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OPTIMUM MIXED LEVEL DETECTING ARRAYS1

BY CE SHI2, YU TANG3 AND JIANXING YIN

Soochow University

As a type of search design, a detecting array can be used to generate
test suites to identify and detect faults caused by interactions of factors in a
component-based system. Recently, the construction and optimality of detect-
ing arrays have been investigated in depth in the case where all the factors are
assumed to have the same number of levels. However, for real world applica-
tions, it is more desirable to use detecting arrays in which the various factors
may have different numbers of levels. This paper gives a general criterion to
measure the optimality of a mixed level detecting array in terms of its size.
Based on this optimality criterion, the combinatorial characteristics of mixed
level detecting arrays of optimum size are investigated. This enables us to
construct optimum mixed level detecting arrays with a heuristic optimization
algorithm and combinatorial methods. As a result, some existence results for
optimum mixed level detecting arrays achieving a lower bound are provided
for practical use.

1. Introduction. Testing plays an important role in component-based sys-
tems. Due to the complexity of systems, the number of possible tests can be expo-
nentially large. Consider, for example, the manufacturing of a personal computer
system. Suppose that a wide variety of choices are available for both hardware and
software components including the central unit processor, primary memory, cache
memory, interface, operation system, web browser and email system. For manufac-
turers, if an exhaustive test suite is applied to test whether there is any component
interaction that may cause system failure, the testing burden shall be extremely
heavy even when the system is of moderate complexity. Consequently, they are
interested in generating test suites that cover the most prevalent interactions. This
phenomenon is not unique and similar scenarios exist in other disciplines such
as agriculture, manufacturing, networks and so on. For related information, read-
ers are referred to Colbourn et al. (2006), Moura et al. (2003) and the references
therein.
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For certain component-based systems, it is generally impossible to examine ev-
ery interaction without conducting an exhaustive testing. A popular and effective
strategy is to set a limit on the number of components involved in interactions
which may cause a failure. Such an approach not only reduces the testing burden
dramatically, but is also supported by many empirical results. Dalal et al. (1999)
claimed that a large percentage of the existing faults in a software system can be
found only by examining all pairwise interactions, while Kuhn, Wallace and Gallo
(2004) reported similar results. For this reason, engineers and researchers prefer to
employ covering arrays to conduct test suites.

A covering array (CA) is a special type of fractional factorial design. The formal
definition of a CA will be given in Section 2. Roughly speaking, a covering array
of strength t (index unity) is a matrix, such that for every choice of t columns of
the matrix, all possible t-tuples appear within its rows. When applying a CA to
testing problems, the columns of the CA are utilized to represent factors affecting
a response in which the entries within the columns indicate settings or values for
that factor. The rows represent tests to be performed, in which a value for each
factor is dictated. Covering arrays have been extensively studied; see Colbourn
(2004) for a survey for CAs, and Colbourn et al. (2006), Moura et al. (2003) and
Colbourn et al. (2011) for their properties, applications and efficient constructions.

Testing with a CA can determine whether any t-component interactions cause
a failure, which is an important step in screening a system for interaction faults.
However, as Colbourn and McClary (2008) pointed out, test suites based on cover-
ing arrays provide little information about identifying the exact interactions caus-
ing faults. Due to practical concerns, tests that reveal the location of interaction
faults are of interest. Colbourn and McClary (2008) formalized the problem of
nonadaptive location of interaction faults under the hypothesis that the system con-
tains (at most) d faults, each involving (at most) t factors. They proposed the notion
of a detecting array, which is a CA with additional requirements.

Under the framework of Colbourn and McClary (2008), detecting arrays have
been investigated in depth by a number of authors in the case where all the factors
had the same number of levels. A combinatorial characterization and a general
criterion of measuring optimality for such detecting arrays were established in Shi,
Tang and Yin (2012) and Tang and Yin (2011). For practical applications, things
are not always that simple, and it is desirable to use detecting arrays in which the
various factors may have different numbers of levels.

In Brownlie, Plowse and Phadke (1992), the authors considered a test on the
copy function of the PMx/StarMAIL system, aiming to provide a pairwise cover-
ing solution. Four factors, that is, function scope, server type, client type and target
content were considered, each with three levels. The factor “function scope” re-
ferred to three copy options: copy only a single (current) message; copy messages
previously marked, or copy all messages contained within a folder. However, in
practice it is easy to use some shortcut keys to mark all messages in a folder, thus
we can only assign two values, that is, “current” and “marked,” to the factor “func-
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tion scope,” as done by many other electronic mail systems. In view of this, the
original fixed level test problem becomes a mixed level one. Another mixed level
test example can be found in Cohen et al. (1996), where the authors considered
a voice response unit test, affected by four factors with three, three, two and two
levels.

In the above two examples, the authors both suggested employing an orthogo-
nal array or a covering array to conduct the corresponding test suites. As a result,
interaction faults in these systems can be found, but their locations cannot always
be identified. Such drawbacks can be overcome by using a detecting array. Ta-
ble 1 shows an example of a detecting array for testing the copy function of the
PMx/StarMAIL system (here “function scope” is assigned to be a two-level fac-
tor). The array contains 18 tests. If we assume that an error in this system can
only be due to some combination of two components, then any single fault can
be identified according to the outcome of these tests. For example, the last col-
umn of Table 1 lists a possible outcome, which indicates the system error must be
caused by copying the current message by an MSNET client. Moreover, if there is
more than one combination of two components causing the faults, this can also be
detected.

If properly coded, a detecting array is actually a search design without noise
[Srivastava (1975)]. Let S be the set of all possible combinations of certain com-
ponents causing faults (for the detecting array in Table 1, S is the set of all

TABLE 1
A detecting array for the copy function of the PMx/StarMAIL system

Test Function scope Server type Client type Target content Outcome

1 Current Share mode MSNET Empty F
2 Current User mode MSNET Partial F
3 Marked Share mode Enhanced Partial P
4 Marked User mode Basic Partial P
5 Marked MSNET MSNET Partial P
6 Marked MSNET Basic Full P
7 Current Share mode Enhanced Full P
8 Marked User mode MSNET Empty P
9 Current User mode Enhanced Empty P

