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ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC DIFFUSION
AND EULER SCHEME EXPERIMENTS

BY VALENTINE GENON-CATALOT AND CATHERINE LARÉDO

Université Paris Descartes and INRA

We prove a global asymptotic equivalence of experiments in the sense
of Le Cam’s theory. The experiments are a continuously observed diffu-
sion with nonparametric drift and its Euler scheme. We focus on diffusions
with nonconstant-known diffusion coefficient. The asymptotic equivalence is
proved by constructing explicit equivalence mappings based on random time
changes. The equivalence of the discretized observation of the diffusion and
the corresponding Euler scheme experiment is then derived. The impact of
these equivalence results is that it justifies the use of the Euler scheme in-
stead of the discretized diffusion process for inference purposes.

1. Introduction. Proving global asymptotic equivalence of statistical experi-
ments by means of the Le Cam theory of deficiency [Le Cam and Yang (2000)] is
an important issue for nonparametric estimation problems. The interest is to obtain
asymptotic results for some experiment by means of an equivalent one. Concretely,
in the case of bounded loss functions, a solution to a nonparametric problem in an
experiment yields a corresponding solution in an asymptotically equivalent ex-
periment. For instance, when minimax rates of convergence in a nonparametric
estimation problem are obtained in one experiment, the same rates hold in a glob-
ally asymptotically equivalent experiment. The theory also allows to prove asymp-
totic sufficiency of the restriction of an experiment to a smaller σ -field. When
explicit transformations from one experiment to another one are obtained, statis-
tical procedures can be carried over from one experiment to the other one. There
is an abundant literature devoted to establishing asymptotic equivalence results.
Before considering diffusion experiments, we recall the main contributions in this
domain. The first results concern the asymptotic equivalence of density estimation
and white noise model [Nussbaum (1996)] and nonparametric regression and white
noise [Brown and Low (1996)]. These results were extended to the equivalence
of nonparametric regression with random design and white noise [Brown et al.
(2002)]. The equivalence between the observation of n independent random vari-
ables Xi, i = 1, . . . , n with densities p(x, θi), such that θi = f (i/n) and a nonpara-
metric Gaussian shift experiment with drift linked with f is proved in Grama and
Nussbaum (1998, 2002). In Brown et al. (2004), the equivalences concern Poisson
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processes with nonparametric intensity and white noise. Carter (2006) considers
the equivalence of a fixed design regression in two dimensions and a Brownian
sheet process with drift. This result is extended to regression experiments with
arbitrary dimension in Reiss (2008). The regression model with nonregular er-
rors yields different results, the equivalence being with independent point Poisson
processes [Meister and Reiss (2013)]. A step forward in another direction con-
cerns the equivalence of nonparametric autoregression and nonparametric regres-
sion [Grama and Neumann (2006)]. Negative results are also important such as the
nonequivalence of nonparametric regression and density or white noise when the
regression function has smoothness index 1/2 [Brown and Zhang (1998)]. To our
knowledge, the only paper studying the equivalence problem for regression with
unknown variances is Carter (2007). More recently, the class of studied models
has been enlarged to stationary Gaussian processes with unknown spectral density
which are equivalent to white noise [Golubev, Nussbaum and Zhou (2010)]. An-
other direction concerns inverse problems in regression and white noise [Meister
(2011)]. Unusual rates formerly obtained by Gloter and Jacod (2001) find their
mathematical understanding with the equivalence result of Reiss (2011) where the
discretization of a continuous Gaussian martingale observed with noise on a fixed
time interval is equivalent to a Gaussian white noise experiment with the same
unusual rate (n−1/4 instead of n−1/2 in the noise intensity).

