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A CENTRAL LIMIT THEOREM FOR GENERAL ORTHOGONAL
ARRAY BASED SPACE-FILLING DESIGNS

BY XU HE AND PETER Z. G. QIAN1

Chinese Academy of Sciences and University of Wisconsin-Madison

Orthogonal array based space-filling designs (Owen [Statist. Sinica 2
(1992a) 439–452]; Tang [J. Amer. Statist. Assoc. 88 (1993) 1392–1397]) have
become popular in computer experiments, numerical integration, stochas-
tic optimization and uncertainty quantification. As improvements of ordi-
nary Latin hypercube designs, these designs achieve stratification in multi-
dimensions. If the underlying orthogonal array has strength t , such designs
achieve uniformity up to t dimensions. Existing central limit theorems are
limited to these designs with only two-dimensional stratification based on
strength two orthogonal arrays. We develop a new central limit theorem for
these designs that possess stratification in arbitrary multi-dimensions asso-
ciated with orthogonal arrays of general strength. This result is useful for
building confidence statements for such designs in various statistical applica-
tions.

1. Introduction. Latin hypercube designs achieve maximum uniformity in
univariate margins [McKay, Beckman and Conover (1979)]. Orthogonal arrays
based Latin hypercube designs [Tang (1993)], called U designs, improve upon
them by achieving uniformity in multivariate dimensions. Another type of or-
thogonal array based design is the randomized orthogonal array [Owen (1992a),
Patterson (1954)]. The two classes of designs are widely used in computer exper-
iments, numerical integration, stochastic optimization and uncertainty quantifica-
tion.

Consider a K-dimensional numerical integration problem

μ = E
{
f (x)

}=
∫
[0,1)K

f (x) dx.

After evaluating f at N runs, X1, . . . ,XN , μ is estimated by

μ̂ = N−1
N∑

i=1

f
(
X1

i , . . . ,X
K
i

)
,(1)

where Xk
i is the kth dimension of Xi . Tang (1993) gives a variance formula of

μ̂ for a U design, and Owen (1994) derives variance formulas for a randomized
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orthogonal array free of coincidence defect. Methods to numerically estimate this
variance are discussed in Owen (1992a, 1994).

When an orthogonal array based space-filling design is used in numerical inte-
gration, stochastic optimization [Birge and Louveaux (2011), Shapiro, Dentcheva
and Ruszczyński (2009), Tang and Qian (2010)], uncertainty quantification [Xiu
(2010)] and other applications, one is often interested in a central limit theorem
for deriving a confidence statement. Derivation of a central limit theorem for such
designs is a very challenging problem because of their complicated combinatorial
structure and sophisticated dependence across the rows after randomization. Loh
(1996, 2008) was first to address this problem and derived central limit theorems
for these designs associated with orthogonal arrays of index one and strength two,
which achieve uniformity up to two-dimensional projections. In Loh (2008), the
integrand is assumed to be Lipschitz continuous mixed partial of order K .

Different from the work of Loh (1996, 2008), we propose a new approach to
construct a new central limit theorem for orthogonal array based space-filling
designs. This approach works for these designs that achieve uniformity in arbi-
trary multi-dimensions associated with orthogonal arrays of general strength. As
in Owen (1994), we assume the underlying orthogonal array is free of coincidence
defect. Let λ and n denote the index and the number of levels for the orthogonal
array, respectively. As N tends to infinity, we assume λ is fixed or λ/n tends to
zero. Our method is inspired by the method of moments used in Owen (1992b) for
ordinary Latin hypercube designs but with new combinational techniques to deal
with the complexity of orthogonal arrays. Section 2 presents useful definitions
and notation. Sections 3 and 4 provide central limit theorems for orthogonal array
based space-filling designs. Section 5 gives numerical illustration of the derived
theoretical results. Section 6 concludes with some brief discussion.

2. Definitions and notation. An N by K matrix is said to be a Latin hyper-
cube if each of its columns consists of {0,1, . . . ,N − 1}. A uniform permutation
on a set of a numbers is randomly generated with all a! permutations equally prob-
able. An ordinary Latin hypercube design [McKay, Beckman and Conover (1979)]
is constructed by

Xk
i = πk(i)/N + ηk

i /N,

where the πk are uniform permutations on {0,1, . . . ,N − 1}, the ηk
i are generated

from uniform distributions on [0,1) and the πk and the ηk
i are generated indepen-

dently.
An N by K matrix is said to be an orthogonal array OA(N,K,n,h) if its entries

are from 0,1, . . . , n− 1 and for any p ≤ h columns of the matrix, the np combina-
tions of values appear exactly the same number of times in rows [Hedayat, Sloane
and Stufken (1999)]. For an OA(N,K,n,h), if additionally no two rows from any
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TABLE 1
An orthogonal array with 18 runs

0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2
0 0 1 2 1 2
1 1 2 0 2 0
2 2 0 1 0 1
0 1 0 2 2 1
1 2 1 0 0 2
2 0 2 1 1 0
0 2 2 0 1 1
1 0 0 1 2 2
2 1 1 2 0 0
0 1 2 1 0 2
1 2 0 2 1 0
2 0 1 0 2 1
0 2 1 1 2 0
1 0 2 2 0 1
2 1 0 0 1 2

N × (h+1) submatrices are the same, the orthogonal array is said to be free of co-
incidence defect [Owen (1994)]. For illustration, Table 1 gives an OA(18,6,3,2)

of index two and free of coincidence defect.
Let H denote an OA(N,K,n,h) with the (i, k)th element Hk

i . A randomized
orthogonal array [Owen (1992a)] based on H is constructed by

Xk
i = πk

(
Hk

γ −1(i)

)
/n + ηk

i /n,(2)

where the γ is a uniform permutation on {1, . . . ,N}, the πk are uniform permu-
tations on {0,1, . . . , n − 1}, the ηk

i are generated from the uniform distribution on
[0,1) and the γ , the πk and the ηk

i are generated independently.
Compared with (2), a U design [Tang (1993)] based on H is constructed with

one additional step,

Xk
i = πk

(
Hk

γ −1(i)

)
/n + αk

γ −1(i)
/N + ηk

i /N,(3)

where the γ is a uniform permutation on {1, . . . ,N}, the πk are uniform permuta-
tions on {0,1, . . . , n−1}, all the αk

i ’s related to entries in the kth column with level
x in H consist of a permutation of {0,1, . . . ,N/n − 1}, the ηk

i are generated from
uniform distributions on [0,1) and the γ , the πk , the αi

k,x and the ηk
i are generated

independently.
For illustration, let H be the orthogonal array in Table 1. We generate a random-

ized orthogonal array and a U design based on H . The bivariate projections to the
first two dimensions of the two designs are depicted in Figure 1. For both designs,
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FIG. 1. Bivariate projections to the first two dimensions of a randomized orthogonal array design
and a U design generated from the orthogonal array in Table 1. For both designs, each of the nine
squares by dashed lines contains exactly two points. Furthermore, for the U design, each of the 18
equally spaced intervals of [0,1) contains exactly one point.

each of the nine squares by dashed lines contains exactly two points. Furthermore,
for the U design, each of the 18 equally spaced intervals of [0,1) contains exactly
one point.