10 Marked MSNET Enhanced Empty P
11 Current Share mode Basic Partial P
12 Current MSNET Basic Empty P
13 Marked Share mode MSNET Full P
14 Marked Share mode Basic Empty P
15 Current MSNET Enhanced Partial P
16 Current MSNET MSNET Full F
17 Marked User mode Enhanced Full P
18 Current User mode Basic Full P
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3 × 9 + 3 × 6 = 45 level combinations with two components), Y represent the
outcome, that is, a 0–1 vector (zero means failure, while one means pass), and M

be the incidence matrix of the array (denoted by A) related to S, that is, if a level
combination in S occurs in a row of A, the corresponding entry takes the value
one, otherwise it takes the value zero (in the above example, M shall be an 18 by
45 zero–one matrix). If A is a detecting array, then the solution for β in equation
Mβ = Y is unique over a predefined space for any possible outcome Y (for the
detecting array in Table 1, the solution space for β only contains 45 unit vectors
with one element 1 and others 0). Notice here the special coding of M and the re-
stricted space of β make it different from the usual search designs discussed in the
existing literature; see, for example, Shirakura, Takahashi and Srivastava (1996),
Ghosh and Burns (2001) and Esmailzadeh et al. (2011). Under this consideration,
the present authors took a new approach to investigate the property and require-
ment for detecting arrays. In Tang and Yin (2011) and Shi, Tang and Yin (2012),
they obtained many interesting results for fixed level detecting arrays. Although
the basic concepts and notation related to fixed level detecting arrays are analo-
gous to those of mixed level detecting arrays, the combinatorial characteristics as
well as construction methods cannot be directly duplicated due to the complicated
structure of mixed level arrays. In fact, optimum mixed level detecting arrays are
not always super-simple (see Definition 2.1), but have the “extendible” property,
which will be defined in Section 3. Based on this special property, we will fur-
ther provide a heuristic algorithm and some combinatorial methods to construct
optimum mixed level arrays with specific parameters.

The organization of this paper is as follows. In Section 2, we give a detailed
description on the definition of a mixed level detecting array. In Section 3, we es-
tablish a general criterion for measuring the optimality of a mixed level detecting
array in terms of its size, and then describe the combinatorial characteristics of
mixed level detecting arrays of optimum size. Based on properties in Section 3, a
heuristic optimization algorithm to generate mixed level detecting arrays is devel-
oped in Section 4 and some optimum detecting arrays with the largest number of
factors are then found. Composition methods for constructing optimum detecting
arrays based on combinatorial methods are included in Section 5. This provides
a number of infinite classes of optimum mixed level detecting arrays. Section 6
concludes, while all proofs are deferred to the Appendix.

2. Definitions and terminology. Let v1, v2, . . . , vk be k natural numbers
(not necessarily distinct). For each i with 1 ≤ i ≤ k, let Vi be a set of car-
dinality vi . For given natural numbers N and t ≤ k, a mixed covering array
(MCA) of type (v1, v2, . . . , vk), size N , strength t and index λ, denoted by
MCAλ(N; t, k, (v1, v2, . . . , vk)), is an N ×k array A, which satisfies the following
two properties:

(1) For each i with 1 ≤ i ≤ k, the entries in the ith column of A are taken
from Vi .
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(2) The rows of each N × t subarray of A cover all t-tuples of values from the
t columns at least λ times.

The coordinates of V1 × V2 × · · · × Vk are referred to as factors, so the ele-
ments of Vi represent the levels of factor i for 1 ≤ i ≤ k and the parameter
k is the number of factors, also called the degree. The mixed covering array
number MCANλ(t, k, (v1, v2, . . . , vk)) is the minimum N required to produce an
MCAλ(N; t, k, (v1, v2, . . . , vk)). A mixed covering array is termed optimum if its
size N = MCANλ(t, k, (v1, v2, . . . , vk)).

The term “mixed” in the definition is used to indicate that the k level numbers
vi (1 ≤ i ≤ k) may take different values. If the MCA has a fixed number of levels,
it is often known as a covering array. In this case, the notation CAλ(N; t, k, v)

and CANλ(t, k, v) is employed. In the literature, the subscript is often dropped
from the above notation whenever λ = 1. A CAλ(N; t, k, v) of size N = λvt is
known as an orthogonal array (OA), or an OAλ(t, k, v), if the rows of every N × t

subarray cover all t-tuples of symbols exactly λ times. Clearly, an OAλ(t, k, v) is
an optimum CAλ(N; t, k, v) of size N = λvt .

Notice that the property of an MCAλ(N; t, k, (v1, v2, . . . , vk)) is preserved if
its columns are permuted. So, the type (v1, v2, . . . , vk) of an MCA is essen-
tially an unordered multiset and one can assume that the sizes of the k level
sets are in a nondecreasing order, that is, v1 ≤ v2 ≤ · · · ≤ vk . It follows that an
MCAλ(N; t, k, (v1, v2, . . . , vk)) can exist only if N ≥ λ

∏k
i=k−t+1 vi . It is opti-

mum when N = λ
∏k

i=k−t+1 vi . For convenience, a shorthand notation is adopted
to describe the type (v1, v2, . . . , vk) by combining vi ’s that are the same. For ex-
ample, if three vi ’s are of size two, one writes this as 23.

We use Ik to denote the set of the first k natural numbers. In order to describe the
definition of a detecting array, let us formulate the testing problem formally. Con-
sider a system with k factors (parameters or components). One may identify the set
of values (levels) of the j th factor (1 ≤ j ≤ k) with Zvj

= {0,1, . . . , vj − 1}, the
residue class ring of integers modulo vj . Suppose that v1 ≤ v2 ≤ · · · ≤ vk . A test
is an assignment of values to factors, that is, a k-tuple from Zv1 × Zv2 × · · · × Zvk

.
The execution of a test can have two outcomes: pass or fail. A t-way interac-
tion or an interaction of strength t is a set of the form {(ji, σji

)|1 ≤ i ≤ t}, where
{j1, j2, . . . , jt } ⊆ Ik with j1 < j2 < · · · < jt and σji

∈ Zvji
. A test (or a k-tuple)

R = (x1, . . . , xk) ∈ Zv1 ×Zv2 ×· · ·×Zvk
covers the interaction {(ji, σji

)|1 ≤ i ≤ t}
if xji

= σji
for 1 ≤ i ≤ t . Thus, a test with k factors covers exactly

(k
t

)
interactions

of strength t . A test suite is a collection of tests; the outcomes are the corresponding
set of pass/fail results. We assume that failures are caused by faulty interactions.
A test fails when it contains at least one of the faulty interactions, and does not fail
otherwise. It then turns out that a test suite is essentially an N × k array A of type
(v1, v2, . . . , vk) whose rows consist of N elements (possibly with multiplicities) of
the Cartesian product Zv1 ×Zv2 ×· · ·×Zvk

. In order to observe an interaction fault,
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it is necessary that the interaction is covered by at least one test in the test suite.
This is to say that the array A is required to be an MCAλ(N; t, k, (v1, v2, . . . , vk)).

