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SPARSISTENCY AND AGNOSTIC INFERENCE IN SPARSE PCA

BY JING LEI1 AND VINCENT Q. VU

Carnegie Mellon University and The Ohio State University

The presence of a sparse “truth” has been a constant assumption in the
theoretical analysis of sparse PCA and is often implicit in its methodological
development. This naturally raises questions about the properties of sparse
PCA methods and how they depend on the assumption of sparsity. Under
what conditions can the relevant variables be selected consistently if the truth
is assumed to be sparse? What can be said about the results of sparse PCA
without assuming a sparse and unique truth? We answer these questions by
investigating the properties of the recently proposed Fantope projection and
selection (FPS) method in the high-dimensional setting. Our results provide
general sufficient conditions for sparsistency of the FPS estimator. These con-
ditions are weak and can hold in situations where other estimators are known
to fail. On the other hand, without assuming sparsity or identifiability, we
show that FPS provides a sparse, linear dimension-reducing transformation
that is close to the best possible in terms of maximizing the predictive covari-
ance.

1. Introduction. Sparse principal components analysis (PCA) is a relatively
new and popular technique for simultaneous dimension reduction and variable
selection in high-dimensional data analysis [e.g., Jolliffe, Trendafilov and Uddin
(2003), Zou, Hastie and Tibshirani (2006)]. It combines the central idea of classic
(or ordinary) PCA [Hotelling (1933), Pearson (1901)] with the notion of sparsity:
it seeks linear transformations that reduce the dimension of the data, while de-
pending on a small number of variables, but retain as much variation as possible.
In the population setting, these linear transformations correspond to the projec-
tors of the k-dimensional principal subspaces, spanned by the eigenvectors of the
population covariance matrix. The appeal of sparsity is that it not only enhances
interpretability, but it can yield consistent estimates when sparsity is truly present
in the population, even in high dimensions [Johnstone and Lu (2009)].

The development of sparse PCA has taken a brisk pace over the past decade.
Methodological developments include regularized estimators based on penal-
izing or constraining the variance maximization formulation of PCA [Jolliffe,
Trendafilov and Uddin (2003), Journée et al. (2010), Witten, Tibshirani and
Hastie (2009)], regression or low-rank approximation [Shen and Huang (2008),
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Zou, Hastie and Tibshirani (2006)], convex relaxations [d’Aspremont, Bach and
El Ghaoui (2008), d’Aspremont et al. (2007), Vu et al. (2013)], two-stage proce-
dures based on diagonal thresholding [Johnstone and Lu (2009), Paul and John-
stone (2012)] and algorithmic variations of iterative thresholding [Ma (2013),
Yuan and Zhang (2013)]. Theoretical developments including consistency, rates of
convergence, minimax risk bounds for estimating eigenvectors and principal sub-
spaces and detection have been established under various statistical models [Amini
and Wainwright (2009), Berthet and Rigollet (2013a), Cai, Ma and Wu (2013),
Johnstone and Lu (2009), Lounici (2013), Ma (2013), Vu and Lei (2012, 2013),
Vu et al. (2013)].

The presence of a sparse “truth” has been an explicit assumption in the theoret-
ical analysis of sparse PCA and is often an implicit assumption in its methodolog-
ical development. Here the “truth” refers to the leading k-dimensional principal
subspace. This naturally raises questions about the properties of sparse PCA meth-
ods and how they depend on the assumption of sparsity. Under what conditions
can the relevant variables be selected consistently if the truth is assumed to be
sparse? If the truth is not sparse, and/or not unique, what can be said about the
results of sparse PCA? The first question is essentially concerned with variable
selection consistency, or sparsistency. The second question is a bit more slippery,
because it essentially requires us to assume nothing beyond independence of the
observations. In other words, the second question is concerned with agnostic in-
ference properties of an estimation method. In this paper, we investigate variable
selection consistency and agnostic inference properties of the recently proposed
Fantope projection and selection (FPS) method due to Vu et al. (2013).

FPS formulates the sparse PCA problem as a semidefinite program (SDP)
whose solution is a sparse estimate of the projector of the principal subspace. It
extends the so-called DSPCA formulation of d’Aspremont et al. (2007) from the
one-dimensional (k = 1) case to the multidimensional (k > 1) case, and it presents
a change in perspective by focusing on projectors rather than individual eigen-
vectors. FPS is appealing for both theoretical and computational reasons. Since it
directly estimates the projector of the k-dimensional principal subspace, there is
no need for iterative deflation [e.g., Mackey (2009)], and hence an SDP need only
be solved once rather than k separate times as in DSPCA. Vu et al. (2013) devel-
oped an efficient alternating direction method of multipliers algorithm to compute
FPS, and established �2 consistency of FPS under very mild conditions on the
population and input matrices. Most notably, FPS does not require the stringent
spiked covariance model assumption (i.e., the population covariance matrix is a
sparse low-rank matrix plus identity) that is required by many competing methods
such as diagonal thresholding. This makes FPS applicable to a much wider range
of problems, including the important case of correlation matrices where diagonal
thresholding cannot even be used. (See Section 3 for another example.) However,
the variable selection and agnostic inference properties of FPS remain unknown.
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Sparsistency is the ability of an estimator to accurately select the correct sub-
set of variables when applied to a random sample generated from a model where
only a subset of variables is assumed to be relevant. Conditions under which spar-
sistency holds provide important insights about both the estimator and the model.
They have been studied extensively in other high-dimensional inference problems
such as linear regression [Fan and Li (2001), Meinshausen and Bühlmann (2006),
Wainwright (2009), Zhao and Yu (2006)] and Gaussian graphical model selection
[Lam and Fan (2009), Ravikumar et al. (2011), Rothman et al. (2008)]. In contrast,
theoretical analyses of sparse PCA have mainly focused on consistency and rates
of convergence in matrix norm, with relatively less progress on variable selection.
An exception is Amini and Wainwright (2009), who analyzed DSCPCA under a
stringent spiked covariance model with k = 1, where the population covariance
matrix is block diagonal and its leading eigenvector is assumed to have a small
number of nonzero entries of constant magnitude. Their work is an important first
step, but it leaves open whether or not their stringent conditions can be loosened
and it also does not address the k > 1 case.

