, κn

should not exceed the size of the subpopulation with heaviest tail. To illustrate this
point, take, for example, the bivariate c.d.f. F = pG + (1 − p)H , where G is the
c.d.f. of the bivariate BPII(3) model, and H is the uniform c.d.f. on [0,1]2. Then
the s.t.d.f. is L(x, y) = x + y − (1/x + 1/y)−1, and only p% of the data belong to
the targeted domain of attraction, so κn should not exceed pn.

Classical criteria of quality of an estimator θ̂ of θ are the absolute bias (ABias)
and the mean square error (MSE) defined by

ABias = 1

N

N∑
i=1

∣∣θ̂ (i) − θ
∣∣,

MSE = 1

N

N∑
i=1

(
θ̂ (i) − θ

)2
,

where N is the number of replicates of the experiment and θ̂ (i) is the estimate from
the ith sample. Note that what we call Abias is also referred as MAE (for Mean
Absolute Error) in the literature. Figure 2 plots these criteria in the estimation
of L(1/2,1/2) for the bivariate Student(2) model when n = 1000 and N = 200.
Figure 2 exhibits the strong dependence of the behavior of L̂k in terms of k, as
well as the efficiency of the bias correction procedures. The estimator

◦
Lk given

by (15) outperforms the estimator L̃k defined by (17), no matter the value of k.
Moreover, the ABias and MSE curves associated to

◦
Lk almost reach the minimum

FIG. 2. (a) ABias, (b) MSE for the estimation of L(1/2,1/2) in the bivariate Student(2) model
when n = 1000 as a function of k.
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of those of L̂k . Finally, the aggregated version
◦
Lagg answers surprisingly well to

the estimation problem of the s.t.d.f. L. First, its performance is similar to the best
reachable from the original estimator L̂k . Second, it gets rid of the delicate choice
of a threshold k (or would at least simplify this choice; see Remark 11). These
comparisons have also been made for five other models obtained from Section 4.
The results are very similar to the ones obtained for the bivariate Student(2) dis-
tribution and are therefore not presented.

5.2. Comparisons in terms of L1-error for L. The comparisons are now han-
dled not only at a single point, but for the whole function using an L1-error defined
as follows:

1

T + 1

T∑
t=1

∣∣∣∣L̂
(

1 − t

T
,

t

T

)
− L

(
1 − t

T
,

t

T

)∣∣∣∣,(21)

where T is the size of the subdivision of [0,1]. Figure 3 gives the boxplots based
on N = 100 realizations of

◦
Lagg, L̃agg and {L̂k, k} for T = 30 in the case of six

bivariate models:

• First row: Cauchy and Student(2) models;
• Second row: BPII(3) model and Symmetric logistic model with s = 1/3;
• Third row: Archimax model with logistic generator L(x, y) = (x2 + y2)1/2 and

mixed generator L(x, y) = (x2 + y2 + xy)/(x + y).

As already observed in Figure 2, the estimator
◦
Lagg is again very competitive

compared to the best element of {L̂k, k}, no matter the choice of model. Recall
that the value of k leading to the best L̂k depends crucially on the model and
is consequently unknown in practice, which invites any users to apply this new
procedure.

The estimator L̃agg is definitely less competitive compared to
◦
Lagg. Given these

results we will not pursue with the L̃agg estimator in the rest of this paper, and will

focus our attention on the behavior of
◦
Lagg.

5.3. Comparisons between
◦
Lagg, a convex version of

◦
Lagg, and Peng’s estima-

tor. A natural step is now to compare the performance of our best estimator
◦
Lagg

with an existing competitor, recently introduced by Peng (2010). In his work, Peng
provides a data-driven method which chooses the threshold via estimating a s.t.d.f.
Another interesting task is to compare

