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A NEW PERMUTATION TEST STATISTIC FOR COMPLETE
BLOCK DESIGNS

BY INGA SAMONENKO1 AND JOHN ROBINSON2

University of Sydney

We introduce a nonparametric test statistic for the permutation test in
complete block designs. We find the region in which the statistic exists and
consider particularly its properties on the boundary of the region. Further, we
prove that saddlepoint approximations for tail probabilities can be obtained
inside the interior of this region. Finally, numerical examples are given show-
ing that both accuracy and power of the new statistic improves on these prop-
erties of the classical F -statistic under some non-Gaussian models and equals
them for the Gaussian case.

1. Introduction. Randomized designs and permutation tests originated in the
work of Fisher (1935). Kolassa and Robinson (2011) obtained theorems on the
distribution of a general likelihood ratio like statistic under weak conditions and
applied these to the one-way or k-sample permutation tests, obtaining saddlepoint
approximations generalizing the Lugananni–Rice and Barndorff–Nielsen approx-
imations for one-dimensional means. Here, we use their general result and apply
their approach to permutation tests for complete block designs, paying particular
attention to the region in which the statistic exists and in the interior of which sad-
dlepoint approximations can be obtained. This interior is the admissible domain,
following Borovkov and Rogozin (1965). We examine the properties of the test
statistic in this region and on its boundary, and obtain results on the relative errors
of saddlepoint approximations inside the admissible domain. We also give numeri-
cal results for comparisons of the new statistic with the commonly used F -statistic
which demonstrate the accuracy of the saddlepoint approximation and show, for
long tailed error distributions, an improvement in power relative to the F -statistic
with no loss of power for near normal errors.

A randomized complete block design is used to compare the effect of k different
treatments in b blocks, usually selected to reduce the variation within subunits of
the block. The analysis of variance is used to test the null hypothesis that the treat-
ments have the same effect, with the test statistic F , the ratio of the treatment and
error mean squares. Under the assumption that the errors are normally distributed,
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the null distribution of F is the F distribution with k−1 and (k−1)(b−1)-degrees
of freedom and the F test is equivalent to an unconditional likelihood ratio test.

The random assignment of k treatments to each block allows us to use a permu-
tation test based on means which is distribution-free and does not rely either on the
assumption of normality or on asymptotics. This test can be performed using the
F -statistic and will have correct size, conditionally on the order statistics in each
block, and so unconditionally, for any distribution of errors under the null hypoth-
esis of no treatment effects in a standard two-way model or for a model based on
randomization prior to the experiment. Under the null hypothesis, the permutation
distribution of this statistic can be calculated exactly by evaluating all possible val-
ues of the test statistic under permutations in each block and taking these as equi-
probable. When this is numerically infeasible, Monte Carlo methods are widely
used to approximate the exact distribution by using a large random sample of the
possible permutations. A chi-squared distribution with (k − 1)-degrees of freedom
or an F distribution with (k−1) and (k−1)(b−1)-degrees of freedom are asymp-
totic approximations to the distribution of the permutation test statistic under mild
conditions on moments. If the observations are not normally distributed and if the
number of blocks is not large, then the central limit theorem will not guarantee a
good approximation and the test will not have the optimality properties that might
be expected under normality.

We propose a likelihood ratio like statistic in place of F, based on exponential
tilting. We show that this statistic can be calculated on the admissible domain, an
open convex set, the closure of which contains the support of the treatment means.
We consider the boundary of the admissible domain and show that the statistic
can be obtained on the boundary as a limit which can be calculated using lower
dimensional versions of the statistic on lower dimensional versions of the admissi-
ble domain. We then obtain saddlepoint approximations for the tail probability of
this statistic with relative errors of order 1/n in the admissible domain, based on
Theorems of Kolassa and Robinson (2011). The results generalize the saddlepoint
approximations of Robinson (1982) in the case of permutation tests of paired units,
which can be regarded as a block design with blocks of size 2, where the admissi-
ble domain is the interval between the mean of the absolute values of differences
of the pairs and its negative.