In the first part of this paper, we investigate the sparsistency of FPS under gen-
eral conditions. Our main results (Theorems 1 and 2) give broad sufficient con-
ditions under which FPS can exactly recover the relevant variables. Roughly, the
conditions are that (1) the relevant variables are not too correlated with the irrel-
evant variables (limited correlation), and (2) the leverages (diagonals of the pro-
jector) of the relevant variables are large enough. Interestingly, these conditions
are analogous to so-called (1) “irrepresentability” and (2) “β-min” conditions for
variable selection consistency of the Lasso [Bühlmann and van de Geer (2011),
Meinshausen and Bühlmann (2006), Zhao and Yu (2006)]. To our knowledge, this
is the first sparsistency result for principal subspaces. When k = 1, it generalizes
the results of Amini and Wainwright (2009) in several directions, the most impor-
tant of which is that it relaxes their block-diagonal condition on the population
covariance matrix.

The second part of this paper addresses the question of assumption-free in-
terpretation of sparse PCA within a framework that we call agnostic inference.
Our goal is to provide both analysis and interpretation of sparse PCA with essen-
tially no assumptions beyond independence of observations. The terminology is
borrowed from the learning theory literature where the chief concern is estimat-
ing a classifier or regression function without assumptions on the model [Kearns,
Schapire and Sellie (1994)]; however, much of our perspective is influenced by
earlier work on maximum likelihood under misspecification [Berk (1966), Huber
(1967), White (1982)], interpretations obtained by extending the maximum likeli-
hood principle [Akaike (1973)], and the notion of persistence of high-dimensional
linear predictors proposed by Greenshtein and Ritov (2004). Our point is that al-
though FPS is derived under the assumption of sparsity, its results can still be inter-
preted even when sparsity does not hold. The main result (Theorem 3) is that with-
out assuming sparsity or identifiability, FPS provides a sparse, linear dimension-
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reducing transformation that is close to the best possible in terms of maximizing
the predictive covariance.

The remainder of the paper is organized as follows. Section 2 provides the tech-
nical background and conditions that are necessary to state our results—divided
between Sections 3 (sparsistency) and 4 (agnostic inference). We discuss these re-
sults in Section 5, and defer their proofs to the Appendix. Finally, we collect our
notation below for our readers’ convenience.

Notation. For two matrices A,B with conformable dimensions, 〈A,B〉 :=
trace(AT B) denotes the trace inner product. For a vector v ∈ R

k and q ∈ [0,∞],
‖v‖q = (

∑p
i=1 |vi |q)

1/q
is the �q norm if 0 < q < ∞; when q = 0, ‖v‖0 is

the number of nonzero entries of v; when q = ∞, ‖v‖∞ = max1≤i≤k |vi |. For
a matrix A ∈ R

n×m, and index sets J1 ⊆ [n] and J2 ⊆ [m], AJ1J2 denotes the
|J1| × |J2| submatrix of A consisting of rows in J1 and columns in J2, and AJ1∗
(A∗J2 ) denotes the submatrix consists of corresponding rows (columns). Given
q1, q2 ∈ [0,∞] and A ∈ R

n×m, the matrix (q1, q2)-pseudonorm ‖A‖q1,q2 is de-
fined as (‖A1∗‖q1,‖A2∗‖q1, . . . ,‖An∗‖q1)q2

. As usual, the spectral norm of A is

denoted ‖A‖ and the Frobenius norm is ‖A‖F := 〈A,A〉1/2. If A is a symmetric
matrix, λj (A) denotes the j th largest eigenvalue of A. We will use � to denote the
p×p underlying true covariance matrix, whose ordered eigenvalues are λ1 ≥ λ2 ≥
· · · ≥ λp . For a square matrix A, diag(A) denotes its diagonal vector. For a vector
v, supp(v) is the support of v (the index set corresponding to nonzero entries).

2. Preliminaries. Let � ∈R
p×p be a symmetric matrix with spectral decom-

position

� =
p∑

j=1

λjuju
T
j ,

where λ1 ≥ · · · ≥ λp are eigenvalues and u1, . . . , up ∈ R
p is an orthonormal ba-

sis of eigenvectors. The k-dimensional principal subspace of � is the subspace
spanned by u1, . . . , uk . It is unique if and only if the spectral gap λk − λk+1 > 0,
and its projector (orthogonal projection matrix) is

� =
k∑

j=1

uju
T
j = UUT ,

where U is the orthonormal matrix with columns u1, . . . , uk . Every subspace has
a unique projector and so we will consider the principal subspace and � to be
equivalent, and we will also assume that k is known or fixed in advance.

2.1. Sparse principal subspaces. Estimation of the principal subspace re-
quires at minimum that it be well-defined. When this is the case, we can consider
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� to be a mapping x �→ �x and so it makes sense to consider indices of the vari-
ables that � depends on. Since � is positive semidefinite, this is equivalent to
the indices of the nonzero diagonal entries of �, because row/column i of � is
nonzero if and only if �ii 
= 0.

CONDITION 1 (SPS). � satisfies the sparse principal subspace condition with
support set J if

λk(�) − λk+1(�) > 0 and supp
(
diag(�)

) = J.(SPS)

(SPS) is the minimal requirement for sparse principal subspace estimation, and
the assumption will only be used in Section 3 in our investigation of sparsistency.
The spectral gap condition ensures that the principal subspace is identifiable, and
the support set definition states that the principal subspace does not depend on
variables outside of J . This corresponds to a notion of subspace sparsity intro-
duced by Vu and Lei (2013) called �0 row sparsity, and it can be shown that
J = ⋃k

j=1 supp(uj ) for any orthonormal basis {u1, . . . , uk} of the principal sub-
space [Vu and Lei (2013)].

2.2. Input matrix accuracy. When (SPS) is assumed, the main statistical infer-
ence problem considered in this paper is, in a general setting, to estimate J from a
symmetric noisy version S of �. We then extend the interpretation and analytical
properties of sparse PCA solutions without assuming (SPS). In both parts, the es-
timation accuracy depends on the noisiness of S as an approximation to �, which
will be quantified by an entrywise tail bound on

W := S − �.

As motivated by principal component analysis, it may be helpful to think of �

as the covariance of a p-dimensional random vector and S = Sn as sample co-
variance matrix of a random sample of size n, but that is not strictly necessary
for our theoretical analysis. In fact, our sparsistency results do not even have to
assume that � or S are positive semidefinite. In the following, we describe two
probabilistic models that imply a strong entrywise tail bound on W .