◦
Lagg with a convexified version of itself,

since any s.t.d.f. is a convex function; see, for example, Beirlant et al. [(2004),
Section 8.2.2] or de Haan and Ferreira [(2006), Section 6.1.5]. Note that a gen-
eral convexification procedure has been proposed in dimension 2 by Fils-Villetard,
Guillou and Segers (2008); see also some alternative suggestions in Bücher, Dette
and Volgushev (2011).
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FIG. 3. Boxplot of the L1-error of function L for the estimators
◦
Lagg, L̃agg and {L̂k, k}. First row:

bivariate Cauchy model (left) and bivariate Student(2) model (right). Second row: bivariate BPII(3)

model (left) and bivariate Symmetric logistic model (right). Third row: bivariate Archimax model
with logistic (left) and mixed generator (right).
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In order to take maximal advantage from this simulation study, the three dif-
ferent models implemented have been considered in two versions for each: the
first model is the Gaussian one, simulated with Pearson’s correlation coefficient
±0.5. The Gaussian model is a particular case of elliptical distributions (see Sec-
tion 4.2), which illustrates the asymptotic independent situation; cf. Remark 4. The
second model is the bivariate Symmetric logistic one, introduced in Section 4.4,
with two different strengths of dependence (close to independence on the left col-
umn, stronger dependence on the right column). The third model is the bivari-
ate Student family, introduced in Sections 4.1 and 4.2 as a particular case. Two
strengths of dependence have also been chosen, close to asymptotic independence
on the left column and stronger dependence on the right column.

Our results, summarized in Figure 4, will thus exhibit in particular how the per-
formance in the estimation of the s.t.d.f. depends on the distance to the asymptotic
independence case. The y-axis scale has been fixed for all the six cases so that one
can measure that the estimation of the s.t.d.f. is a more ambitious problem under
asymptotic independence. However, our estimator

◦
Lagg has still nice properties

when comparing it to the empirical estimator L̂k .
The convex version

◦
Laggc performs quite equivalently as

◦
Lagg. A reason for this

is that by construction our estimator is actually not far from a convex function. So
balancing the cost of convexifying with the benefit in the performance motivates
the simple use of

◦
Lagg.

Finally, regarding Peng’s estimator L̂P , one observes that this estimator is an
interesting alternative to the original family {L̂k, k}, which, however, never out-
performs our proposal.

5.4. Estimating a failure probability. Let us illustrate in this subsection the
question of estimating an arbitrarily chosen failure probability P(X > 104 or Y >

2 · 104), where (X,Y ) comes from the BPII(3) model, so that P(X > 104 or Y >

2 · 104) = 0.00011665. Samples of size n = 1000 are considered. Thus empirical
estimation will be useless for evaluating the probability of exceeding such extreme
values for X or Y , and an extrapolation based on extreme value theory is thus
needed.

First assume that it is known that the margins are standard Pareto. This proba-
bility can be approximated by

P
(
X > 104 or Y > 2 · 104) � (

10−4 + 5 · 10−5)
L(2/3,1/3),

which naturally comes from (1), the projection on the simplex and the homogene-
ity of L. Estimating the unknown parameter L(2/3,1/3) with our candidate

◦
Lagg

and the original family {L̂k, k} gives several boxplots (based on 500 replicates)
that are presented in Figure 5. The comparison of these estimates is again favor-
able to

◦
Lagg.
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FIG. 4. Boxplot of the L1-error of function L for the estimators
◦
Lagg,

◦
Laggc, L̂P and {L̂k, k}.

First row: bivariate Normal model with correlation τ : τ = 0.5 (left) and τ = −0.5 (right). Second
row: bivariate Symmetric logistic(s) model: s = 1/1.2 (left) and s = 1/3 (right). Third row: bivariate
Student(ν) model: ν = 20 (left) and ν = 2 (right).
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FIG. 5. Boxplot (based on 500 replicates) for the estimation of P(X > 104 or Y > 2 · 104) when
(X,Y ) is drawn from the BPII(3) model with sample size n = 1000 and assuming margins to be
known.

REMARK 12. We also investigated the possible use of a second-order term in
the approximation of the probability P(X > 104 or Y > 2 ·104), making use of the
following estimators

(
10−4 + 5 · 10−5) ◦

Lagg

(
2

3
,

1

3

)
+

(
k

n

)ρ̂(
10−4 + 5 · 10−5)1−ρ̂

	̂k,2−1/ρ̂

(
2

3
,

1

3

)
.

The results were so similar to those obtained in Figure 5 that we chose to skip
them.