In the next section, we introduce the notation for a complete block design, obtain
the likelihood ratio like statistic and define its admissible domain. In Section 3, we
describe the admissible domain and give three theorems giving explicit results for
the test statistic on the boundary of the domain, with proofs given in Section 6.
In Section 4, we use the theorems of Kolassa and Robinson (2011) to show that
tail probabilities for the statistic under permutations can be approximated in the
admissible domain by an integral of a formal saddlepoint density given in forms
like those of Lugananni–Rice and Barndorff–Nielsen in the one-dimensional case.
In Section 5, we present numerical calculations illustrating the accuracy of the
approximations compared to those obtained using the standard test statistics and
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give power comparisons showing an improvement in power over the standard F -
test for observations from long tailed distributions. The code used is available from
http://www.maths.usyd.edu.au/u/johnr/BlockDesfns.R.

2. The test statistic � and its admissible domain. Let (Xij ) be a matrix
of observed experimental values, normalized to have row means zero, where i =
1, . . . , b is the block number and j = 1, . . . , k is the treatment number. Let matrix
A = (aij ) have rows of the matrix (Xij ) each set in ascending order and let Ai

be its ith row. Define the means X̄j = ∑b
i=1 Xij/b for j = 1, . . . , k and let X̄ =

(X̄1, . . . , X̄k−1)
T . Then, given A, under the null hypothesis of equal treatment

effects, the conditional cumulative generating function for treatment means is

bκ(τ) = log E
(
e

∑k
j=1 τj X̄j |A) =

b∑
i=1

log E
(
e

∑k
j=1 τjXij /b|Ai

)
.

Set ti = (τi − τk)/b for i = 1, . . . , k − 1. Then we can reduce the problem of
defining the average cumulative generating function to a (k − 1)-dimensional one
and write

κ(t) = 1

b

b∑
i=1

log
1

k!
∑
π∈�

etT aiπ ,(1)

where t = (t1, . . . , tk−1)
T , � is the set of possible vectors (π(1), . . . , π(k − 1))

obtained from the first k − 1 elements of all permutations of indices {1, . . . , k} and
aiπ = (aiπ(1), . . . , aiπ(k−1))

T .
Consider the test statistic �(X̄), where

�(x) = sup
t

{
tT x − κ(t)

}
,(2)

for t, x ∈ Rk−1. Let us define an admissible domain � ⊂ Rk−1 as the set of all x

for which tT x −κ(t) attains its maximum. Then there exists a unique value tx such
that

�(x) = tTx x − κ(tx) if and only if κ ′(tx) = x,(3)

since tT x − κ(t) is strictly convex by noting that −κ ′′(t) is negative definite.
In the case k = 2, the admissible domain is (−∑b

i=1 |ai1 − ai2|,∑b
i=1 |ai1 −

ai2|) and the properties of � and the saddlepoint approximation are discussed for
the two special cases of the binomial and the Wilcoxon signed-rank test in Jin and
Robinson (1999). The situation is more complex for k > 2 and results are given in
the next section.

REMARK. Exact randomization tests have restricted application to designed
experiments. The only two designs for which we know how to obtain a statistic

http://www.maths.usyd.edu.au/u/johnr/BlockDesfns.R
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of our form are the complete block design considered here and the one-way or k-
sample design considered in Kolassa and Robinson (2011). An extension to some
other cases such as balanced incomplete block designs or in testing for main effects
using restricted randomization as suggested by Brown and Maritz (1982) may be
possible but do not seem to be straightforward.

3. The properties of �. First, we will describe the admissible domain and
give some results which make it possible to calculate �(x) on the boundary
of the domain where the solution of the saddlepoint equations (3) does not ex-
ist. Let Ā = (Ā1, . . . , Āk)

T be a vector of column means of A and write Āπ =
(Āπ(1), . . . , Āπ(k−1))

T , for any π ∈ �. Then the support of X̄ contains Āπ and
the set of Āπ , for all π ∈ �, is the set of extreme points of the convex hull of the
support of X̄, which is a (k − 1)-polytope P .

THEOREM 1. The set � is the interior of the (k − 1)-polytope P .

THEOREM 2. The function �(x) is finite on the boundary of � and takes its
maximum value log k! at its extreme points.

