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DESCARTES’ RULE OF SIGNS AND THE IDENTIFIABILITY OF
POPULATION DEMOGRAPHIC MODELS FROM GENOMIC
VARIATION DATA!

BY ANAND BHASKAR AND YUN S. SONG
University of California, Berkeley

The sample frequency spectrum (SFS) is a widely-used summary statis-
tic of genomic variation in a sample of homologous DNA sequences. It pro-
vides a highly efficient dimensional reduction of large-scale population ge-
nomic data and its mathematical dependence on the underlying population
demography is well understood, thus enabling the development of efficient
inference algorithms. However, it has been recently shown that very differ-
ent population demographies can actually generate the same SFS for arbi-
trarily large sample sizes. Although in principle this nonidentifiability issue
poses a thorny challenge to statistical inference, the population size func-
tions involved in the counterexamples are arguably not so biologically real-
istic. Here, we revisit this problem and examine the identifiability of demo-
graphic models under the restriction that the population sizes are piecewise-
defined where each piece belongs to some family of biologically-motivated
functions. Under this assumption, we prove that the expected SFS of a sam-
ple uniquely determines the underlying demographic model, provided that
the sample is sufficiently large. We obtain a general bound on the sample
size sufficient for identifiability; the bound depends on the number of pieces
in the demographic model and also on the type of population size function
in each piece. In the cases of piecewise-constant, piecewise-exponential and
piecewise-generalized-exponential models, which are often assumed in pop-
ulation genomic inferences, we provide explicit formulas for the bounds as
simple functions of the number of pieces. Lastly, we obtain analogous re-
sults for the “folded” SFS, which is often used when there is ambiguity as
to which allelic type is ancestral. Our results are proved using a generaliza-
tion of Descartes’ rule of signs for polynomials to the Laplace transform of
piecewise continuous functions.

1. Introduction. Given a sample of homologous genomic sequences from a
large population, an important inference problem with a wide variety of important
applications is to determine the underlying demography of the population. The
population demography can be used to calibrate null models of neutral genome
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evolution in order to find regions under selection [2, 25, 45]; to stratify samples
in genome-wide association studies [3, 28, 33, 37]; to date historical population
splits, migrations, admixture and introgression events [10, 18, 24, 26, 40, 43]; and
so on. Recently, several large-sample genome- and exome-sequencing datasets
have become available [1, 4, 6, 31, 44], shedding new light on patterns of ge-
netic variation that were not previously observable in smaller datasets. Such large-
sample studies offer an exciting opportunity to infer demography in unprecedented
detail.

One widely-used measure of genetic variation in a set of homologous genome
sequences is the sample frequency spectrum (SFS). For a sample of size n, the
SES counts the proportion of dimorphic (i.e., with exactly two distinct observed
alleles) sites as a function of the frequency (%, where 1 <b <n — 1) of the mu-
tant allele in the sample. The SFS is useful for several reasons. First, the SFS is a
succinct summary of a large sample of genomic sequences, where the information
in n sequences of arbitrary length can be summarized by just n — 1 numbers. This
makes the SFS both mathematically and algorithmically tractable. In particular,
since the SFS ignores linkage information between sites, one can avoid challeng-
ing mathematical and computational issues associated with rigorously modeling
genetic recombination. Furthermore, the statistical properties of the SFS and their
dependence on the population demographic history are well understood under the
coalescent and the diffusion models of neutral evolution [7, 11, 12, 19, 35, 46].
This dependence of the SFS on demography, along with the assumption of free
recombination between sites, has been exploited in several efficient methods for
inferring historical population demography [5, 13, 27, 29]. Second, the SFS can
effectively capture the impact of recent demography on genetic variation. Recent
large-sample studies [4, 6, 31, 44] have consistently shown that there is an ex-
cess of rare polymorphisms compared to the predictions of previously inferred
demographic models, which might be explained by recent rapid population expan-
sion [16]. Because the leading entries of the SFS count the rare variants in the
sample, one might be able to use this information to infer demographic events
in the recent past at a much finer resolution than possible using smaller samples.
Third, the SFS also provides a simple way of visualizing the goodness of fit of a
demographic model to data, since one can easily compare the SFS observed in the
data with the SFS predicted by the fitted demographic model.

While the SFS has algorithmic advantages for demographic inference, it is be-
lieved to suffer from a statistical shortcoming. Specifically, Myers, Fefferman and
Patterson [30] recently showed that even with perfect knowledge of the population
frequency spectrum [i.e., the proportion of polymorphic sites with population-wide
allele frequency in (x, x + dx) for all x € (0, 1)], the historical population size
function 7(¢) as a function of time is not identifiable. Using Miintz—Sz4sz theory,
they showed that for any population size function 7(¢), one can construct arbi-
trarily many smooth functions F'(¢) such that both 7 (¢) and n(¢) + o F (¢) generate
the same population frequency spectrum for suitably chosen values of . They also
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constructed explicit examples of such functions n(¢) and F(¢). While this noniden-
tifiability could pose serious challenges to demographic inference from frequency
spectrum data, the population size functions involved in their example are arguably
unrealistic for biological populations. In particular, their explicit example involves
a population size function which oscillates at an increasingly higher frequency as
the time parameter approaches the present. Real biological population sizes can be
expected to vary over time in a mathematically more well-behaved fashion. In par-
ticular, populations can be expected to evolve in discrete units of time, which, when
approximated by a continuous-time model, restricts the frequency of oscillations
in the population size function to be less than the number of generations of repro-
duction per unit time. Furthermore, since a population size model being inferred
must have a finite representation for obvious algorithmic reasons, most previous
demographic inference analyses have focused on inferring population size models
that are piecewise-defined over a restricted class of functions, such as piecewise-
constant and piecewise-exponential models [10, 17, 24, 26, 31, 41, 44]. Motivated
by the large number of rare variants observed in several large-sample sequenc-
ing studies, recent works [38, 39] have also focused on more general population
growth models which allow for the population to grow at a faster than exponen-
tial rate. Each piece in such piecewise models has two parameters that control the
rate and acceleration of population growth. Since these models contain the family
of piecewise-constant and piecewise-exponential population size functions, we re-
fer to them as piecewise-generalized-exponential models in the remainder of this
paper.