EXAMPLE 1 (Sample covariance). Let X,X1,X2, . . . ,Xn ∈ R
p be i.i.d. ran-

dom vectors with Var(X) = � � 0 and let S be the sample covariance matrix:

S = 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)
T
,

where X̄ = n−1 ∑n
i=1 Xi . We assume throughout this paper that

logp ≤ n.
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By Bernstein’s inequality [van der Vaart and Wellner (1996), Chapter 2.2] if X has
sub-Gaussian tails in that there exists constants K,C > 0 such that

P
(∣∣vT (X −EX)

∣∣ ≥ t
) ≤ K exp

[−Ct2/
(
vT �v

)]
for all v 
= 0,(1)

then there is an absolute constant c > 0 such that S satisfies, for σ ≥ cλ1,

P

(
‖W‖∞,∞ ≥ σ

√
logp

n

)
≤ 2p−2.(2)

In other words, the maximum entrywise error is bounded by σ
√

logp/n with high
probability. This fact will be the starting point of subsequent analysis of the spar-
sistency of the FPS estimator introduced in Section 2.3. The tail bound (2) is well
known and a proof of a stronger result that implies (2) can be found in Vu and Lei
(2012), Lemma 3.2.2.

EXAMPLE 2 (Random graph models). Here, we give an example that does
not involve an i.i.d. random sample and the rate of error bound on S depends
only on p. Consider a random graph model with p nodes where edges appear
independently with probability cij for all 1 ≤ i < j ≤ p. Let A be the random
adjacency matrix such that Aij = ±1 according to the presence/absence of edge,
then the pair S = AAT /(p − 1) and � = ES satisfies

P

(
‖S − �‖∞,∞ ≥ c

√
logp

p − 1

)
≤ 2p−2

for some universal constant c.
This model is related to the planted clique problem where cij = 1 for all

1 ≤ i < j ≤ s, and cij = 1/2 everywhere else. The leading eigenvector of � is
(1/

√
s, . . . ,1/

√
s,0, . . . ,0) and it is supported on J = {1, . . . , s}. Our main result

implies that FPS finds the planted clique with high probability when s ≥ c
√

p logp

for some absolute constant c. This is within a factor of
√

logp of the best known
result for polynomial time recovery in the planted clique problem [Deshpande
and Montanari (2013)]. Berthet and Rigollet (2013b) give another reduction of
the planted clique model to a sparse PCA problem.

For simplicity of notation and presentation, we will focus on the case of sample
covariance matrix in the rest of this paper. But most of our sparsistency results
are applicable to a broader range of problems as exemplified in the random graph
example.

2.3. Fantope projection and selection. Vu et al. (2013) recently proposed an
estimator for �, called Fantope projection and selection (FPS), defined as a solu-
tion Ĥ to the following semidefinite program:

Ĥ := arg max
{〈S,H 〉 − ρ‖H‖1,1

}
subject to H ∈Fk,(3)
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where

Fk := {
H : 0 � H � I and trace(H) = k

}
is the trace-k Fantope, k > 0, and ρ ≥ 0 is a tuning parameter. Vu et al. (2013)
showed that FPS can be efficiently computed by alternating direction method of
multipliers [ADMM, e.g., Boyd et al. (2010)]. When ρ = 0, a solution is given by
the projector of the k-dimensional principal subspace of S (see Lemma 1 below).
The �1 penalty term encourages the solution to be sparse. Moreover, the decompos-
ability of the �1 penalty term [Negahban et al. (2012)] makes it straightforward to
analyze the statistical properties of FPS. In particular, Vu et al. (2013) established
a near-optimal Frobenius norm error bound for the FPS estimator under general
conditions. In the next section, we will show that, if � satisfies the (SPS) and S

satisfies the maximum error bound assumption (2), then under mild conditions,
supp[diag(Ĥ )] = J with high probability for appropriate choices of ρ.

In general, the solution to (3), and hence the FPS estimator may not be unique.
However, we will show that it is unique with high probability when the (SPS)
and maximum error bound assumption hold. The argument utilizes the following
elastic net version of FPS:

max
{
〈S,H 〉 − ρ‖H‖1,1 − τ

2
‖H‖2

F

}
subject to H ∈Fk.(4)

Since the objective is a strongly concave function, the solution of (4) is unique.
A very interesting and important fact is that when ρ and τ are small enough, if a
solution of (3) is sparse then it must be the unique solution of (4). This observation
will be proved in the Appendix and play a key role in establishing the uniqueness
of solution for the original FPS problem.

We conclude this section by introducing some basic properties of the Fantope,
which will be used repeatedly in the proof of main results. Further properties and
discussion of the Fantope will be given in Section 4. Denote the Euclidean projec-
tion of a p × p symmetric matrix A onto Fk by

PFk (A) := arg min
Z∈Fk

‖A − Z‖2
F .

LEMMA 1 (Basic properties of Fantope projection). Let A be a symmetric
matrix with eigenvalues γ1 ≥ · · · ≥ γp and orthonormal eigenvectors v1, . . . , vp .

1. maxH∈Fk 〈A,H 〉 = γ1 +· · ·+γk and the maximum is achieved by the projector
of a k-dimensional principal subspace of A. Moreover, the maximizer is unique
if and only if γk > γk+1.

2. PFk (A) = ∑
j γ +

j (θ)vjv
T
j , where γ +

j (θ) = min(max(γj − θ,0),1) and θ sat-

isfies the equation
∑

j γ +
j (θ) = k.
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3. If 0 < τ ≤ γk − γk+1, then

arg max
H∈Fk

〈A,H 〉 = arg max
H∈Fk

〈A,H 〉 − τ

2
‖H‖2

F = PFk

(
τ−1A

) =
k∑

j=1

vjv
T
j ,

uniquely.

A proof of Lemma 1 is given in Section A.2.

3. Sparsistency. Throughout this section, we assume that � satisfies (SPS)
with dimension k and support set J = {1,2, . . . , s} for some s � p, and that S

satisfies the maximum error bound condition (2) with some σ > 0. The sample
covariance matrix is covered as a special case in view of Example 1.

Intuitively, variable selection would be easier if the relevant variables (those
in J ) and noise variables (those in J c) are not too correlated. In the context of
sparse linear regression, such an intuition leads to the famous Irrepresentable Con-
dition [Wainwright (2009), Zhao and Yu (2006)]. In sparse subspace estimation,
we have the analogous Limited Correlation Condition (LCC). In order to state the
condition concisely, we use the following block representation of �:

� =
(

�JJ �JJc

�JcJ �JcJ c

)
.

Similar block representations can be defined for S and W = S − �.
Our main technical condition, the limited correlation condition (LCC) is given

below.