Next, we introduce the functional analysis of variance decomposition [Owen
(1994)]. Let F be the uniform measure on [0,1)K with dF =∏K

k=1 dF{k}, where
F{k} is the uniform measure on [0,1). Under the assumption f is a continuous
function in [0,1]K , f is bounded and has finite variance

∫
f (x)2 dF . Express f

as

f (x) = μ + ∑
φ⊂u⊆{1,...,K}

fu(x),

where μ = ∫
f (x) dF and fu is defined recursively via

fu(x) =
∫ {

f (x) − ∑
v⊂u

fv(x)

}
dF{1,...,K}\u.

If u ∩ v �= φ, ∫
v
fu dx = 0.(4)

Following Owen (1994), for the two classes of designs of strength h without
coincidence defect, the fu part with |u| ≤ h is balanced out from the design. The
remaining part r of f is defined via

f (x) = μ + ∑
0<|u|≤h

fu(x) + r.(5)
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The variance of μ̂ from (1) is

var(μ̂) = N−1
∫

r(X)2 dF(X) + o
(
N−1).

Let I (·) be the indicator function. For a real number x, let �x� be the largest
integer no greater than x, and the subdivision of x with length 1/z is

δz(x) = [�zx�/z, (�zx� + 1
)
/z
)
.(6)

Let |D| be the volume of region D. Let EIID, EROA and EUD be the expectation of
a function from samples generated identically and independently, from a random-
ized orthogonal array and from a U design, respectively.

3. A central limit theorem for randomized orthogonal arrays. We now
derive a central limit theorem for randomized orthogonal arrays. Assume f is a
continuous function from [0,1]K to R. Let H be an OA(N,K,n,h) free of coin-
cidence defect and λ = N/nh. Take X1, . . . ,XN in (1) to be the design points from
a randomized orthogonal array constructed in (2). For fixed K and h, we suppose
there is a sequence of H such that N and n tend to infinity with λ/n tending to
zero. Lemma 3.1 on the method of moments [Durrett (2010)] is used throughout.

LEMMA 3.1. Suppose that A1,A2, . . . are random variables, and their distri-
bution functions F1,F2, . . . have finite moments. Namely, for any p = 1,2, . . . and
n = 1,2, . . . ,

m(p)
n =

∫ +∞
−∞

xp dFn

is finite. Suppose that F is a distribution function with finite moments. Namely,

m(p) =
∫ +∞
−∞

xp dF

is finite. Also assume

lim sup
p→∞

{(
m(2p))1/2p

/(2p)
}
< ∞.

Finally, suppose for any p = 1,2, . . . ,

lim
n→∞m(p)

n = m(p).

Then An converges in distribution to F .

Because the density function of multiple points among X1, . . . ,XN is compli-
cated, we consider the conditional density g = g(d1, . . . , dK) of Xs given other
points X1, . . . ,Xs−1, s = 1, . . . ,N . Unfortunately, the conditional density is not
uniquely determined by the definition of orthogonal arrays and N,K,n,h and
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depends on the specific construction algorithm of H . A key to overcome this diffi-
culty is to express g in big O terms. Let Ms−1 denote an (s − 1) × K matrix with
the (i, k)th element being z if z < i, and z is the smallest number such that Xk

i

matches Xk
z , that is, �nXi,k� = �nXz,k�. If Xk

i does not match to any other point
Xk

z with z < i, the (i, k)th element of Ms−1 is defined to be zero and the first row
of Ms−1 is zero. According to this definition, Ms−1 contains full information on
pairwise coincidence among X1, . . . ,Xs−1.

LEMMA 3.2. For a randomized orthogonal array in (2), the conditional den-
sity of Xs given X1, . . . ,Xs−1 is

gs(d1, . . . , dK)
(7)

=
s−1∑

i1,...,iK=0

bs(i1, . . . , iK,Ms−1)I
(
d1 ∈ D1

i1
, . . . , dK ∈ DK

iK

)
,

where Dk
i = δn(X

k
i ) for i = 1, . . . , s − 1 and k = 1, . . . ,K , Dk

0 = [0,1) \
{⋃s−1

i=1 δn(X
k
i )} for k = 1, . . . ,K and bs(·) is a deterministic function on d1, . . . ,

dK,Ms−1 with

bs(i1, . . . , ik,Ms−1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + O
(
n−1), |w| < h,

O(1), |w| = h,

0, |w| > h,max
(|w1|, . . . , |ws−1|)> h,

O
(
n|w|/N

)
, otherwise,

where w(i1, . . . , iK) is the dimensions of nonzero elements in (i1, . . . , iK), w =
{k : ik �= 0}, wz(i1, . . . , iK) = {k : ik = z} and w =⋃

wz.

Lemma 3.2 shows that the conditional density is a constant except in the
subdivisions of X1, . . . ,Xs−1 and |w| indicates the number of dimensions that
Xs is inside the subdivisions of any length. For illustration, Figure 2 displays
subdivisions of δn(X

k
i ) for n = 5, h = 2, K = 2 and s = 3. In this example,

X1 = (0 · 332,0 · 542) and X2 = (0 · 722,0 · 734). The subdivisions of X1 and
X2 are δ5(X

1
1) = [0 · 2,0 · 4), δ5(X

2
1) = [0 · 4,0 · 6), δ5(X

1
2) = [0 · 6,0 · 8) and

δ5(X
2
2) = [0 · 6,0 · 8). The regions with |w| = 0, |w| = 1 and |w| = 2 are in white,

light gray and gray colors, respectively. The proof of Lemma 3.2 is given in the
Appendix.

Next, we state two lemmas for the conditional expectation of f (Xs) given points
X1, . . . ,Xs−1 from a randomized orthogonal array. These lemmas parallel the re-
sults for ordinary Latin hypercube designs in Owen (1992b) but use more compli-
cated arguments.

