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We study the asymptotic behaviour of the posterior distribution in a broad
class of statistical models where the “true” solution occurs on the boundary
of the parameter space. We show that in this case Bayesian inference is con-
sistent, and that the posterior distribution has not only Gaussian components
as in the case of regular models (the Bernstein–von Mises theorem) but also
has Gamma distribution components whose form depends on the behaviour
of the prior distribution near the boundary and have a faster rate of conver-
gence. We also demonstrate a remarkable property of Bayesian inference,
that for some models, there appears to be no bound on efficiency of estimat-
ing the unknown parameter if it is on the boundary of the parameter space.
We illustrate the results on a problem from emission tomography.

1. Introduction. The asymptotic behaviour of Bayesian methods has been a
long-standing topic of interest, including approximation of the posterior distribu-
tion and questions that are important from a frequentist point of view, such as
consistency, efficiency and coverage of Bayesian credible regions. For instance,
for correctly specified regular finite-dimensional models with n independent ob-
servations, these properties are captured by the Bernstein–von Mises theorem that
implies that the posterior distribution can be approximated in a 1/

√
n neighbour-

hood of the true value of the parameter by a Gaussian distribution with variance
determined by the Fisher information. More generally, the Bernstein–von Mises
theorem holds for dependent observations if the likelihood satisfies local asymp-
totic normality (LAN) conditions [LeCam (1953), Le Cam and Yang (1990)]. A to-
tal variation distance version of the theorem was derived by van der Vaart (1998).
This theorem implies that the prior has no asymptotic influence on the posterior,
that posterior inference is consistent and efficient in the frequentist sense, and that
posterior credible regions are asymptotically the same as frequentist ones.
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One of the key assumptions of the Bernstein–von Mises (BvM) theorem is that
the “true” value of the parameter is an interior point of the parameter space. How-
ever, for many problems, including our motivating example of a Poisson inverse
problem in tomography, and, more generally for the class of models we consider,
this assumption of the BvM theorem does not hold. For the tomography example,
the unknown parameter is a vector of tracer concentrations, which are nonnegative
and can be zero.

The situation where the unknown parameter can be on the boundary of the pa-
rameter support has been addressed in the frequentist literature by studying the
asymptotic distribution of the maximum likelihood estimator [Moran (1971), Self
and Liang (1987), among others]; however it has been studied very little under
the Bayesian approach. Dudley and Haughton (2002) investigated the asymptotic
behaviour of the posterior probability of the unknown parameter belonging to a
half-space H for a regular correctly specified model, where they found that if the
true value of the parameter belongs to the complement of H, then the posterior
probability of half-space H goes to zero much faster, namely at least at rate n

rather than at the standard parametric rate
√

n (n here is the sample size), and
there is an exponential upper bound on this posterior probability. Also, Erkanli
(1994) gave a formula for calculating the expectation of a smooth functional of a
3-dimensional posterior distribution where the unknown parameter is on a smooth
boundary.

In this paper, we extend the Bernstein–von Mises theorem by relaxing the as-
sumption that the “true” value of the parameter is interior to the parameter space,
in a finite-dimensional setting. We consider a broad class of probability distribu-
tions for the data and allow the prior distribution to be improper and to have zero or
infinite density on the boundary. A key model assumption is that the “true” value
of the parameter minimises a generalised Kullback–Leibler distance. There is no
assumption of any finite moments. We will show that for these models the conse-
quences of relaxing this assumption are twofold: firstly, the convergence is faster,
at least at rate n, if the “true” parameter is on the boundary, and secondly, the limit
of the posterior distribution has non-Gaussian components.

We motivate our study by presenting in Section 2 an inverse problem from med-
ical imaging; Section 3 establishes the class of models we study. In Section 4 we
state the result on the local behaviour of the posterior distribution in a neighbour-
hood of the limit that is formulated as a modified Bernstein–von Mises theorem,
discuss the assumptions, and give a nonasymptotic version of the result. In Sec-
tion 5 we illustrate the application of our analogue of the BvM theorem for various
examples including the problem of variance estimation in mixed effects models,
and discuss the choice of prior distribution. We discuss issues in using the ap-
proximation of the posterior distribution in practice and apply it to data from the
motivating example in Section 6. We conclude with a discussion. All proofs are
deferred to the Appendix.
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2. Motivating example.

2.1. Single photon emission computed tomography. Single photon emission
computed tomography (SPECT) is a medical imaging technique in which a
radioactively-labelled tracer, known to concentrate in the tissue to be imaged, is in-
troduced into the subject. Emitted particles are detected in a device called a gamma
camera, forming an array of counts. Tomographic reconstruction is the process of
inferring the spatial pattern of concentration of the tracer in the tissue from these
counts. The Poisson linear model

T Yi |θ ∼ Poisson(T Aiθ), i = 1, . . . , n, independently,(1)

comes close to reality for the SPECT problem (there are some dead-time effects
and other artifacts in recording). Here θ = {θj }, j = 1,2, . . . , p represents the spa-
tial distribution of the tracer, typically discretised on a grid, with θj ≥ 0 for all j ,
Y = {Yi} the array of the rate of detected photons per time unit, also discretised by
the recording process, and T is the exposure time for photon detection. The n × p

array A = (Aij ) with rows Ai quantifies the emission, transmission, attenuation,
decay, and recording process; Aij is the mean number of photons recorded at i

per unit concentration per unit time at pixel/voxel j , and is nonnegative. In some
methods of reconstruction, elements of the matrix A are modelled as discretised
values of the Radon transform.

Since Poisson distributions form an exponential family, this model can be seen
as a generalised linear model [Nelder and Wedderburn (1972)], with identity link
function and dispersion 1/T ; see also Example 1 in Section 3.2.

We formalise the notion of small-noise limit for this Poisson model in a
practically-relevant way, by supposing that the exposure time for photon detection
becomes large, that is, letting T → ∞.

The “true image” θ� in emission tomography corresponds to a physical real-
ity, the discretised spatial distribution of concentration of the tracer. Since this is
nonnegative, we impose the constraints θ ∈ � = [0,∞)p ⊂ R

p .
Unless p is too large, that is, the spatial resolution of θ is too fine, the matrix A

is normally of full rank p, and hence the inverse problem is well posed (although
it may be ill-conditioned); see Johnstone and Silverman (1990) for eigenvalues of
the Radon transform.

See Green (1990) for further detail about this model, and an approach based
on EM estimation for MAP reconstruction of θ , in a Bayesian formulation in
which spatial smoothness of the solution is promoted by using a pairwise differ-
ence Markov random field prior.

2.2. Prior distribution. From the beginning of Bayesian image analysis
[Besag (1986), Geman and Geman (1984)], use has been made of Markov ran-
dom fields as prior distributions for image scenes that express generic, qualitative
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beliefs about smoothness, yet do not rule out abrupt changes for real discontinu-
ities (e.g., at tissue type boundaries in the case of medical imaging).

The prior distribution we consider for the SPECT model is a log cosh pairwise-
interaction Markov random field [Green (1990)],

p(θ) ∝ exp
(
−ζ(1 + ζ )

2γ 2

∑
j∼j ′

log cosh
(

θj − θj ′

ζ

))
, θ ∈ �,(2)

where j ∼ j ′ stands for j and j ′ being neighbouring pixels. In this paper the
parameters ζ and γ are considered to be fixed.

This model has some attractive properties. While giving less penalty to large
abrupt changes in θ compared to the Gaussian, it remains log-concave. It bridges
the extremes ζ → ∞, the Gaussian pairwise-interaction prior, and ζ = 0, the
corresponding Laplace pairwise-interaction model, sometimes called the “median
prior.”

This distribution is improper since it is invariant to perturbing θ by an arbitrary
additive constant, but leads to a proper posterior distribution as long as

∑
j Aij �= 0

for some i.

2.3. Nonstandard features of the SPECT model. The Bayesian model for
SPECT has three nonstandard features: (a) the true image θ� can lie on the bound-
ary of the parameter space [0,∞)p; (b) if Aiθ

� = 0 for some i, then the distribution
of the corresponding Yi degenerates to a point mass at 0; (c) the prior distribution
is not proper.

In the next section we formulate a model that includes the Bayesian SPECT
model as a particular case. The approximate behaviour of the posterior distribution
of θ for large T is investigated in Section 6.

3. Model formulation.

3.1. Likelihood. We now list assumptions on the distribution of the observable
responses Y , taking values in Y ⊆ R

n; it has density (with respect to Lebesgue or
counting measure) denoted by pσ (y|θ) for θ ∈ � ⊂ R

p . These assumptions are
expressed in terms of the scaled log-likelihood defined by

�y,σ (θ) = σ 2 logpσ (y|θ).

As we shall see from the assumptions, σ is related to the level of noise, and we
are interested in the case where σ is small. We assume that the “true” value of
the unknown parameter that generated the data is θ� ∈ �, and denote the true
probability measure of Y by Pθ�,σ . Below, where it does not lead to ambiguity, we
will omit the index σ to simplify the notation and will write �y(θ) and Pθ� .
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ASSUMPTION M. (1) For Y ∼ pσ (y|θ�), there exists a deterministic function
��(θ) :� →R such that for all θ ∈ �,

∀ε > 0 Pθ�,σ

(∣∣�Y(ω)(θ) − ��(θ)
∣∣> ε

)→ 0 as σ → 0.

(2) The function ��(θ) has a unique maximum over � at θ = θ�.

Further assumptions on �y,σ (θ) are given in Section 4.1.
Assumption M is satisfied for a wide class of models, in particular for models

with independent identically distributed (i.i.d.) observations with σ 2 = 1/n and
for distributions from the exponential family in canonical form with dispersion
σ 2 → 0, that are discussed below.