Second, when the margins are not assumed to be known, the estimation of p1 =
1 − F1(104) and p2 = 1 − F2(2 · 104) can be reached by the POT method [see,
e.g., Beirlant et al. (2004), Section 7.4] for several values of a threshold. After
the study of mean residual life plots and quantile plots, the thresholds have been
fixed to be Xn−k,n and Yn−k,n for k = 200. The POT estimates deduced with these
thresholds are, respectively, denoted by p̂1 and p̂2. The probability P(X > 104 or
Y > 2 · 104) is then approximated by

P
(
X > 104 or Y > 2 · 104) � (p̂1 + p̂2)L

(
p̂1

p̂1 + p̂2
,

p̂2

p̂1 + p̂2

)
.

Estimating on each repetition the unknown parameter L(p̂1/(p̂1 + p̂2), p̂2/(p̂1 +
p̂2)) with our candidate

◦
Lagg and the original family {L̂k, k} gives several boxplots

(based on 500 replicates) presented in Figure 6. It seems clear that the uncertainty
on the margins F1 and F2 has much more influence than that of the s.t.d.f. L. Such
findings corroborate previous studies; see, for example, Bruun and Tawn (1998)
and de Haan and Sinha (1999).
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FIG. 6. Boxplot (500 replicates) of the estimation of P(X > 104 or Y > 2 · 104) when (X,Y ) is
drawn from the BPII(3) model with sample size n = 1000 and estimating margins by POT method.

5.5. Q-curves. Another nice representation of a function of several variables
is through its level sets. In the case of the function L, it consists of looking (for any
positive real c) at sets of the form {(x, y) ∈ R

2+,L(x, y) ≤ c}. From homogeneity
property, it is characterized by

Q := {
(x, y) ∈R

2+,L(x, y) ≤ 1
}
.

Following de Haan and Ferreira [(2006), page 245], the boundary of this set can
be written as

∂Q = {(
b(θ) cos θ, b(θ) sin θ

) : b(θ) = (
L(cos θ, sin θ)

)−1
, θ ∈ [0, π/2]}.

The estimation of ∂Q is naturally obtained by replacing L by any estimator, and
this is done here for the estimators

◦
Lagg and {L̂k, k}. Figure 7 (left) exhibits the bias

phenomenon (as k increases) induced by L̂k in the estimation of the Q-curve. The
bias factor on L̂k is illustrated with k = 50, k = 100 and k = 800. The correction
of the bias with

◦
Lagg is effective. As in the previous section, the comparison of

the different estimators is provided in terms of a global criterium based on the
L1-norm, given by

π

2(T + 1)

T∑
t=0

∣∣∣∣b̂
(

πt

2T

)
− b

(
πt

2T

)∣∣∣∣
{

cos
(

πt

2T

)
+ sin

(
πt

2T

)}
.

Figure 8 displays the boxplots of this measure, based on N = 100 realizations and
for T = 30 under the six bivariate models given in the previous section.

The estimation of the Q-curve based on the original estimator L̂k is strongly
sensitive to the choice of k: the bias (resp., the variability) is an increasing (resp.,
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FIG. 7. Left: Estimation of the Q-curve for the bivariate Student(2) law based on a sample of
size 1000. Right: Estimated Q-curve for the wave heights data introduced in de Haan and Ferreira
(2006).

decreasing) function of k. The performances of
◦
Lagg is similar to that of the

best L̂k , which is unknown in practice. These features corroborate the conclusions
drawn in Section 5.2.

To close this section, let us illustrate the Q-curve estimation on the wave heights
data set of de Haan and Ferreira (2006), page 207. As explained therein, wave
height (HmO) and still water level (SWL) have been recorded during 828 storm
events on the Dutch coast. The analogous Figure 7.2 from de Haan and Ferreira
(2006) is reported in Figure 7 (right). Even if the two curves are not so close, the
conclusion remains the same: the estimated boundary is concave, which indicates
that the high values of the two variables are dependent.

6. Estimation of second-order components ρ and M . In this section, we
focus on the estimation of the function M coming from the second-order condi-
tion (6) and on the estimation of its homogeneity parameter 1 − ρ.

6.1. Second-order parameter ρ. A possible way to estimate ρ is to use on
each margin one of the techniques developed in the univariate setting; see, for ex-
ample, Gomes, de Haan and Peng (2002) or Ciuperca and Mercadier (2010). Other
methods make use of the multivariate structure of the data; see, for example, Peng
(2010) and also Goegebeur and Guillou (2013) in a slightly different framework.
The construction described here takes likewise advantage of the multivariate in-
formation of the sample. With this purpose, the following proposition shows that
a variable of interest is the ratio of two terms 	̂k,a , defined by (11).