LEMMA 3.3. For any bounded function f and s > 1, as N → ∞,

EROA
{
f (Xs)|X1, . . . ,Xs−1

}= EIID
{
f (Xs)

}+ O
(
n−1).
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FIG. 2. The subdivisions of X1 and X2 with length 1/5 for an example with n = 5, h = 2, K = 2
and s = 3. The white, light gray and gray regions represent the cases with |w| = 0, |w| = 1 and
|w| = 2, respectively.

LEMMA 3.4. Let

R̄ = N−1
N∑

i=1

r(Xi).

Then for any positive integer p,

EROA
{(

N1/2R̄
)p}= EIID

{(
N1/2R̄

)p}+ o(1).

Lemma 3.3 is a direct consequence of Lemma 3.2. The proof of Lemma 3.4 is
given in the Appendix.

We are now ready for our main theorem for randomized orthogonal arrays.

THEOREM 3.5. Suppose that f is a continuous function from [0,1]K to R,
μ̂ in (1) is based on a randomized orthogonal array in (2) without coincidence
defect, λ is fixed or λ = o(n). Then, as N → ∞,

N1/2(μ̂ − μ) → N

(
0,

∫
r(x)2 dx

)
.

PROOF. The mean of N1/2(μ̂−μ) is 0 and the variance of N1/2(μ̂−μ) tends
to
∫

r(x)2 dx. From Lemma 3.4, for p = 1,2, . . . ,

EROA
{(

N1/2R̄
)p}= EIID

{(
N1/2R̄

)p}+ o(1).
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When the points are generated identically and independently, N1/2R̄ follows a
normal distribution with mean zero and variance σ 2 = ∫

r(x)2 dx. From Owen
(1980),

EIID
{(

N1/2R̄
)p}=

{
0, p = 1,3,5, . . . ,

σp(p − 1)!!, p = 2,4,6, . . . .

Note that

lim sup
p→∞

(
σp(p − 1)!!)1/p

/p = 0.

From Lemma 3.1, N1/2R̄ from randomized orthogonal array has the same limit-
ing distribution as N1/2R̄ where the points are generated identically and indepen-
dently, which yields a normal distribution. �

We can easily extend Theorem 3.5 to a multivariate function f = (f1, . . . , fP ).
Parallel to (5), define ri via

fi(x) = μi + ∑
0<|u|≤h

fi,u(x) + ri .

The following theorem gives a central limit theorem for a multivariate f .

COROLLARY 3.6. Suppose that f is a continuous function from [0,1]K to
RP , μ̂ in (1) is based on a randomized orthogonal array in (2) without coincidence
defect, λ is fixed or λ = o(n). Then, as N → ∞,

N1/2(μ̂ − μ) → N(0,
),

where 
 is a P × P matrix with the (i, j)th element 
i,j = ∫
ri(x)rj (x) dx.

The normality of multivariate f follows from the fact that any linear combina-
tions of (f1, . . . , fP ) has a limiting normal distribution.

4. A central limit theorem for U designs. Next, we derive a central limit
theorem for U designs. As before, we assume f is a continuous function from
[0,1]K to R. Let H be an OA(N,K,n,h) free of coincidence defect and λ =
N/nh. Take X1, . . . ,XN in (1) to be the design points from a U design constructed
in (3). For fixed K and h, we suppose there is a sequence of H such that N and n

tend to infinity with λ/n tending to zero. Analogous to Lemma 3.2, we first derive
the conditional density function of Xs given X1, . . . ,Xs−1.

LEMMA 4.1. For a U design in (3) from H , the conditional density of Xs

given X1, . . . ,Xs−1 is

gs(d1, . . . , dK) =
s−1∑

i1,...,iK=0

bs(i1, . . . , iK,Ms−1)I
(
d1 ∈ D1

i1
, . . . , dK ∈ DK

iK

)
,
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where Dk
i = δn(X

k
i )\ {⋃s−1

j=1 δN(Xk
j )} for i = 1, . . . , s −1 and k = 1, . . . ,K , Dk

i =
δN(Xk

i−(s−1)) for i = s, . . . ,2s −2 and k = 1, . . . ,K , Dk
0 = [0,1)\{⋃s−1

j=1 δn(X
k
j )}

for k = 1, . . . ,K and bs(·) is a deterministic function on d1, . . . , dK,Ms−1 with

bs(i1, . . . , ik,Ms−1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, there is a k such that ik > s − 1,

1 + O
(
n−1), i1, . . . , iK ≤ s − 1, |w| < h,

O(1), i1, . . . , iK ≤ s − 1, |w| = h,

0, |w| > h,max
(|w1|, . . . , |ws−1|)> h,

O
(
n|w|/N

)
, otherwise,

where w(i1, . . . , iK) is the dimensions of nonzero elements in (i1, . . . , iK), w =
{k : ik �= 0}, wz(i1, . . . , iK) = {k : ik = z} and w =⋃

wz.

The proof of Lemma 4.1 is given in the Appendix. Analogous to Lemmas 3.3
and 3.4, we state two lemmas for the conditional expectation of f (Xs) given points
X1, . . . ,Xs−1 from a U design.

LEMMA 4.2. For any bounded function f and s > 1, as N → ∞,

EUD
{
f (Xs)|X1, . . . ,Xs−1

}= EIID
{
f (Xs)

}+ O
(
n−1).

LEMMA 4.3. Let

R̄ = N−1
N∑

i=1

r(Xi).

Then for any positive integer p,

EUD
{(

N1/2R̄
)p}= EIID

{(
N1/2R̄

)p}+ o(1).

Lemma 4.2 is a direct consequence of Lemma 4.1. A sketch to prove Lemma 4.3
is given in the Appendix. A central limit theorem for U designs is given below.

THEOREM 4.4. Suppose that f is a continuous function from [0,1]K to R,
μ̂ in (1) is based on a U design in (3) without coincidence defect, λ is fixed or
λ = o(n). Then, as N → ∞,

N1/2(μ̂ − μ) → N

(
0,

∫
r(x)2 dx

)
.

PROOF. E{N1/2(μ̂−μ)} = 0 and var{N1/2(μ̂−μ)} tends to
∫

r(x)2 dx. From
Lemma 4.3 and Owen (1980), for p = 1,2, . . . ,

EUD
{(

N1/2R̄
)p}= EIID

{(
N1/2R̄

)p}+ o(1)

=
{

0 + o(1), p = 1,3,5, . . . ,

σp(p − 1)!! + o(1), p = 2,4,6, . . . ,
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where σ 2 = ∫
r(x)2 dx with

lim sup
p→∞

(
σp(p − 1)!!)1/p

/p = 0.

From Lemma 3.1, N1/2R̄ from U design has the same limiting distribution as
N1/2R̄ where the points are generated identically and independently, which yields
a normal distribution. �

Similarly, the result can be extended to a multivariate f .