Diffusion models defined by stochastic differential equations have also been
investigated. References concern nonparametric drift estimation with known con-
stant diffusion coefficient. Genon-Catalot, Larédo and Nussbaum (2002) studied
the equivalence of a transient diffusion having positive drift and small constant
diffusion coefficient with a white noise model and other related experiments. In
the case of recurrent diffusion models, global equivalence with Gaussian white
noise no longer holds [Delattre and Hoffmann (2002) for null recurrent diffusions,
Dalalyan and Reiss (2006, 2007) for ergodic scalar and multidimensional dif-
fusions]. ARCH-GARCH models exhibit nonstandard equivalence results when
compared to their limiting diffusion experiments. In a parametric context, Wang
(2002) proves the nonequivalence of the GARCH-experiment with its limiting
stochastic volatility model for the natural sampling frequencies. To get the equiv-
alence, suitable frequencies of observations are required [Brown, Wang and Zhao
(2003)].

Inference for continuously observed diffusion processes is well developed [e.g.,
Kutoyants (2004)]. As the diffusion coefficient is identified from a continuous time
observation, it is assumed to be known and inference concerns the drift coefficient.
On the contrary, inference for discretely observed diffusions is more difficult as the
transition densities are generally untractable. Statistical procedures based on the
Euler scheme corresponding to the one-step discretization of the diffusion have
been successfully carried over to the discretized diffusion observations. In para-
metric inference, we may quote Genon-Catalot (1990), Larédo (1990) for small
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diffusion coefficient, Kessler (1997) for positive recurrent diffusions and for non-
parametric inference, Hoffmann (1999), Comte, Genon-Catalot and Rozenholc
(2007). Therefore, a natural issue for understanding these results is to prove the
equivalence of the discretized observation of a diffusion and the corresponding
Euler scheme experiment. Such a result has been proved by Milstein and Nuss-
baum (1998) for diffusions with small-known constant diffusion coefficient and by
Dalalyan and Reiss (2006) for positive recurrent diffusions with constant diffusion
coefficient. Our aim here is to extend this result to the case of a nonconstant-known
diffusion coefficient using random time changes which yield models with diffusion
coefficient equal to 1. This provides a canonical way for solving the equivalence
problem. The time changed experiment coming from the Euler scheme does not
lead to an autonomous diffusion but to an Itô process with predictable drift which
induces the main difficulties.

More precisely, we consider the diffusion process (ξt ) given by

dξt = b(ξt ) dt + σ(ξt ) dWt , ξ0 = η,(1)

where (Wt)t≥0 is a Brownian motion defined on a filtered probability space
(�,A, (At )t≥0,P), η is a real valued random variable, A0-measurable, b(·), σ (·)
are real-valued functions defined on R. The diffusion coefficient σ(·) is a known
nonconstant function. The drift function b(·) is unknown and belongs to a nonpara-
metric class. The sample path of (ξt ) is continuously observed on a time interval
[0, T ]. We also consider the discrete observation of (ξt ) at the times ti = ih, i ≤ n

with n = [T/h]. For simplicity, we assume in what follows that T/h is an integer.
The Euler scheme corresponding to (1), with sampling interval h is

Z0 = η, Zi = Zi−1 + hb(Zi−1) + √
hσ(Zi−1)εi,(2)

where, for i ≥ 1, ti = ih and εi = (Wti − Wti−1)/
√

h. For performing the com-
parisons, we consider (Z0,Z1, . . . ,Zn) with n = T/h. We prove the asymptotic
equivalences assuming that n tends to infinity with h = hn and nh2

n = T 2/n tend-
ing to 0. This includes both cases T = nhn bounded and T → +∞. Note that, for
inference in diffusion models from discrete observations, the constraint nh2