Now suppose that A = (aij ) (i ∈ IN, j ∈ Ik) is an MCAλ(N; t, k, (v1, v2,

. . . , vk)) whose entries on the j th column are taken from Zvj
for 1 ≤ j ≤ k. As

we have noted before, t-way interactions that cause faults cannot be located by
testing with A as suite. Thus, in order to determine and identify the faults, the
covering array A must possess more structure than stipulated in its definition. To
this end, we define ρ(A,T ) to be the set of rows of A in each of which, an arbi-
trary t-way interaction T is covered. To be more precise, for any t-way interaction
T = {(ji, σji

)|1 ≤ i ≤ t}, define

ρ(A,T ) = {r|arji
= σji

,1 ≤ i ≤ t},
where arji

is the (r, ji) entry of A. For a set of interactions T , define

ρ(A,T ) = ⋃
T ∈T

ρ(A,T ).

Following Colbourn and McClary (2008), an MCAλ(N; t, k, (v1, v2, . . . , vk)) A is
termed a detecting array (DTA), or a (d, t)-DTA(N;k, (v1, v2, . . . , vk)), if

ρ(A,T ) ⊆ ρ(A,T ) ⇐⇒ T ∈ T ,(2.1)

whenever T is a t-way interaction and T is a set of t-way interactions of cardinal-
ity d .

It was proved in Colbourn and McClary (2008) that testing with a (d, t)-
DTA(N;k, (v1, v2, . . . , vk)) is able to identify any set of d interaction-faults of
strength t from the outcomes. Further, if there are more than d t-way interactions
causing the faults, this can also be detected.

As with MCAs, the minimum number N of runs for which a (d, t)-DTA(N;k,

(v1, v2, . . . , vk)) exists is called detecting array number, denoted by (d, t)-
DTAN(k, (v1, v2, . . . , vk)). A (d, t)-DTA(N;k, (v1, v2, . . . , vk)) with N = (d, t)-
DTAN(k, (v1, v2, . . . , vk)) is said to be optimum. In the case v1 = v2 = · · · =
vk = v, the notation (d, t)-DTA(N;k, v) and (d, t)-DTAN(k, v) are adopted.

Remark that the detecting array of Table 1 in Section 1 is a (1,2)-DTA(18;4,

(2133)) if its levels are mapped to the corresponding residue class rings of inte-
gers. It can be readily checked that for any two distinct 2-way interactions T and
T ′, we have ρ(A,T ) 	= ρ(A,T ′). This means that condition (2.1) is satisfied, since
ρ(A,T ) 	= ρ(A,T ′) 
⇒ T 	= T ′. The detecting array is of strength t = 2. All its
2-way interactions among columns are covered at least twice. So it is actually an
MCA2(18;2,4, (2133)). Furthermore, the rows of any t + 1 = 3 columns cover
every triple of values from the 3 columns at most once. This is a feature of the un-
derlying MCA of a DTA. To characterize this feature, we introduce the following
concept, which will be frequently used in the subsequent sections.

DEFINITION 2.1. An MCAλ(N; t, k, (v1, v2, . . . , vk)) is said to be super-
simple, if each of its N × (t + 1) subarray covers every (t + 1)-tuple of values
from the t + 1 columns at most once.
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3. Optimality criterion and combinatorial feature. This section is devoted
to establishing a general criterion for measuring the optimality of DTAs, and giv-
ing the combinatorial characterization of mixed level DTAs with optimum size.
Suppose that A is an arbitrary (d, t)-DTA(N;k, (v1, v2, . . . , vk)) with v1 ≤ v2 ≤
· · · ≤ vk . We shall exclude the following three trivial cases. The first one is t = k.
In this case, an optimum DTA is just the full factorial design. The second case is
that of v1 = 1 for which the DTA is determined uniquely by its subarray, the one
with the first factor removed. The last case is d ≥ v1. In this case, Colbourn and
McClary (2008) showed that a (d, t)-DTA(N;k, (v1, v2, . . . , vk)) cannot exist. So
the restrictions

2 ≤ v1 ≤ v2 ≤ · · · ≤ vk, t < k and d < v1

are always assumed, whenever we speak of a (d, t)-DTA(N;k, (v1, v2, . . . , vk)). In
addition, the j th level-set of cardinality vj is understood to be Zvj

for 1 ≤ j ≤ k,
unless otherwise stated. Under these conventions, we have the following lemma
which is an analogue of Theorem 2.3 in Shi, Tang and Yin (2012). Hence, we omit
its proof for brevity.

LEMMA 3.1. Suppose that A is a (d, t)-DTA(N;k, (v1, v2, . . . , vk)). Then
|ρ(A,T )| ≥ d + 1 for any t-way interaction T .

By invoking Lemma 3.1, we are able to establish a lower bound on the function
(d, t)-DTAN(k, (v1, v2, . . . , vk)), which serves as a general criterion for measuring
the optimality of detecting arrays.

THEOREM 3.2. Let vj (1 ≤ j ≤ k) be k integers with 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk .
Then

(d, t)-DTAN
(
k, (v1, v2, . . . , vk)

) ≥ (d + 1)

k∏
i=k−t+1

vi.(3.1)

Taking v1 = v2 = · · · = vk = v in Theorem 3.2, we retrieve the lower bound on
the function (d, t)-DTAN(k, v) given in Shi, Tang and Yin (2012).