The boundary of P consists of all x ∈ P for which there exists an integer l

and distinct integers s1, . . . , sk−1 from the set {1, . . . , k − 1} satisfying one of the
equalities

l∑
j=1

xsj =
l∑

j=1

Āj or
l∑

j=1

xsj =
l∑

j=1

Āk−j+1.(4)

THEOREM 3. On the boundary of � corresponding to the value l we have

�(x) = �1(x) + �2(x) + log
(

k

l

)
,

for

�1(x) = sup
u1,...,ul−1

(
l−1∑
j=1

xsj uj − 1

b

b∑
i=1

log
1

l!
∑

π̂1∈�̂1

e
∑l−1

j=1 aiπ̂1(j)uj

)

and

�2(x) = sup
ul+1,...,uk−1

(
k−1∑

j=l+1

xsj uj − 1

b

b∑
i=1

log
1

(k − l)!
∑

π̂2∈�̂2

e
∑k−1

j=l+1 aiπ̂2(j)uj

)
,

where �̂1 and �̂2 are sets of all permutations π̂1 and π̂2 of integers {1, . . . , l} and
{l + 1, . . . , k}, respectively.
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FIG. 1. Examples of the admissible domain in the cases k = 3 and k = 4.

REMARK. The result of Theorem 3 demonstrates that the boundary of � ⊂
Rk−1 consists of lower dimensional polytopes, each made up of a cross product of
two sets of dimension l − 1 and k − l − 1, for l = 1, . . . , k − 1. These correspond
to the restriction of the permutations in each block to the smallest or largest l − 1
elements of the block and their complements. The functions �1 and �2 are defined
on these subsets as is � in (2). To illustrate this, in Figure 1 we have given two
diagrams showing the polytope P for the cases k = 3 and k = 4. In the first picture,
we have 6 vertexes and 6 sides with boundaries made up of lines representing the
dimension reduction to one dimension. In this case, one of �1 and �2 is identically
zero. In the second picture, the two-dimensional boundaries are either six-sided,
corresponding to one of �1 and �2 being identically zero, and the other a two-
dimensional function, or are rectangles corresponding to both �1 and �2 being
one-dimensional functions.

4. Saddlepoint approximations for �. Consider P(�(X̄) ≥ u2/2), where P
denotes the conditional distribution given A, and define

r(x) = e−b�(x)(2π/b)−k/2∣∣κ ′′(tx)
∣∣−1/2

for x ∈ �. In the case of identically distributed random vectors Xi = (Xi1, . . . ,

Xi,k−1) ∈ �, i = 1, . . . ,N with known densities, r(X̄) is a saddlepoint density
approximation for X̄, obtained by Borovkov and Rogozin (1965). In our case, the
lack of a density requires the application of Theorem 1 of Kolassa and Robinson
(2011). We consider

P
(
�(X̄) ≥ u2/2

) = P(X̄ ∈F),
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where F = {x :�(x) ≥ u2/2} and u ∈ �−ε = (�c
ε)

c = {x ∈ Rk−1, y ∈ �c : |x −
y| < ε}c. Whenever Fc ⊂ �−ε , our case must only meet the necessary condi-
tions (A1)–(A4) stated in Kolassa and Robinson (2011). The cumulative generat-
ing function (1) exists throughout Rk−1, therefore, the first condition is met. The
average variance κ ′′(t) is a positive definite matrix which equals the identity matrix
at the origin. Thus, the second condition is met. The third condition only requires
the existence of some moments and the fourth is a smoothness condition, which we
assume holds. It will hold, for example, if the observations are from a distribution
with a continuous component. Thus we can apply Theorems 1 and 2 of Kolassa
and Robinson (2011) as in that paper to get the following result.

THEOREM 4. For ε > 0 and u2/2 < log k − ε, under conditions (A1)–(A4) of
Kolassa and Robinson (2011),

P
(
�(X̄) ≥ u2/2

) = Qk−1
(
bu2)(

1 + O(1/b)
) + cb

b
uk−1e−bu2/2 G(u) − 1

u2 ,(5)

P
(
�(X̄) ≥ u2/2

) = Qk−1
(
bu∗2)(

1 + O(1/b)
)
,(6)

where

Qk−1(x) = P
(
X 2

k−1 ≥ x
) = 1

2(k−1)/2	((k − 1)/2)

∫ ∞
x

z(k−1)/2−1e−z/2 dz,

u∗ = u − log(G(u))/bu, cb = b(k−1)/2/2(k−3)/2	(k−1
2 ),

δ(u, s) = 	((k − 1)/2)|κ ′′(tx)|−1/2|κ ′′(0)|1/2rk−2

2π(k−1)/2uk−3|sT κ ′′(0)1/2tx |
and

G(u) =
∫
Sk−1

δ(u, s) ds,

for Sk−1 the k − 1-dimensional unit sphere centered at zero, and where, for each
s ∈ Sk−1, r is chosen so �(rκ ′′(0)1/2s) = u2/2. Here, tx is a solution to (3) at the
point x = rκ ′′(0)1/2s.