PROPOSITION 5. Assume that the conditions of Proposition 1 are fulfilled and
fix positive real numbers r and a ∈ (0,1). Assume moreover that the function M
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FIG. 8. Boxplot of the L1-error of Q-curve for the estimators
◦
Lagg and {L̂k, k}. First row: bi-

variate Cauchy model (left) and bivariate Student(2) model (right). Second row: bivariate BPII(3)

model (left) and bivariate Symmetric logistic model (right). Third row: bivariate Archimax model
with logistic (left) and mixed generator (right).
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never vanishes except on the axes. Then, as n tends to infinity, for every ε > 0
and T > 0,

sup
ε≤x1,...,xd≤T

∣∣∣∣	̂k,a(rx)

	̂k,a(x)
− r1−ρ

∣∣∣∣ P−→ 0.

REMARK 13. If the requirement that the function M is either positive, or neg-
ative in the positive quadrant does not hold, one could consider the integral of
(	̂k,a(x))2 over the set {x = (x1, . . . , xd) s.t. x2

1 + · · · + x2
d = 1} and prove a result

like Lemma 7 for this statistic. Then the integral of M2 appears in the denominator
in Proposition 5 instead of M itself, and the sign of M does not matter. This will
be part of a future work.

A family of consistent estimators of the parameter ρ can be derived from Propo-
sition 5.

ρ̂k,a,r (x) :=
(

1 − 1

log r
log

∣∣∣∣	̂k,a(rx)

	̂k,a(x)

∣∣∣∣
)

∧ 0.(22)

The following property can be obtained from the asymptotic expansion given in
Proposition 2.

PROPOSITION 6. Assume that the conditions of Proposition 2 are fulfilled,
and fix positive real numbers r and a ∈ (0,1). Consider the estimator of ρ defined
by (22). Assume moreover that the function M never vanishes except on the axes.
Then, as n tends to infinity,

√
kα

(
n

k

){
ρ̂k,a,r (x) − ρ

} d−→ Ẑρ,a,r (x),

in D([ε, T ]d) for every ε > 0 and T > 0, with

Ẑρ,a,r (x) := a−1ZL(ax) − ZL(x)

(a−ρ − 1)M(x) log r
− a−1ZL(rax) − ZL(rx)

(a−ρ − 1)M(x)r1−ρ log r
.

Figure 9 illustrates the finite sample behavior of this estimator of ρ for a col-
lection of bivariate models introduced in Section 4, for which the true value of ρ

is equal to −1. These boxplots show that the estimator performs reasonably well
in median, no matter the choice of model, but the uncertainty is rather important.
Fortunately this seems from simulation studies to have only minor influence on the
estimation of L.

6.2. Second-order function M . Recall that from (12) the asymptotic bias of
L̂k,a(x) is given by α(n

k
)a−ρM(x). In order to circumvent an estimation of the

term α(n/k), a renormalization is needed, focusing, for instance, on the estimation
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FIG. 9. Boxplot of 500 estimations of ρ given by (22) using samples of size 1000 drawn from six
models: (a) Student(2); (b) BPII(3); (c) Symmetric Logistic with s = 1/3; (d) Archimax model with
logistic generator with s = 1/2; (e) Archimax model with mixed generator. Red line indicates the
true value of ρ = −1.

of M(x)/M(1/2) where 1/2 = (1/2, . . . ,1/2). Thanks to (13), this ratio can be
consistently estimated by

	̂k,a(x)

	̂k,a(1/2)

as soon as k is a well-chosen intermediate sequence. The asymptotic normality can
also be derived from analogous arguments to those used in the proof of Proposi-
tion 6. Details are not presented here for the sake of simplicity.

Figure 10 summarizes the behavior of the estimator of the curve t �→ M(t,1 −
t)/M(1/2,1/2) through boxplots of the L1-error, defined as in (21). We observe
from this figure that the best estimation is reached for large values of k. This fea-
ture does not depend on the degree of asymptotic dependence in the Symmetric
logistic model, nor on the strength of the bias of the original estimator L̂k detected
on Figure 3. These graphs confirm that the asymptotic bias is remarkably well es-
timated for large values of k. This helps to understand why the bias subtraction is
accurate for large or very large choices of k, as also commented in Section 5.1.