COROLLARY 4.5. Suppose that f is a continuous function from [0,1]K to
RP , μ̂ in (1) is based on a U design in (3) without coincidence defect, λ is fixed
or λ = o(n). Then, as N → ∞,

N1/2(μ̂ − μ) → N(0,
),

where 
 is a P × P matrix with the (i, j)th element 
i,j = ∫
ri(x)rj (x) dx.

5. Numerical illustration. We provide two numerical examples to validate
the central limit theorems in Sections 3 and 4. In the first experiment, the orthogo-
nal array with 18 runs, three levels and strength two in Table 1 of Section 2 is used
to generate a randomized orthogonal array and a U design. Consider estimating
the mean output of a function [Cox, Park and Singer (2001)]

f = x1/
[
2
{√

1 + (
x2 + x2

3

)
x4/x

2
1 − 1

}]
+ x1 + 3x4,

where x1, . . . , x4 follow the uniform distribution on [0,1). The true value of μ is
approximately 2 · 160, computed from a large ordinary Latin hypercube design.
We compute μ̂ =∑18

i=1 f (Xi)/18 as in (1) for the two designs. This procedure is
repeated for 100,000 times. The density plots of μ̂ for the two designs are shown
in Figure 3, where both distributions are close to a normal distribution.

In the second experiment, an orthogonal array with 25 runs, five levels and
strength two is used for generating a randomized orthogonal array and a U design.
We estimate the mean output μ of the Branin function [Branin (1972)]

f =
(
x2 − 5.1

4π2 x2
1 + 5

π
x1 − 6

)
+ 10

(
1 − 1

8π

)
cos(x1) + 10

on the domain [−5,10] × [0,15]. The true value of μ is approximately 54 · 31,
computed from a large grid design. We compute μ̂ =∑25

i=1 f (Xi)/25 for the two
designs. This procedure is repeated for 100,000 times. The density plots of μ̂ from
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FIG. 3. Density plots of μ̂ based on a randomized orthogonal array (left) and a U design (right)
from the orthogonal array given in Table 1, both of which are close to a normal distribution.

the two designs are shown in Figure 4, both of which are close to a normal distri-
bution.

6. Conclusions. A new central limit theorem has been derived for or-
thogonal array based space-filling designs. One might be interested in ex-
tending our technique to derive a central limit theorem for scrambled nets
[Owen (1997)]. Another possible direction for future research is to use this
new result to study validation of sample average approximation solutions for
a stochastic program [Shapiro, Dentcheva and Ruszczyński (2009)]. Finally,
it is an important problem to estimate the variance

∫
r(x)2 dx from a U de-

sign.

FIG. 4. Density plots of μ̂ based on a randomized orthogonal array (left) and a U design (right)
from an orthogonal array with 25 runs, both of which are close to a normal distribution.
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APPENDIX

A.1. Proof of Lemma 3.2. We first work on the gs(d1, . . . , dK) on the cells
D = (D1, . . . ,DK), where Dk ∈ {[0,1/n), [1/n,2/n), . . . , [(n−1)/n,1)} for k =
1, . . . ,K . Consider the matrix H̃ obtained by dropping rows γ −1(1), . . . , γ −1(s −
1) of H . gs(d1, . . . , dK) is nonzero if (�nd1�, . . . , �ndK�) can be obtained from
a row of H̃ by some operators πk , which means �nd1� = π1(H

1
r ), . . . , �ndK� =

πK(HK
r ) for a row Hr = (H 1

r , . . . ,HK
r ) in H̃ . Let x be the number of rows in H̃

from which (�nd1�, . . . , �ndK�) can be obtained. The value of gs(d1, . . . , dK) is
closely related to x because Xs has the same probability 1/(N − (s − 1)) being
permuted from each row of H̃ .

Because level permutations do not affect the result on whether two rows of H

take same value in a particular column, x is closely related to Ms and w. Below
we compute x by types of w.

For the type of |w| = 0, since there are at most (s − 1)(N/n − 1) rows taking
value in

⋃s−1
i=1{Hk

γ −1(i)
} in the kth column for k = 1, . . . ,K , N − (s − 1) − K(s −

1)(N/n−1) ≤ x ≤ N −(s −1) and x = N(1−O(n−1)). Since the volume of cells
for w = φ is 1 − O(n−1) and gs(d) is the same in such cells, gs(d1, . . . , dK) =
1 + O(n−1).

For the type of |w| = 1, without loss of generality, assume w = {1} and
w1 = {1}. There are at least N/n − (s − 1) rows and at most N/n − 1 rows
taking value {H 1

γ −1(1)
} in the first column. Out of those rows, there are at most

(s − 1)(N/n2 − 1) rows taking value in
⋃s−1

i=1{Hk
γ −1(i)

} in the kth column for

k = 2, . . . ,K . Therefore, x = N/n(1 − O(n−1)). Since the volume of cells for
w = {1} is n−1(1 −O(n−1)) and gs(d) is the same in such cells, gs(d1, . . . , dK) =
1 + O(n−1). Similarly, we obtain gs(d1, . . . , dK) = 1 + O(n−1) for any w with
|w| < h.

For the type of |w| = h, there are at most N/nh rows in H̃ that match Xs in w.
Since the volume of cells is n−h(1 + O(n−1)), gs(d1, . . . , dK) = O(1).

For the type of |w| > h, because H is free of coincidence defect, there is
zero or one row in H̃ that matches Xs in w. Since the volume of cells is
n−|w|(1 +O(n−1)), gs(d1, . . . , dK) = O(n|w|/N). A special case is when |w| > h

and |wz| > h for a z with 1 ≤ z ≤ s − 1. In this case, no row in H̃ can match Xs

and gs(d1, . . . , dK) = 0.
Thus

gs(d1, . . . , dK) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + O
(
n−1), |w| < h,

O(1), |w| = h,

0, |w| > h,max
(|w1|, . . . , |ws−1|)> h,

O
(
n|w|/N

)
, otherwise.
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Furthermore, the value of gs(d1, . . . , dK) is the same in any regions defined by
D1

i1
× · · · × DK

iK
in which ik = 0,1, . . . , s − 1 for k = 1, . . . ,K . Thus, write

gs(d1, . . . , dK) =
s−1∑

i1,...,iK=0

bs(i1, . . . , iK,Ms−1)I
(
d1 ∈ D1

i1
, . . . , dK ∈ DK

iK

)
,

where

bs(i1, . . . , iK,Ms−1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + O
(
n−1), |w| < h,

O(1), |w| = h,

0, |w| > h,max
(|w1|, . . . , |ws−1|)> h,

O
(
n|w|/N

)
, otherwise,

and bs(·) is a deterministic function on d1, . . . , dK and Ms−1.