In this paper, we revisit the question of demographic model identifiability un-
der the assumption that the population size is a piecewise-defined function of time
where each piece comes from a family of biologically-motivated functions, such
as the family of constant or exponential functions. We also re-examine the as-
sumption that one has access to the population-wide patterns of polymorphism. In
real applications, we do not expect to know the allele frequency spectrum for an
entire population but rather only the SFS for a randomly drawn finite sample of
individuals. Here, we investigate whether one can learn piecewise-defined popula-
tion size functions given perfect knowledge of the expected SFS for a sufficiently
large sample of size n. Unlike in the case of arbitrary continuous population size
functions considered by Myers, Fefferman and Patterson, the answer to this ques-
tion is affirmative. More precisely, we obtain bounds on the sample size n that are
sufficient to distinguish population size functions among piecewise demographic
models with K pieces, where each piece comes from some family of functions (see
Theorems 6 and 11). Our bound on the sample size can be expressed as an affine
function of the number K of pieces, where the slope of the function is a mea-
sure of the complexity of the family to which each piece belongs. In the cases of
piecewise-constant, piecewise-exponential and piecewise-generalized-exponential
models, which are often assumed in population genetic analyses, the slope of this
affine function can be calculated explicitly, as shown in Corollaries 7-9. We also
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obtain analogous results for the “folded” SFS (see Theorem 12), a variant of the
SFS which circumvents the ambiguity in the identity of the ancestral allele type by
grouping the polymorphic sites in a sample according to the sample minor allele
frequency.

There are two main technical elements underlying our proofs of the identifia-
bility results mentioned above. The first step is to show that the expected SFS of
a sample of size n is in bijection with the Laplace transform of a time-rescaled
version of the population size function evaluated at a particular sequence of n — 1
points. This reduces the problem of identifiability from the SFS to that of iden-
tifiability from the values of the Laplace transform at a fixed set of points. The
second step relies on a generalization of Descartes’ rule of signs for polynomials
to the Laplace transform of general piecewise-continuous functions. This tech-
nique yields an upper bound on the number of roots of the Laplace transform of a
function by the number of sign changes of the function. We think that this proof
technique based on sign changes might be of independent interest for proving sta-
tistical identifiability results in other settings. We also provide an alternate proof
of identifiability for piecewise-constant population models, where the aforemen-
tioned second step is replaced by a linear algebraic argument that has a constructive
flavor. We include this alternate proof in the hope that it could be used to develop
an algebraic inference algorithm for piecewise-constant models.

The remainder of this paper is organized as follows. In Section 2, we introduce
the model and notation, and describe our main results. We also discuss the coun-
terexample of Myers, Fefferman and Patterson in light of our findings. The proofs
of our results are provided in Section 3, and we conclude with a discussion in
Section 4.

2. Main results. Here, we summarize our identifiability results. All proofs
are deferred to Section 3.

2.1. Model and notation. We consider a population evolving according to
Kingman’s coalescent [21-23] with the infinite-sites model of mutation [20] and
selective neutrality. Under this model, the genome is assumed to be infinite and ev-
ery mutation occurs at a different site in the genome that has never experienced a
mutation before. This model is applicable in the regime where the mutation rate is
very low, and hence the probability of multiple mutations at a given site is vanish-
ingly small. Any polymorphic site in a sample of sequences is dimorphic under this
model. The population size is assumed to change deterministically with time and
is described by a function 7:R>9 — R, such that the instantaneous coalescence
rate between any pair of lineages at time ¢ is 1/5(¢).

Let TH('Q denote the time (in coalescent units) while there are k ancestral lineages
for a sample of size n obtained at time 0. Defining R (¢) as

r1
Rn(t).:\/(; %dx,
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the expected time E[T,ff?,)n] to the first coalescence event for a sample of size m is

given by

(1 E[T(”) ]:]wt@exp[— <m>R (t)}dt.
Following the notation of Myers, Fefferman and Patterson, define a time-
rescaled version 7 of the population size function 7 as

) 7@ =n(R, " (©),

where t € R>g. The function 7(tr) reparameterizes the population size as a
function of the cumulative rate of coalescence T = R, (t). For a given popula-
tion size function 7 parameterized by the total coalescence rate 7, there corre-
sponds a unique population size function n parameterized by time 7. Specifically,
n() = 'ﬁ(S;]_ ! (1)), for all r € R>(, where S5(¢) is an invertible function given by

t
Sﬁ(t)z'/(; n(x)dx.

Applying integration by parts to (1) and using the condition that IE[T,,(J?,)“] < 00, wWe
have

3) E[TM ] = /0 ” exp[— (’;’) Rn(t)} dr.

Furthermore, since R, is monotonically increasing and continuous from R to
R, it is a bijection over R>(. For notational convenience, for any interval / C
R>0, we define R; (/) to be the interval

Ry(I) = {R,(x)|x € T}.

By making the substitution 7 = R;(¢) in (3) and using (2), we have the following
expression for ]E[T,fl%]:

(4) E[T,.] = /0 i exp[— ("21 ) r} dr.

Equation (4) states that the time to the first coalescence event for a sample of size
m is given by the Laplace transform of the time-rescaled population size function
7l evaluated at the point (). For a sample of size n, let &, ; denote the probability
that a dimorphic site has b mutant alleles and n — b ancestral alleles. We refer to
(&1.1, .- -, &n.n—1) as the expected sample frequency spectrum (SFS).

2.2. Determining the expected times to the first coalescence from the SFS. The
following lemma shows that the expected SFS for a sample of size n tightly con-
strains the expected time to the first coalescence event for all sample sizes 2, ..., n:
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LEMMA 1. Under an arbitrary variable population size model {n(t),t > 0},

suppose &y 1, . .., &qn.n—1 are known and define ¢, == E[Tn??,)n]for 2 <m <n.Then,
up to a common positive multiplicative constant, the quantities c3, ..., c, can be
determined uniquely from &, 1, ..., &, n—1.

This implies that the problem of identifying the population size function n(¢)
from &, 1, ..., &, n—1 can be reduced, up to a multiplicative constant, to the prob-
lem of identifying n(¢) from c, ..., c;.

2.3. Piecewise population size models and sign change complexities. To state
our main result in full generality, we first need a few definitions.