CONDITION 2 (LCC). A symmetric matrix � satisfies the limited correlation
condition with constant α ∈ (0,1] if

8s

λk(�) − λk+1(�)
‖�JcJ ‖2,∞ ≤ 1 − α.(LCC)

(LCC) contains the condition assumed by Amini and Wainwright (2009) as a
special case, where �JcJ = 0, and hence (LCC) holds with α = 1. Another pop-
ular model for sparse PCA is the spiked covariance model, where λk(�JJ ) ≥ c,
�JcJ c = cIp−s , and �JcJ = 0. An important difference between (LCC) and the as-
sumptions in previous works is that previous assumptions, for example, the spiked
covariance model, usually imply that the relevant variables can be selected with
good accuracy by thresholding the diagonal entries, while (LCC) contains situa-
tions where such diagonal thresholding intuition does not work. Here, we illustrate
this difference by a toy example with p = 3, k = 1, J = {1,2}:

� =
⎛⎝ 0.9 0.8 t

0.8 0.9 −t

t −t 1

⎞⎠ .(5)
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This � satisfies (LCC) with α = 0.3 for any |t | ≤ 0.02, but picking large diagonal
entries of � does not select the relevant variables.

To our knowledge, the (LCC) is the first sufficient condition for consistent
sparse PCA variable selection without assuming � being block-diagonal and is
also the first sufficient condition for sparse subspace variable selection consistency.

3.1. Sparsistency of FPS. We state two versions of our main results. The
first is a more general, deterministic result that provides sufficient conditions for
uniqueness, false positive control, and false negative control of supp(Ĥ ). The sec-
ond specializes the general result to the case where S satisfies an entrywise error
bound (2) like the sample covariance matrix in Example 1, and provides proba-
bilistic guarantees for sparsistency of FPS.

THEOREM 1 (Deterministic support recovery). Assume � satisfies (SPS). If
the FPS penalty parameter ρ satisfies

ρ−1‖S − �‖∞,∞ + 8s

λk − λk+1
‖�JcJ ‖2,∞ ≤ 1(6)

and

0 < λk − λk+1 − 4ρs

(
1 + 8λ1

λk − λk+1

)
,(7)

then the solution Ĥ of FPS problem (3) is unique and satisfies supp(diag(Ĥ )) ⊆ J .
If in addition, either

min
j∈J

√
�jj >

4ρs

λk − λk+1
or(8)

min
(i,j)∈J 2

|�ij | > 2ρ and rank
(
sign(�JJ )

) = 1,(9)

then the FPS solution satisfies supp(diag(Ĥ )) = J .

Theorem 1 consists of two parts. The first part provides a set of sufficient con-
ditions [(6) and (7)] for no false positives. The second part gives two additional
conditions that individually guarantee no false negatives, and hence exact recov-
ery. We discuss these parts separately.

False positive control. (6) reveals the motivation for (LCC). When (LCC)
holds, one can choose ρ = ‖S − �‖∞,∞/α so that (6) holds. On the other hand,
(7) puts some upper bound constraint on ρ. When S is random and satisfies the
maximum error bound condition (2), ‖S −�‖∞,∞ depends on (n,p,σ ). Then (6)
and (7) jointly put a constraint on (s,p,n,σ,λ1, λk, λk+1) so that there exists a ρ

satisfying both conditions.
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(7) puts an upper bound on the sparsity penalty parameter ρ. It may seem coun-
terintuitive since a larger value of ρ will lead to a sparser solution. In fact, ρ cannot
be too large because otherwise the �1 penalty term will outweigh the PCA objec-
tive in the FPS problem, leading to a large estimation bias. Consider the example
given in (5) with t = 0, if S = � and ρ > 0.9; the FPS solution will return a pro-
jection matrix corresponding to eigenvector (0,0,1), which is supported outside
of the true subset. In general, when ρ → ∞, the FPS solution will be a diagonal
matrix taking value 1 on diagonal entries corresponding to the k largest diagonal
entries of S, and 0 elsewhere.

The proof of false positive control in Theorem 1, as given in Section A.1, con-
sists of two main steps. The first step (Section A.1.1) is to show that there exists
a solution of the FPS problem (3) supported on J , using the primal–dual wit-
ness (PDW) argument [Amini and Wainwright (2009), Ravikumar et al. (2011),
Wainwright (2009)]. The PDW argument first constructs a sparse solution H̃ sup-
ported on J by solving the FPS problem (3) under additional sparsity constraint
supp[diag(H)] ⊆ J . Then it is shown that when ρ is large enough, with high proba-
bility one can find a dual variable Ẑ such that the primal–dual pair (H̃ , Ẑ) satisfies
the KKT condition, and hence is optimal for the original problem. When the so-
lution is unique, this ensures that the optimizer is supported on J . The challenge
here is to establish KKT condition when � is not block diagonal, which requires a
careful and delicate subspace perturbation analysis in comparing the FPS solution
and the population projector (Lemmas 2 and 3).

The second step is to show that, under the conditions assumed in the theorem,
the sparse solution constructed in the primal–dual witness argument is indeed rank-
k and also unique. Our proof of uniqueness is novel and makes use of the elastic
net version of FPS (4). A key fact used in the proof is that, for small enough values
of τ , the two problems have the same solution and the uniqueness of FPS solution
follows essentially from that of the elastic net version. The details are given in
Section A.1.2.

False negative control. Having established false positive control in Theorem 1,
full sparsistency will be established if we can show that the number of false neg-
atives is also zero. In sparsity pattern recovery, the number of false negatives is
typically controlled by assuming a lower bound on the magnitude of signals car-
ried by relevant variables. In the context of principal subspace estimation, our first
sufficient condition for false negative control (8) originates from a Frobenius norm
error bound of FPS established in Vu et al. (2013):

‖Ĥ − �‖F ≤ 4ρs

λk − λk+1
.(10)

The other sufficient condition for controlling false negative (9) is motivated by
an assumption used by Amini and Wainwright (2009) for the k = 1 case where
the leading eigenvector is assumed to be v1 = (1s/

√
s,0) (where 1s is the s × 1
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vector of ones, and the signs of nonzero entries can actually be arbitrary) and
�JJ = θv1v

T
1 + Is . Let sign(�JJ ) be the s × s matrix of entry-wise signs of �JJ .

Our condition (9) generalizes that of Amini and Wainwright (2009) in three direc-
tions. First, we allow principal subspaces of dimension k > 1. Second, we allow
nonzero correlation between the relevant and irrelevant variables, whereas Amini
and Wainwright (2009) assumes a block diagonal structure. Third, we do not re-
quire a generalized spiked covariance model as in Amini and Wainwright (2009).
The proof of the second part of Theorem 1 is given in Section A.2.