A.2. Proof of Lemma 3.4. The idea to prove Lemma 3.4 is as follows. Note
that

EROA
{(

N1/2R̄
)p}= N−p/2

∑
a1+···+aN=p,a1,...,aN≥0

EROA

(
N∏

i=1

r
ai

i

)
.(8)

Let t be the number of ai ’s being one and s be the number of nonzero ai ’s; there
are at most O(Ns) terms in (8). Thus it suffices to show that for any s ≤ p,

EROA

(
s∏

i=1

r
ai

i

)
− EIID

(
s∏

i=1

r
ai

i

)
= o

(
Np/2−s).

If t = 0, then s ≤ p/2. From Lemma 3.3,

EROA

(
s∏

i=1

r
ai

i

)
− EIID

(
s∏

i=1

r
ai

i

)
= O

(
n−1)= o

(
Np/2−s).

If t > 0, EIID(
∏s

i=1 r
ai

i ) = 0. Thus it suffices to show that for any 1 ≤ t ≤ s ≤ p,
t + at+1 + · · · + as = p,at+1, . . . , as > 1,

EROA

(
t∏

i=1

ri

s∏
i=t+1

r
ai

i

)
= o

(
Np/2−s).

Because t +2(s− t) ≤ p, −t/2 ≤ p/2−s. Since ri =∑
|u|>h fu(xi), and we can

rearrange the order of
∏t

i=1 ri by sorting |ui |, it suffices to show for any 1 ≤ t ≤ s,
|u1| ≥ |u2| ≥ · · · ≥ |ut | > h and continuous functions f, qt+1, . . . , qs ,

EROA

{
t∏

i=1

fui
(xi)

s∏
i=t+1

qi(xi)

}
= o

(
N−t/2).
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From Lemma 3.3, if s > t ,

EROA

{
t∏

i=1

fui
(xi)

s∏
i=t+1

qi(xi)

}

= EROA

{
t∏

i=1

fui
(xi)

s−1∏
i=t+1

qi(xi)EROA
(
qs(xs)|x1, . . . , xs−1

)}

= EROA

[
t∏

i=1

fui
(xi)

s−1∏
i=t+1

qi(xi)
{
EIID

(
qs(xs)

)+ O
(
n−1)}]

= EROA

{
t∏

i=1

fui
(xi)

s−1∏
i=t+1

qi(xi)

}
EIID

(
qs(xs)

)+ O
(
n−1).

Inducting on s, it is not hard to conclude that it is suffice to show

EROA

{
t∏

i=1

fui
(xi)

}
= o

(
N−t/2).(9)

To show (9), first express

EROA

{
t∏

i=1

fui
(xi)

}
= EROA

[
t−1∏
i=1

fui
(xi)EROA

{
fut (Xt )|X1, . . . ,Xt−1

}]
.

From Lemma 3.2,

EROA

{
t∏

i=1

fui
(xi)

}

(10)

= ∑
i1,...,iK

EROA

{
t−1∏
i=1

fui
(Xi)bt (i1, . . . , iK,Mt−1)

(∫
Dt

fut (y) dy

)}
,

where Dt = D1
i1

× · · · × DK
iK

and Dk
i = δn(X

k
i ). From (4),∫

D̃1×···×D̃K
fu(y) dy = 0

if there is at least one k such that D̃k = [0,1) and k ∈ u. Therefore,

∫
D1

0×D̃2×···×D̃K
fut (y) dy = −

t−1∑
j=1

∫
δn(X1

j )×D̃2×···×D̃K
fut (y) dy.

Consequently,
∫
Dt

fut (y) dy has order O(n−|w∪ut |) where w(d1, . . . , dK) =
{k :dk > 0}, and (10) has order O(N−1).
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We can further reduce the order of (10) if t > 1. For any term in the sum of (10),

EROA

{
t−1∏
i=1

fui
(Xi)bt (i1, . . . , iK,Mt−1)

(∫
Dt

fut (y) dy

)}

= ∑
j1,...,jK

EROA

[
t−2∏
i=1

fui
(Xi)bt−1(j1, . . . , jK,Mt−2)

(11)

×
{∫

Dt−1

bt (i1, . . . , iK,Mt−1)

×
(∫

Dt

fut (yt ) dyt

)
fut−1(yt−1) dyt−1

}]
,

where Dt−1 = D1
j1

× · · · × DK
jK

and Dk
j = δn(X

k
i ). In any region Dt−1, bt (·)

becomes a deterministic function on i1, . . . , iK,Mt−2 with the same order as in
Lemma 3.2. Let b′

t (·) denote this function. Then

EROA

{
t−1∏
i=1

fui
(Xi)bt (i1, . . . , iK,Mt−1)

(∫
Dt

fut (y) dy

)}

= ∑
j1,...,jK

EROA

[
t−2∏
i=1

fui
(Xi)bt−1(j1, . . . , jK,Mt−2)b

′
t (i1, . . . , iK,Mt−2)

×
{∫

Dt−1

(∫
Dt

fut (yt ) dyt

)
fut−1(yt−1) dyt−1

}]
.

So far we have showed the first two steps to reduce the order of magnitudes for
EROA{∏t

i=1 fui
(xi)}. In (10), we took fut (Xt) out of the product and reached the

O(N−1) order. We keep taking out the fui
(Xi) terms as in (11) and work on a

more general formula as follows:(
L∏

l=1

|Dl|
)−1

EROA

[
t∏

i=1

fui
(Xi)ρ(Mt)

(12)

×
{∫

∏L
l=1 Dl

(
L∏

l=1

fvl
(yl)

)
dy1 · · · dyL

}]
,

where ρ(Mt) is a deterministic function on Mt which has order O(1) for any Mt .
Suppose G is an arbitrary term by (12) with the following parameters: 0 ≤ t ≤ p,
|u1| ≥ |u2| ≥ · · · ≥ |ut | > h, L is a nonnegative integer, vl ⊆ {1, . . . ,K}, |vl| > h,
Dl = D1

l × · · · × DK
l and Dk

l is either [0,1) or δn(X
k
i ) with 1 ≤ i ≤ t , or δn(y

k
i )

with l < i ≤ L. Suppose that C is an t × K zero–one matrix with the (i, k)th
element being one if and only if k ∈ ui and for any 1 ≤ l ≤ L, Dk

l �= δn(X
k
i ). Let ci
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be the number of ones in the ith row of C, and let θ =∑t
i=1 ci/|ui |. The following

two lemmas give the orders of G by the number of ones in C.