COROLLARY 3.3. Let t, k and v be positive integers with t < k. Then

(d, t)-DTAN(k, v) ≥ (d + 1)vt .(3.2)

It was proved in Shi, Tang and Yin (2012) that an optimum (d, t)-
DTAN(N;k, v) meeting the lower bound in (3.2) is equivalent to a super-simple
OAd+1(t, k, v). However, the structure of an optimum, mixed level DTA is much
more complicated than that of an optimum, fixed level DTA even though the lower
bounds in (3.1) and (3.2) look similar. The aforementioned equivalence does not
hold in the mixed level case, which can be seen in the following example.
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EXAMPLE 3.4. An optimum (2,2)-DTA(48;5, (3342)) is formed by taking
the transpose of the superimposition of the following two 24 × 5 arrays:
⎛
⎜⎜⎜⎜⎝

1 2 0 0 2 0 2 2 1 0 0 1 1 2 1 2 0 2 0 0 1 0 1 2
2 1 2 0 0 2 2 1 0 1 1 2 0 1 1 2 2 2 0 1 0 2 1 2
1 0 0 2 1 2 2 1 2 1 1 1 1 2 0 2 0 0 1 0 0 0 0 1
2 3 1 2 1 3 3 0 1 1 2 3 0 2 0 1 3 0 2 1 3 2 0 0
1 2 1 1 1 0 1 2 0 2 3 2 3 0 1 2 3 3 0 0 1 2 0 0

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0 0 2 1 2 2 1 2 1 1 2 0 1 2 2 0 1 1 1 0 0 0 2 1
1 0 0 2 2 1 1 0 0 1 1 0 2 0 2 1 0 1 2 0 0 2 0 1
1 2 2 0 2 0 2 1 0 1 0 2 2 1 1 2 0 2 1 2 0 1 0 2
3 0 0 2 2 1 2 2 1 3 2 3 0 3 1 0 2 3 1 1 0 0 3 1
1 0 1 0 3 3 2 2 2 0 1 2 2 3 0 3 3 3 3 3 2 1 0 1

⎞
⎟⎟⎟⎟⎠

.

It is readily checked that this detecting array is not super-simple.

Since an optimum, mixed level DTA may not be super-simple, we define more
set-theoretic configurations to explore the combinatorial features of an optimum,
mixed level DTA.

DEFINITION 3.5. Let Tt = {(ji, σji
)|1 ≤ i ≤ t} be a t-way interaction. Then

each (t + 1)-way interaction Tt+1 = ((j1, σj1), . . . , (jt , σjt ), (jt+1, σjt+1)) is said
to be an extension of Tt , where jt+1 ∈ Ik \ {j1, j2, . . . , jt }.

The following lemma follows Definition 3.5 immediately.

LEMMA 3.6. Suppose that A is an N ×k array of type (v1, v2, . . . , vk). Let Tt

be a t-way interaction and Tt+1 an extension of Tt . Then ρ(A,Tt+1) ⊆ ρ(A,Tt ).

Lemma 3.6 motivates us to introduce the following concept.

DEFINITION 3.7. Let A be an N × k array of type (v1, v2, . . . , vk). If for any
t-way interaction Tt of A and any d extension Tt+1,i (1 ≤ i ≤ d) of Tt , we have
ρ(A,Tt ) \ ⋃d

i=1 ρ(A,Tt+1,i) 	= ∅, then the array is said to be d-extendible.

It is interesting to note that in the particular case where the array A is an
OAd+1(t, k, v), the terms “d-extendible” and “super-simple” are essentially the
same. Specifically, we have the following lemma.

LEMMA 3.8. Let A be an OAd+1(t, k, v). Then A is d-extendible if and only
if A is super-simple.

Now we are in a position to characterize the combinatorial features of an opti-
mum (d, t)-DTA(N;k, (v1, v2, . . . , vk)).
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THEOREM 3.9. Suppose that A is an N × k array of type (v1, v2, . . . , vk).
Then A is a (d, t)-DTA(N;k, (v1, v2, . . . , vk)) if and only if A is a d-extendible
MCAd+1(N; t, k, (v1, v2, . . . , vk)).

As an immediate consequence of Theorem 3.9, we have the following result.

THEOREM 3.10. An optimum (d, t)-DTA(N;k, (v1, v2, . . . , vk)) meeting
the lower bound in (3.1) is equivalent to a d-extendible MCAd+1(N; t, k,

(v1, v2, . . . , vk)) of optimum size N = (d + 1)
∏k

i=k−t+1 vi .

Combining Lemma 3.8 with Theorem 3.10 gives us the following useful corol-
lary, which was first stated in Shi, Tang and Yin (2012).

COROLLARY 3.11. An optimum (d, t)-DTA((d + 1)vt ;k, v) meeting the
lower bound in (3.2) is equivalent to a super-simple OAd+1(t, k, v).

The following two theorems take care of the cases k = t + 1 and the type
(v1, v2, . . . , vt+1) = (a1bk−1), respectively.

THEOREM 3.12. A (d, t)-DTA(N; t + 1, (v1, v2, . . . , vt+1)) of optimum size
N meeting the lower bound in (3.1) is equivalent to a super-simple MCAd+1(N;
t, t + 1, (v1, v2, . . . , vt+1)) of optimum size N = (d + 1)

∏t+1
i=2 vi .

THEOREM 3.13. Let a and b be positive integers satisfying a ≤ b. Then,
an optimum (λ − 1, t)-DTA(N;k, (a1bk−1)) meeting the lower bound in (3.1) is
equivalent to a super-simple MCAλ(N; t, k, (a1bk−1)) of optimum size N = λbt .

Finally, we give a sufficient condition for the existence of an optimum detecting
array, meeting the lower bound in (3.1).

THEOREM 3.14. If a super-simple MCAd+1(N; t, k, (v1, v2, . . . , vk)) of op-
timum size N = (d + 1)

∏k
i=k−t+1 vi exists, then an optimum (d, t)-DTA(N;k,

(v1, v2, . . . , vk)) meeting the lower bound in (3.1) also exists.

4. A heuristic algorithm. In this section, we present an algorithm to search
for optimum detecting arrays meeting the lower bound in (3.1) with a small number
of runs. The basic idea is to use a heuristic optimization algorithm, which is based
on the combinatorial features described in the previous section. We first provide
two necessary conditions for the existence of an optimum detecting array, meeting
the lower bound in (3.1).

LEMMA 4.1. If there exists an optimum (1,2)-DTA(2q2;k, q) meeting the
lower bound in (3.1), then k ≤ 2q .
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Algorithm 1 Pseudo code for searching (1,2)-detecting arrays
Randomly generate A0 and calculate �(A0) = ∑

T ,Ta
IA(|ρ(T ,A0)| = |ρ(Ta,A0)|)

while �(A0) > 0 do
Randomly exchange two entries in the same column of A0 to get Anew
Compute ∇ = �(Anew) − �(A0)
if ∇ < 0 then

Set A0 = Anew
else

Randomly generate u from uniform distribution U [0,1]
if u < p = 0.01 then

Set A0 = Anew
end if

end if
end while

LEMMA 4.2. Let u, k and w be nonnegative integers and w ≥ 3. If there exists
an optimum (1,2)-DTA(N;1 + k + u,2u3kw1) meeting the lower bound in (3.1),
then either u or k is less than 2. Moreover, if k = 0, u ≤ 3; if k = 1, u ≤ 4; if u = 0,
k ≤ 5; if u = 1, k ≤ 3.