The function ��(θ), defined in Assumption M(1), can be viewed as the limit
of the negative Kullback–Leibler (KL) distance, rescaled by σ 2, between distri-
butions with densities p(·|θ) and p(·|θ�), that was used, for instance, in Petrone,
Rousseau and Scricciolo (2012) and Barron, Schervish and Wasserman (1999).
For i.i.d. models, ��(θ) is the negative Kullback–Leibler distance based on a sin-
gle observation, and for generalised linear models ��(θ) is the log-likelihood for
“noise-free” data. Assumption M(2) states that this generalised Kullback–Leibler
distance is minimised at the “true” value θ�, as holds for the usual KL distance.
Assumption M(2) has been used by other authors, for instance, in the context of
hidden Markov models by Douc et al. (2011) where it was called the identifiability
assumption, and a finite sample analogue of this assumption was used in the con-
text of a misspecified model by Spokoiny (2012). This assumption holds for some
models where the parameter set � is not open and thus where the true value of
the parameter θ� can be on the boundary of �; see Example 1. These assumptions
are satisfied for the tomography model discussed in Section 2 where the unknown
tracer image θ� can have zero intensity values in some pixels, as shown in Sec-
tion 3.2.

Next we show that Assumption M is satisfied for two important classes of mod-
els, generalised linear models, and i.i.d. models, including the case when θ� is on
the boundary of �.

3.2. Generalised linear models. In the generalised linear models of Nelder
and Wedderburn (1972), an important class of nonlinear statistical regression prob-
lems, responses yi , i = 1,2, . . . , n are drawn independently from a one-parameter
exponential family of distributions in canonical form, with density or probability
function

pσ (y|η) = exp

(
n∑

i=1

[
yib(ηi) − c(ηi)

σ 2 + d(yi, σ )

])
,

using the mean parameterisation, for appropriate functions b, c, and d character-
ising the particular distribution family. The parameter σ 2 is a common dispersion
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parameter shared by all responses. Assuming that functions b(·) and c(·) are twice
differentiable, the expectation of this distribution is E(Yi) = ηi = c′(ηi)/b

′(ηi),
and the variance is Var(Yi) = σ 2[c′′(ηi)b

′(ηi) − c′(ηi)b
′′(ηi)]/[b′(ηi)]3. This im-

plies that the random variable Y converges in probability to a finite deterministic
limit y� = EY as σ → 0 and that the dispersion σ 2 is related to the noise level of
the observations.

Firstly consider the case θ = η. Then, �Y (θ) is linear in Y , and hence it con-
verges to �y�(θ) in probability as σ → 0. Therefore, Assumption M(1) is satisfied
with ��(θ) = �y�(θ). If ∇��(θ�) = 0 and the Hessian, which is diagonal, has neg-
ative entries, then θ� uniquely maximises ��(θ); that is, Assumption M(2) is sat-
isfied. If θ� is on the boundary and the gradient is nonzero, see Examples 1 and 2
below.

Now consider a generalised linear model with η = Aθ and matrix A such that
AT A is of full rank, that is, such that the likelihood is identifiable with respect
to parameter θ . In this case, Assumption M holds with θ� = (AT A)−1AT y�. The
tomography example given in Section 2 belongs to this class of models, with σ 2 =
T −1, b(ηi) = logηi , c(ηi) = ηi , and � = [0,∞)p .

Now we show that Assumption M(2) is satisfied when θ� is on the boundary
of � for some distributions from the exponential family.

EXAMPLE 1. Consider the Poisson distribution Y/σ 2 ∼ Poisson(η/σ 2) with
η ≥ 0. The scaled log-likelihood for η is �y(η) = y logη − η. If Y is generated
with η = 0, then we observe y = 0 with probability 1, so in this case the scaled
log-likelihood for η is always −η, which is maximised over η ≥ 0 at η = 0, that is,
the true value of η.

EXAMPLE 2. For the Binomial distribution Y ∼ Bin(n, η), the scaled log-
likelihood for η ∈ [0,1] is �y(η) = [y log(η) + (n − y) log(1 − η)]/n. If the
true value of η is 1, then P(Y = n) = 1 and the scaled log-likelihood for η is
�y(η) = log(η), which is maximised over [0,1] at η = 1, so that again we recover
the true value, and Assumption M(2) is satisfied for this model.

The same holds for the other boundary point η = 0, and also for multinomial
and negative binomial distributions.

3.3. I.I.D. models. Let Y1, . . . , Yn be independent identically distributed ran-
dom variables where the density or probability mass function of Yi is p(yi |θ) =
Cyi

exp{�yi
(θ)}, with unknown parameter θ ∈ � ⊂ R

p where p is finite and inde-
pendent of n. Here, σ 2 = 1/n and �y(θ) = n−1∑n

i=1 �yi
(θ). In this case, �Yi

(θ)

are i.i.d. random variables, so, as n → ∞, Assumption M(1) is satisfied under the
conditions of the weak law of large numbers for the random variable �Yi

(θ), for
all θ , which implies that there exists ��(θ) such that �Y (θ) converges in probability
to ��(θ) as n → ∞. If E[�Y (θ)] exists for all θ ∈ �, then ��(θ) = E[�Yi

(θ)], equal
to the negative Kullback–Leibler distance between the distributions with densities
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p(·|θ) and p(·|θ�), and then Assumption M(2) holds. For instance, it is easy to
check that Assumption M is satisfied for i.i.d. Cauchy random variables Yi with
�Yi

(θ) = log(1 + (Yi − θ)2) and θ ∈ � ⊆ R.

3.4. Bayesian formulation. We adopt a Bayesian paradigm, using a σ -finite
prior measure π(dθ) on �. Thus the posterior distribution satisfies

π(dθ |y) ∝ exp
(
�y(θ)/σ 2)π(dθ), θ ∈ �.(3)

Here we do not assume that the prior distribution is proper, nor do we assume
that its density is bounded away from 0 and infinity on the boundary of �; see
Assumption P in Section 4.1.

4. The analogue of the Bernstein–von Mises theorem.

4.1. Notation and assumptions. We shall use the default norms ‖z‖ = ‖z‖2 for
both vectors and matrices. If the appropriate derivatives exists, define the gradient
∇f (θ) of a function f on � as a vector of partial derivatives (one-sided if θ is
on the boundary of �), and ∇2f (θ) is a matrix of second derivatives of f (again,
one-sided if θ is on the boundary of �). We use notation θS to define the vector
(θj , j ∈ S) for S ⊂ {1, . . . , p}, a convention which also applies to the gradient ∇ ,
that is, ∇Sf (θ) = (∇j f (θ), j ∈ S). We denote a submatrix  indexed by sub-
sets S,J by S,J = (ij , i ∈ S, j ∈ J ); this also applies to the matrix of second
derivatives, so we can write ∇2

S,J f (θ) to denote the corresponding submatrix.
We use AX + x0 = {Ax + x0, x ∈ X } to denote the image of an affine transfor-

mation of the set X given matrix A and vector x0.
The limit of the posterior distribution has a different character in different di-

rections, and we need to partition the index set {1,2, . . . , p} of θ accordingly. Let

S0 = {
j :∇j �

�(θ�)= 0
}

and S1 = {
j :∇j �

�(θ�) �= 0
}
,

with dimensions p0 and p1 = p − p0, respectively. We partition S0 further:

S�
0 = {

j :∇j �
�(θ�)= 0 and θ�

j = 0
}

and

S0 \ S�
0 = {

j :∇j �
�(θ�)= 0 and θ�

j �= 0
}
,

with dimensions p�
0 and p0 − p�

0 where θ�
j = 0 corresponds to θ� being on the

boundary of �; see Assumption B(1) below.
We then introduce a permutation of coordinates of θ , defined by any matrix U

that maps S0 \ S�
0 to the first (p0 − p�

0) coordinates, S�
0 to the next p�

0, and S1 to
the last p1. The first p0 rows of U will be denoted U0 and the remainder U1. We
denote the index set {p0 − p�

0 + 1, . . . , p0} by T �
0 which is the image of S�

0 under
the map defined by U . Note that θ�

j = 0 for all j ∈ S�
0 ∪ S1 (for j ∈ S1, this is

given by Lemma 1 below), so this set describes the coordinates of θ� that lie on
the boundary; in the case of S�

0 the gradient is also zero in this direction.
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We introduce the notation PT N p0(a0,�
−1
00 ,p�

0, α0) for a polynomially-tilted

multivariate Gaussian distribution truncated to V0 = R
p0−p�

0 ×R
p�

0+ , for which the
corresponding measure of any measurable B ⊂ V0 is defined by

PT N p0

(
B;a0,�

−1
00 ,p�

0, α0
)

(4)

=
∫
B
∏

j∈T �
0
x

α0,j−1
j e−(x−a0)

T �00(x−a0)/2 dx∫
V0

∏
j∈T �

0
x

α0,j−1
j e−(x−a0)

T �00(x−a0)/2 dx
,

where a0 ∈ R
p0 , �00 is a p0 × p0 positive definite matrix, and α0 = (α0,j )j∈T �

0
∈

(0,∞)p
�
0 . α0 could also be interpreted as a p0-dimensional vector whose first p0 −

p�
0 coordinates are irrelevant. Note that this distribution is Gaussian if p�

0 = 0, and
truncated Gaussian if p�

0 �= 0 and α0,j = 1 for all j .
For α,a > 0, �(α, a) denotes the Gamma distribution with density p(x) =

aαxα−1e−ax/�(α), x > 0, and �(dx;α,a) the corresponding probability mea-
sure.