LEMMA A.1. The quantity G has order O(N−θ/2).

PROOF. We show this by induction on t . If t = 0, then θ = 0, and the result
clearly holds. Next, assume the result holds for t = 0, . . . , z − 1 with z ≥ 1. It
suffices to show the result holds for t = z. Express

G =
(

L∏
l=1

|Dl|
)−1

EROA

[
t∏

i=1

fui
(Xi)ρ(Mt)

{∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

}]

=
(

L∏
l=1

|Dl|
)−1

× EROA

[
t−1∏
i=1

fui
(Xi)

× EROA

{
ρ(Mt)fut (Xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)∣∣∣

{X1, . . . ,Xt−1}
}]

.

From Lemma 3.2 and similar to (10) and (11),

EROA

{
ρ(Mt)fut (Xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)∣∣∣{X1, . . . ,Xt−1}
}

=
∫

g(xt )ρ(Mt)fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

= ∑
i1,...,iK

bt (i1, . . . , iK,Mt−1)

×
∫
DL+1

ρ(Mt)fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt ,

where g(xt ) is the conditional density of Xt , DL+1 = D1
L+1 ×· · ·×DK

L+1, Dk
L+1 =

δn(X
k
ik
) if ik > 0 and Dk

L+1 = [0,1) \⋃t−1
i=1 δn(X

k
i ) if ik = 0.
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In any DL+1, ρ(Mt) is a deterministic function on Mt−1. Let ρi1,...,iK (Mt−1)

denote this function. Then for any Mt−1, ρi1,...,iK (Mt−1) = O(1). Thus

G = ∑
i1,...,iK

(
L∏

l=1

|Dl|
)−1

× EROA

[
t−1∏
i=1

fui
(Xi)bt (i1, . . . , iK,Mt−1)ρi1,...,iK (Mt−1)(13)

×
∫
DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

]
.

If i1 = 0, D1
L+1 = [0,1) \⋃t−1

i=1 δn(X
1
i ). If additionally k /∈ ut ,∫

DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

= ρ0(Mt−1)

×
∫
[0,1)×D2

L+1×···×DK
L+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt ,

where ρ0(Mt−1) = O(1). If k ∈ ut ,∫
DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

=
∫
[0,1)×D2

L+1×···×DK
L+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

−
t−1∑
j=1

{
ρj (Mt−1)

×
∫
D1

j ×D2
L+1×···×DK

L+1

fut (xt )

×
(∫

∏L
l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

}
,

where ρj (Mt−1) = O(1) for j = 1, . . . , t − 1. Let

b̃t (i1, . . . , ik) =
{

1, |w| ≤ h,

n|w|/N, |w| > h.

Then b̃t is not related to Mt−1 and b̃t (0, i2, . . . , iK) ≤ b̃t (j, i2, . . . , iK) for any
j > 0.
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From the arguments above, it suffices to show

J (i1, . . . , iK)

= b̃t (i1, . . . , iK)

(
L∏

l=1

|Dl|
)−1

(14)

× EROA

{
t−1∏
i=1

fui
(Xi)ρ(Mt−1)

×
∫
DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

}

has order O(N−θ/2) for any i1, . . . , iK = 0,1, . . . , t − 1, ρ(Mt−1) = O(1),
DL+1 = D1

L+1 × · · · × DK
L+1, Dk

L+1 = δn(X
k
ik
) if ik > 0, k = 1, . . . ,K , D1

L+1 =
[0,1) if i1 = 0 and Dk

L+1 = [0,1) \⋃t−1
j=1 δn(X

k
j ) if ik = 0, k = 2, . . . ,K .

From similar arguments, it suffices to show (14) has order O(N−θ/2) for
any i1, . . . , iK = 0,1, . . . , t − 1, ρ(Mt−1) = O(1), DL+1 = D1

L+1 × · · · × DK
L+1,

Dk
L+1 = δn(X

k
ik
) if ik > 0 and Dk

L+1 = [0,1) if ik = 0, k = 1, . . . ,K .
If ik �= 0 and k /∈ ut , then any term that can be written as J (i1, . . . , iK) has

smaller or the same order than a term that can be written as J (i1, . . . , ik−1,0, ik+1,

. . . , iK). If ik = 0 and the (t, k)th element of C is one, from (4), J = 0. Thus it
suffices to consider J (i1, . . . , iK) with ik = 0, . . . , t − 1 for k ∈ ut and the (t, k)th
element of C being zero, ik = 1, . . . , t − 1 for k ∈ ut and the (t, k)th element of C

being one and ik = 0 for k /∈ ut . Clearly, w ⊆ ut and ct ≤ |w| ≤ |ut |.
Let

G′
i1,...,iK

=
(

L+1∏
l=1

|Dl|
)−1

EROA

[
t−1∏
i=1

fui
(Xi)ρ(Mt−1)

×
{∫

(
∏L

l=1 D′
l )×DL+1

L+1∏
l=1

fvl
(yl) dy1 · · · dyL+1

}]
,

where vL+1 = ut and

Dk′
l =

{
δn

(
yk
L+1

)
, if Dk

l = δn

(
Xk

t

)
,

Dk
l , otherwise.

Then J in (14) can be expressed as

J (i1, . . . , iK) = b̃t (i1, . . . , iK)n−|w|G′
i1,...,iK

.

For any (i1, . . . , iK), G′
i1,...,iK

is a term by (12). Furthermore, the matrix associated
with G′

i1,...,iK
, denoted as C′

i1,...,iK
, is a (t − 1) × K matrix with equal or fewer

elements of ones than the first t − 1 rows of C. If ik = z > 0, the (z, k)th element
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of C′
i1,...,iK

is zero. Other elements of C′(DL+1) are the same with that of C. Let

c′
i be the number of ones in the ith row of C′

i1,...,iK
, and let θ ′ =∑t−1

i=1 c′
i/|ui |, and

we have

θ ′ ≥ θ − ct/|ut | − |w|/|ut |.
By induction,

G′
i1,...,iK

= O
(
N−(θ−ct /|ut |−|w|/|ut |)/2)= O

(
N−θ/2+1)(15)

and

G′
i1,...,iK

= O
(
N−(θ−ct /|ut |−|w|/|ut |)/2)= O

(
N−θ/2n|w|).(16)

Consequently, J in (14) has order O(N−θ/2). This completes the proof. �

The result of Lemma A.1 is improved by Lemma A.2.

LEMMA A.2. If ct > 0, G has order o(N−θ/2).