We note that the constraint u2/2 < log k − ε, ensures that the level set of
�(x) corresponding to u lies entirely in �, since the minimum value of �(x)

for an x on the boundary occurs for l = 1 and �1(x) = �2(x) = 0 in Theo-
rem 3. The remainder of the proof then follows in the same way as in Theo-
rem 2 of Kolassa and Robinson (2011), so we omit it. The theorem gives ap-
proximations of the tail probabilities of the test statistic � under permutations, in
forms like those of Lugananni–Rice and Barndorff–Nielsen in the one-dimensional
case.
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TABLE 1
Accuracy for exponentially squared errors, b = 10 and k = 4

u 0.6 0.8 1.0 1.2 1.4

MC F 0.3353 0.1042 0.0257 0.0047 0.0003
F 0.3286 0.1193 0.0342 0.0083 0.0018
MC � 0.4494 0.1777 0.0455 0.0071 0.0008
SP LR 0.4179 0.1645 0.0480 0.0070 0.0007
SP BN 0.4059 0.1565 0.0441 0.0066 0.0007

5. Numerical results.

5.1. Accuracy. For each of the simulation experiments, we obtained a single
matrix A by sampling from a distribution, that of squared exponential random vari-
ables for our Tables 1, 2 and 3. Then we used 100,000 replicates of random permu-
tations of each block to obtain Monte Carlo approximations to the tail probabilities
of the permutation tests for the statistics F and �, shown as MC F and MC � in
the tables. We compared these to the tail probabilities from the F distribution for
the F -statistic and to the saddlepoint approximations for the � statistic obtained
using formulas (5) (SP LR) and (6) (SP BN), respectively, with 100 Monte Carlo
samples used to approximate integrals on the sphere Sk−1, as in the Remark in
Section 2 of Kolassa and Robinson (2011). We also used the method from Genz
(2003), for approximation of the integral on the sphere, obtaining effectively the
same accuracy as with Monte Carlo sampling.

From Tables 1 and 2, we note that the accuracy is high for the � test, even for
only 5 blocks of size 3. We note that for Table 2 the theorem holds for u less than√

2 log 3 = 1.48, so we are restricted to this region. Results from other simulations
show even greater accuracy under normal errors or errors that are not from long
tailed distributions.

TABLE 2
Accuracy for exponential squared errors, b = 5 and k = 3

u 0.6 0.8 1.0 1.2 1.4

MC F 0.4620 0.2448 0.1277 0.0653 0.0427
F 0.4441 0.2603 0.1434 0.0767 0.0408
MC � 0.5118 0.3133 0.1578 0.0774 0.0270
SP LR 0.5011 0.2988 0.1563 0.0736 0.0278
SP BN 0.4950 0.2917 0.1500 0.0687 0.0255
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TABLE 3
Average of 1000 permutation test results for exponential squared errors with b = 10 and k = 4

compared to the F distribution

u 0.6 0.8 1.0 1.2 1.4

E MC F 0.3175 0.0836 0.0171 0.0032 0.0005
F 0.3286 0.1193 0.0342 0.0083 0.0018

The F -statistic has less accuracy in the tails, partly because the F -statistic ap-
proximates the average of tail probabilities conditioned on the matrix A, using
100,000 permutations for each A, so that even in the case of normal errors, it may
not agree with the conditional tail probabilities approximated by MC F -values
from the tables of this section, which give proportions in the tails obtained from
100,000 Monte Carlo simulations from a particular sample and is an approxima-
tion of the conditional distribution. To consider the accuracy of the unconditional
test, we obtained 1000 replicates from each of a normal and exponential squared
distribution, obtained tail probabilities for these from the permutation test for the
F -statistic, averaged these over the 1000 replicates and compared these approxi-
mations to the F distribution. In the normal case, the results were very accurate,
essentially replicating the theoretical results, as expected, and for the squared ex-
ponential case the results are given in Table 3 indicating that errors remain unsat-
isfactory in the tails.

5.2. Power results for the saddlepoint approximations. We compare the F -
statistic and the saddle point approximations using (5) and (6) using 100 Monte
Carlo uniform samples from Sk . There were 2000 samples with errors drawn
from the exponential and the exponential squared distributions, and for each
of these p-values were calculated using the saddlepoint approximations for the
� statistic obtained using formulas (5) (PowerLR) and (6) (PowerBN), respec-
tively, and using 10,000 permutations to approximate the p-values for the F -
statistic, for a design with 10 blocks of size 4. We selected treatment effects μ,
as (0,0,0,0), (−1/5,0,0,1/5), . . . , (−9/5,0,0,9/5).