In addition to Assumption M (Section 3.1), we make the following assumptions.
They make use of the following neighbourhoods of θ�:

��(δ) = {
θ ∈ � :U

(
θ − θ�) ∈ B2,p0(0, δ0) × B∞,p1(0, δ1)

}
,(5)

where δ = (δ0, δ1), δ0, δ1 > 0 and Bq,s(z0, r) = {z ∈ R
s :‖z − z0‖q < r}.

ASSUMPTION B (On boundary of �, ∂�). (1) � ⊆ [0,∞)p and � ∩ ∂� ⊆⋃p
j=1{θ ∈ � : θj = 0}.
(2) U(� − θ�) ⊇ (−c0, c0)

p0−p�
0 × [0, c0)

p�
0 × [0, c1)

p1 for some c0, c1 > 0.

ASSUMPTION S (Smoothness in θ ). There exist δ0, δ1 > 0 depending on σ

such that:

(1) δ0 → 0, δ1 → 0, δ0/σ → ∞, δ1/σ
2 → ∞ as σ → 0.

(2) For all θ ∈ ��(δ), ∇��(θ), ∇�Y (θ) and ∇2
S0,S0

�Y (θ) exist Pθ�,σ -almost ev-
erywhere, for small enough σ .

(3) For any ε > 0,

Pθ�,σ

(
sup

θ∈��(δ)

∥∥∇�Y(ω)(θ) − ∇��(θ�)∥∥∞ > ε
)

→ 0 as σ → 0.

(4) Pθ�,σ (‖σ−1∇S0�Y(ω)(θ
�)‖ < ∞) = 1 for small enough σ .

(5) There exists a p0 × p0 positive definite matrix �00 such that

∀ε > 0 Pθ�,σ

(
sup

θ∈��(δ)

∥∥∇2
S0,S0

�Y(ω)(θ) + �00
∥∥> ε

)
→ 0 as σ → 0.

ASSUMPTION P (On the prior distribution). The σ -finite measure π(dθ) on
� satisfies the following conditions:
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(1)
∫
� e�y(θ)/σ 2

π(dθ) < ∞ for Pθ�,σ -almost all y ∈ Y , for small enough σ .
(2) For θ ∈ ��(δ), there exists p(θ) ≥ 0 such that π(dθ) = p(θ) dθ .
(3) There exist Cπ > 0 and αj > 0 for j ∈ S1 ∪S�

0, independent of σ , and there
exists �π = �π(δ) ≥ 0, such that �π → 0 as σ → 0 and for θ ∈ ��(δ),

Cπ(1 − �π) ≤ p(θ) × ∏
j∈S1∪S�

0

θ
−(αj−1)

j ≤ Cπ(1 + �π).

Denote α0 = αS�
0
, α1 = αS1 .

ASSUMPTION L. Assume Pθ�,σ (�0(δ) → 0) → 1 as σ → 0, where

�0(δ) = σ
−p0−∑j∈T �

0
(α0,j−1)−2

∑p1
j=1 α1,j

∫
�\��(δ)

e(�Y (θ)−�Y (θ�))/σ 2
π(dθ).(6)

Assumption L implies consistency of the posterior distribution at a certain rate,
and it can be written as π(��(δ)|Y) = 1 +OPθ�,σ

(1) as σ → 0. Consistency of the
posterior is a necessary assumption for the Bernstein–von Mises theorem [van der
Vaart (1998), Theorem 10.1]. Under Assumption M, Assumption L holds if the
following condition is satisfied:

σ
−p0−∑j∈T �

0
(α0,j−1)−2

∑p1
j=1 α1,j

∫
�\��(δ)

e−h(θ)/σ 2
π(dθ) → 0

(7)
as σ → 0,

where the function h(θ) is such that

��(θ) − ��(θ�)≤ −h(θ) for all θ ∈ � \ ��(δ).

Under Assumption B, the complement of the polar cone of the set � − θ� coin-
cides with �−θ� in a small enough neighbourhood of 0; this is essential for the an-
alytic arguments of the paper. This property holds for other polyhedral boundaries;
for affine transformations of the positive orthant this is trivial, while in general it
relies on the fact that σ → 0. For a set � that does not satisfy these conditions, the
support of the posterior distribution in the limit may depend on the complement of
the polar cone of � − θ�; see also Shapiro (2000).

In Assumption S, we assume uniform convergence in probability of the deriva-
tives of the scaled log-likelihood at θ� as σ tends to 0, and that the score function
of θS0 converges to 0 at rate σ−1.

In Assumption P, we assume that the posterior distribution is proper but we
do not assume that the prior measure itself is proper. Neither do we assume that
p(θ) is finite and bounded away from 0 on the boundary of the parameter space,
that is, that αj = 1 for all j , which is the assumption of the BvM theorem. In
particular, the log cosh Markov random field prior distribution that was discussed
in Section 2 for the motivating example, satisfies these conditions with αj = 1
for all j ∈ S1 ∪ S�

0 . Other improper priors such as the Jeffreys prior for a Poisson
likelihood, as well as the conjugate Gamma prior and Beta prior conjugate to a
binomial likelihood, satisfy this assumption; see examples in Section 5.
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4.2. The main result. Before presenting the main result, we state two prelimi-
nary lemmas. Firstly, we show that the elements θ�

S1
are on the boundary of �, and

secondly, we study properties of the derivatives of ��(θ).

LEMMA 1. If Assumption M in Section 3.1 and Assumption B in Section 4.1
hold, then θ�

S1
= 0 and vector ∇S1�

�(θ�) has negative coordinates.

If also for any ε > 0, Pθ�,σ (‖∇2
S0,S0

�Y (θ�)−∇2
S0,S0

��(θ�)‖ > ε) → 0 as σ → 0,

then the matrix �00 = −∇2
S0,S0

��(θ�) is positive semi-definite.

This lemma follows from standard optimality conditions [e.g., Proposition 2.1.2
in Bertsekas (2003)].

Define the following scaling transform S = Sσ :� − θ� →R
p0 ×R

p1+ :

S
(
θ − θ�)= D−1

σ U
(
θ − θ�),(8)

where Dσ = diag(σIp0, σ
2Ip1) and U = (UT

0 :UT
1 )T is defined in Section 4.1. The

two subsets of coordinates are scaled differently; we are considering (θS0 − θ�
S0

)/σ

and (θS1 − θ�
S1

)/σ 2. In the next lemma we study the image of ��(δ) defined by (5)
under this transformation, in the limit.

LEMMA 2. Let Assumption B in Section 4.1 hold, and take δ0 and δ1 such that
δ0 ≤ c0, δ1 ≤ c1, δ0/σ → ∞, and δ1/σ

2 → ∞ as σ → 0. Then,

lim inf
σ→0

Sσ

(
��(δ) − θ�)= R

p0−p�
0 ×R

p�
0+p1

+ ,

the lim inf being in the sense of Shapiro (2000).

The proof of the lemma is given in Appendix A.2.
The limit of the posterior distribution is described by the following parameters:

α0 = αS�
0

and α1 = αS1 defined in Assumption P, �00 defined in Assumption S,
and a0(ω) and a1 defined by

a0(ω) = σ−1�−1
00 ∇S0�Y(ω)

(
θ�), a1 = −∇S1�

�(θ�).(9)

The vector a1 has positive coordinates, which follows from Lemma 1. The matrix
σ−2�00 is an analogue of the Fisher information for θS0 .

In the theorem below, which is an analogue of the Bernstein–von Mises the-
orem, we claim that under the stated assumptions, the posterior distribution of
S(θ − θ�), PS(θ−θ�)|Y , converges to a finite limit.

THEOREM 1. Consider the Bayesian model defined in Section 3 under As-
sumption M and such that Assumptions B, S, P and L hold.

Define a random probability measure on V0 ×R
p1+ , with v = (v0, v1):

μ�(ω)(dv) = PT N p0

(
dv0;a0(ω),�−1

00 ,p�
0, α0

)× �p1(dv1;α1, a1),
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where V0 = R
p0−p�

0 × R
p�

0+ , PT N p0(dv0;a0,�
−1
00 ,p�

0, α0) is the polynomially-
tilted truncated Gaussian distribution defined by (4), and �p1(·;α1, a1) is the
probability measure of a p1-dimensional vector ξ with independent coordinates
ξi ∼ �(α1,i , a1,i).

Then, with transform S defined by (8), as σ → 0,

∀ε > 0 Pθ�,σ

(∥∥PS(θ−θ�)|Y − μ�
∥∥

TV > ε
)→0.

The proof is given in Appendix A.1. If θ� is an interior point, then p1 = p�
0 = 0,

the additional factor in the definition of μ� disappears, and the limit is Gaussian,
as in the classical Bernstein–von Mises theorem.

Assumptions M and S imply that the log-likelihood can be approximated
quadratically with respect to the parameter θS0 (which includes θS�

0
where the

“true” parameter is on the boundary of the parameter space) but not with respect
to θS1 . This is related to the LAN property [Le Cam and Yang (1990)]. In par-
ticular, the rate of convergence for θS�

0
is still σ−1, and the limit of the rescaled

posterior is truncated Gaussian, possibly modified by the behaviour of the local
prior density on the boundary, whereas for θS1 the rate of convergence is faster
(σ−2 instead of σ−1), θS1 is asymptotically independent of θS0 given data, and its
limiting distribution is Gamma. See examples in Section 5.

We shall see in Section 5 that in a number of models parameter components
on the boundary can only be either all regular or all nonregular. However, in the
motivating SPECT example, both types of boundary behaviour can occur. Hence
the chosen prior, satisfying Assumption P with αj = 1 for all j ∈ S1 ∪ S�

0, results
in asymptotically efficient inference for the regular parameters.