DEFINITION 1 (F, family of continuous population size functions). A family
F of continuous population size functions is a set of positive continuous functions
f:Rs0 — Ry of a particular type parameterized by a collection of variables.

We use F. to denote the family of constant population size functions; that is,
functions of the form f(¢) = v for all ¢, where v € R, is the only parameter
of the family. Further, we use F, to denote the family of exponential popula-
tion size functions of the form f(¢) = vexp(Bt), where v € R} and g € R are
the parameters of the family. In human genetics, there has been recent interest
[38, 39] in modeling superexponential growth in the effective population size via
models that generalize exponential growth by incorporating an additional acceler-
ation parameter y. Such population size functions f satisfy the differential equa-
tion df/dt = Bf (t)” with initial condition f(0) = v, where B € R, y € R>¢, and
veR,. When 0 <y <1 (resp., y > 1), this represents superexponential (resp.,
subexponential) population growth/decline, while y =1 corresponds to exponen-
tial population growth/decline. We let F, denote the family of such generalized-
exponential population size functions.

DEFINITION 2 [Mk (F), piecewise models over F with at most K pieces].
Given a family F of continuous population size functions, a population size
function n(¢) defined over Rx¢ is said to be piecewise over F with at most K
pieces if there exists an integer p, where 1 < p < K — 1, and a sequence of
p time points 0 < f; < --- <, < 00 such that for each 1 <i < p + 1, there
exists a positive continuous function f; € F such that n(¢t) = f;(t — t;—1) for
all € [t;_1,t;). For convention, we define 1o = 0 and 7,11 = oo. Note that n
may not be continuous at the change points #1,...,1,. We use Mg (F) to de-
note the space of such piecewise population size models with at most K pieces,
each of which belongs to function family . Illustrated in Figure 1 is an exam-
ple of piecewise-exponential population size function n € Mg (F) where K > 5
and F = F,.
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logn(t)

t

FIG. 1. A piecewise-exponential population size function n € Mg (Fe), where K > 5. Note that
the y-axis is in a log scale. This piecewise-exponential function depicts the historical population size
changes of a European population that was estimated from the SFS of a sample of 1351 (diploid)
individuals of European ancestry [44].

DEFINITION 3 [0 (f), number of sign changes of a function]. For a function
g (not necessarily continuous) defined over some interval (a, b), we say that t €
(a, b) is a sign change point of g if there exist some ¢ > 0, ¢’ > 7, and an interval
(t',t' 4+ ¢) C (a, b) such that:

I. (t—e,1) < (a,b),
2. g(z) =0forze(t,1t),
3. g(x)g(y) <Oforallx € (t —e,t)and y € (t/, 1’ +¢).

We define the number o (g) of sign changes of g as the number of such sign change

points in its domain (a, ). See Figure 2 for an illustration.

Note that the above definition of the number of sign changes counts the number
of times the function g changes value from positive to negative (and vice versa)
while ignoring intervals where it is identically zero. While the above definition is
not restricted to piecewise continuous functions, we will restrict our attention to
such functions for the remainder of this paper.

g(t)

0 t\/ to t: t

FI1G. 2. [Illustration of the sign changes of a function. For the domain shown, o (g) = 3 and the sign
change points of g are denoted t|, 1>, and t3.
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DEFINITION 4 [.¥(F) and .¥ (Mg (F)), sign change complexities]. For a
family F of continuous population size functions, we define the sign change com-
plexity . (F) as

g(r) = J?l (t—a1) — fz(t — ap) with domain

F(F)= sup Jo(g) Dom(g):{re]R>0 T—a eDom(ﬁ),}

f1, 2€F, T —ap € Dom( f7)
(5) ay,a2€R>q
g(r):= fi(r) — fo(r — a) with domain
= sup {o(g) T € Dom(f1), ;
fi, freF, Dom(g)z{fERzo r—aeDom(ﬁ)
HERZo

where fj are the time-rescaled versions of f; as defined in (2), and Dom( fj) =
Ry; (R>0) is the domain of f;. Similarly, for the space Mg (F) of piecewise pop-
ulation size models with at most K pieces over some function family ', we define
the sign change complexity . (Mg (F)) as

S Mr(F)= sup {o(h — )},
n1,meMg (F)

where, again, 7j; are related to n; as given in (2).

The following lemma gives a bound on the sign change complexity of a model
with at most K pieces in terms of the underlying family of population size func-
tions for each piece.

LEMMA 2. The sign change complexity of the space Mg (F) of piecewise
models with at most K pieces in a function family F is bounded by the sign change
complexity of F as

S (Mg (F)) < 2K —2) + 2K — 1).7(F).

Note that the bound in Lemma 2 is tight for the family . of constant population
sizes, for which . (F;) =0 and .¥( Mg (F.)) =2K — 2.

2.4. Identifiability results. Our main results on identifiability will be proved
using a generalization of Descartes’ rule of signs for polynomials.

THEOREM 3 (Descartes’ rule of signs for polynomials). Consider a degree-
n polynomial p(x) = ap + a1x + - - - + apx" with real-valued coefficients a;. The
number of positive real roots (counted with multiplicity) of p is at most the number
of sign changes between consecutive nonzero terms in the sequence ap, ay, ..., ay.

The following theorem generalizes the above classic result to relate the number
of sign changes of a piecewise-continuous function f to the number of roots of its
Laplace transform.
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THEOREM 4 (Generalized Descartes’ rule of signs). Let f:Rs>o — R be a
piecewise-continuous function which is not identically zero and with a finite num-
ber o (f) of sign changes. Then the function G(x) defined by

©6) G(x)= /OOO ftye " dt

has at most o (f) roots in R (counted with multiplicity).

The statement of Theorem 4 and the proof provided in Section 3 are adapted
from Jameson [15], Lemma 4.5, for our setting. Using Theorem 4, we prove in
Section 3 the following identifiability theorem for population size function families
with finite sign change complexity.

THEOREM 5. For a sample of size n, let ¢ = (ca,...,cn), where ¢, =
E[T,,(l%],for 2 <m <n,definedin (3). If /(F) <ooandn > .S (F)+2, then no
two distinct models n1, ny € F can produce the same (ca, ..., cy). In other words,

orn>.%(F)+2,themap c: F — R is injective.
p + 7k

Note that the sample size bound in Theorem 5 applies to an arbitrary function
family F which need not have any special structure. Using Lemma 2 for bound-
ing the sign change complexity of piecewise-defined function families Mg (F)
in terms of the sign change complexity of the underlying function family JF, we
immediately obtain the following theorem.