7. Concluding comments. This paper deals with the estimation of the ex-
tremal dependence structure in a multivariate context. Focusing on the s.t.d.f., the
empirical counterpart is the nonparametric reference. A common feature when
modeling extreme events is the delicate choice of the number of observations used
in the estimation, and it spoils the good performance of this estimator. The aim of
this paper has been to correct the asymptotic bias of the empirical estimator, so that
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FIG. 10. Boxplot of the L1-error of M(·)/M(1/2,1/2)-curve. First row: bivariate logistic model
with s = 0.1 (left) and with s = 0.5 (right). Second row: bivariate logistic model with s = 0.9 (left)
and bivariate Archimax with mixed generator (right).

the choice of the threshold becomes less sensitive. Two asymptotically unbiased
estimators have been proposed and studied, both theoretically and numerically.
The estimator defined in Section 3.2 proves to outperform the original estimator,
whatever the model considered. Its aggregated version defined in Section 5.1 ap-
pears as a worthy candidate to estimate the s.t.d.f.

8. Proofs.

PROOF OF PROPOSITION 1. Denote by U
(j)
i the uniform random variables

U
(j)
i = 1 − Fj (X

(j)
i ) for j = 1, . . . , d . Introducing

Vk(x) = 1

k

n∑
i=1

1{U(1)
i ≤kx1/n or ... or U

(d)
i ≤kxd/n}
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allows us to rewrite L̂k as the following:

L̂k(x) = Vk

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd ],n

)
.

Write

L̂k(x) − L(x)

= Vk

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd ],n

)

− n

k

[
1 − F

{
F−1

1

(
1 − U

(1)
[kx1],n

)
, . . . ,F−1

d

(
1 − U

(d)
[kxd ],n

)}]

+ n

k

[
1 − F

{
F−1

1

(
1 − U

(1)
[kx1],n

)
, . . . ,F−1

d

(
1 − U

(d)
[kxd ],n

)}]

− L

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd ],n

)

+ L

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd ],n

)
− L(x),

and denote A1,k(x) [resp., A2,k(x) and A3,k(x)] the first line (resp., second and
third lines) of the right-hand side.

Applying de Haan and Ferreira [(2006), Proposition 7.2.3] leads to
√

kA1,k(x)
d→ WL(x),

in D([0, T ]d) for every T > 0 and for any intermediate sequence, where WL

is a continuous centered Gaussian process with covariance structure specified in
Proposition 2. Due to the Skorohod construction we can write

sup
0≤x1,...,xd≤T

∣∣√kA1,k(x) − WL(x)
∣∣ → 0 a.s.,(23)

which implies, since
√

kα(n/k) → ∞,

sup
0≤x1,...,xd≤T

∣∣∣∣A1,k(x)

α(n/k)

∣∣∣∣ = OP

(
1√

kα(n/k)

)
.

Again for any intermediate sequence, the proof of de Haan and Ferreira [(2006),
Theorem 7.2.2] ensures the convergence for j = 1, . . . , d

sup
x∈[0,T ]

∣∣∣∣
√

k

(
n

k
U

(j)
[kx],n − x

)
+ WL(xej )

∣∣∣∣ → 0 a.s.,(24)

and finally

sup
0≤x1,...,xd≤T

∣∣∣∣∣
√

kA3,k(x) +
d∑

j=1

WL(xj ej )∂jL(x)

∣∣∣∣∣ → 0 a.s.(25)
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As previously, this yields

sup
0≤x1,...,xd≤T

∣∣∣∣A3,k(x)

α(n/k)

∣∣∣∣ = O

(
1√

kα(n/k)

)
.

Since the intermediate sequence satisfies
√

kα(n
k
) → ∞, it thus remains to prove

that

sup
0≤x1,...,xd≤T

∣∣∣∣A2,k(x)

α(n/k)
− M(x)

∣∣∣∣ → 0 a.s.

The second-order condition that holds uniformly on [0, T ]d in (6) yields

sup
0≤x1,...,xd≤T

∣∣∣∣A2,k(x)

α(n/k)
− M

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd ],n

)∣∣∣∣ → 0 a.s.