THEOREM 2 (Sparsistency). Assume that � satisfies (SPS) and (LCC), and
that S satisfies the maximum error bound (2) with scaling factor σ . If

s

√
logp

n
<

α(λk − λk+1)
2

4σ(8λ1 + λk − λk+1)
,(11)

and the FPS penalty parameter ρ in (3) satisfies

ρ = σ

α

√
logp

n
,

then with probability at least 1 − 2p−2, the FPS estimate Ĥ is unique and satisfies
supp(diag(Ĥ )) ⊆ J . If in addition, either

min
j∈J

√
�jj >

4sσ

α(λk − λk+1)

√
logp

n
or(12)

min
(i,j)∈J 2

�ij >
2σ

α

√
logp

n
and rank

(
sign(�JJ )

) = 1,(13)

then supp(diag(Ĥ )) = J .

PROOF. Using the maximum error bound condition, with probability at least
1 − 2p−2 we have ρ−1‖S − �‖∞,∞ ≤ α. This together with the property (LCC)
of � establishes (6). On the other hand, (11) ensures that (7) holds. On the other
hand, (12) implies (8), and (13) implies that the choice of ρ satisfies (9). The
claimed results follow from Theorem 1. �

REMARK 1. When the eigenvalues of � are constants and do not change with
(n,p, s), Theorem 2 recovers a rate developed by Amini and Wainwright (2009)
as a special case where Theorem 2 implies that a sufficient condition for consistent
variable selection (with suitable choice of ρ) is s

√
logp/n ≤ c for a constant c

[according to (11) and (13)]. Amini and Wainwright (2009) also obtain a sharper
sufficient condition s logp/n ≤ c′, by assuming that the solution is rank 1. How-
ever, Krauthgamer, Nadler and Vilenchik (2013) show that, with high probability,
the solution is not rank 1 unless s

√
1/n is bounded by a constant.
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REMARK 2. Condition (11) suggests that the required sample size needs to
increase as λ1 increases. This is because the oracle operator norm error bound of
the principal subspace (i.e., assuming J is known) has a factor of λ1. In an extremal
case, when λ1 is large and λj (j ≥ 2) are much smaller, the estimation error of the
leading eigenvector will likely dominate all the remaining spectral gaps, making it
hard to recover the remaining eigenvectors.

4. Agnostic inference. Consistent estimation and variable selection inevitably
depend on the existence of a “true” model. For sparse PCA, this corresponds to
the assumption that the k-dimensional principal subspace of � is (1) identifiable
and (2) sparse. Under this assumption, previous work [e.g., Vu et al. (2013)] and
the theory presented in Section 3 establish conditions under which consistent esti-
mation and variable selection are possible. While these results can provide useful
insights for sparse PCA and FPS, the conditions may or may not hold in practice.
Therefore, it is important to understand the statistical inference problem without
these assumptions. This is the agnostic inference perspective. Can we remove the
assumptions of identifiability and sparsity? Is there an assumption-free interpreta-
tion for FPS?

Without assuming identifiability, variable selection and estimation consistency
are no longer valid objectives, since there is no unique “true” parameter to es-
timate. For example, when � = I , every k-dimensional subspace is a principal
subspace, and even if there is a unique principal subspace, it may not be sparse. To
develop an assumption-free interpretation, we return to the basic objective func-
tion of PCA. Let X be a random vector with covariance matrix �. PCA can be
interpreted as a covariance maximization technique. It seeks a rank-k projector H

that maximizes the predictive covariance:

trace
(
Cov(X,HX|H)

) = 〈�,H 〉.
If we interpret H as a dimension-reducing transformation, then 〈�,H 〉 is just the
total covariance between the input X and output HX.

4.1. Sparse and shrinking dimension reduction. FPS also maximizes covari-
ance, but it replaces the rank-k projector constraint on H with a Fantope constraint
and an additional sparsity constraint via the (1,1)-norm. Let

ĤR := arg max
H∈Fk,‖H‖1,1≤R

〈S,H 〉.(14)

By Lagrangian duality, this constrained form of FPS is equivalent to the penalized
form (3) in the sense that given S, for every R there is a corresponding ρ such
that a solution of (3) is also a solution of (14) and vice-versa. The corresponding
population version of (14) is

HR := arg max
H∈Fk,‖H‖1,1≤R

〈�,H 〉.(15)
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The meaning of H ∈ Fk may be unclear since it is not necessarily a rank-k
projector. However, it turns out that if we regard H as a linear transformation
x �→ Hx, then H is a smoother matrix [Hastie, Tibshirani and Friedman (2009),
Section 5.4.1] and the Fantope coincides with a class of linear smoothers called
shrinking smoothers [Buja, Hastie and Tibshirani (1989)]. The two essential prop-
erties of H are:

1. 0 � H � I . This is equivalent to the condition that

‖x‖2 ≥ ‖Hx‖2 + ‖x − Hx‖2 for all x.

In other words, the sum of squares of the transformation Hx and its residual
x − Hx cannot be larger than that of x. A map satisfying this property is called
firmly nonexpansive.

2. trace(H) = k. If H is a projector, then k is the dimension of the projection
space. It is also equal to trace[Cov(ξ,Hξ)] when ξ is a random vector with
Var(ξ) = I . By analogy, trace(H) is the effective degrees of freedom of H [see
Hastie, Tibshirani and Friedman (2009), Section 5.4.1].

These two properties are exactly those laid out by Hastie, Tibshirani and Friedman
(2009) for smoother matrices and shrinking smoothers. In the context of dimension
reduction, we call the action of H ∈ Fk shrinking dimension reduction.

Now we turn to the (1,1) norm constraint in (15). A natural notion of sparsity
of a matrix H ∈ Fk is ‖H‖2,0, the number of nonzero rows. Here, we use the
(1,1)-norm as an alternative convex measure of sparsity. For H ∈ Fk we have, by
Cauchy–Schwarz,

‖H‖1,1 ≤ k‖H‖2,0.(16)

That is, if ‖H‖2,0 is small, then ‖H‖1,1 must also be small.

4.2. Persistence of FPS. Our main result in the assumption-free setting is an
interpretation of the constrained form of FPS and its persistence under no assump-
tions on �.

THEOREM 3 (Persistence). Let X,X1, . . . ,Xn ∈ R
p be i.i.d. random vectors

that satisfy the tail probability bound (1) (i.e., X is sub-Gaussian). Then with prob-
ability at least 1 − 2p−2,

〈�,HR〉 ≥ 〈�,ĤR〉 ≥ 〈�,HR〉 − cRλ1

√
logp

n
,

where c > 0 is a constant.