THEOREM 6. For a sample of size n, let ¢ = (ca,...,c), where ¢y, =
E[Tn(l%], for 2 < m < n, defined in 3). If S(F) <oo and n > 2K +
2K — 1) (F), then the map ¢: Mg (F) — Rf’[l is injective.

Using Theorem 6, it is simple to derive identifiability results for piecewise-
defined population size models over several function families JF that are of biolog-
ical interest. In particular, we have the following result for the case of piecewise-
constant models.

COROLLARY 7 [Identifiability of piecewise-constant population size models in
Mg (F)]. The map ¢: Mg (F.) — Rf’fl is injective if the sample size n > 2K .

The bound in Corollary 7 on the sample size sufficient for identifying piecewise-
constant population models is actually tight, since Mg (F.) has 2K — 1 param-
eters in R4 and there is no continuous injective function from sz o R if
n < 2K. (This fact can be proved in multiple ways, such as by the Borsuk—Ulam
theorem or the Constant Rank theorem.) An alternate proof of Corollary 7 that
does not rely on Theorem 6 is also provided in Section 3. This alternate proof
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is based on an argument from linear algebra, and it might be possible to adapt
this approach to develop an algebraic algorithm for inferring the parameters of a
piecewise-constant population function from the set of expected first coalescence
times ¢y .

Another class of models often assumed in population genetic analyses are
piecewise-exponential functions, for which we have the following result.

COROLLARY 8 [Identifiability of piecewise-exponential population size models
in Mg (Fp)]. The map ¢c: Mg (F,) — R’j__l is injective if the sample size n >
4K — 1.

For the generalized-exponential growth models considered by Reppell, Boehnke
and Zollner [39], we have the following result.

COROLLARY 9 [Identifiability of piecewise-generalized-exponential population
size models in Mg (Fg)]. The map ¢: Mg (Fg) — R’fl is injective if the sam-
ple sizen > 6K — 2.

For the identifiability of piecewise population size models from the SFS data,
we first note the following lemma.

LEMMA 10. Consider a piecewise population size function n € Mg (F).
Consider a sample of size n > 2K + 2K — 1).(F) and suppose the function
n produces E[Tng%] = ¢y, for 2 < m < n. Then, for every fixed k € R, there ex-
ists a unique piecewise population size function { € Mg (F) with E[Tn(f,,il] =KCp
for 2 < m < n. Furthermore, this population size function ¢ is given by {(t) =
kn(t/x).

Given two models 1, { € Mg, we say that n and ¢ are equivalent, and write
n ~ ¢, if they are related by a rescaling of change points and population sizes as
described in Lemma 10. Let [n] denote the equivalence class of population size
functions that contain n, and let Mg (F)/~ = {[nlln € Mk (F)} be the set of
equivalence classes for the equivalence relation ~. Then, combining Lemma 1,
Theorem 6 and Lemma 10, we obtain the following theorem.

THEOREM 11. [f S (F) <ooandn >2K + 2K — 1).7(F), then, for each
expected SFS (&y.1, ..., &n.n—1), there exists a unique equivalence class [n] of mod-
els in Mg (F)/~ consistent with (§,.1,...,&1.n—1)-

2.5. Extension to the folded frequency spectrum. To generate the SFS from
genomic sequence data, one needs to know the identities of the ancestral and mu-
tant alleles at each site. To avoid this problem, a commonly employed strategy
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in population genetic inference involves “folding” the SFS. More precisely, for a

sample of size n, the ith entry of the folded SFS x = (xn,1, ..., X[n/2)) is defined
by
L Sn,i + Sn,n—i
Xi’l,l 1 + 8,-’”71' ’

where 1 <i < |n/2]. In particular, xj, ; is the proportion of polymorphic sites that
have i copies of the minor allele. For any sample size n, since x is a vector of
approximately half the dimension as &, we might expect to require roughly twice
as many samples to recover the demographic model from y compared to &. This
is indeed the case. Given the folded SFS y, the following theorem establishes a
sufficiency condition on the sample size for identifying demographic models in

Mg (F).

THEOREM 12. If S (F) <ocoandn >2Q2K — 1)(1 + .S (F)), then, for each
expected folded SFS X = (xn,1,---, Xn,|n/2)), there exists a unique equivalence
class [n] of models in Mg (F)/~ consistent with x.

2.6. The counterexample of Myers, Fefferman and Patterson. Myers, Feffer-
man and Patterson [30] provided an explicit counterexample to the identifiability
of population size models from the allelic frequency spectrum. In our notation,
they provided two time-rescaled population size functions 7] and 7> given by

() =N,
(t) = N(1 = 9F (1)),

where N is an arbitrary positive constant, and the function F is given by the con-
volution

F@ = [ fole = fiwadu
where fy and fi are given by

fo(r) = exp(—l/tz),
COS(?TZ/‘L') exp(—1/8)
NG .

Both functions f; and F have increasingly frequent oscillations as t | 0 so that
o (11 — 12) = o (F) = oo. This is why Theorem 5 does not apply to this example.
Indeed, by an argument using the Laplace transforms of f| and F, Myers, Feffer-
man and Patterson showed that the function G (x) defined in (6) in terms of F has
roots at —('5) for each m > 2.

fi(t)=
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3. Proofs. We now provide proofs of the results presented earlier.

PROOF OF LEMMA 1. In the coalescent for a sample of size n, let y, , de-
note the total expected branch length subtending b leaves, for 1 <b <n — 1. Then
Enb=Vnb/ Zz;ll ¥n.k» Which implies that there exists a positive constant « such
that y,, , = k&, p forall 1 <b <n — 1. We now prove that c», ..., ¢, can be deter-
mined uniquely from ;. 1, ..., Yu.n—1.