For parameters N , k, v1, v2, . . . , vk satisfying Lemmas 4.1 or 4.2 constraints,
we randomly generate an N × k matrix, denoted by A0, with each of its j th col-
umn taking values from Zvj

. For any 2-way interaction T and any of its possible
extension Ta , record the values of |ρ(T ,A0)| and |ρ(Ta,A0)|. Given that A0 is a
(1,2)-detecting array if and only if these two values are not equal, we then de-
fine the quantity

∑
T ,Ta

IA(|ρ(T ,A0)| = |ρ(Ta,A0)|) as an objective function to
minimize, where IA(·) represents the indicator function. We use the simulated an-
nealing method to find a final design with the objective function taking the value
zero. The pseudo code in Algorithm 1 illustrates the details.

We list our search results for N ≤ 30 in Table 2. All the obtained DTAs are
of optimum size meeting the bound in (3.1). These DTAs are not only useful in

TABLE 2
Optimum (1,2)-DTA(N;k, (v1, v2, . . . , vk)) for N ≤ 30

N 8 12 16 18 18 18 20 24

Levels 2a 2a31 2a41 213a 2a32 3a 2a51 2a61

Existence a ≤ 4 a ≤ 3 a ≤ 3 a ≤ 3 a ≤ 4 a ≤ 6 a ≤ 3 a ≤ 3

N 24 24 24 28 30 30 30

Levels 2a3241 2a3141 3a41 2a71 2a3351 2a3151 3a51

Existence a ≤ 1 a ≤ 4 a ≤ 5 a ≤ 3 a ≤ 1 a ≤ 4 a ≤ 5
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real world applications but also as ingredients in the construction of new opti-
mum DTAs via combinatorial approaches developed in the next section. The found
(1,2)-DTA(18;4, (2133)) indicates the optimality of the test scheme presented in
Section 1 regarding the copy function of PMx/StarMAIL system. Meanwhile, the
(1,2)-DTA(18;4, (2232)) in Table 2 gives an optimum solution to the voice re-
sponse unit test problem (without additional restrictions) studied by Cohen et al.
(1996).

We note that an exhaustive computer search shows that neither a (1,2)-
DTA(18;5, (2134)) nor a (1,2)-DTA(24;5, (213341)) can exist, although their
parameters are compatible with Lemma 4.2 constraints.

5. Combinatorial approaches. In real world applications, some testing prob-
lems may have factors with a large number of levels. For example, suppose a pro-
gram consists of several functions or subroutines. Each function needs an input
parameter and each parameter may take hundreds of values. This causes the num-
ber of factor level combinations to be very large. The objective of this section is
to present some combinatorial approaches to find optimum, mixed level detecting
arrays with a large number of levels per factor for practical applications.

5.1. New optimum DTAs from the Kronecker product. For given two matrices
A = (aij ) (i ∈ Im, j ∈ Ik) and B = (brs) (r ∈ In, s ∈ Ik), the Kronecker product of
A and B is defined to be the (mn) × k matrix

A ⊗ B =

⎛
⎜⎜⎜⎝

(a11 a12 · · · a1k) ⊗ B

(a21 a22 · · · a2k) ⊗ B
...

...
...

...
...

...

(am1 am2 · · · amk) ⊗ B

⎞
⎟⎟⎟⎠ ,

where for any i with 1 ≤ i ≤ m, (ai1, ai2, . . . , aik) ⊗ B is defined to be the matrix
⎛
⎜⎜⎜⎝

(ai1, b11) (ai2, b12) · · · (aik, b1k)

(ai1, b21) (ai2, b22) · · · (aik, b2k)
...

...
...

...

(ai1, bn1) (ai2, bn2) · · · (aik, bnk)

⎞
⎟⎟⎟⎠ .

THEOREM 5.1. Suppose that A is a super-simple MCAd1+1(N1; t, k, (v1, v2,

. . . , vk)) of optimum size N1 = (d1 + 1)
∏k

i=k−t+1 vi and B is a super-simple
MCAd2+1(N2; t, k, (u1, u2, . . . , uk)) of optimum size N2 = (d2 + 1)

∏k
i=k−t+1 ui .

Then A ⊗ B is a (d, t)-DTA(N1N2;k, (v1u1, v2u2, . . . , vkuk)) of optimum size
N1N2 attaining the lower bound in (3.1), where d = (d1 + 1)(d2 + 1) − 1.

COROLLARY 5.2. Suppose that there exists a super-simple MCAd+1(N; t, k,

(v1, v2, . . . , vk)) of optimum size N = (d + 1)
∏k

i=k−t+1 vi . Then:
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(1) there exists a (λ(d + 1) − 1, t)-DTA(λmtN;k, (mv1,mv2, . . . ,mvk)) of
optimum size λmtN meeting the lower bound in (3.1) for any integer λ with
2 ≤ λ ≤ m, provided that an OA(t + 1, k + 1,m) exists;

(2) there exists a (d, t)-DTA(mtN;k, (mv1,mv2, . . . ,mvk)) of optimum size
mtN meeting the lower bound in (3.1), provided that an OA(t, k,m) exists.

Theorem 5.1 and Corollary 5.2 provide the basic idea for constructing new op-
timum detecting arrays meeting the lower bound in (3.1) from the old ones. Com-
bining with the existence results for the ingredient arrays, we obtain the following
theorem.

THEOREM 5.3. There exists:

(1) a (2m − 1,2)-DTA(18m;4, (2m)1(3m)3) achieving the lower bound in (3.1)
for any integer m ≥ 2;

(2) a (2λ−1,2)-DTA(18λv2;4, (2v)1(3v)3) achieving the lower bound in (3.1)
for any integer λ ≤ v, where v ≥ 4 and v 	≡ 2 (mod 4); and

(3) a (1,2)-DTA(18v2;4, (2v)1(3v)3) achieving the lower bound in (3.1) for
any integer v 	= 2,4,6.