REMARK 1. The key property of the posterior distribution, when the true pa-
rameter is on the boundary, is that the gradient of the log-likelihood at this point
does not vanish asymptotically. Thus in some directions the leading term at the
Taylor expansion of log posterior density is linear rather than quadratic, as would
be the case when θ� is an interior point. If the local prior density at θ� is bounded
away from 0 and infinity, then the limit of the posterior in these directions is an ex-
ponential distribution; if the local prior density has an additional polynomial term
in a neighbourhood of θ�

j = 0, then the limit is a Gamma distribution.

If the prior density behaves like a positive constant on the boundary or the “reg-
ular” part of the parameter is not on the boundary, then the limiting distribution
μ�(ω) has a simple form.

COROLLARY 1. Assume that Assumption P is satisfied with α0,j = 1 for
j ∈ T �

0 , or the set T �
0 is empty (i.e., p�

0 = 0). Then, under the conditions of Theo-
rem 1, the limiting probability measure μ�(ω) on V0 ×R

p1+ is defined by

μ�(ω)(dv) = T N p0

(
dv0;a0(ω),�−1

00

)× p1⊗
i=1

�(dv1,i;α1,i , a1,i),
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where T N p0(dv0;a0(ω),�−1
00 ) denotes the Gaussian distribution truncated to V0

and normalised to be a probability measure.
In particular, if the prior distribution behaves as a constant in a neighbourhood

of θ� (α1,j = 1 for all j ), then the limit of θS1/σ
2 is multivariate exponential.

4.3. Efficiency of inference for “nonregular” parameters. We can see that for
θS0\S�

0
the standard Bernstein–von Mises theorem holds under the assumption that

the prior density in the neighbourhood of θS0\S�
0

is bounded away from 0 and in-
finity, a standard assumption of the BvM theorem. Thus inference for θS0\S�

0
is

asymptotically independent of the prior and is asymptotically equivalent to effi-
cient frequentist inference.

However, inference for θS1 is different. The first key difference is that there is no
need to require a similar assumption on the prior distribution: even if the local prior
density tends to infinity or zero (both at a polynomial rate) on the boundary, for
i.i.d. observations with σ 2 = 1/n, Bayesian inference is still consistent, at a rate
faster than the parametric

√
n rate. The second difference is that the limit of the

rescaled and recentred posterior distribution for θ�
S1

is not random (i.e., does not
depend on ω). These two properties lead to the third important difference which
is the formulation of efficiency of the estimation procedure for these “nonregular”
parameters. This point is elaborated below.

Consider the case where p = 1 and θ� is on the boundary (i.e., θ� = 0) with
∇��(θ�) �= 0. If the prior density at θ� is not bounded away from 0 and infinity, the
limit of the posterior distribution depends on the behaviour of the prior distribution
on the boundary via exponent α (αj with j = 1). This exponent is a construct of
the statistician and does not depend on the data or its model and can be chosen
freely. If α > 1, then the prior density at the true value θ� is 0, and if α < 1, the
local prior density of θ tends to infinity as θ → θ�. The length of the asymptotic
posterior credible interval for θ decreases to 0 as α → 0 (see Examples 3 and 4 in
Section 5); hence it is possible to recover the true value on the boundary as pre-
cisely as desired, up to the error of approximation of the posterior distribution by its
limit (an upper bound on that is presented in Proposition 1). Note that for the Pois-
son and Binomial distributions discussed in Examples 3 and 4, the Jeffreys prior
satisfies Assumption P with α = 1/2. This property raises questions about the for-
mulation of efficiency in this case, as, from a theoretical perspective, there appears
to be no lower bound on the length of the credible interval as in the regular case.

4.4. Nonasymptotic upper bound. We also state a nonasymptotic bound on the
distance between the posterior distribution of the rescaled parameter and its limit.

PROPOSITION 1. Assume that the following conditions hold for δ0 and δ1 and
for some δ∗0 > 0, δ∗1 > 0 that may depend on δ0 and δ1:

δ∗1 < amin, δ∗0 < λmin(�00), δ0 <
∥∥θ�

S0

∥∥,
(10)

δ0 ≤ c0, δ1 ≤ c1,
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where amin = minj a1,j , λmin(�00) is the smallest eigenvalue of �00, and c0, c1
are constants from Assumption B. Let the assumptions of Theorem 1 hold, and
define the following events:

A0 =
{
ω : sup

θ∈��(δ)

∥∥∇2
S0,S0

�Y(ω)(θ) + �00
∥∥≤ δ∗0

}
,

(11)
A1 =

{
ω : sup

θ∈��(δ)

∥∥∇S1�Y(ω)(θ) + a1
∥∥∞ ≤ δ∗1

}
.

Then, on A = A0 ∩A1 ∩ {‖a0(ω)‖ < δ0/σ },∥∥PS(θ−θ�)|Y − μ�
∥∥

TV

≤ 2 max
{
C1δ∗1,p1 max

j
�

((
a1,j δ1

σ 2 ,∞
)
;α1,j ,1

)}
(12)

+ 2 max
{
C0δ∗0,Cα0�

((
λmin(�00)

2

[
δ0

σ
− ∥∥a0(ω)

∥∥]2
,∞

)
; pα0

2
,1
)}

+ C2�π + C��0(δ),

where pα0 = p0 +∑
j∈T �

0
(α0,j − 1) and the constants are defined in the proof. If

also δ∗0 → 0 and δ∗1 → 0 as σ → 0, then the upper bound in (12) tends to 0.

The proof is given in Appendix A.1. Note that under the assumptions of The-
orem 1, Pθ�,σ (A) → 1 as δ∗0 → 0 and δ∗1 → 0. For the upper bound of the total
variation to be small in practical applications, the dimensions pk should not be too
large compared to the corresponding rate, the smallest eigenvalue of the precision
matrix �00 cannot be too small, that is, that λmin(�00)δ

2
0/σ 2 should be large, and

that the combination of parameters (α1,j , a1,j ) should be such that value δ1/σ
2 is

far in the tail of all corresponding Gamma distributions. If α1,j = 1 for all j , this
requires that the smallest value amin of the parameter a1 should not be too small,
that is, aminδ1/σ

2 should be large.
It is interesting to note that, for each k = 0,1, if δ∗k � δk , which holds in many

cases, the value of δk minimising the local upper bound (the first two lines of
the upper bound) coincides with the upper bound of the Ky Fan distance between
the posterior distribution of θSk

and its limit, a point mass at θ�
Sk

. These are δ0 =
C�00σ

√
log(1/σ) and δ1 = Ca1σ

2 log(1/σ) [Bochkina (2013)].

5. Examples. We now give examples where the asymptotic posterior distri-
bution differs from Gaussian. We start with a rule to verify Assumption L which
applies to exponential family distributions that we consider below.

LEMMA 3. Take δ0, δ1 > 0 such that δ0, δ1 → 0, and assume that for any
θ ∈ � \ ��(δ),

�Y (θ) − �Y

(
θ�)≤ −Cδ0

∑
j∈S0

∣∣θj − θ�
j

∣∣− Cδ1
∑
j∈S1

∣∣θj − θ�
j

∣∣
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for some Cδ0,Cδ1 > 0 with probability close to 1 for small enough σ , and that
there exist αj > 0, j = 1, . . . , p, and Cπ0 > 0 such that for all θ ∈ �,

π(dθ)

dθ
≤ Cπ0

∏
j∈S0 : |θj |<δ0/

√
p0

θ
αj−1
j

∏
j∈S1 : θj<δ1

θ
αj−1
j .

If Cδ0δ0/σ
2 → ∞ and Cδ1δ1/σ

2 → ∞, then �0(δ) → 0 as σ → 0 with probabil-
ity 1, that is, Assumption L is satisfied.

The proof is given in Appendix A.2.

EXAMPLE 3 (Poisson likelihood). Consider Yi ∼ Poisson(θ) independently
for i = 1, . . . , n, where the true value is θ� = 0. In this case, σ 2 = 1/n and P(Yi =
0) = 1. Consider an improper prior for θ with density p(θ) = θα−1 with some
α > 0; the case α = 1/2 corresponds to the Jeffreys prior for parameter θ . In this
case, the exact posterior distribution for θ is �(α,n), that is, nθ |Y ∼ �(α,1) which
agrees with Theorem 1, and the exact 95% credible interval for θ is [0, γα(0.05)/n]
where γα(0.05) is the 95% percentile of the �(α,1) distribution. For α = 1/2, the
credible interval is [0,1.92/n], and for α = 0.05, it is [0,0.27/n]. By decreasing
α to 0, we can construct a credible interval of arbitrarily small length for fixed n,
even for n = 1.

EXAMPLE 4 (Binomial distribution). Consider the problem of estimating the
unknown probabilities of Binomial distributions Yi ∼ Bin(ni, θi) independently,
i = 1, . . . , p, for θi ∈ [0,1], where the true value θ�

i of some θi is 0. We assume
that all θ�

i < 1 (if θ�
i = 1 for some i, consider ni − Yi as data and 1 − θ�

i as the
corresponding parameter). We study the limit of the posterior distribution for large
ni for all i = 1, . . . , p such that ni/n → ωi ∈ (0,1) where n = ∑p

i=1 ni , and p

is fixed. This situation is not covered by the standard BvM theorem. Consider a
conjugate Beta prior θi ∼ B(α,1) independently, with some fixed α > 0. In this
case, σ 2 = 1/n and, as n → ∞,

��(θ) = lim
n→∞�Y (θ) =

p∑
i=1

ωi

[
θ�
i log(θi) − (1 − θ�

i

)
log(1 − θi)

]
.