Let ¢, k = E[Tn(?k) ]. Then, by a result of Griffiths and Tavaré [12],

n—b+1 (n—b—l)

(7) Vo= . k-3
= G-

for 1 <b <n — 1. The system of equations (7) can be rewritten succinctly as a
linear system

d)n,ka

y =M¢,

where Y = (Vu,1, s Yan—1), @ = @n,2, ..., Pn,n), and M = (mpi) with mp =
k(";ﬁgl)/(}z:}), for 1 <b<n—1and 2 <k < n. The matrix M is upper-left

triangular since (";f;l) =0if k >n — b+ 1, and the anti-diagonal entries are

k
n—1
k—1

determine ¢ uniquely as M~ !y.

Let Yk = Z?:k E[Tn(z.)]. Then, defining v, ,+1 := 0, observe that ¥, , =
On.k + VYnk+1 for 2 <k <n. This implies that ¥, 2, ..., ¥, , can be determined
uniquely from ¢y, 2, ..., ¢, ,. Polanski, Bobrowski and Kimmel [35] showed that

Y.k can be written as

> (. Hence, det(M) # 0 and M is therefore invertible. Thus, given y, we can

(8) 1pn,k = Z AkmCm,
m=k

where ag,,, for k <m < n, are given by

_ n?:k,l;ém (é)
[T e[ (5) = ()]

and ¢, = E[T,,(ZYZ,,], shown in (3). Again, the system of equations (8) can be written
as a triangular linear system

Akm s

¥ =Ac,

Where ]p = (‘//n,Z, L] ‘/fn,n)a C= (CZ’ LR C}’l)’ and A = (akm), for 2 S k7 m S n.
Note that A is an upper triangular matrix since ag,, := 0 if m < k. Since A has

nonzero entries on its diagonal, A~! exists, and ¢ can be determined uniquely as
A~ly. O
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PROOF OF LEMMA 2. Given a pair of piecewise population size functions
N1, N2 € Mg (F), let 171 and 775 be their respective time-rescaled versions, defined

by (2). Let 0 < tl(l) << t,(,ll) < 00, where 0 < p; < K — 1 (resp., 0 < tl(z) <
)

- <tp, <00, where 0 < pr <K — 1) be the change points of the pieces of 7
(resp., n2). We define t(()l) = t(()z) =0 and t1(711)+1 = tg)H = oo. The change points

of 771 are given by R, (ti(])), where 1 <i < pj, while the change points of 77, are

given by R, (tl-(z)), where 1 <i < ps.Let0 <1y <--- < T, < 00 be the union of
the change points of 7] and 7, where 0 < p < p| + p». For convention, let 7o = 0
and 741 = 00.

Consider the piece (7;, 7j4+1) for 0 <i < p. Let I} = (t(l), t,§1+)1), where 0 <

@ @

k< pi,and I = (¢, tl+1), where 0 <[ < p,, be the pieces of the original pop-

ulation size functions n; and 7y, respectively, such that (z;, 7;+1) € Ry, (/1) and
(ti, Tit1) € Ry, (7). Since 1 € Mg (F), there exists a function f € F such that

m(t) = fi(t —1{V) forall t € I. Then, for all T € Ry, (I}),
i =m(R, () = fi(R,, () — ")
©) = ARy (R (@) = 1))

= filr = Ry, (1")).

Similarly, there exists some function f, € F such that, for all T € Ry, (1),

(10) 2(0) = fa(t — Ry (1)),

Using (9) and (10), we see that the number of sign change points of 77; — 72 in the
piece (t;, T;+1) is at most the number of sign change points of fl (t — Ry, (tlgl))) -
fi(r — Ry, (tl(z))) for t € (17, 7i41). Hence, by (5), it follows that within each piece
(ti, tig1) for 0 <i < p, 771 — 7> has at most .¥(F) sign change points. Also, the
point t;4 itself could be a sign change point in the interval between the last sign
change point in piece (7;, t;+1) and the first sign change point in piece (741, Tj4+2)
where 0 <i < p — 1. These are all the possible sign change points of 7j; — 7>.
Hence,

o —1) <p+((p+1)F(F)
(1D =(p1+p)+(p1+p2+ DI(F)
<K -2)+ Q2K - DHF(F).
Since (11) holds for all iy, 7o € Mg (F), the lemma follows. [

PROOF OF THEOREM 4. The proof is by induction on the number of sign
changes of f. If f has zero sign changes, then without loss of generality, f(#) >0
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for t € (0,00) and f(¢) > O for some interval (a,b) C (0, c0). Hence, G(x) >
0 for all x, and the base case holds. Suppose f has m + 1 sign change points
to, ..., tm, where m > 0. Note that G(x) and F (x) = ¢** G (x) have the same real-
valued roots (with multiplicity) since ¢** > 0 for all x € R. F’(x) is given by

d o0 00
F/(x) — E(_/(; f(l.)e—(t—to)x dt> :/(; (tO _ t)f(t)e—(l‘—to)x dt,

where the interchange of the differential and integral operators in the second equal-
ity is justified by the Leibniz integral rule because f is piecewise continuous over
R>0, and both f(t)e~~"0* and %( f()e~ )% are jointly continuous over
(pi, pi+1) X (—o0, 00) for each piece (p;, pi+1) over which f is continuous. Note
that the set of sign change points of (tg —¢) f(¢) is {¢1, ..., t,}. Hence, (to — 1) f (¢)
has only m sign changes. By the induction hypothesis, F’ has at most m real-
valued roots. By Rolle’s theorem, the number of real-valued roots of F is at most
one more than the number of real-valued roots of F’. Hence, F has at most m + 1
real-valued roots, implying that G has at most m + 1 real-valued roots. [J

PROOF OF THEOREM 5. Suppose there exist two distinct population size
functions 71, ny € F that produce exactly the same ¢, for all 2 <m < n. From (4),
we have that

(12) | @ =@ ®rar=o
for 2 <m < n. If we define the function G (x) as
G = [~ @ - @) dr,

then from (12), we see that () is a root of G (x) for 2 <m < n, and hence, G has
at least n — 1 roots. Applying Theorem 4 to the piecewise continuous function
11 — 12, we see that G can have at most o (7] — 72) roots. Taking the supremum
over all population size functions 11 and 7, in F, we see that G can have at most
< (F) roots. Hence, if n — 1 > . (F), we get a contradiction. This implies that
if n > .7 (F) + 2, no two distinct population size functions in F can produce the
same (c2,...,cy). U