Under the exponential distribution, in Table 4, the �-statistic gives a slight in-
crease in power compared to F -statistic for small

∑
μ2 and under the exponen-

tially squared distribution, in Table 5, the �-statistic gives a substantial increase in
power compared to F -statistic for moderate values of

∑
μ2. In both cases there is

no difference for higher powers. We note that the tests have essentially equal power
up to computational accuracy under the Normal, Uniform and Gamma (shape pa-
rameter 5) distributions. The increase in power becomes noticeable in long tail dis-
tributions like Exponential, Exponential Squared, Gamma (shape parameter 0.5)
distributions.
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TABLE 4
Power calculation under the exponential distribution

∑
μ2 0.0 0.04 0.16 0.36 0.64 1.0 1.44 1.96

PowerF 0.056 0.081 0.209 0.424 0.668 0.861 0.982 1
PowerLR 0.049 0.091 0.235 0.451 0.679 0.862 0.981 1
PowerBN 0.053 0.093 0.238 0.455 0.681 0.866 0.982 1

6. Proofs of theorems of Section 3.

PROOF OF THEOREM 1. From (3), � = {x :κ ′(t) = x, for some t ∈ Rk−1},
the image of κ ′(·). Using equation (1) we get the j th component of κ ′(t),

κ ′
j (t) = 1

b

b∑
i=1

∑
π∈� aiπ(j) exp(tT aiπ )∑

π∈� exp(tT aiπ )
.

Here, aiπ(j) is the j th component of aiπ and

Ā1 = 1

b

b∑
i=1

ai1 <
1

b

b∑
i=1

∑
π∈� aiπ(j) exp(tT aiπ )∑

π∈� exp(tT aiπ )
<

1

b

b∑
i=1

aik = Āk.

Using the same approach, we can conclude that for all distinct integers j1,
j2, . . . , jk−1 taking values 1,2, . . . , k − 1, and for l = 1, . . . , k − 1,

l∑
j=1

Āj <
1

b

b∑
i=1

∑
π∈�

∑l
m=1 aiπ(jm) exp(tT aiπ )∑
π∈� exp(tT aiπ )

<

k∑
j=k−l+1

Āj .(7)

So � ⊂ P .
Let us prove that � is a convex set. Let x, y ∈ � and c + d = 1, c, d > 0. Then

for all t ∈ Rk−1

tT (cx + dy) − κ(t) = c
(
tT x − κ(t)

) + d
(
tT y − κ(t)

) ≤ c�(x) + d�(y) < ∞.

Since the expression tT (cx +dy)−κ(t) is bounded and convex, it has a maximum,
so that cx + dy ∈ � and

�(cx + dy) ≤ c�(x) + d�(y),

TABLE 5
Power calculation under the exponentially squared distribution

∑
μ2 0.0 0.04 0.16 0.36 0.64 1.0 1.44 1.96

PowerF 0.051 0.101 0.230 0.490 0.711 0.840 0.987 1
PowerLR 0.057 0.169 0.319 0.545 0.727 0.832 0.976 1
PowerBN 0.063 0.178 0.328 0.550 0.731 0.832 0.977 1
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so � is convex.
To see that each vertex of the polytope is a limiting point of �, consider any

vertex Āπ̂ = (Āπ̂(1), Āπ̂(2), . . . , Āπ̂(k−1)). Suppose π̂(k) = j and define l1, . . . , lk
such that π̂(li) = i, so lj = k. We can show that

lim
tlj+1→∞· · · lim

tlk →∞ lim
tlj−1→−∞· · · lim

tl1→−∞κ ′(t) = (Āπ̂(1), . . . , Āπ̂(k−1)).(8)

To see this, write

κ ′(t) = 1

b

b∑
i=1

∑
π∈� aiπ exp(tT (aiπ − aiπ̂ ))∑

π∈� exp(tT (aiπ − aiπ̂ ))

(9)

= 1

b

b∑
i=1

aiπ̂ + ∑
π∈�,π �=π̂ aiπ exp(tT (aiπ − aiπ̂ ))

1 + ∑
π∈�,π �=π̂ exp(tT (aiπ − aiπ̂ ))

.