If θ�
i = 0, the corresponding summand in ��(θ) is −ωi log(1 − θi) which is de-

fined for θi ∈ [0,1), and then ∇i�
�(θ) = ωi/(1 − θi). In this case, S�

0 is always
empty, ∇i�

�(θ�) = 0 for θ�
i �= 0 and ∇i�

�(θ�) = −ωi for θ�
i = 0. Assumption M

was verified in Example 2, and it is easy to check that Assumptions S, P and L are
satisfied (e.g., for p = 1 and θ�

i = 0, conditions of Lemma 3 hold with Cδ1 = 1 and
Cπ0 = α). Therefore, �00 = diag(ωi/{θ�

i (1 − θ�
i )}, i ∈ S0), a1 = (ωi, i ∈ S1), and

a0,i = (Yi − niθ
�
i )/(

√
nωi). Theorem 1 implies the following asymptotic approxi-

mation of the posterior distribution of (θS0, θS1):

(θS0, θS1)|Y ∼ Np0

(
θ�
S0

+ a0√
n
,

1

n
�−1

00

)
× �p1(α,na1).
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Similarly to the Poisson likelihood case (Example 3), for α close to 0, the ap-
proximate credible intervals for θi , i ∈ S1, are small. This is easy to see from the
marginal 100(1 − β)% credible intervals which are [0, γα(β)/(nωi)].

EXAMPLE 5 (Mixed effects model). Consider a model studied by Vu and
Zhou (1997): Yij |βi ∼ N (μ + βi, τ

2) where βi ∼ N (0, θ) independently, for
i = 1, . . . , n and j = 1, . . . ,m. Here there are n classes with m elements in each,
and the parameter of interest is the contribution of the classes that is characterised
by the parameter θ ∈ � = [0,∞), where the value θ = 0 corresponds to the ab-
sence of the random effects βi . We study the asymptotic concentration of the pos-
terior distribution of θ when the number of classes n grows while the number of
class elements m remains fixed. We consider a prior distribution for θ with den-
sity p(θ) ∝ θα−1e−bθ for α > 0 and b ≥ 0, which includes a case of improper
prior distributions when b = 0. Note that the inverse Gamma prior with density
p(θ) ∝ θ−α−1e−b/θ potentially leads to very slow convergence, since it has a root
of infinite order at 0.

We start with the case μ and τ known, so without loss of generality we fix μ = 0
and τ = 1. After integrating out βi we have that �Yi = m−1∑m

i=1 Yij ∼ N (0, θ� +
1/m), independently, where θ� is the true value of the parameter θ . If θ� > 0, then
the model is regular and the posterior distribution of θ is asymptotically Gaussian.
Now we consider the case θ� = 0. Using the marginal likelihood of ȳi given θ and
taking σ 2 = 1/n, we have

��(θ) = lim
n→∞�Y (θ) = − 1

2m(θ + 1/m)
− 1

2
log(θ + 1/m)

since E�Y 2
i = θ� + 1/m = 1/m, and Assumption M is satisfied with ∇��(θ�) = 0.

It is easy to check that Assumptions B, S, P and L are satisfied, and ∇2��(θ�) =
−m2/2. Thus, by Theorem 1, the approximate posterior distribution of

√
nθ has

density

pθ
√

n(x|y) ≈ Cα,m,a0x
α−1e−(x−a0)

2/m2
, x ≥ 0

with a0 = (m/(2
√

n))(n−1∑n
i=1 m�Y 2

i − 1). It is easy to show that the Cramer–
Rao lower bound on the variance of estimators of θ applies here, even in the case
θ� = 0. Thus, using a prior with α < 1 (i.e., introducing a bias towards 0) would
lead to superefficiency, that is, loss of efficiency for θ� �= 0. In the case α = 1 the
posterior distribution is Gaussian with the same mean and variance as in the BvM
theorem but truncated to θ ≥ 0. The length of the credible interval for θ in this
case is smaller than in the case where θ� is an interior point.

Now consider the case where parameters (μ, τ 2, θ) are estimated jointly with a
continuous prior for (μ, τ 2) whose density is finite and positive at the true value
(μ�, τ �). Then

−��(μ,τ 2, θ
)= (m − 1)τ �2

2τ 2 + (μ − μ�)2 + τ �2/m

2τ 2(θ + 1/m)
+ log(θ + 1/m)

2
+ m log(τ 2)

2
,



BERNSTEIN–VON MISES THEOREM AND NONREGULAR MODELS 1865

since E(�Yi −μ)2 = τ �2/m+ (μ−μ�)2 and E
∑m

j=1(Yij −�Yi)
2 = (m−1)τ �2. The

function ��(μ, τ 2, θ) is maximised at μ = μ�, τ = τ � and θ = θ� = 0, with zero
gradient and the negative matrix of the second order derivatives �00 and its inverse
(the covariance matrix) being

�00 =

⎛⎜⎜⎜⎜⎜⎝
m

τ�2 0 0

0
m

2τ �4

m

2τ �2

0
m

2τ �2

m2

2

⎞⎟⎟⎟⎟⎟⎠ ,

�−1
00 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

τ �2

m
0 0

0
2τ �4

m − 1
− 2τ �2

m(m − 1)

0 − 2τ �2

m(m − 1)

2

m(m − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

If α = 1, then the approximate joint posterior distribution of
√

n(θ − θ�,

μ − μ�, τ 2 − τ �2) is Gaussian truncated to θ − θ� = θ ≥ 0 with bias as given
in Theorem 1 and the covariance matrix �−1

00 given above. Note that θ and τ 2 are
asymptotically correlated, with correlation −m−1/2.

6. Asymptotic behaviour of the posterior distribution for SPECT.

6.1. Approximation of the posterior distribution. Consider the SPECT model
defined in Section 2, in which θ� has some zero coordinates. The assumptions of
Theorem 1 were verified in Examples 1 and 3 (Assumptions M, B, S), and the log
cosh Markov random field prior distribution satisfies Assumption P with αj = 1 for
all j . Assumption L also holds, since the conditions of Lemma 3 are satisfied for
independent Poisson random variables with Cδ0 = 0.5δ0(δ0 + √

p0y
�
min)

−1y�
min,

Cδ1 = minj (a1,j ), where y�
min = minj : y�

j >0 y�
j with y� = Aθ� for small enough

σ = 1/
√
T , due to the inequality log(1 + x) − x ≤ −xb/(b + 1) for x > b > 0.

For this model, ∇��(θ�) = −∑i : y�
i =0 AT

i , which is nonzero if Z = {i ∈
{1, . . . , n} :y�

i = 0} is not empty. Hence, nonregularity arises from the elements
where there are no detected photons (y�

i = 0) and the likelihood degenerates:
Pθ�(Yi = 0) = 1 for i ∈ Z but, since Ai �= 0, this gives us information about
those θj where Aij �= 0, that is, on S1 = {j : θ�

j = 0 and
∑

i∈Z Aij �= 0}.
The limiting distribution of θS1/σ

2 is exponential with parameter a1 =∑
i∈Z AT

iS1
. The parameter (θS0 − θ�

S0
)/σ has approximately a truncated Gaussian

distribution with parameters

�00 = AT�Z,S0
diag

(
1/
[
y�]�Z)A�Z,S0

, a0 = �−1
00 AT�Z,S0

Ỹ /σ,
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where Ỹ is a vector with coordinates Yi/y
�
i − 1 for i ∈ �Z. Truncation takes place

for parameters θS�
0

with S�
0 = {j : θ�

j = 0 and
∑

i∈Z Aij = 0}.
If the vector of Poisson means y� = Aθ� has only positive coordinates (Z is

empty), the model is regular, and the posterior distribution of (θ − θ�)/σ is ap-
proximately truncated Gaussian.

6.2. Practical implications of the approximate posterior. We will briefly dis-
cuss some practical implications of Theorem 1. Well-developed methods for
SPECT reconstruction using our model, using Markov chain Monte Carlo compu-
tation, deliver both approximate, simulation-consistent, posterior means and vari-
ances; see Weir (1997) for a fully Bayesian reconstruction. The theorem provides
valuable knowledge which can enrich the interpretation of such results, enabling
approximate probabilistic inference.

Inferential questions of real interest, including (a) quantitative inference about
amounts of radio-labelled tracer within specified regions of interest, or (b) tests
for significance of apparent hot- or cold-spots, can be answered using approxi-
mate posteriors for linear combinations wT θ of parameters, and are particularly
amenable to treatment. Specifically, suppose that for any nonempty set of pixels
R ⊆ {1,2, . . . , p}, wR denotes the vector with elements wR

j = 1/|R| for j ∈ R,

0 otherwise. Then to deal with case (a) we can take w = wR to deliver wT θ as the
average concentration of tracer in region R, and for case (b) take w = wR1 − wR2

for the difference in average concentration between regions R1 and R2.
To construct an approximation of the posterior distribution, we require estimates

of unknown parameters. We use the marginal posterior modes estimate θ̂ , θ̂i =
argmaxp(θi |y), instead of θ�, ŷ = Aθ̂ instead of y�,

Ŝ1 = {
j :∇j �y(θ̂) < 0

}
, Ẑ = {i : ŷi = 0}.

A more robust way to estimate S1 would be to use Ŝ1,ε = {j :∇j �y(θ̂) < −ε} for
some small enough ε > 0; however, sensitivity to the choice of ε would need to be
investigated. Then, the approximate posterior of z = (θ − θ̂ ) is

φ(z) = ∏
j∈Ŝ1

[
âj /
(
2σ 2)](2πσ 2)−p0/2[det(�̂)

]1/2 exp
{−zT

Ŝ0
�̂zŜ0

/
(
2σ 2)−zT

Ŝ
â/σ 2},

where �̂ =∑
i /∈Ẑ yi/[ŷi]2Ai,Ŝ0

AT
i,Ŝ0

and â =∑
i∈Ẑ AT

i,Ŝ1
.