5.2. Existence of optimum DTAs with k = t + 1. We begin with the following
known results.

LEMMA 5.4. Suppose that 2 ≤ v1 ≤ v2 ≤ v3 ≤ v4. Then there exists:

(1) an MCA(N;2,3, (v1, v2, v3)) of optimum size N = v2v3 [Moura et al.
(2003)];

(2) an MCA(N;3,4, (v1, v2, v3, v4)) of optimum size N = v2v3v4 [Colbourn
et al. (2011)].

Taking advantage of some composition constructions, we can completely de-
termine the existence spectrum for a (d, t)-DTA(N; t + 1, (v1, v2, . . . , vt+1)) of
optimum size N meeting the lower bound in (3.1).

LEMMA 5.5. Suppose that an MCA(N; t, k, (v1, v2, . . . , vi, . . . , vk)) and an
MCA(N ′; t − 1, k − 1, (v1, v2, . . . , vi−1, vi+1, . . . , vk)) all exist, where 1 ≤ i ≤ k.
Then an MCA(N ′′, t, k, (v1, v2, . . . , vi−1, (vi + e), vi+1, . . . , vk)) exists for any
positive integer e, where N ′′ = N + eN ′.

LEMMA 5.6. Suppose that 2 ≤ v1 ≤ v2 ≤ · · · ≤ vt+1. Then an optimum
MCA(N; t, t +1, (v1, v2, . . . , vt+1)) with N = ∏t+1

i=2 vi exists for any integer t ≥ 2.

THEOREM 5.7. Suppose that 2 ≤ v1 ≤ v2 ≤ · · · ≤ vt+1. Then an optimum
(d − 1, t)-DTA(N; t + 1, (v1, v2, . . . , vt+1)) with N = ∏t+1

i=2 vi exists if and only if
d ≤ v1.
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6. Conclusion. Detecting arrays are a special class of covering arrays. How-
ever, detecting arrays, especially mixed level detecting arrays, have much more
complicated structure than that of usual covering arrays. They are introduced to
generate test suites that are capable of identifying and determining the faulty inter-
actions between factors in a component-based system. Compared to using cover-
ing arrays, this is a more useful approach in an application context. In this paper,
the notion of “d-extendible” is proposed and used to explore the combinatorial
features of mixed level detecting arrays. By way of equivalent combinatorial con-
figurations, an optimality criterion is found. As a consequence, combinatorial ap-
proaches and heuristic algorithms are employed to produce a number of examples
and infinite classes of mixed level detecting arrays, which are optimum in size
meeting the lower bound in (3.1).

APPENDIX: PROOFS

PROOF OF THEOREM 3.2. Let A be a (d, t)-DTA(N;k, (v1, v2, . . . , vk)).
From Lemma 3.1, we know that |ρ(A,T )| ≥ d + 1 for any t-way interac-
tion T . Since there are v

k−t+1 × v
k−t+2 × · · · × vk different t-way interactions,

{(r, xr) :k − t + 1 ≤ r ≤ k}, A must contain (d + 1)
∏k

i=k−t+1 vi rows, which im-
plies (d, t)-DTAN(k, (v1, v2, . . . , vk)) ≥ (d + 1)

∏k
i=k−t+1 vi . �

PROOF OF LEMMA 3.8. “⇒” If A is not super-simple, then there exists a
(t + 1)-way interaction Tt+1,1 such that |ρ(A,Tt+1,1)| ≥ 2. Select the first t ele-
ments of Tt+1,1 to form a t-way interaction Tt , then Tt+1,1 is an extension of Tt .
Let T = {T |T is an extension of Tt with |ρ(A,T )| ≥ 1}. Obviously, Tt+1,1 ∈ T .
Notice that |ρ(A,Tt+1,1)| ≥ 2 and |ρ(A,Tt )| = d + 1 as A is an OAd+1(t, k, v),
we have |T | ≤ d . However, ρ(A,Tt ) \ ρ(A,T ) = ∅. This is a contradiction to the
d-extendible property.

“⇐” Suppose there exist a t-way interaction Tt and its d extensions, At+1,i , i =
1, . . . , d , such that ρ(A,Tt )\⋃d

i=1 ρ(A,Tt+1,i) = ∅. Since A is an OAd+1(t, k, v),
|ρ(A,Tt )| = d + 1, there must exist i ∈ {1,2, . . . , d}, such that |ρ(A,Tt+1,i)| ≥ 2.
This is a contradiction to the super-simple property. �

PROOF OF THEOREM 3.9. “⇐” If A is not a (d, t)-DTA(N;k, (v1, v2, . . . ,

vk)), then there exist a t-way interaction T and a set of d t-way interactions T =
{T1, T2, . . . , Td} such that T /∈ T and ρ(A,T ) ⊆ ρ(A,T ). If there exists Ti ∈ T ,
such that all first coordinates of elements of Ti and T coincide, then define any
extension of T as Tt+1,i . On the other hand, for each Ti ∈ T , if there exists an
element of Ti , say (ji, σji

), such that the first coordinate of any element of T is
not ji , then add the element (ji, σji

) to T to form an extension of T , denoted
by Tt+1,i . Now for any row R ∈ ρ(A,T ) ⊆ ρ(A,T ), if R ∈ ρ(A,Ti), then R ∈
ρ(A,Tt+1,i), which tells ρ(A,Tt ) \ ⋃d

i=1 ρ(A,Tt+1,i) = ∅. Notice that for i 	= j ,
Tt+1,i and Tt+1,j can be the same (t + 1)-way interaction.
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“⇒” Otherwise, there exist a t-way interaction T and d extensions of T ,
denoted by Tt+1,i , 1 ≤ i ≤ d , such that ρ(A,Tt ) \ ⋃d

i=1 ρ(A,Tt+1,i) = ∅.
Then ρ(A,Tt ) = ⋃d

i=1 ρ(A,Tt+1,i), as ρ(A,Tt+1,i) ⊆ ρ(A,T ) for 1 ≤ i ≤ d

by Lemma 3.6. For each extension Tt+1,i , we can select a t-way interaction
Tt,i 	= T such that Tt+1,i is their common extension. Notice that for i 	= j , Tt,i

and Tt,j cannot be the same t-way interaction, otherwise, Tt+1,i and Tt+1,j must
be the same (t +1)-way interaction. Now we have ρ(A,T ) = ⋃d

i=1 ρ(A,Tt+1,i) ⊆⋃d
i=1 ρ(A,Tt,i). This is a contradiction to the definition of a (d, t)-detecting array.