Our proof of Theorem 3 is given in Section A.2. Theorem 3 shows that the pre-
dictive covariance of FPS comes close to that of the best sparse H in the Fantope.
This is essentially an assumption-free interpretation.
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Let

�k,s := arg max
{〈�,�〉 :� is a rank-k projector and ‖�‖2,0 ≤ s

}
be the best rank-k and s-sparse projector. What can we say about ĤR and �k,s? In
this case, (16) implies that ‖�k,s‖1,1 ≤ ks. Thus �k,s is in the feasible set of (14)
if R ≥ ks. If we do not assume any structure on �, Theorem 3 implies that, with
high probability,

〈�,ĤR〉 ≥ 〈�,�k,s〉 − cRλ1

√
logp

n
,

when R ≥ ks. If we assume in addition that � does have a k-dimensional principal
subspace involving at most s variables, then the result can be strengthened to

〈�,�k,s〉 ≥ 〈�,ĤR〉 ≥ 〈�,�k,s〉 − cRλ1

√
logp

n
.

Here, the assumption that � has a sparse principal subspace is still much weaker
than the sparse principal subspace condition required by the sparsistency argu-
ment in Section 3, because there is no requirement on uniqueness of the principal
subspace. As a simple example, � = I satisfies the sparsity condition but not the
uniqueness condition.

REMARK 3 (Stability of FPS). A referee has pointed out to us that there is
another interpretation of Theorem 3 in terms of the continuity of the maximal
predictive covariance map

f (�) := max
{〈�,H 〉 :H ∈ Fk,‖H‖1,1 ≤ R

}
.

The proof of Theorem 3 implies that∣∣f (� + �) − f (�)
∣∣ ≤ 2R‖�‖∞,∞.

So the predictive covariance of FPS is relatively stable under perturbations of � if
R‖�‖∞,∞ is small.

5. Discussion. A connection between sparse PCA and sparse linear regres-
sion has been observed by Vu and Lei (2013). They established minimax rates for
estimation under �2 loss with �q -penalized estimators with suitably defined model
parameters and observed that the rates are identical to those for sparse linear re-
gression when the effective noise variance is defined appropriately. The sparsis-
tency result in the present paper further extends this connection to variable selec-
tion. Roughly speaking, the previously used spiked covariance model in sparse
PCA, which assumes that

� = U�UT + σ 2Ip,
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where U is p × k orthonormal matrix and � � 0 is diagonal [see, e.g., Birnbaum
et al. (2013), Cai, Ma and Wu (2013), Johnstone and Lu (2009), Ma (2013)], cor-
responds to the orthogonal design in linear regression, in the sense that the relevant
and noise variables are not correlated. Moreover, the σ 2I term boosts the signal
by adding σ 2 to all the relevant diagonal entries in � and, therefore, threshold-
ing based methods usually work well. The limited correlation condition devel-
oped in this paper is analogous to the irrepresentable condition [Meinshausen and
Bühlmann (2006), Zhao and Yu (2006)] for �1-penalized sparse regression (Lasso),
where convex optimization methods can succeed when the correlation between rel-
evant and noise variables is small.

When the eigenvalues of � are fixed, a sufficient condition for consistent vari-
able selection using FPS is s � √

n/ logp. This is comparable to the corresponding
rate developed for k = 1 by Amini and Wainwright (2009) when the rank of the so-
lution is not assumed to be 1. It has been shown by Amini and Wainwright (2009)
that the information-theoretic critical rate is s � n/ logp. That is, if s � n/ logp,
no method can succeed in variable selection. It remains an open question if there
exist polynomial time methods that can consistently select relevant variables in the
range

√
n/ logp � s � n/ logp. An interesting work in this direction is that by

Berthet and Rigollet (2013b), which shows that, for k = 1, testing a sparse PCA
model in this regime is at least as hard as solving the planted clique problem be-
yond the well-believed computational barrier.

The predictive covariance maximization interpretation of PCA leads to a nat-
ural characterization of the Fantope as the collection of all shrinking smoothers
with k effective degrees of freedom. Without any assumptions on �, FPS gives
us a dimension reducing transformation that is sparse while being computation-
ally tractable, and it nearly approaches the best predictive covariance. In practice,
it would be useful to estimate the predictive covariance of the FPS solution for a
particular value of ρ using risk estimates such as cross-validation. This leads to
a data-driven procedure for selecting the best FPS tuning parameter ρ. The de-
tailed design and properties of such a cross-validation method is an important and
interesting topic for future work.

APPENDIX: TECHNICAL PROOFS

This appendix contains detailed technical proofs. In Section A.1, we prove the
deterministic sparsistency theorem (Theorem 1). Other proofs, including those of
Lemma 1 and Theorem 3 are given in Section A.2.

A.1. Proof of Theorem 1.

A.1.1. Existence of a sparse solution. The primal–dual witness argument
starts from the dual form of the FPS problem (3). Using strong duality, we can
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write (3) in a equivalent min–max form:

max
H∈Fk

〈S,H 〉 − ρ‖H‖1,1

⇐⇒ max
H∈Fk

min
Z∈Bp

〈S,H 〉 − ρ〈H,Z〉 − kρ

⇐⇒ max
H∈Fk

min
Z∈Bp

〈S − ρZ,H 〉(17)

⇐⇒ min
Z∈Bp

max
H∈Fk

〈S − ρZ,H 〉,(18)

where Bp = {Z ∈ R
p×p : diag(Z) = 0,Z = ZT ,‖Z‖∞,∞ ≤ 1}. According to the

standard Karush–Kuhn–Tucker (KKT) condition, a pair (Ĥ , Ẑ) ∈ Fk × Bp is op-
timal for problems (17) and (18) if and only if

Ẑij = sign(Ĥij ) ∀i 
= j, Ĥij 
= 0,(19)

Ẑij ∈ [−1,1] ∀i 
= j, Ĥij = 0,(20)

Ĥ = arg max
H∈Fk

〈S − ρẐ,H 〉.(21)

To proceed with the primal–dual witness argument, we first construct an addi-
tionally constrained solution H̃ as follows:

H̃ = arg max
H∈Fk,supp(diag(H))⊆J

〈S,H 〉 − ρ‖H‖1,1.(22)

Let Z̃ be a corresponding optimal dual variable. By Lemma 2, H̃ is a rank-k pro-
jector supported on J .

Let
(ÛJ

0

)
and

(UJ

0

)
be p × k orthogonal matrices consisting of the k leading

eigenvectors of S −ρZ̃ and �, respectively, where ÛJ and UJ are s ×k orthogonal
matrices. According to Lemma 2, there exists a s × s orthonormal matrix Q such
that ÛJ = QUJ and ‖Q − I‖F ≤ 8ρs/(λk − λk+1).