6.3. Finite sample performance. We briefly discuss the extent to which the
approximation in Theorem 1 holds true for data on the scale of a real SPECT
study. A formal assessment of this would entail a major study beyond the scope of
this paper, so we present selected results from analysis of two data sets based on a
SPECT scan of the pelvis of a human subject.

In the first experiment, the matrix A was constructed according to the model in
Green (1990) and Weir (1997), capturing geometry, attenuation, and radioactive
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decay for a setup consisting of 64 projections from a 2-dimensional slice through
the patient, each projection yielding an array of 52 photon counts, on a spatial reso-
lution of 0.57 cm. The data set was obtained from Bristol Royal Infirmary; the total
photon count was 45,652; individual counts ranged from 0 to 85, averaging 13.7.
Reconstruction was performed on a 48 × 48 square grid of 0.64 cm pixels, using
the log cosh prior with hyperparameters fixed at γ = 25 and ζ = 8, obtained using
a simple MCMC sampler. We employed 20,000 sweeps of a deterministic-raster-
scan single-pixel random walk Metropolis sampler on a square-root scale for θ ,
chosen to avoid extremes in acceptance rate at high- and low-spots in the image.

Figure 1 shows selected aspects of this analysis; see caption for details. Our
tentative conclusion is that the marginal posterior distributions for individual pix-
els θj do appear to be approximately Gaussian in high-spots and approximately
exponential in low-spots, consistent with the theoretical limits presented in Theo-
rem 1.

A second experiment was focussed on a more precise and quantitative assess-
ment of the approximation to the posterior derived in the previous section. The
setup is the same as in the first experiment, except at half the resolution, so that re-
construction was on a 24 × 24 grid of 1.28 cm pixels. The corresponding A matrix
is now better-conditioned, and p is only 576, so that manipulation of the matrices
is entirely tractable. Synthetic data was generated using this A and a “ground truth”
obtained from an approximate MAP reconstruction from the same real data set as
used above, yielding photon counts between 0 and 243, totalling 138,310. 50,000
sweeps of the MCMC sampler were used, with prior settings γ = 200, ζ = 8.

Figure 2 displays the agreement between the elements of â and the reciprocals
of the MCMC-computed posterior means of θ , for pixels in Ŝ1, and also that be-
tween the diagonal elements of �̂−1 and the posterior variances of θ for pixels
in Ŝ0.

Figure 3 displays two bivariate posterior marginals, computed by MCMC, and
the corresponding approximations. In the left panel, one component is in Ŝ1 and

FIG. 1. Analysis of real SPECT data: posterior mean reconstruction as a grey-scale image, his-
togram of marginal posterior for a high-spot pixel (row 12, column 28), and the same for a low-spot
pixel (row 12, column 31).
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FIG. 2. Agreement between (left panel) the elements of â and the reciprocals of the MCMC-com-
puted posterior means of θ , for pixels in Ŝ1, and also that between (right panel) the diagonal elements
of �̂−1 and the posterior variances of θ for pixels in Ŝ0.

one in Ŝ0, so the approximation is Gaussian/exponential; on the right both compo-
nents are from Ŝ0, so we have a bivariate Gaussian.

We conclude that for this realistic/modest-scale SPECT reconstruction problem,
the small-variance asymptotics of this paper provide a good approximation to the
posterior, even for σ 2 = 1.

FIG. 3. Two bivariate marginals of the posterior, as computed by MCMC (grey-scale image), and
the corresponding approximations (contours). In the left panel, one pixel is in Ŝ1 and one in Ŝ0, so
the approximation is Gaussian/exponential; in the right panel both pixels are from Ŝ0, so we have
a bivariate Gaussian. The outermost contour represents the 95% HPD credible region based on the
approximation.
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7. Discussion. When the posterior distribution concentrates on the boundary,
we have shown that the classic Bernstein–von Mises theorem does not hold for all
components. There are two different types of non-Gaussian component: one, with
the same parametric rate of convergence, is a truncated Gaussian or a polynomially
tilted modification of this if the prior density is not bounded away from zero and
infinity on the boundary, and the second is a Gamma, with a faster rate of conver-
gence. An interesting property of the components of the second type is that they are
not subject to a lower bound on efficiency, unlike the “regular” and the first-type
boundary components. Under some models with this property, at least part of the
data is observed exactly, so perhaps it should not be an unexpected phenomenon;
see examples of Poisson and Binomial likelihoods in Section 5. This property is
quite remarkable: in principle, it allows the recovery of the unknown parameter on
the boundary with an arbitrarily small precision (particularly in the case there is no
approximation error), by choosing an appropriate prior distribution, without los-
ing asymptotic efficiency if the parameter is not on the boundary. This property is
related to convergence in finitely-many steps of the projected gradient method for
a sharp minimum for a noise-free function [Polyak (1983), Theorem 1, page 182;
thanks to Alexandre Tsybakov for bringing this to our attention].

A related but different problem involves a nonregular model where the density
of the observations has one or more jumps at a point that depends on the unknown
parameter, for example, Yi ∼ U [0, θ ], i = 1, . . . , n, independently. This type of
problem has been extensively studied from both frequentist and Bayesian per-
spectives [Chernozhukov and Hong (2004), Ghosal, Ghosh and Samanta (1995),
Ghosal and Samanta (1995), Ghosh, Ghosal and Samanta (1994), Hirano and
Porter (2003), Ibragimov and Has’minskiı̆ (1981)]. In the problem treated in this
paper, the rate of convergence of the posterior distribution of the unknown nonreg-
ular parameter as a function of n is the same as in this case where the unknown
parameter controls the positions of jumps, faster than the standard parametric rate.
However, there is a crucial difference: in the former case, the posterior distribution
has a data-dependent random shift, whereas in the latter case there is no such shift.

The nonasymptotic version of the main result shows that other parameters of
the model can also affect convergence in practice, such as the smallest eigenvalues
of the precision matrices in the PT N part of the limit and the smallest parameter
of the scale of the Gamma distributions.

It is easy to verify that Theorem 1 derived here applies also to misspecified
models, with Pθ�,σ being replaced by the true distribution of Y and θ� defined
as the unique maximum of ��(θ) as in Assumption M. This will be discussed
elsewhere.

An interesting direction for future work is to study both the behaviour of the
posterior distribution, and the question of optimal prior specification, in a frame-
work where the spatial resolution is infinitely refined, placing smoothness class
constraints on θ�.
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APPENDIX: PROOFS

A.1. Proof of the main result. We start with a lemma.

LEMMA 4. Consider the function �Y (θ) defined in Section 3.1 and assume
that Assumptions M, B and S hold. Then, on the event A0 ∩ A1 defined by (11)
with some δ∗0, δ∗1 > 0, for θ ∈ ��(δ),

�Y (θ) − �Y

(
θ�)

≥ (θS0 − θ�
S0

)T ∇S0�Y

(
θ�)− (θS0 − θ�

S0

)T
�̃00

(
θS0 − θ�

S0

)
/2 − ãT θS1,

�Y (θ) − �Y

(
θ�)

≤ (θS0 − θ�
S0

)T ∇S0�Y

(
θ�)− (θS0 − θ�

S0

)T ��00
(
θS0 − θ�

S0

)
/2 − āT θS1,

where

�̃00 = �00 + δ∗0Ip0,
��00 = �00 − δ∗0Ip0,

ã = a1 + δ∗11p1, ā = a1 − δ∗11p1 .

Here 1p1 = (1, . . . ,1)T —a vector of length p1, and Ip0 is p0 × p0 identity matrix.

PROOF. Applying the Taylor expansion of �Y (θ) as a function of θS1 at
point θ�

S1
, and then expanding �Y (θ̃) where θ̃S0 = θS0 and θ̃S1 = θ�

S1
, as a func-

tion of θS0 at point θ�
S0

, for some θc0, θc1 ∈ ��(δ), we have

�Y (θ) − �Y

(
θ�)= (

θS1 − θ�
S1

)T ∇S1�Y (θc1) + (θS0 − θ�
S0

)T ∇S0�Y (θ)

+ (θS0 − θ�
S0

)T ∇S0,S0�Y (θc0)
(
θS0 − θ�

S0

)
/2.

Applying the bounds defining events A0 and A1 to ∇S1�Y (θc1) and ∇S0,S0�Y (θc0),
and using that θS1 − θ�

S1
= θS1 is a vector with nonnegative components, we

have

�Y (θ) − �Y

(
θ�)≤ (θS1 − θ�

S1

)T [−a1 + δ∗11|S1|] + (θS0 − θ�
S0

)T ∇S0�Y (θ)

+ (θS0 − θ�
S0

)T [−�00 + δ∗0I|S0|]
(
θS0 − θ�

S0

)
/2,

and hence the first statement of the lemma. Applying the inequalities on the
events Ak as lower bounds, we obtain the second statement of the lemma. �

PROOF OF THEOREM 1. Denote v = (vT
0 , vT

1 )T = D−1U(θ −θ�) where v0 =
(θS0 − θ�

S0
)/σ and v1 = (θS1 − θ�

S1
)/σ 2; the Jacobian of this change of variables is

σp0+2p1 . The image of ��(δ) under this transform is

BR = B2(0,R0) × [0,R1)
p1 ∩ D−1

σ U
(
� − θ�),



BERNSTEIN–VON MISES THEOREM AND NONREGULAR MODELS 1871

with R0 = δ0/σ and R1 = δ1/σ
2. Under Assumptions B and S, the conditions of

Lemma 2 hold, which implies that if ‖θ�
S0

‖ ≥ δ0 and δk ≤ ck , BR = [B2,p0(0,R0)∩
V0]×[0,R1]p1 where V0 = R

p0−p�
0 ×R

p�
0+ , and the set BR becomes V� = V0 ×R

p1+
as σ → 0.