�

PROOF OF THEOREM 3.12. “⇒” If A is an optimum (d, t)-DTA(N; t +
1, (v1, v2, . . . , vt+1)), then A is “d-extendible.” By Lemma 3.1, |ρ(A,T )| ≥
d + 1 for any t-way interaction T . Thus, A is an optimum MCAd+1(N; t, t +
1, (v1, v2, . . . , vt+1)). In the following, we prove that A is super-simple. Oth-
erwise, suppose that there are two identical row vectors, denoted by R1 =
(x1, x2, . . . , xt+1). Let T = (x2, x3, . . . , xt+1). T occurs at least d + 1 times as the
subarray indexed by the columns {2,3, . . . , t + 1}, and hence exactly d + 1 times
[since A contains precisely (d + 1)

∏t+1
i=2 vi rows]. Write Tt+1,i (i = 1,2,3, . . . , d)

for the d extensions of T , where Tt+1,1 = R1. Then ρ(A,T )\⋃d
i=1 ρ(A,Tt+1,i) =

∅, a contradiction to A being “d-extendible.”
“⇐” Let B be a super-simple MCAd+1(N; t, t + 1, (v1, v2, . . . , vt+1)) with

N = (d + 1)
∏t+1

i=2 vi . We prove that B is a d-extendible MCAd+1(N; t, k, (v1, v2,

. . . , vk)). If not, there exists a t-way interaction T and d extensions Tt+1,i (i =
1,2,3, . . . , d) for T such that ρ(A,T ) \ ⋃d

i=1 ρ(A,Tt+1,i) = ∅. Since T occurs
at least d + 1 times, there is one Tt+1,i such that |ρ(A,Tt+1,i)| ≥ 2. This implies
that there is at least one (t + 1)-tuple of symbols occurring in some t + 1 columns
as rows more than once. This is a contradiction to the super-simple property of B .
The conclusion then follows from Theorem 3.9. �

PROOF OF THEOREM 3.13. The proof can be divided into two cases, one is
similar to that of Theorem 3.12, and the other is actually a copy of the proof of
Theorem 2.4 in Shi, Tang and Yin (2012). �

PROOF OF THEOREM 3.14. The proof is similar to the counterpart in Theo-
rem 3.12. �

PROOF OF LEMMA 4.1. Tang and Yin (2011) proved that an optimum (1,2)-
DTA(N;k, q) with N = 2q2 is equivalent to a super-simple orthogonal array
OA2(2, k, q). So for any 2-way interaction T , |ρ(A,T )| = 2. Moreover, the pair
of rows covering T must be different for each distinct 2-way interaction T . The
number of 2-way interactions for a k-factor array is

(k
2

) × q2 = k(k − 1)q2/2.

However, there are totally
(N

2

) = q2(2q2 − 1) pairs of rows. Thus, we have
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k(k − 1)q2/2 ≤ q2(2q2 − 1), which implies k ≤ 2q as k and q are both positive
integers. �

PROOF OF LEMMA 4.2. (i) We first prove that either u or k is less than 2.
Otherwise, if both u and k are greater than or equal to 2, then we have N = 6w.
Let A0 be the subarray with the last column taking the value 0. Then the number
of rows of A0 is 6. For three-level factors of A0, there are two rows taking level
zero, one and two; for two-level factors of A0, there are three rows taking level
zero and one. Moreover, each column of the factors with the same level of A0
cannot be a level permutation of another one. Thus, two two-level factors occupy
2 × 2 × (3

2

) − 2 = 10 pairs of rows, on which there is at least one two-level factor
taking the same level. Two three-level factors occupy 2 × 3 = 6 pairs of rows
of A0, on which there is at least one three-level factor taking the same level. These
10 + 6 = 16 pairs of rows are mutually different, which is a contradiction to the(6
2

) = 15 possible pairs of six rows of A0.
(ii) If k = 0, then N = 4w. Let A0 be the subarray with the last column taking

the value 0. Then the number of rows of A0 is 4. For columns of A0 other than the
last one, there are two zeros and two ones. Moreover, each of these zeros or ones in
the same column occupies a different pair of rows of A0, otherwise we can always
find a two-way interaction T (which contains the last column as a component) and
one of its extension Ta , so that the rows covering T and Ta are identical. Thus, we
must have

(4
2

) ≥ 2u, that is, u ≤ 3.
(iii) If k = 1, then N = 6w. Let A0 be the subarray with the last column taking

the value 0. Then the number of rows of A0 is 6. Without loss of generality, for
the three-level factor of A0, assume the first two rows take level zero, the middle
two take level one, and the last two take level two. For columns of A0 other than
the last two, the first two, the middle and the last two rows must take distinct
levels, that is, one takes zero and the other takes one. The number of such possible
columns is 2 × 2 × 2 = 8. Finally, among all these u columns, one cannot be a
level permutation of another. Thus, u ≤ 4.

(iv) If u = 0 and k ≥ 1, then N = 6w. Let A0 be the subarray with the last
column taking the value 0. Then the number of rows of A0 is 6. For columns of
A0 other than the last one, there are two zeros, two ones and two twos. Moreover,
each distinct element in the same column of A0 occupies a different pair of rows
of A0. Thus, we must have

(6
2

) ≥ 3k, that is, k ≤ 5.
(v) If u = 1 and k ≥ 1, then N = 6w. Let A0 be the subarray with the last

column taking the value 0. Then the number of rows of A0 is 6. The two-level
factor occupies 2 × (3

2

) = 6 pairs of rows, on which the two-level factor takes the

same level. Thus, k × 3 + 6 ≤ (6
2

)
, which gives k ≤ 3. �

PROOF OF THEOREM 5.1. Write A = (aij ) (i ∈ IN1, j ∈ Ik) whose entries on
the j th column are taken from Zvj

for 1 ≤ j ≤ k. Write B = (bij ) (i ∈ IN2, j ∈ Ik)
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whose entries on the j th column are taken from Zuj
for 1 ≤ j ≤ k. Then, by

definition, the Kronecker product C is an (N1N2) × k matrix whose entries on
the j th column are taken from the Cartesian product Zvj

× Zuj
for 1 ≤ j ≤ k.