n → 0 is
the standard condition for Lipschitz drift functions [e.g., Kessler (1997), Dalalyan
and Reiss (2006), Comte, Genon-Catalot and Rozenholc (2007)]. We can also
observe that statistical procedures for estimating the drift generally do not use
the knowledge of the diffusion coefficient which appears as a nuisance param-
eter. Carter (2007) did a noteworthy improvement in this direction: he proves the
asymptotic equivalence of the regression experiment with unknown variances with
an experiment having two components, the first containing information about the
variance, the second containing information on the mean. An important open prob-
lem which has never been tackled concerns the similar result for diffusion pro-
cesses with unknown diffusion coefficient σ(·).
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The paper is organized as follows. Assumptions and main results are given in
Section 2. Theorem 2.1 states the equivalence result of (1) and (2) and Corol-
lary 2.1 states the equivalence of the discrete observation of the diffusion and its
Euler scheme. The proof of Theorem 2.1 is developed in Section 3. We consider
random time changes on the diffusion and on the Euler scheme leading to processes
with diffusion coefficient equal to 1. First, the classical random time change on the
diffusion which leads to an autonomous diffusion process with drift f = b/σ 2 and
diffusion coefficient equal to 1 is recalled (Proposition 3.1). We prove the exact
equivalence between the diffusion experiment (1) and the random time changed
experiment (Proposition 3.2). For the Euler scheme, we build a continuous time
accompanying experiment (Proposition 3.3). Then we introduce a random time
change leading to a process with unit diffusion coefficient. This process charac-
terized in Proposition 3.4 has a predictable path-dependent drift term. The exact
equivalence between the corresponding experiment and the Euler scheme experi-
ment is proved in Theorem 3.1. Finally, for n → ∞, the asymptotic equivalence of
the two randomly stopped experiments is proved (Proposition 3.5) under the condi-
tion h = hn → 0, nh2

n → 0, thus completing the proof of Theorem 2.1. Concluding
remarks and extensions are given in Section 4. Proofs are gathered in Section 5.
Appendix contains a short recap on the Le Cam deficiency distance � and some
useful auxiliary results.

2. Assumptions and main results. We assume that the diffusion coefficient
σ(·) of (1) is known, belongs to C2(R) and satisfies:

(C) ∀x ∈R,0 < σ 2
0 ≤ σ 2(x) ≤ σ 2

1 , |σ ′(x)| + |σ ′′(x)| ≤ Kσ .

The function b(·) is unknown and such that, for K a positive constant:

(H1) b(·) ∈ FK = {b(·) ∈ C1(R) and for all x ∈ R, |b(x)| + |b′(x)| ≤ K}.
The constant K has to exist but may be unknown.
Condition (C) and assumption (H1) ensure that the stochastic differential equa-

tion (1) has a unique strong solution process (ξt )t≥0. The assumptions on b,σ are
rather strong but allow to shorten technical proofs. Note that (H1) and (C) include
models with or without ergodicity properties. The distribution of the initial variable
η of (1) may be known or unknown.

Let C(R+,R) be the space of continuous real functions defined on R
+, and de-

note by (Xt , t ≥ 0) the canonical process of C(R+,R) given by (Xt(x) = x(t), t ≥
0) for x ∈ C(R+,R), C0,X

t = σ(Xs, s ≤ t), CX
t = ⋂

s>t C0,X
s and CX = σ(CX

t , t ≥
0). Denote by Pb the distribution of (ξt , t ≥ 0) defined by (1) on (C(R+,R),CX)

and consider the experiment associated with the continuous observation of the dif-
fusion

E0 = (
C

(
R

+,R
)
,CX, (Pb, b ∈ FK)

)
.
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If T is fixed or is a (CX
t )-stopping time, we define the restriction Pb/CX

T
of Pb to

the σ -field CX
T . The experiment associated with the continuous observation of (ξt )

stopped at T is

ET
0 = (

C
(
R

+,R
)
,CX

T , (Pb/CX
T
, b ∈ FK)

)
.(3)

Consider now the Euler scheme corresponding to (1), with sampling interval h, de-
fined in (2). This experiment is an autoregression model but we have rather call it
Euler scheme as it is associated with the one-step discretization of (1). Let (πi)i≥0
denote the canonical projections of R

N → R given by (πi(x) = xi, i ≥ 0) for
x ∈ R

N and set Gn = σ(π0, π1, . . . , πn), G = σ(Gn, n ≥ 0). We denote by Qh
b the

distribution of (Zi, i ≥ 0) defined by (2) on (RN,B(RN)). For N a (Gn)-stopping
time, we consider the restriction Qh

b/GN
of Qh

b to GN . The experiment associated
with the discrete Euler scheme (Zi) with sampling interval h stopped at N is

Gh,N = (
R
N,GN,

(
Qh

b/GN
, b ∈ FK

))
.(4)

We now state the main result.