The triangle inequality for the total variation norm gives∥∥PS(θ−θ�)|Y − μ�
∥∥

TV

≤ ∥∥PS(θ−θ�)|Y 1BR
− μ�1BR

∥∥
TV(13)

+ ∥∥μ�1BR
− μ�

∥∥
TV + ∥∥PS(θ−θ�)|Y 1BR

− PS(θ−θ�)|Y
∥∥

TV,

where the balls BR are defined above. Here μ1BR
is a probability measure μ trun-

cated to BR and normalised to be a probability measure. If the measure μ1 is ab-
solutely continuous with respect to measure μ2, with density f , the total variation
norm can be written as

‖μ1 − μ2‖TV = 2
∫
�
(f − 1)+ dμ2,

where (x)+ = max(x,0) [van der Vaart (1998)]. This can be used in each of the
summands in the upper bound (13).

In this proof we will use α = (α0, α1), for simplicity of notation.
Define the measure μ(dv;a1, α, b,) for v = (vT

0 , vT
1 )T , v0 ∈ R

p0−p�
0 ×

[0,∞)p
�
0 and v1 ∈ [0,∞)p1 , by

μ(dv;a1, α, b,)

dv
= ∏

j∈T �
0 ∪T1

v
αj−1
j e−aT

1 v1−vT
0 v0/2+vT

0 b,(14)

where T �
0 = {p0 − p�

0 + 1, . . . , p0}, T1 = {p0 + 1, . . . , p}, a1 ∈ (0,∞)p1 , b ∈ R
p0 ,

α = (αj )j∈T �
0 ∪T1 ∈ (0,∞)p

�
0+p1 , and  is a p0 × p0 positive definite matrix.

We start with the first term in (13). By Lemma 4, on the event A0 ∩A1 defined
by (11), for any measurable B ⊆ ��(δ), with Bv = D−1

σ U(B− θ�) ⊆ BR , we have∫
B

exp
{[

�Y (θ) − �Y

(
θ�)]/σ 2}π(dθ)

≥ JσCπ(1 − �π)

×
∫
Bv

∏
j∈T �

0 ∪T1

v
αj−1
j exp

{
vT

0 ∇S0�Y

(
θ�)/σ − ∥∥�̃1/2

00 v0
∥∥2

/2 − ãT v1
}
dv

= JσCπ(1 − �π)μ
(
Bv; ã, α,∇S0�Y

(
θ�)/σ, �̃00

)
,

where Jσ = σ
p0−p�

0+
∑

j∈T �
0

α0,j+2
∑p1

j=1 α1,j , and the measure μ(dv;a1, α, b,) is
defined by (14). Similarly, using Lemma 4, we obtain an upper bound on the
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event A0 ∩A1,∫
B

exp
{[

�Y (θ) − �Y

(
θ�)]/σ 2}π(dθ)

≤ JσCπ(1 + �π)

×
∫
Bv

∏
j∈T �

0 ∪T1

v
αj−1
j exp

{
vT

0 ∇S0�Y

(
θ�)/σ − ∥∥��1/2

00 v0
∥∥2

/2 − āT v1
}
dv

= JσCπ(1 + �π)μ
(
Bv; ā, α,∇S0�Y

(
θ�)/σ,��00

)
.

To simplify the notation, denote a0 = �−1
00 ∇S0�Y (θ�)/σ and

μ̄(dv) = μ(dv; ā, α,�00a0,��00),

μ̃(dv) = μ(dv; ã, α,�00a0, �̃00).

The measure μ̃ is finite since a0 = ∇S0�Y (θ�)/σ is finite with high probability due
to Assumption S(4), and all its other parameters are positive or positive definite.
The measure μ̄ is finite if δ∗1 < minj a1,j and δ∗0 < λmin(�00). These conditions
hold if δ∗0, δ∗1 are small enough which is possible due to Assumption S.

For Bv = B1 × B∞(0, r1) for some B1 ⊂ V0 and r1 ∈ (0,R1), we have

μ
(
V�;a1, α, b,

)= p1∏
i=1

[
a

−α1,i

1,i �(α1,i)
] ∫

V0

∏
j∈T �

0

v
α0,j−1
0,j e−vT

0 v0/2+vT
0 b dv0,

μ(Bv;a1, α, b,)

μ(V�;a1, α, b,)
= PT N p0

(
B1;−1b,−1,p�

0, α0
) p1∏
j=1

�
(
(0, r1);α1,j , a1,j

)
,

where the probability measure PT N p0(·;b,�−1
00 ,p�

0, α0) is defined by (4),
and �(·;α1,j , a1,j ) is the probability measure associated with distribution
�(α1,j , a1,j ).

Hence, the posterior density of S(θ − θ�) normalised by the posterior measure
of BR , is bounded on A0 ∩A1 by

1 − �π

1 + �π

μ̃(dv)

μ̄(BR)
≤ dp(S(θ − θ�)|Y)

p(BR|Y)
≤ μ̄(dv)

μ̃(BR)

1 + �π

1 − �π

.

Therefore, the first term in (13) is bounded on A0 ∩A1 by∥∥PS(θ−θ�)|Y 1BR
− μ�1BR

∥∥
TV

≤ 2
∫
BR

[
P(dv|Y)μ�(BR)

P(BR|Y)μ�(dv)
− 1

]
+

μ�(dv)

μ�(BR)

≤ 2
∫
BR

[
μ̄(dv)

μ̃(BR)

μ�(BR)

μ�(dv)

(1 + �π)

(1 − �π)
− 1

]
+

μ�(dv)

μ�(BR)
.
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Define μ0(dv) = μ(dv;a1, α,�00a0,�00). Then

μ�(dv)

μ�(BR)
= μ0(dv)

μ0(BR)

and

μ̄(dv)

μ0(dv)
= exp

{
δ∗11T v1 + δ∗0‖v0‖2/2

}
,

which implies

μ̄(dv)

μ0(dv)

μ0(BR)

μ̃(BR)

= exp
{
δ∗0‖v0‖2/2 + δ∗11T v1

}
×
(∫

BR

∏
i∈T �

0 ∪T1

v
αi−1
i exp

{−aT
1 v1

}
exp
{−∥∥�1/2

00 v0
∥∥2

/2 + vT
0 �00a0

}
dv

)
/(∫

BR

∏
i∈T �

0 ∪T1

v
αi−1
i exp

{−(a1 + δ∗11)T v1 − ∥∥�̃1/2
00 v0

∥∥2
/2

+ vT
0 �00a0

}
dv

)
.

To show that this expression is greater than 1, it is sufficient to show that for any
B ⊆ {v0 : (vT

0 , vT
1 )T ∈ BR}, the following expression is positive:∫

B

∏
i∈T �

0

w
αi−1
i ewT �00a0−‖�1/2

00 w‖2/2 dw −
∫
B

∏
i∈T �

0

w
αi−1
i ewT �00a0−‖�̃1/2

00 w‖2/2 dw

=
∫
B

∏
i∈T �

0

w
αi−1
i e−‖�̃1/2

00 w‖2/2+wT �00a0
[
exp
{
δ∗0‖w‖2/2

}− 1
]
dw > 0

which is the case. Thus, on A0 ∩ A1, (μ̄(dv)/μ0(dv))(μ0(BR)/μ̃(BR)) ≥ 1 and
hence ∥∥PS(θ−θ�)|Y 1BR

− μ�1BR

∥∥
TV

≤ 2
∫
BR

[
μ̄(dv)

μ̃(BR)

μ�(BR)

μ�(dv)

(1 + �π)

(1 − �π)
− 1

]
μ�(dv)

μ�(BR)

= 2
[
μ̄(BR)

μ̃(BR)

(1 + �π)

(1 − �π)
− 1

]

= 2
μ̄(BR) − μ̃(BR)

μ̃(BR)

(1 + �π)

(1 − �π)
+ 2

[
(1 + �π)

(1 − �π)
− 1

]
.
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The difference of measures μ̄(BR) − μ̃(BR) is bounded by∫
BR

∏
i∈T �

0 ∪T1

v
αi−1
i e−vT

0 �̃00v0/2+vT
0 �00a0−ãv1

[
e
δ∗0‖v0‖2/2+δ∗11T

p1
v1 − 1

]
dv

≤
∫
BR

∏
i∈T �

0 ∪T1

v
αi−1
i

[
δ∗0‖v0‖2/2 + δ∗11T

p1
v1
]
e−vT

0
��00v0/2+vT

0 �00a0−āv1 dv

≤
[
δ∗0E� + δ∗1

p1∑
j=1

(α1,j /āj )

]
μ̄
(
V�)

due to the inequality ex − 1 ≤ xex for x > 0, where E� is defined by

E� = 0.5
∫
V0

‖w‖2PT N p0

(
dw; ��−1

00 �00a0,��−1
00 ,p�

0, α0
)
,(15)

which is finite. Therefore,∥∥PS(θ−θ�)|Y 1BR
− μ�1BR

∥∥
TV

≤ 2μ̄(V�)

μ̃(BR)

(1 + �π)

(1 − �π)

[
δ∗0E� + δ∗1

p1∑
j=1

α1,j

āj

]
+ 4�π

1 − �π

,

which goes to zero since δ∗k → 0 and �π → 0 as σ → 0. For small σ and hence
large R0 and R1, the ratios μ̄(V�)/μ̃(V�) and

μ̃(BR)

μ̃(V�)
= PT N p0

(
B2(0,R0); �̃−1

00 �00a0, �̃
−1
00 ,p�

0, α0
) p1∏
j=1

�
(
(0,R1);α1,j , ãj

)
are close to 1. Therefore, ‖PS(θ−θ�)|Y 1BR

− μ�1BR
‖TV → 0 as σ → 0.