Define a modified primal–dual pair (Ĥ , Ẑ) as follows (recall that W =
S − �):

Ĥ = H̃ ,

ẐJJ = Z̃JJ ,(23)

Ẑij = 1

ρ

{
Sij − 〈Qi∗,�J,j 〉}, (i, j) ∈ J × J c,(24)

Ẑij = 1

ρ
Wij , (i, j) ∈ (

J c)2
, i 
= j.(25)
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We need to check that (Ĥ , Ẑ) is feasible for (17) and (18) and satisfies the KKT
conditions (19) to (21).

Checking feasibility. The feasibility of Ĥ is obvious. To check feasibility of Ẑ,
we only need to verify that Ẑij ∈ [−1,1] for all (i, j) ∈ J × J c. In fact,

|Ẑij | ≤ 1

ρ

[|Sij − �ij | +
∣∣�ij − 〈Qi∗,�J,j 〉

∣∣]
≤ 1

ρ

[‖W‖∞,∞ + ∥∥(I − Q)i∗
∥∥ × ‖�J,j‖]

≤ 1

ρ

[‖W‖∞,∞ + ‖I − Q‖F ‖�JcJ ‖2,∞
]

≤ 1

ρ

[
‖W‖∞,∞ + 8ρs

λk − λk+1
‖�JcJ ‖2,∞

]
≤ 1,

where the last inequality follows from (6).
Checking KKT condition (19). Because Ĥ only has nonzero entries in J ×J , so

(Ĥ , Ẑ) satisfies (19) by construction.
Checking KKT condition (20). For (i, j) in J × J , (20) is satisfied for (Ĥ , Ẑ)

because the same condition is satisfied for (H̃ , Z̃). For (i, j) /∈ J × J , we have
Ĥij = 0 and (20) follows from the feasibility of Ẑ.

Checking KKT condition (21). Recall that W = S − �. Let W̃ be the (p − s) ×
(p − s) diagonal matrix that agrees with WJcJ c on diagonal entries. By Lemma 1,

it suffices to show that
(ÛJ

0

)
spans a k-dimensional principal subspace of

�̃ := S − ρẐ =
(

SJJ − ρZ̃JJ Q�JJc

�JcJ QT W̃ + �JcJ c

)
,(26)

which is established in Lemma 3.
Now we have shown that (Ĥ , Ẑ) is indeed an optimal primal–dual pair for (17)

and (18), and hence Ĥ is a solution of (3) and is also supported only on J .

A.1.2. Uniqueness of solution. Consider the elastic net version of FPS in (4)
and its max–min and min–max forms using dual variable Z ∈ Bp := {Z ∈
R

p×p : diag(Z) = 0,Z = ZT ,‖Z‖∞,∞ ≤ 1}:

min
H∈Fd

max
Z∈Bp

−〈S,H 〉 + ρ〈H,Z〉 + τ

2
‖H‖2

F

⇐⇒ max
Z∈Bp

min
H∈Fk

τ

2

∥∥∥∥H − 1

τ
(S − ρZ)

∥∥∥∥2

F

− 1

2τ
‖S − ρZ‖2

F .
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The KKT condition for optimality of (Ĥ , Ẑ) ∈ Fk ×Bp becomes

Ẑij = sign(Ĥij ) ∀i 
= j, Ĥij 
= 0,(27)

Ẑij ∈ [−1,1] ∀i 
= j, Ĥij = 0,(28)

Ĥ = PFk

(
1

τ
(S − ρẐ)

)
.(29)

Let H̃ , Z̃ be the support constrained FPS solution in (22) and Ẑ be the dual
variable constructed in (23) to (25). We first show that (H̃ , Ẑ) is also optimal for
the elastic net version of FPS when τ is small enough.

From the existence proof above and Lemma 3, we know that (i) S − ρẐ = �̃,

(ii) the k-dimensional principal subspace of �̃ is spanned by
(ÛJ

0

)
and (iii) λk(�̃)−

λk+1(�̃) > 0.
By the construction of H̃ , part 3 of Lemma 1 implies that when

0 < τ ≤ λk(�̃) − λk+1(�̃)(30)

we have

H̃ = PFk

(
1

τ
(S − ρẐ)

)
.

As a consequence, (H̃ , Ẑ) is also an optimal primal–dual pair for the elastic net
FPS problem (4) when τ is in the range specified in (30).

Now we prove uniqueness of H̃ as a solution to the FPS problem (3). Assume
that there is another solution Ĥ ′ ∈ Fk such that

〈S, H̃ 〉 − ρ‖H̃‖1,1 = 〈
S, Ĥ ′〉 − ρ

∥∥Ĥ ′∥∥
1,1.

But H̃ is the unique solution to the elastic net FPS for τ > 0 small enough, we
must have ‖Ĥ ′‖2

F > ‖H̃‖2
F , and hence

k ≥ ∥∥Ĥ ′∥∥2
F > ‖H̃‖2

F = k,

which is a contradiction (the first inequality follows from that Ĥ ′ ∈ Fk).

A.1.3. False negative control. The false negative control under condition (8)
is obvious in view of the Frobenius norm error bound (10).

Now we prove false negative control under the entry-wise condition (9). Ac-
cording to Theorem 1, we know that Ĥ is supported on J , and ĤJJ corresponds
to the projector of the k-dimensional principal subspace of �̃JJ := SJJ − ρẐJJ

where Ẑ is the optimal dual variable.
Then it is sufficient to show that the leading eigenvector of �̃JJ does not have

zero entries. Note that ‖�̃JJ − �JJ ‖∞,∞ ≤ 2ρ and the second part of assump-
tion (9) implies that sign(�̃JJ ) = sign(�JJ ).
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By the first part of assumption (9), we have sign(�̃JJ ) = sign(�JJ ) = bbT ,
where b ∈ {−1,1}s . Let B be the s × s diagonal matrix such that diag(B) = b.
The matrix B�̃JJ B has all positive entries, and hence by the Perron–Frobenius
theorem, it has a unique leading eigenvector v1 whose entries are all positive. As
a result, the leading eigenvector of �̃JJ is Bv1, which does not have zero entries.

A.1.4. Auxiliary lemmas.

LEMMA 2. Under the assumptions in Theorem 1, let H̃ be the solution to
the further constrained problem (22). Then H̃ is rank k and unique. Furthermore,
there exist s × k orthonormal matrices UJ , ÛJ such that:

1.
(UJ

0

)
and

(ÛJ

0

)
span the k-dimensional principal subspaces of � and S − ρZ̃,

respectively.
2. There exists a s × s orthonormal matrix Q such that

ÛJ = QUJ ,

‖Q − I‖F ≤ 8ρs

λk − λk+1
.