PROOF OF COROLLARY 7. As remarked after Lemma 2, for the constant pop-
ulation size function family F., . (F.) = 0. Hence, by Theorem 6, if n > 2K, the
map ¢: Mg (F.) — ]R'}r_l is injective. [

AN ALTERNATE PROOF OF COROLLARY 7 BASED ON LINEAR ALGEBRA.
Let n > 2K, and suppose there exist two distinct models n(l), r)(z) e Mg (Fe)
that produce exactly the same c,, for all 2 <m < n. Let 7' and #® denote
the time-rescaled versions of 7" and n®, respectively, as in (2). Since ) is
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piecewise constant with at most K pieces, 7V/) is also piecewise constant with
the same number of pieces as 7/, and n" % n® implies 77 £ 5@ . There-
fore, A =7 — 7@ isa piecewise-constant function over [0, co) with p pieces,
where 1 < p <2K —l, and A is not identically zero. Let 7 < - - - < Tp-1 denote
the change points of A, and define 79 =0 and 7, = 00. Suppose A(r) =§; € R
forall T € [t;_1, T;), where 1 <i < p. Since ﬁ(l) and ﬁ(z) produce the same c,, for
all 2 <m < n, we know that A satisfies

(13) /OOO Am)eDTdr =0

for all 2 < m < n. Substituting the definition of A into (13) and multiplying by
(5). we obtain

(14) Zp: ~@ _ o= ()u) =0

i=l
for 2 < m < n. This defines a linear system Aé = 0, where é = (51, ...,5,) and
A = (a;;;) is an (n — 1) x p matrix with a,,; := e~ (Dti-1 _ o= (D7 for 2 <m<n

and 1 <i < p.
Let B = (b,,;) be the (n — 1) x p matrix formed from A such that the ith column
of B is the sum of columns i,i + 1,..., p of A. Defining «; = ¢~ %!, note that

bni = oz( ) for2<m <nand 1 <i < p. Now, consider the p x p submatrix C of
B con31st1ng of the first p rows of B. Since a; > a > --- > ) > 0, note that C is
a generalized Vandermonde matrix, which implies det(C) # 0 [8], Chapter XIII,
Section 8. Hence, rank(B) = p. The rank of A is invariant under elementary col-
umn operations and, therefore, rank(A) = rank(B) = p. Therefore, the kernel of A
is trivial, and the only solution to (14) i8 §; = 8, = - -- = §,, = 0, which contradicts
our assumption that A =7 — 7@ 2£0. O

PROOF OF COROLLARY 8. Let fi, f» € F, be given by
J1(#) = viexp(Bir),
S2(t) = v2exp(Bat),
where ¢ eJRzo, vy, v € Ry and By, B2 € R. Then, for i =1, 2, the time-rescaled

function f; is given by

(15) fi(t) =

Vj
- IIBI

for t € Dom(]N‘,-) = Ry (R>0) =0, o /3 ). From (15), it can be seen that f1 and f2
are continuous in their domains. Furthermore, for any given a € R, there is at
most one T, where T € Dom(fl) andt —a e Dom(fz), such that g(7) := fi(r) —
fi(r —a) =0, implying o (g) < 1. By the definition of sign change complexity
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in (5), it then follows that .(F,) < 1 for the exponential population family F,.
Hence, applying Theorem 6, we conclude that n > 4K — 1 suffices for the map
c: Mg (F.) — Rf’[l to be injective. [J

PROOF OF COROLLARY 9. Let fi, f2 € F, be generalized-exponential func-
tions which satisfy the following differential equations and initial conditions:

dfi
f —ﬁzﬁ(t)y’

fi(0)=w, ief{l,2},
where v; € R, B € R and y; € R>¢. The solutions for f; are given by
vi exp(Bit), vi=1
o 7+ Bt (=] T L
It can be shown that the time-rescaled population size functions ﬁ are given by
vi exp(fit), pi=0ory; =0,
(v, " = Bi J/if)_l/yi Bi #0and y; > 0.

In order to obtain an upper bound on .'(F,), we consider the following three
cases depending on the functional form of f 1 and f2 in (16):

o= |
(16) ﬁ-(r)=i

e Case 1: f1 (r) =viexp(Bi7) and fz(r) = vy exp(Bat). Since ]71 and fz are con-
tinuous functions of 7, the number of sign changes of g(7) := ]71 (t)— ﬁ(r —a)
is at most the number of roots of g(r). Taking the logarithm of ]?1(1:) and
f2(r —a), it is easy to see that g(r) has at most one root for any a € Rx¢.
Hence, o (g) < 1.

o Case?2: f1 and f2 have different functional forms. Suppose f1(1:) =v1exp(B17)
and fz(r) = (v2 — BayaT)” /v2, For any aj,a € R>o such that 7 —a; €
Dom(fi), the number of sign changes of g(7) := ]?1(1 —ay) —Nfz(r —ap) is at
most the number of roots of g(t). By raising fi(tr — aj) and f>(t — a») to the
power of —y», we see that the number of roots of g(t) is the number of solutions
to

(17) L1exp(—y2B17) = 11, * — Bayart,

where | = vy exp(y2B1a1) and ur = (1)2_}’2 + ,82)/2612)_1/7’2. Equation (17) rep-
resents the intersection of an exponential function with a line and has at most 2
solutions~ for 7. Hence, o (g) < 2. _ _

o Case3: fi(t) = (v; ' = Biyit) /Y fori =1,2. Let g(r) := fi(x) — fo(r —a)
where a € R>¢ such that T — a € Dom(f2). Since g is a continuous function,
the number of sign changes of g(r) in R is bounded by the number of distinct
positive roots of g(t). The number of distinct positive roots of g is the number
of distinct positive solutions t to

(vl—l/l _ ,31)/175)_1/}/1 _ (vz—yz — Baya(T — a))—l/)’z
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which is also the number of distinct positive solutions to

(18) (v " - ﬁmr)”/ " =17~ By (t —a).