Then the result follows from

sup
0≤x1,...,xd≤T

∣∣∣∣M(x) − M

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd ],n

)∣∣∣∣ → 0 a.s.,

which is obtained combining (24) and the continuity of the function M . �

PROOF OF PROPOSITION 2. We use the notation introduced in the proof of
Proposition 1. Thanks to the Skorohod construction, we can start from (23). Com-
bined with (25), it is sufficient to prove the convergence

sup
0≤x1,...,xd≤T

∣∣∣∣
√

k

{
A2,k(x) − α

(
n

k

)
M(x)

}∣∣∣∣ → 0 a.s.

Note that the third-order condition, the uniformity on [0, T ]d of the convergence
in (7) and the continuity of N yield

A2,k(x) = α

(
n

k

)
M

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd ],n

)
+ OP

(
α

(
n

k

)
β

(
n

k

))
.

Thanks to (24) and to the existence of the first-order partial derivatives ∂jM (j =
1, . . . , d) of the function M , we have that

sup
0≤x1,...,xd≤T

∣∣∣∣∣
√

k

{
M

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd ],n

)
− M(x)

}

+
d∑

j=1

WL(xj ej )∂jM(x)

∣∣∣∣∣
converges to 0 in probability, as n tends to infinity. This implies that

sup
0≤x1,...,xd≤T

∣∣∣∣
√

k

{
A2,k(x) − α

(
n

k

)
M(x)

}∣∣∣∣ = OP

(∣∣∣∣
√

kα

(
n

k

)
β

(
n

k

)
+ α

(
n

k

)∣∣∣∣
)
,

which completes the proof, thanks to the choice of the intermediate sequence. �
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PROOF OF THEOREM 3. Recall that b = (a−ρ + 1)−1/ρ , and denote b̂ =
(a−ρ̂ + 1)−1/ρ̂ . Write

◦
Lk,a,kρ − L = {L̂k,a − L} + {L̂k − L} − {L̂

k,b̂
− L},(26)

which equals, thanks to (12) and under Skorohod’s construction,

α

(
n

k

)(
a−ρ + 1

)
M(x) + 1√

k

(
a−1ZL(ax) + ZL(x)

)

− α

(
n

k

)
b̂−ρM(x) − b−1

√
k

ZL(bx) + o

(
1√
k

)

= α

(
n

k

)((
a−ρ + 1

) − b−ρ)
M(x) + 1√

k

◦
Ya(x)

+ α

(
n

k

)(
b−ρ − b̂−ρ)

M(x) + o

(
1√
k

)

= α

(
n

k

)((
a−ρ + 1

) − b−ρ)
M(x) + 1√

k

◦
Ya(x)

+ α

(
n

k

)
OP

(
1√

kρα(n/kρ)

)
+ o

(
1√
k

)
.

The first term is zero. Since both k = o(kρ) and α is regularly varying with neg-
ative index, the only the last term can be put into the term o( 1√

k
). Finally, the

covariance function follows from the equality in law as processes between ZL(ax)

and
√

aZL(x). �

The proofs of Theorem 4 and Proposition 6 are based on the following auxiliary
result.

LEMMA 7. Assume that the conditions of Proposition 2 are fulfilled. Then for
any positive real r , one has as n tends to infinity,

√
kα

(
n

k

){
	̂k,a(rx)

α(n/k)
− (

a−ρ − 1
)
r1−ρM(x)

}
d→ a−1ZL(rax) − ZL(rx),

in D([0, T ]d) for every T > 0.

PROOF OF LEMMA 7. Making use of the homogeneity of the function L, write

	̂k,a(rx) = {
L̂k,a(rx) − L(rx)

} − {
L̂k(rx) − L(rx)

}
.

Using the Skorohod construction, it follows from equations (8) and (12) that

sup
0≤x1,...,xd≤T/r

∣∣∣∣
√

kα

(
n

k

){
	̂k,a(rx)

α(n/k)
− (

a−ρ − 1
)
r1−ρM(x)

}

− a−1ZL(rax) + ZL(rx)

∣∣∣∣
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tends to 0 almost surely, as n tends to infinity. �

PROOF OF THEOREM 4. Note that

L̂k(x)
	̂kρ,a(ax)

α(n/kρ)
− L̂k(ax)

	̂kρ,a(x)

α(n/kρ)

= L̂k(x)

(
	̂kρ,a(ax)

α(n/kρ)
− a

	̂kρ,a(x)

α(n/kρ)

)
− a

	̂kρ,a(x)	̂k,a(x)

α(n/kρ)
.