PROOF. It suffices to show J in (14) has order o(N−θ/2). Since ct > 0,
(16) becomes

G′
i1,...,iK

= O
(
N−θ/2+|w|/(h+1))= o

(
N−θ/2n|w|).

Therefore, for |w| ≤ h, J = o(N−θ/2). When |w| > h and ct < |ut |, (15) becomes

G′
i1,...,iK

= O
(
N−(θ−ct /|ut |−|w|/|ut |)/2)= o

(
N−θ/2+1),(17)

and J = o(N−θ/2). When |w| > h and there is a j such that |wj | > h,
bt (i1, . . . , iK) in (13) is zero and J = 0.

It remains to show G′
i1,...,iK

= o(N−θ/2+1) for ct = |w| = |ut | and max(|wi |) ≤
h. Let {(j1, k1), . . . , (jz, kz)} denote the elements of C′

d1,...,dK
that are different

from those of the first t − 1 rows of C. When |ujx | > |ut | for an x with 1 ≤ x ≤ z,
(15) becomes

G′
d1,...,dK

= O
(
N−{θ−1/|ujx |−(ct+|w|−1)/|ut |}/2)= o

(
N−θ/2+1).

When z < |w|, (15) becomes

G′
i1,...,iK

= O
(
N−(θ−z/|ut |−|w|/|ut |)/2)= o

(
N−θ/2+1).

Finally, when z = |w| and |uj1 | = · · · = |ujz | = |ut |, since maxj {|wj |} ≤ h,
{j1, . . . , jz} are not all equal to each other. Consequently, there is at least one x

such that 0 < c′
jx

< |ujx | = |ut |. From (17), G′
d1,...,dK

= o(N−θ/2+1). Combining

all cases, J = o(N−θ/2). This completes the proof. �

We now give the proof of Lemma 3.4.
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PROOF. We have argued in (9) that it suffices to show for any 1 ≤ t ≤ p,
|u1| ≥ |u2| ≥ · · · ≥ |ut | > h and continuous functions f ,

EROA

{
t∏

i=1

fui
(xi)

}
= o

(
N−t/2).

EROA{∏t
i=1 fui

(xi)} is a term by (12) with θ = t and ct = |ut | > 0. From
Lemma A.2, EROA{∏t

i=1 fui
(xi)} = o(N−t/2). This completes the proof. �

A.3. Proof of Lemma 4.1. Similar to the argument in the proof of Lemma 3.2,
we have that

gs(d1, . . . , dK)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + O
(
n−1), |w| < h,

O(1), |w| = h,

0, |w| > h,max
(|w1|, . . . , |ws−1|)> h,

O
(
n|w|/N

)
, otherwise.

However, a special case is when there is a k such that ik > s − 1. From (3), two
rows cannot be in the same subdivision with length 1/N . Thus gs = 0 in this case.

Next, the density is uniform in each of the D1
i1

× · · · × DK
iK

regions, where
i1, . . . , iK = 0, . . . ,2s − 2. Thus we can write

gs(d1, . . . , dK) =
2s−2∑

i1,...,iK=0

bs(i1, . . . , iK,Ms−1)I
(
d1 ∈ D1

i1
, . . . , dK ∈ DK

iK

)
,

where

bs(i1, . . . , iK,Ms−1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, there is a k such that ik > s − 1,

1 + O
(
n−1), i1, . . . , iK ≤ s − 1, |w| < h,

O(1), i1, . . . , iK ≤ s − 1, |w| = h,

0, |w| > h,max
(|w1|, . . . , |ws−1|)> h,

O
(
n|w|/N

)
, otherwise,

and bs(·) is a deterministic function on d1, . . . , dK and Ms−1.

A.4. A sketch to prove Lemma 4.3. Suppose G is an arbitrary term given by
(

L∏
l=1

|Dl|
)−1

(18)

× EUD

[
t∏

i=1

fui
(Xi)ρ(Mt)

{∫
∏L

l=1 Dl

(
L∏

l=1

fvl
(yl)

)
dy1 · · · dyL

}]
,



A CLT FOR OA BASED SPACE-FILLING DESIGNS 1745

with the following parameters: ρ(Mt) is a deterministic function on Mt which has
order O(1) for any Mt , 0 ≤ t ≤ p, |u1| ≥ |u2| ≥ · · · ≥ |ut | > h, L is a nonnegative
integer, vl ⊆ {1, . . . ,K}, |vl| > h, Dl = D1

l × · · · × DK
l and Dk

l is either [0,1)

or δn(X
k
i ) with 1 ≤ i ≤ t , or δn(y

k
i ) with l < i ≤ L, or δN(Xk

i ) with 1 ≤ i ≤ t ,
or δN(yk

i ) with l < i ≤ L. Suppose that C is an t × K zero–one matrix with the
(i, k)th element being one if and only if k ∈ ui and for any 1 ≤ l ≤ L, Dk

l is
neither δn(X

k
i ) nor δN(Xk

i ). Let ci be the number of ones in the ith row of C, and
let θ =∑t

i=1 ci/|ui |. The following two lemmas give the order of G.

LEMMA A.3. The quantity G has order O(N−θ/2).

PROOF. We show this by induction on t . If t = 0, then θ = 0, and the result
clearly holds. Next, assume the result holds for t = 0, . . . , z − 1 with z ≥ 1. It
suffices to show the result holds for t = z. Express

G =
(

L∏
l=1

|Dl|
)−1

EUD

[
t∏

i=1

fui
(Xi)ρ(Mt)

{∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

}]

=
(

L∏
l=1

|Dl|
)−1

× EUD

[
t−1∏
i=1

fui
(Xi)EUD

{
ρ(Mt)fut (Xt )

×
(∫

∏L
l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)∣∣∣

{X1, . . . ,Xt−1}
}]

.

From Lemma 4.1,

EUD

{
ρ(Mt)fut (Xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)∣∣∣{X1, . . . ,Xt−1}
}

=
∫

g(xt )ρ(Mt)fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

= ∑
i1,...,iK

bt (i1, . . . , iK,Mt−1)

∫
DL+1

ρ(Mt)fut (xt )

×
(∫

∏L
l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt ,
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where g(xt ) is the conditional density of Xt , DL+1 = D1
L+1 ×· · ·×DK

L+1, Dk
L+1 =

δn(X
k
ik
) \⋃t−1

j=1 δN(Xk
j ) if 0 < ik ≤ t − 1, Dk

L+1 = δN(Xk
ik−(t−1)) if ik > t − 1 and

Dk
L+1 = [0,1) \⋃t−1

j=1 δn(X
k
j ) if ik = 0.