PROOF. Consider �̃JJ := SJJ − ρZ̃JJ . We know that H̃JJ maximizes
〈�̃JJ ,H 〉 over all H ∈ Fk

s (the trace-k Fantope of Rs×s). We argue that H̃JJ is
unique and has rank k. By condition (6) and Z̃ ∈ Bp , we have ‖�̃JJ −�JJ ‖∞,∞ ≤
2ρ, and hence ‖�̃JJ − �JJ ‖F ≤ 2ρs. On the other hand, by the (SPS) condition
it is straightforward to verify that the leading k eigenvectors of �JJ are those of
� confined on J , and hence λ�(�JJ ) = λ� for all 1 ≤ � ≤ k. Furthermore, since
�JJ is a principal submatrix of �, we have λk+1(�JJ ) ≤ λk+1. Therefore,

λk(�̃JJ ) − λk+1(�̃JJ ) ≥ λk(�JJ ) − λk+1(�JJ ) − 4ρs ≥ λk − λk+1 − 4ρs > 0

by condition (7). The first claim follows from part 1 of Lemma 1.
The second claim is trivial when s = k. Now we focus on the case s > k. By

the (SPS) condition we know that the unique k-dimensional principal subspace of
� is spanned by

(UJ

0

)
where UJ is a s × k orthonormal matrix. Then UJ spans the

k-dimensional principal subspace of �JJ .
Using the fact that λk(�JJ ) − λk+1(�JJ ) ≥ λk − λk+1, and applying Proposi-

tion 2.2 in Vu and Lei (2013), we can choose the right rotations for the columns of
ÛJ and UJ so that

‖ÛJ − UJ ‖F ≤ ∥∥ÛJ ÛT
J − UJ UT

J

∥∥
F .

Using Lemma 4.2 of Vu and Lei (2013) and Cauchy–Schwarz, we have∥∥ÛJ ÛT
J − UJ UT

J

∥∥
F ≤ 2

λk − λk+1
‖�̃JJ − �JJ ‖F ≤ 4ρs

λk − λk+1
.
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The above two inequalities jointly imply that

‖ÛJ − UJ ‖F ≤ 4ρs

λk − λk+1
.

Now let V̂ = (ÛJ , Û c
J ) be an s × s orthonormal matrix, and similarly V =

(UJ ,Uc
J ). One can show that, using the same argument as above, Û c

J and Uc
J can

be chosen such that ∥∥Û c
J − Uc

J

∥∥
F ≤ 4ρs

λk − λk+1
.

Let Q = V̂ V T , then QUJ = ÛJ and

‖I − Q‖F = ∥∥(V − V̂ )V T
∥∥
F = ‖V̂ − V ‖F ≤ 8ρs

λk − λk+1
. �

LEMMA 3. Under the assumptions of Theorem 1, let (H̃ , Z̃) be the optimal

primal–dual pair of the additionally constrained FPS problem (22). Let
(ÛJ

0

)
,
(UJ

0

)
,

and Q be defined as in Lemma 2. Let �̃ be defined as in (26). Then

λk(�̃) − λk+1(�̃) > 0

and H̃ is the unique projector of the k-dimensional principal subspace of �̃.

PROOF. We start from a decomposition of �̃ as follows:

�̃ =
(

SJJ − ρZ̃JJ Q�JJc

�JcJ QT W̃ + �JcJ c

)

=
(

SJJ − ρZ̃JJ − Q�JJ QT + Q�JJ QT Q�JJc

�JcJ QT W̃ + �JcJ c

)
(31)

=
(

SJJ − ρZ̃JJ − Q�JJ QT 0
0 W̃

)
+

(
Q�JJ QT Q�JJc

�JcJ QT �JcJ c

)
= “noise” + “signal.”

It can be directly verified that
(ÛJ

0

)
spans the d-principal subspace of(

Q�JJ QT Q�JJc

�JcJ QT �JcJ c

)
=

(
Q 0
0 I

)
× � ×

(
QT 0
0 I

)
.(32)

Moreover, (32) implies that the eigenvalues of the “signal” part in the decomposi-
tion (31) are the same as those of �.

To sum up, we have so far shown that
(ÛJ

0

)
spans the k-dimensional principal

subspace of the signal part, with spectral gap λk − λk+1.
Next, we need to show that the k-dimensional principal subspace remains un-

changed after adding the “noise” part.
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First, the block-diagonal structure of the “noise” matrix in (31) ensures that(ÛJ

0

)
spans one of its k-dimensional spectral subspace (a k-dimensional spectral

subspace of a p × p symmetric matrix A means that if v is in this subspace, then
Av is also in this subspace).

Second, we show that twice the operator norm of the “noise” part is smaller than
the gap between kth and (k + 1)th eigenvalues of �̃, which is λk − λk+1. In fact,
the operator norm of the noise part does not exceed

‖SJJ − ρZ̃JJ − �JJ ‖ + ∥∥�JJ − Q�JJ QT
∥∥ ≤ 2ρs + 2‖�JJ ‖ × ‖Q − I‖

≤ 2ρs + 2λ1 × 8ρs/(λk − λk+1),

where the bound on ‖Q−I‖ comes from Lemma 2. We also have ‖W̃‖ ≤ ρ, which
is contained within the above bound.

Therefore, by standard perturbation theory such as Weyl’s inequality, the sub-

space spanned by
(ÛJ

0

)
is the k-dimensional principal subspace of �̃ as long as

4ρs + 16
√

2λ1ρs/(λk − λk+1) ≤ λk − λk+1,(33)

which means that twice the noise operator norm does not exceed the spectral gap
in the signal part.

When the inequality in (33) is strict, as stated in condition (7), we know that the
k-dimensional principal subspace of �̃ is unique. �

A.2. Other proofs.

PROOF OF LEMMA 1. (1) See Overton and Womersley (1992). (2) is
Lemma 4.1 of Vu et al. (2013). (3) We have

〈A,H 〉 − τ

2
‖H‖2

F = −τ

2

∥∥H − τ−1A
∥∥2
F + 1

2τ
‖A‖2

F .

This is maximized over H ∈ Fk by H = PFk (τ−1A). Note that by assumption
γk/τ ≥ 1 and γk+1 < γk . Then the claim follows by applying (1) and (2). �

PROOF OF THEOREM 3. Let HR be any solution of

max
H∈Fk,‖H‖1,1≤R

〈�,H 〉.

Then 0 ≤ 〈−�, Ĥ − HR〉, and (14) implies 0 ≤ 〈S, Ĥ − HR〉. Combining these
two inequalities with the Hölder and triangle inequalities yields

0 ≤ 〈�,HR〉 − 〈�, Ĥ 〉 ≤ 〈S − �,Ĥ − HR〉 ≤ 2R‖S − �‖∞,∞.

Finally, invoke (2) to complete the proof. �
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