Under a Skorohod construction, Lemma 7 allows us to write the expansions of the
terms 	̂k,a(x), 	̂kρ,a(x) and 	̂kρ,a(ax), which implies on the one hand

	̂kρ,a(ax)

α(n/kρ)
− a

	̂kρ,a(x)

α(n/kρ)

= a
(
a−ρ − 1

)2
M(x)

(27)

+ 1√
kρα(n/kρ)

{
a−1ZL

(
a2x

) − 2ZL(ax) + aZL(x)
}

+ o

(
1√

kρα(n/kρ)

)
,

and

	̂kρ,a(x)	̂k,a(x)

α(n/kρ)
= α(n/k)

(
a−ρ − 1

)2
M2(x)

+ (
a−ρ − 1

)
M(x)

a−1ZL(ax) − ZL(x)√
k

(28)

+ OP

(
α(n/k)√

kρα(n/kρ)
+ 1√

k
√

kρα(n/kρ)

)
+ o

(
1√
k

)

on the other hand, both uniformly for x ∈ [ε, T ]d . Combining (27) and (28) with
equation (8), one gets

L̂k(x)
	̂kρ,a(ax)

α(n/kρ)
− L̂k(ax)

	̂kρ,a(x)

α(n/kρ)

= a
(
a−ρ − 1

)2
M(x)L(x) + 1√

k
M(x)

(
a−ρ − 1

)(
a1−ρZL(x) − ZL(ax)

)

+ 1√
kρα(n/kρ)

L(x)
{
a−1ZL

(
a2x

) − 2ZL(ax) + aZL(x)
}

+ o

(
1√
k

)
+ o

(
1√

kρα(n/kρ)

)
.
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Since the last expression and equation (27) are, respectively, the numerator and
denominator of L̃k,kρ,a(x), one obtains, after simplification,

√
k
(
L̃k,kρ,a(x) − L(x)

) = a−ρZL(x) − a−1ZL(ax)

a−ρ − 1
+ o

( √
k√

kρα(n/kρ)

)
+ o(1),

since M does not vanish by assumption. The choice of the sequences k and kρ

allows us to conclude since
√

k = O(
√

kρα(n/kρ)). �

PROOF OF PROPOSITION 5. Applying Lemma 7, we have

sup
ε≤x1,...,xd≤T

∣∣∣∣	̂k,a(x)

α(n/k)
− (

a−ρ − 1
)
M(x)

∣∣∣∣ P−→ 0.(29)

As a consequence,

sup
ε≤x1,...,xd≤T

∣∣∣∣	̂k,a(rx)

	̂k,a(x)
− r1−ρ

∣∣∣∣

= sup
ε≤x1,...,xd≤T

∣∣∣∣	̂k,a(rx)/α(n/k)

	̂k,a(x)/α(n/k)
− r1−ρ

∣∣∣∣

= OP

(
sup

ε≤x1,...,xd≤T

∣∣∣∣	̂k,a(rx)

α(n/k)
− r1−ρ 	̂k,a(x)

α(n/k)

∣∣∣∣
)
,

since (a−ρ − 1)M(x) �= 0 by assumption. Writing
∣∣∣∣	̂k,a(rx)

α(n/k)
− r1−ρ 	̂k,a(x)

α(n/k)

∣∣∣∣

≤
∣∣∣∣	̂k,a(rx)

α(n/k)
− r1−ρ(

a−ρ − 1
)
M(x)

∣∣∣∣

+
∣∣∣∣r1−ρ(

a−ρ − 1
)
M(x) − r1−ρ 	̂k,a(x)

α(n/k)

∣∣∣∣,
and using twice equation (29) leads to the conclusion. �

PROOF OF PROPOSITION 6. Define Qk,a,r (x) := 	̂k,a(rx)

	̂k,a(x)
. Lemma 7 used

twice yields

√
kα

(
n

k

)(
Qk,a,r (x) − r1−ρ) d→ −r1−ρ log rẐρ,a,r (x),(30)

where Ẑρ,a,r (x) is defined in Proposition 6. Since ρ̂k,a,r (x) = 1 − log(Qk,a,r (x))/

log r , the result follows straightforwardly from (30) and the Delta method. �
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