Furthermore, each row (ai1, ai2, . . . , aik) of A generates N2 rows in the Kronecker
product C whose projections on the second component are precisely the N2 rows
of B . So the rows of each (N1N2) × t subarray of C cover all t-tuples of values
from the t columns at least (d1 + 1)(d2 + 1) times, as A and B are both MCAs
of strength t with indices d1 + 1 and d2 + 1, respectively. Similarly, the super-
simple property of A and B guarantees that C is super-simple. This is because the
projection on the first component of each row in any t + 1 columns of C is a row
of the corresponding columns of A, while the projection on the second component
is a row of the corresponding columns of B . It follows that C is a super-simple
MCAd+1(N1N2;k, (v1u1, v2u2, . . . , vkuk)), where the size N1N2 = (d1 +1)(d2 +
1)

∏k
i=k−t+1(viui). The conclusion then follows from Theorem 3.12. �

PROOF OF COROLLARY 5.2. From Shi, Tang and Yin (2012), we know that
an OA(t + 1, k + 1,m) implies the existence of a super-simple OAλ(t, k,m) with
2 ≤ λ ≤ m. So the conclusion (1) holds by taking u1 = u2 = · · · = uk = m in
Theorem 5.1. The conclusion (2) follows directly from Theorem 5.1 by taking
u1 = u2 = · · · = uk = m and d2 = 0. �

PROOF OF COROLLARY 5.3. (1) Apply Theorem 5.1 with a super-simple
MCA2(18;2,4,2133) given in Section 4; (2) Apply the conclusion (1) in Corol-
lary 5.2 with a super-simple MCA2(18;2,4,2133) and an OA(3,5, v) given in Ji
and Yin (2010); (3) Apply the conclusion (2) in Corollary 5.2 with a super-simple
MCA2(18;2,4,2133) and an OA(2,4, v) given in Colbourn and Dinitz (2007) and
Hedayat, Sloane and Stufken (1999). �

PROOF OF LEMMA 5.5. Let A be an MCA(N; t, k, (v1, v2, . . . , vi, . . . , vk))

whose entries on the j th column are taken from Zvj
for 1 ≤ j ≤ k. For any par-

ticular value i with 1 ≤ i ≤ k, we form an MCA(N ′; t − 1, k, (v1, v2, . . . , vi−1,1,

vi+1, . . . , vk)) by simply inserting one constant column

(vi − 1 + r, vi − 1 + r, . . . , vi − 1 + r)T

in the ith position of the given MCA(N ′; t − 1, k − 1, (v1, v2, . . . , vi−1, vi+1,

. . . , vk)). For given positive integer e, we do this for r = 1,2, . . . , e. This pro-
duces e MCAs of index unity whose values on the ith column are taken from
{vi, vi +1, . . . , vi +e−1}. We then concatenate the obtained e MCAs together with
the MCA A to form an MCA(N ′′, t, k, (v1, v2, . . . , vi−1, (vi + e), vi+1, . . . , vk))

with N ′′ = N + eN ′, as desired. �

PROOF OF LEMMA 5.6. The proof is done by mathematical induction on t .
For t = 2,3, the conclusion follows from Lemma 5.4. Assume that the conclu-
sion holds when t = n ≥ 3 and consider the case t = n + 1. It is well known that
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both an OA(n + 1, n + 2, v1) and an OA(n,n + 1, v1) exist for any given inte-
ger v1 [Hedayat, Sloane and Stufken (1999)]. In essence, they are an optimum
CA(vn+1

1 ;n + 1, n + 2, v1) and an optimum CA(vn
1 ;n,n + 1, v1), respectively.

When v2 > v1, we apply Lemma 5.5 with i = 2, e = v2 −v1, (t, k) = (n+1, n+2)

and these two MCAs. This creates an MCA(N2;n + 1, n + 2, (v1, v2, v1, . . . , v1))

of optimum size, denoted by A2, where N2 = vn+1
1 + (v2 − v1)v

n
1 = vn

1v2. In the
case v1 = v2, A2 can be simply taken to be an OA(n + 1, n + 2, v1). By the in-
duction hypothesis, we have also an MCA(vn

1v2;n,n + 1, (v1, v2, . . . , vn+1)) de-
noted by B . So we can again apply Lemma 5.5, as above, with (t, k) = (n +
1, n + 2), i = 3, e = v3 − v1 and the MCAs A2, B to form an MCA(N3;n +
1, n+ 2, (v1, v2, v3, v1, . . . , v1)) of optimum size N3 = vn

1v2 + (v3 − v1)v
n−1
1 v2 =

vn−1
1 v2v3, denoted by A3. This process can be continued recursively until an op-

timum MCA(Nn+2;n + 1, n + 2, (v1, v2, . . . , vn+2)) is obtained, where Nn+2 =∏n+2
i=2 vi . Consequently, the assertion also holds when t = n + 1. This completes

the proof. �

PROOF OF THEOREM 5.7. By taking advantage of the equivalence de-
scribed in Theorem 3.12, we need only to show that there exists a super-simple
MCAd(d ·N; t, t +1, (v1, v2, . . . , vt+1)) of optimum size d ·N = d ·∏t+1

i=2 vi . From
Lemma 5.6, we know that an MCA(N; t, t +1, (v1, v2, . . . , vt+1)) of optimum size
N = ∏t+1

i=2 vi exists. Write A for such an MCA. For each i with 0 ≤ i ≤ d − 1, we
form a new optimum MCA(N; t, t + 1, (v1, v2, . . . , vt+1)), denoted by Aσi , by
permuting the entries in the first column of A with the permutation σ i . Write
D = (AT

σ 0 · · ·AT
σd−1)

T for the concatenation of the obtained d MCAs. It is obvious
that D is an MCAd(dN; t, t + 1, (v1, v2, . . . , vt+1)). It is optimum, since its size
d ·N = d ·∏t+1

i=2 vi . It is now left to show that D is super-simple. In fact, otherwise,
there would be a (t + 1)-tuple of values from certain t + 1 columns of D occurring
as rows of these columns at least twice. Without loss of generality, we assume that
the (t + 1)-tuple a = (a1, a2, . . . , at+1) of values from the first t + 1 columns of D

occurs twice, as rows of these columns. This implies that there must be i and j with
0 ≤ i 	= j ≤ d − 1 so that the (t + 1)-tuple a occurs in the corresponding columns
of both Aσi and Aσj , since each MCA Aσr (0 ≤ r ≤ d − 1) has index λ = 1. Let
b1 be an arbitrary value from the first column of D. Notice that the MCA A is of
strength t and index λ = 1. By considering the t + 1-tuple b = (b1, a2, . . . , at+1),
one can see that σ i(b1) = a1 = σ j (b1) from the construction of Aσi and Aσj . This
leads σ i = σ j . It is a contradiction to the definition of σ (as the order of σ is v1).
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