Let x := fl(‘E) Y= V1 — B1y1T. Since f1 is a time-rescaled population size
function, x > 0 when t € RZ(). Since 8; # 0 and y; > 0, (18) can be rewritten
as

x4 Ax + B =0,

where A = g?)’? and B = gfﬁ v, v, 2 — Bayna. Letting h(x) :=x7>/" +
Ax + B, the number of distinct pos1t1ve solutions for 7 in (18) is at most the
number of distinct positive roots for the generalized polynomial 4. For any
real-valued function g(x) possessing infinitely many derivatives and any in-
terval I C R, let Z(g, I) the number of zeroes of g contained in /, counted
with multiplicity. By a consequence of Rolle’s theorem [15], Proposition 2.1,
Z(g,I)<Z(g',I)+ 1. Observing that h’(x) = %xm/”_l + A has at most one
rootin Ry, Z(h,Ry) < Z(h',R;) + 1 <2. Hence, the number of distinct pos-
itive solutions t to (18) is at most 2, and o (g) < 2.

From the definition of sign change complexity in (5) and the bound on ¢ (g) in
the three cases above, it follows that .’ (F,) < 2 for the generalized-exponential
population family F,. Hence, applying Theorem 6, we conclude that n > 6K — 2

suffices for the map ¢: Mg (Fg) — Ri‘l to be injective. [

PROOF OF LEMMA 10. For the population size function ¢(¢) defined by
¢(t) =«n(t/k), note that R; () is given by

r t 1 t/k 1
R;(t):/‘omdx:/o‘ [”]T/K)dx:/(-) Wd.X—R(Z‘/K)

E[T,ff,%] is then given by

st Onte
o (3o

_ KE[T(H) ]

m,m
Since n > 2K + 2K — 1).%(F), by Theorem 6, ¢ is the unique population size
function in Mg (F) with IE[T,,(f)n =«kcyfor2<m<n. O

To prove Theorem 12, we first need a lemma that characterizes a certain sym-
metry property of the invertible matrix that relates the genealogical quantities y
and c introduced in the proof of Lemma 1.
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LEMMA 13. For a sample of size n, let W be the (n — 1) x (n — 1) invertible

matrix such that y, p = Z”mzz Wp.mCm, where yyn p is the total expected branch

length subtending b leaves and c,, = E[Tng%]. Then, for every b and m, where

1<b<n—1and2<m<n,we have the following identities:

Wom + Wh—pm =0 if m is odd,

Wom — Wan—pm =0 if m is even.

PROOF. From the proof of Lemma 1, it can be seen that the matrix W is the
product of 3 matrices whose entries are explicitly given combinatorial expressions.
However, using Zeilberger’s algorithm [34], Polanski and Kimmel [36], equations
(13)—(15), also derived the following recurrence relation for the entries of W:

. 6
o+’
(n —2b)
n+Dn+2)’
Womi2 = f(n,m)Wp p + g(n,m)(n — 2b)Wp 141,

Wp.2

(19) Wp.3 =30

where f(n,m) and g(n, m) are rational functions of n and m given by

(L m)B+2m)(n — m)

Fm = o — D tm+ 1)
_ G+2m)
I = m )

It will be easy to prove our lemma by induction on m using (19). The base cases
are easy to check:
Wpo— Wy_po =0,
(n—2b)+(mn—2(n—->b))
(n+Dm+2)

Wp3+ W,_p3=30

Using (19), we see that if m is odd,

Wo.m+2 + Won—b m+2
= f(n,m)Wpm + Wy—pm)
+ g(n,m){(n = 2b)Wp i1 + [0 —2(n — b)|Wp—p m+1}
= f(n,m)Wpm + Wu—pm) + g, m)(n —2b)(Wp m+1 — Wn—p m+1)
=0,
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where the last equality follows from the induction hypothesis which implies
Wom + Wy—p.m =0and Wy 41 — Wy—p 1 = 0. Similarly, if m is even,
Wom+2 — Wn—b.m+2
= fn,m)(Wipm — Wn—p,m)
+g(n,m){(n —20)Wp i1 — [n —2(n — b)|Wy—p 41}
= fn,m)(Wh,m — Wy—pm) + g(n,m)(n —20)(Wp 41 + Wn—p m+1)
=0,

where again the last equality follows from the induction hypothesis. [

PROOF OF THEOREM 12. For a sample of size n in the coalescent, let y;,  be
the total expected branch length subtending b leaves, for 1 <b <n — 1. Then there
exists a positive constant x such that

Vn,d + Yn,n—d

20
( ) 1 +8d,n—d

= KX}’l,d’

for all 1 <d < |n/2]. Let foq = % The relationship between f =

(fu,1s--vs fu,n2)) and Yy = (Y,1, - - ., Yn,n—1) can be described by the linear equa-
tion

f=7y,

where Z is an |n/2] x (n — 1) matrix with entries given by

{1, ifj=dorj=n—d,
Zaj = .
0, otherwise,
for1 <d<|n/2]and 1 < j <n — 1. Hence, dim(ker(Z)) = |(n — 1)/2].
From Lemma 1, we know that y and ¢ = (¢a, ..., ¢,) are related as y = We,

where W = (W}, ;) is an (n — 1) x (n — 1) invertible matrix, where 1 <b <n — 1
and 2 <m < n. Hence,

1) f=Ye,

where Y := ZW. Since Y}, , = W + Wy—p m, we know from Lemma 13 that
Yy m = 0 for all odd values of m. Therefore, every other column of the ma-
trix Y is zero. This implies that span({es, es, ..., €,_1{: even}}) < ker(Y), where
e; is an (n — 1)-dimensional unit vector defined as e; = (e;2,...,€;,), With
eij=1ande; ; =0 fori # j. Note that n — 1{n even} =2|(n —1)/2] + 1 and
dim(span({es, es, ..., €2 (n—1)/2)+1})) = [(n — 1)/2]. Now, since W is invertible,
dim(ker(Y)) = dim(ker(ZW)) = dim(ker(Z)) = | (n — 1)/2]. Therefore,

(22) ker(Y) = span({e3, €5, ..., ezt(n_l)/zH_]}).
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Suppose there exist two distinct models 11, 72 € M g (F) that produce the same
folded SFS f. Let ¢! and ¢ be the vector of genealogical quantities for models
n1 and 10>, respectively, where c,(nl) = E[T,ff?,bf] and c,(nz) = E[Tng'?,%f], 2<m<n.
From (21), we know that ¢V —¢® € ker(Y). Using (22), c,(n1 ) c,(n2 ) can be written
as