Note that aiπ̂(l1) = ai1 is the smallest entry in the ith row so the coefficient of
tl1 , aiπ(l1) − aiπ̂(l1) = aiπ(l1) − ai1, is either positive or zero for any π ∈ �. As
tl1 → −∞, only the permutations with π(l1) = 1 give nonzero terms, so

lim
tl1→−∞κ ′(t) = 1

b

b∑
i=1

aiπ̂ + ∑
π∈{� : π(l1)=1},π �=π̂ aiπ exp(tT (aiπ − aiπ̂ ))

1 + ∑
π∈{� : π(l1)=1},π �=π̂ exp(tT (aiπ − aiπ̂ ))

.(10)

Continuing to take limits, in the order given in (8), removes all but the first term
in the numerator and denominator of (10), to prove (8). Thus, the vertex Āπ̂ is a
limiting point of �. Since π̂ is arbitrary, this holds for each vertex of the polytope.
Since � is a convex set enclosed by the edges of the polytope, � is the interior of
the polytope. �

PROOF OF THEOREM 2. Consider the expression tT x − κ(t). Using previous
notation set x = Āπ̂ . Using the definition (1), we can write

tT Āπ̂ − κ(t) = −1

b

b∑
i=1

log
1

k!
∑
π∈�

etT (aiπ−aiπ̂ ),(11)

since Āπ̂ = 1
b

∑b
i=1 aiπ̂ . Then by the same argument used in Theorem 1, we get

lim
tlj+1→∞· · · lim

tlk→∞ lim
tlj−1→−∞· · · lim

tl1→−∞
[
tT Āπ̂ − κ(t)

] = log k!.

From the definition of supremum and equation (2),

�(x) = sup
t

{
tT Āπ̂ − κ(t)

} = logk!.

Since π̂ is chosen arbitrarily �(x) is equal to log k! on all vertexes. These are
the extreme points of � and �(x) is convex, so �(x) takes its maximum on the
vertexes and is finite on all points of P and so on the boundary of �. �
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PROOF OF THEOREM 3. Using (4), choose x so that

l∑
j=1

xsj =
l∑

j=1

Āj

is true for some {sj } and l. The alternative choice will follow in the same way. So

xT t =
l−1∑
j=1

xsj (tsj − tsl ) +
l∑

j=1

Āj tsl +
k−1∑

j=l+1

xsj tsj

and, from (1), κ(t) can be written

1

b

b∑
i=1

log
1

k!
∑
π∈�

exp

(
l−1∑
j=1

aiπ(j)(tsj − tsl ) +
l∑

j=1

aiπ(j)tsl +
k−1∑

j=l+1

aiπ(j)tsj

)
.

Make the substitution

uj =
{

tsj − tsl , for 1 ≤ j < l,

tsj , for l ≤ j ≤ k − 1,

and use the first equality in (4), to write xT t − κ(t) as

k−1∑
j=1,j �=l

xsj uj − 1

b

b∑
i=1

log
1

k!
∑
π∈�

exp

(
k−1∑

j=1,j �=l

aiπ(j)uj + ul

l∑
j=1

(aiπ(j) − aij )

)
,

where for each 1 ≤ j ≤ l,
∑l

j=1(aiπ(j) − aij ) ≥ 0. Let ul → −∞ and we have

lim
ul→−∞

(
xT t − κ(t)

) =
k−1∑

j=1,j �=l

xsj uj − 1

b

b∑
i=1

log
1

k!
∑
π∈�̂

exp

(
k−1∑

j=1,j �=l

aiπ(j)uj

)
,

where �̂ = {π ∈ � :
∑l

j=1(aiπ(j) −aij ) = 0}. Let �̂1 and �̂2 be sets of all permu-
tations π̂1 and π̂2 of integers {1, . . . , l} and {l + 1, . . . , k}, respectively. Then the
above expression can be rewritten

lim
ul→−∞

(
xT t − κ(t)

) =
l−1∑
j=1

xsj uj − 1

b

b∑
i=1

log
1

l!
∑

π̂1∈�̂1

e
∑l−1

j=1 aiπ̂1(j)uj

+
k−1∑

j=l+1

xsj uj − 1

b

b∑
i=1

log
1

(k − l)!
∑

π̂2∈�̂2

e
∑k−1

j=l+1 aiπ̂2(j)uj(12)

+ log
k!

l!(k − l)! .
Now taking suprema over u1, . . . , ul−1 and ul+1, . . . , uk−1 in the first two terms
on the right in (12), the statement of the theorem follows. �
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