In any DL+1, ρ(Mt) is a deterministic function on Mt−1. Let ρi1,...,iK (Mt−1)

denote this function. Then for any Mt−1, ρi1,...,iK (Mt−1) = O(1). Thus

G = ∑
i1,...,iK

(
L∏

l=1

|Dl|
)−1

× EUD

{
t−1∏
i=1

fui
(Xi)bt (i1, . . . , iK,Mt−1)ρi1,...,iK (Mt−1)

×
∫
DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

}
.

If 0 < i1 ≤ t − 1, D1
L+1 = δn(X

1
i1
) \⋃t−1

j=1 δN(X1
j ). If additionally k /∈ ut ,

∫
DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

= ρ′
0(Mt−1)

×
∫
δn(X1

i1
)×D2

L+1×···×DK
L+1

fut (xt )

×
(∫

∏L
l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt ,

where ρ′
0(Mt−1) = O(1). If k ∈ ut ,

∫
DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

=
∫
δn(X1

i1
)×D2

L+1×···×DK
L+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

−
t−1∑
j=1

{∫
δN (X1

j )×D2
L+1×···×DK

L+1

fut (xt )

×
(∫

∏L
l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

}
.
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If i1 = 0, D1
L+1 = [0,1) \⋃t−1

i=1 δn(X
1
i ). If additionally k /∈ ut ,∫

DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

= ρ′
0(Mt−1)

×
∫
[0,1)×D2

L+1×···×DK
L+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt ,

where ρ′
0(Mt−1) = O(1). If k ∈ ut ,∫

DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

=
∫
[0,1)×D2

L+1×···×DK
L+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

−
t−1∑
j=1

{
ρ′

j (Mt−1)

×
∫
δn(X1

j )×D2
L+1×···×DK

L+1

fut (xt )

×
(∫

∏L
l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

}
,

where ρ′
j (Mt−1) = O(1) for j = 1, . . . , t − 1. Let

b̃t (i1, . . . , ik) =
{

1, |w| ≤ h,

n|w|/N, |w| > h.

Then b̃t is not related to Mt−1 and b̃t (0, i2, . . . , iK) ≤ b̃t (j, i2, . . . , iK) for any
j > 0.

From arguments above, it suffices to show

J (i1, . . . , iK)

= b̃t (i1, . . . , iK)

(
L∏

l=1

|Dl|
)−1

(19)

× EUD

{
t−1∏
i=1

fui
(Xi)ρ(Mt−1)

×
∫
DL+1

fut (xt )

(∫
∏L

l=1 Dl

L∏
l=1

fvl
(yl) dy1 · · · dyL

)
dxt

}
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has order O(N−θ/2) for any i1, . . . , iK = 0,1, . . . , t − 1, ρ(Mt−1) = O(1),
DL+1 = D1

L+1 ×· · ·×DK
L+1, D1

L+1 = δn(X
1
i1
) if 0 < i1 ≤ t −1, Dk

L+1 = δn(X
k
ik
)\⋃t−1

j=1 δN(Xk
j ) if 0 < ik ≤ t −1, k = 2, . . . ,K , Dk

L+1 = δN(Xk
ik−(t−1)) if ik > t −1,

k = 1, . . . ,K , D1
L+1 = [0,1) if i1 = 0 and Dk

L+1 = [0,1) \⋃t−1
j=1 δn(X

k
j ) if ik = 0,

k = 2, . . . ,K .
From similar arguments, it suffices to show (19) has order O(N−θ/2) for any

i1, . . . , iK = 0,1, . . . , t − 1, ρ(Mt−1) = O(1), DL+1 = D1
L+1 × · · · × DK

L+1,
Dk

L+1 = δn(X
k
ik
) if 0 < ik ≤ t − 1, Dk

L+1 = δN(Xk
ik−(t−1)) if ik > t − 1 and

Dk
L+1 = [0,1) if ik = 0, k = 1, . . . ,K .
If ik �= 0 and k /∈ ut , then any term that can be written as J (i1, . . . , iK) has

smaller or the same order than a term that can be written as J (i1, . . . , ik−1,0, ik+1,

. . . , iK). If ik = 0 and the (t, k)th element of C is one, from (4), J = 0. Thus it
suffices to consider J (i1, . . . , iK) with ik = 0, . . . ,2t −2 for k ∈ ut and the (t, k)th
element of C being zero, ik = 1, . . . ,2t − 2 for k ∈ ut and the (t, k)th element of
C being one and ik = 0 for k /∈ ut . Clearly, w ⊆ ut and ct ≤ |w| ≤ |ut |.

Let

G′
i1,...,iK

=
(

L+1∏
l=1

|Dl|
)−1

EUD

[
t−1∏
i=1

fui
(Xi)ρ(Mt−1)

×
{∫

(
∏L

l=1 D′
l )×DL+1

L+1∏
l=1

fvl
(yl) dy1 · · · dyL+1

}]
,

where vL+1 = ut and

Dk′
l =

⎧⎪⎨
⎪⎩

δn

(
yk
L+1

)
, if Dk

l = δn

(
Xk

t

)
,

δN

(
yk
L+1

)
, if Dk

l = δN

(
Xk

t

)
,

Dk
l , otherwise.

Then J in (19) can be expressed as

J (i1, . . . , iK) = b̃t (i1, . . . , iK)n−|w|G′
i1,...,iK

.

For any (i1, . . . , iK), G′
i1,...,iK

is a term by (18). Furthermore, the matrix associated
with G′

i1,...,iK
, denoted as C′

i1,...,iK
, is a (t − 1) × K matrix with equal or fewer

elements of ones than the first t − 1 rows of C. If 0 < ik = z ≤ t − 1, the (z, k)th
element of C′

i1,...,iK
is zero. If ik = z > t − 1, the (z − (t − 1), k)th element of

C ′
i1,...,iK

is zero. Other elements of C′(DL+1) are the same with that of C. Let c′
i

be the number of ones in the ith row of C′
i1,...,iK

, and let θ ′ =∑t−1
i=1 c′

i/|ui |, so we
have

θ ′ ≥ θ − ct/|ut | − |w|/|ut |.
By induction,

G′
i1,...,iK

= O
(
N−(θ−ct /|ut |−|w|/|ut |)/2)= O

(
N−θ/2+1)(20)
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and

G′
i1,...,iK

= O
(
N−(θ−ct /|ut |−|w|/|ut |)/2)= O

(
N−θ/2n|w|).(21)

Consequently, J in (19) has order O(N−θ/2). This completes the proof. �

LEMMA A.4. If ct > 0, G has order o(N−θ/2).

The proofs for Lemma A.4 and 4.3 are similar to the proofs for Lemma A.2
and 3.4, respectively, and are omitted.
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