The second term in (13) is bounded by ‖μ� − μ�1BR
‖TV ≤ 2μ�(BR) → 0 as

R0,R1 → ∞, since the set BR converges to V� by Lemma 2.
The third term in (13) is bounded by∥∥P(S(θ−θ�)|Y )1BR

− PS(θ−θ�)|Y
∥∥

TV ≤ 2PS(θ−θ�)|Y (BR) ≤ 2�0(δ)

Cπ(1 − �π)μ̃(BR)
,

where �0(δ) is defined by (6). By Assumption L, with probability → 1,
�0(δ) → 0 as σ → 0; also, μ̃(BR) → μ0(V�) > 0.

Combining these bounds, we have that on A0 ∩A1,∥∥PS(θ−θ�)|Y − μ�
∥∥

TV

≤ 2μ�(BR) + 2
[
Cπ(1 − �π)μ̃(BR)

]−1
�0(δ)

+ 2
μ̄(V�)

μ̃(BR)

(1 + �π)

(1 − �π)

[
δ∗0E� + δ∗1

p1∑
j=1

(α1,j /āj )

]
+ 4�π

(1 − �π)
→ 0
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and Pθ�,σ (A0 ∩A1) → 1 as σ → 0 due to Assumption S, which gives the state-
ment of the theorem. �

PROOF OF PROPOSITION 1. In the proof of Theorem 1, we derived the fol-
lowing upper bound on event A:∥∥PS(θ−θ�)|Y − μ�

∥∥
TV ≤ 2μ�(BR) + C��0(δ) + 2C0δ∗0 + 2C1δ∗1 + C2�π,

where C� = 2[Cπ(1−�π)μ̃(BR)]−1, C2 = 4/(1−�π), C0 = CAE� with E� de-
fined by (15), C1 = CA

∑p1
j=1 α1,j /(a1,j −δ∗1) and with BR,0 = B2,p0(0,R0) ∩ V0,

CA = μ̄(V�)

μ̃(BR)

(1 + �π)

(1 − �π)
= μ̄p0(V0)

μ̃p0(BR,0)

p1∏
j=1

[
a1,j + δ∗1

a1,j − δ∗1

]α1,j (1 + �π)

(1 − �π)
,

where μp0(B0) = ∫
B0×[0,∞)p1 μ(dv) for a measure μ, B0 ⊂ V0. If S�

0 = ∅,

E� = ∥∥��−1
00 �00a0

∥∥2
/2 + trace

(��−1
00

)
/2,

μ̄p0(V0)

μ̃p0(BR,0)
= eδ∗0a

T
0 �00��−1

00 �̃−1
00 �00a0[det(��−1

00 �̃00)]1/2

T N (BR,0; �̃−1
00 �00a0, �̃

−1
00 )

.

We bound the term μ�(BR) by

μ�(BR) = 1 − μ�
p0

(BR,0)

p1∏
j=1

�

((
0,

δ1

σ 2

)
;α1,j , a1,j

)

≤ μ�
p0

(BR,0) + 1 −
p1∏

j=1

�

((
0,

δ1

σ 2

)
;α1,j , a1,j

)

using the inequality 1 − xy ≤ 1 − x + 1 − y for x, y ∈ (0,1). We can also use

1 −
p1∏

j=1

�

((
0,

δ1

σ 2

)
;α1,j , a1,j

)
≤ p1

[
1 − min

j
�
((

0, δ1/σ
2);α1,j , a1,j

)]
= p1 max

j
�
((

δ1/σ
2,∞);α1,j , a1,j

)
,

and, changing to polar coordinates and denoting pα0 = p0 +∑j∈T �
0
(α0,j − 1) and

W = {w ∈ R
p0 :‖w‖2

2 = 1,wj > 0 for j ∈ T �
0 }, we have

μ�
p0

(BR,0) ≤ μ0
(
V�) ∫ ∞

R0

rpα0−1e−λmin(�00)(r−‖a0‖)2/2 dr

∫
W

∏
j∈T �

0

w
α0,j−1
j dw

≤ Cα0�
(((

δ0/σ − ‖a0‖)2/2,∞);pα0/2, λmin(�00)
)
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under the assumption that R0 = δ0/σ > ‖a0(ω)‖ where

Cα0 = μ0
(
V�)2−p�

0+1.5pα0
[
λmin(�00)

]pα0/2
π(p0−p�

0)/2
∏
i∈T �

0

�(α0,i/2).

Collecting conditions on δk used in the proof of Theorem 1, we have condi-
tions (10). Thus, we have the required inequality on the event A. �

A.2. Auxiliary results.

PROOF OF LEMMA 2. Due to Assumption B and the fact that θ�
S�

0∪S1
= 0, the

set D−1U(��(δ) − θ�) contains

B2,p0

(
0,

δ0

σ

)
× B∞,p1

(
0,

δ1

σ 2

)
∩
(
−c0

σ
,
c0

σ

)p0−p�
0 ×

[
0,

c0

σ

)p�
0 ×

[
0,

c1

σ 2

)p1

= {
v :v ∈ B2,p0(0, δ0/σ) and vT �

0
≥ 0

}× [0, δ1/σ
2)p1,

where T �
0 = {p0 − p�

0 + 1, . . . , p0}. These sets monotonically increase to V� =
R

p0−p�
0 × R

p�
0+p1

+ as σ → 0 due to the assumption δ0/σ → ∞ and δ1/σ
2 → ∞;

this implies the statement of the lemma. �

PROOF OF LEMMA 3. Under the assumptions of the lemma, for small
enough σ , with δ̃0 = δ0/

√
p0, we have that

1

Cπ0(δ)

∫
�\��(δ)

e(�y(θ)−�y(θ�))/σ 2
π(dθ)

≤ ∑
j∈S0

∫ ∞
δ̃0

e−Cδ0vj /σ 2
dvj

+ ∑
j∈S0\S�

0

∫ θ�
j −δ̃0

0
θ

αj−1
j e

−Cδ0|θj−θ�
j |/σ 2

dθj

+ ∑
j∈S1

∫ ∞
δ1

e−Cδ1vj /σ 2
dvj

≤ ∑
j∈S0\S�

0

σαj e
−Cδ0(θ

�
j −σ)/σ 2 + p0σ

2

Cδ0
e−Cδδ0/[√p0σ

2] + p1σ
2

Cδ1
e−Cδ1δ1/σ

2

+ ∑
j∈S0\S�

0

[
σαj−1I (αj < 1) + θ�

j
αj−1

I (αj ≥ 1)
] σ 2

Cδ0
e−Cδ0δ̃0/σ

2

≤ C
[
σminj (αj ) + σ

]
e−Cδ0δ0/[√p0σ

2] + p1e
−Cδ1δ1/σ

2
σ 2/Cδ1
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for a constant C. This implies that, with Jσ = σ
−∑j∈S0

αj−2
∑

j∈S1
αj ,

�0(δ) ≤ Cπ0(δ)Jσ

[
C
[
σminj (αj ) + σ

]
e−Cδ0δ0/[√p0σ

2] + p1σ
2

Cδ1
e−Cδ1δ1/σ

2
]

→ 0

as σ → 0 under the assumptions of the lemma. �

REFERENCES

BARRON, A., SCHERVISH, M. J. and WASSERMAN, L. (1999). The consistency of posterior distri-
butions in nonparametric problems. Ann. Statist. 27 536–561. MR1714718

BERTSEKAS, D. P. (2003). Convex Analysis and Optimization. Athena Scientific and Tsinghua Univ.
Press, Belmont, MA.

BESAG, J. (1986). On the statistical analysis of dirty pictures. J. Roy. Statist. Soc. Ser. B 48 259–302.
MR0876840

BOCHKINA, N. (2013). Consistency of the posterior distribution in generalized linear inverse prob-
lems. Inverse Problems 29 095010, 43. MR3094485

CHERNOZHUKOV, V. and HONG, H. (2004). Likelihood estimation and inference in a class of non-
regular econometric models. Econometrica 72 1445–1480. MR2077489

DOUC, R., MOULINES, E., OLSSON, J. and VAN HANDEL, R. (2011). Consistency of the maximum
likelihood estimator for general hidden Markov models. Ann. Statist. 39 474–513. MR2797854

DUDLEY, R. M. and HAUGHTON, D. (2002). Asymptotic normality with small relative errors of
posterior probabilities of half-spaces. Ann. Statist. 30 1311–1344. MR1936321

ERKANLI, A. (1994). Laplace approximations for posterior expectations when the mode occurs at
the boundary of the parameter space. J. Amer. Statist. Assoc. 89 250–258. MR1266297

GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, gibbs distributions, and the Bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721–741.

GHOSAL, S., GHOSH, J. K. and SAMANTA, T. (1995). On convergence of posterior distributions.
Ann. Statist. 23 2145–2152. MR1389869

GHOSAL, S. and SAMANTA, T. (1995). Asymptotic behaviour of Bayes estimates and posterior
distributions in multiparameter nonregular cases. Math. Methods Statist. 4 361–388. MR1372011

GHOSH, J. K., GHOSAL, S. and SAMANTA, T. (1994). Stability and convergence of the posterior
in non-regular problems. In Statistical Decision Theory and Related Topics, V (West Lafayette,
IN, 1992) (S. S. Gupta and J. O. Berger, eds.) 183–199. Springer, New York. MR1286304

GREEN, P. J. (1990). Bayesian reconstructions from emission tomography data using a modified EM
algorithm. IEEE Trans. Med. Imag. 9 84–93.

HIRANO, K. and PORTER, J. R. (2003). Asymptotic efficiency in parametric structural models with
parameter-dependent support. Econometrica 71 1307–1338. MR2000249
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