L(n=1)/2]
(23) V== weurim
=1

for some a; € R. Since e;; = 0 for i # j, (23) implies that c,(,,l) — c,(,%) =0 for
all even values of m, where 2 < m < n. Now applying a similar argument as in
the proof of Theorem 6 to c,(n1 ) _ c,(n2 ) for even values of m, we conclude that if
[(n—1)/2] > 2K —2) + 2K — 1).(F), then no two distinct models 711, 72 €
Mg (F) can produce the same f. This implies that a sample size n > 2(2K —
D + & (F)) suffices for identifying the population size function in Mg (F)
from the folded SFS f, and the conclusion of the theorem follows from (20) and

Lemma 10. O

4. Discussion. In human genetics, several large-sample datasets have recently
become available, with sample sizes on the order of several thousands to tens of
thousands of individuals [1, 4, 6, 31, 44]. The patterns of polymorphism observed
in these datasets deviate significantly from that expected under a constant popula-
tion size, and there has been much interest in inferring recent and ancient human
demographic changes that might explain these deviations [10, 24, 26]. Clearly,
model identifiability is an important prerequisite for such statistical inference prob-
lems. In this paper, we have obtained mathematically rigorous identifiability re-
sults for demographic inference by showing that piecewise-defined population size
functions over a wide class of function families are completely determined by the
SFS, provided that the sample is sufficiently large. Furthermore, we have provided
explicit bounds on the sample sizes that are sufficient for identifying such piece-
wise population size functions. These bounds depend on the number of pieces and
the functional type of each piece. For piecewise-constant population size models,
which have been extensively applied in demographic inference studies, our bounds
are tight. We have also given analogous results for identifiability from the folded
SFS, a variant of the SFS that is oblivious to the identities of the ancestral and
mutant alleles.

Recent large-sample sequencing studies have consistently found a substantially
higher fraction of rare variants compared to the predictions of the coalescent with
a constant population size, even in regions of the genome that are believed to have
evolved neutrally [9]. Keinan and Clark [16] suggested that recent rapid expansion
of the population has given rise to variants which are private to single individuals
in the population, and that this signature of population expansion is particularly
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—¥— n = 2,702 (const. pop. size)
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Expected SFS entry &, ;
=
|

1073

FIG. 3. The leading entries of the expected SFS &, for a piecewise-exponential population size
model inferred b Tennessen et al. [44]. This demographic model, shown (up to scaling) in Figure 1,
was fitted using the observed SFS from a sample of 1351 (diploid) individuals of European ances-
try [44]. The blue plot is the expected SFS for n = 19, which matches the sample size bound in
Corollary 8 for identifying piecewise-exponential models with up to 5 pieces, while the green plot is
the first 18 entries of the expected SFS for n = 2702 (1351 diploids). The red and purple plots are
the expected SF'S for n =19 and n = 2702, respectively, for a constant population size function.

apparent now due to the larger sample sizes involved in sequencing studies. We
illustrate this point with a specific example. The blue plot in Figure 3 shows the
expected SFS for a sample of size n = 19 under the piecewise-exponential pop-
ulation size history with 5 epochs recently inferred by Tennessen et al. [44] and
illustrated in Figure 1. (Note that n = 19 is the sample size bound given by Corol-
lary 8 for identifying piecewise-exponential models with up to 5 pieces.) The red
plot in Figure 3 shows the expected SFS for the same sample size under a constant
population size model. For this small sample size, the two expected frequency
spectra are very similar despite the large difference in demographic models, in-
dicating the difficulty of accurately recovering the details of recent exponential
population growth using small-sample data. In contrast, for a much larger sam-
ple of size n = 2702, which corresponds to the actual sample size for Tennessen
et al.’s data, the expected frequency spectra under the two demographic models
mentioned above are considerably more different; see the green and purple plots
in Figure 3.

On the other hand, our identifiability results show that perfect data (i.e., the
exact expected SFS) from even a small sample size of n = 4K — 1 are suffi-
cient to uniquely identify a piecewise-exponential model with K pieces. This gap
between theoretical identifiability and practical inference needs to be better ad-
dressed through robustness results that can account for the finite genome length,
which limits the resolution to which the expected SFS of a random sample can be
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estimated. Our identifiability results apply in the limit that the genome length is
infinite, which allows one to estimate the entries of the expected SFS exactly. On
the other hand, a finite length genome does not permit exact estimation of the ex-
pected SFS, which can make it difficult in practice to resolve the details of ancient
demographic events even if the sample size is large. This is because population
size changes sufficiently far back in the past are likely to have only a marginal ef-
fect on the SFS since the individuals in the sample are highly likely to have found
a common ancestor by such ancient times.

Our work suggests several interesting avenues for future research. An important
problem is to understand the sensitivity of the SFS to perturbations in the demo-
graphic parameters. A related problem is quantifying the extent to which errors
in estimating the expected SFS from a finite amount of data affect the parameter
estimates in inferred demographic models.

It would also be interesting to consider the possibility of developing an alge-
braic algorithm for demographic inference that closely mimics the linear algebraic
proof of Corollary 7 provided in Section 3. For example, using a sample of size
K + 1, one could consider inferring a piecewise-constant model with K pieces,
with one piece for each of the most recent K — 1 generations and another piece
for the population size further back in time. (Here, we are considering a restricted
class of piecewise-constant population size functions with fixed change points, so
the minimum sample size needed for distinguishing such models using the SFS is
K + 1 rather than 2K.) Such an algebraic algorithm could provide a more prin-
cipled way of inferring demographic parameters, compared to existing inference
methods that rely on optimization procedures which lack theoretical guarantees for
functions with multiple local optima.

In our work, we focused on the identifiability of demography from the expected
SFS data. However, if one were to use the complete sequence data or other sum-
mary statistics such as the length distribution of shared haplotype tracts, it might
be possible to uniquely identify the demography using even smaller sample sizes
than that needed when using only the SFS. Indeed, several demographic inference
methods have been developed to infer historical population size changes from such
data using anywhere from a pair of genomic sequences [14, 24, 32] to tens of such
sequences [42], and it is important to theoretically characterize the power and lim-
itations of both the data and the inference methods.
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