THEOREM 2.1. Assume (H1)–(C). For deterministic N = n, h = hn, the se-
quences of experiments (Enhn

0 ) and (Ghn,n) are asymptotically equivalent for the

Le Cam distance � as n → ∞, if hn → 0 and nh2
n → 0: �(Enhn

0 ,Ghn,n) → 0.

An important consequence is the comparison of the experiment associated with
the discrete observation (ξih, i ≤ n) of the diffusion with sampling interval h and
the experiment Gh,n. Let P h

b denote the distribution of (ξih)i≥0 defined by equa-
tion (1) on (RN,B(RN)). For N a (Gn)-stopping time, let P h

b /GN
be the restriction

of P h
b to GN . The experiment associated with the discrete observations (ξih) with

sampling h stopped at N is

Eh,N = (
R
N,GN,

(
P h

b /GN
, b ∈FK

))
.

COROLLARY 2.1. Assume (H1)–(C). For deterministic N = n, h = hn, the
sequences of experiments (Ehn,n) and (Ghn,n) are asymptotically equivalent for
the Le Cam distance � as n → ∞, if hn → 0 and nh2

n → 0: �(Ehn,n,Ghn,n) → 0.

Milstein and Nussbaum (1998), Dalalyan and Reiss (2006) proved that when
σ(·) is constant and nh2

n tends to 0, the discrete observation (ξihn, i ≤ n) is an
asymptotically sufficient statistic for (ξt , t ≤ nhn), that is, �(Enhn

0 ,Ehn,n) → 0.
For nonconstant diffusion coefficient, the latter asymptotic sufficiency result can
be deduced using the change of function F(x) = ∫ x

0 du/σ(u). Therefore, applying
Theorem 2.1 yields the corollary.
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3. Random time changed experiments. To deal with the nonconstant diffu-
sion coefficient σ(·), we define experiments obtained by random time changes. For
this, set

f (x) = b(x)

σ 2(x)
, L = K

σ 2
0

(
1 + 2

Kσσ1

σ 2
0

)
.(5)

Under (H1)–(C), f is bounded and globally Lipschitz with constant L.

3.1. Time change on the diffusion. Define for x ∈ C(R+,R), t, u ≥ 0,

ρt (x) =
∫ t

0
σ 2(

x(s)
)
ds, τu(x) = inf

{
t ≥ 0, ρt (x) ≥ u

}
.(6)

Since σ(·) is known, the functions ρt and τu are known as well. Therefore, one
is allowed to use these functions in the construction of Markov kernels. By (C),
ρ+∞(x) = +∞, u

σ 2
1

≤ τu(x) ≤ u

σ 2
0

, ρτu(x)(x) = u, τρt (x)(x) = t . Note that τu(X) is

a stopping time with respect to the canonical filtration (CX
s , s ≥ 0). We introduce

now a classical time changed process.

PROPOSITION 3.1. Assume (H1)–(C). Let ξ be the solution of (1) and set
(ζu = ξτu(ξ), u ≥ 0) and (Gu =Aτu(ξ), u ≥ 0). Then

dζu = f (ζu) du + dBu, ζ0 = η,(7)

with (Bu) Brownian motion w.r.t. (Gu) which satisfies the usual conditions.

The proof relies on classical tools [e.g., Karatzas and Shreve (2000), Chapter 3,
Section 4 and Chapter 5, Section 5] and implies δ(Eτa(X)

0 , Ẽa
0 ) = 0 (see Appendix).

The main difficulty lies in studying the other deficiency. Denote by P̃b the dis-
tribution of (ζu, u ≥ 0) on C(R+,R). We associate to the time changed process
(ζu, u ≥ 0) an experiment with sample space C(R+,R). For sake of clarity, we
use a distinct notation for the canonical process and filtration. Let (Yu,u ≥ 0) be
defined by Yu(y(·)) = y(u) with y(·) ∈ C(R+,R), (CY

u , u ≥ 0) be the associated
right-continuous canonical filtration and CY = σ(CY

u , u ≥ 0). Set

Ẽ0 = (
C

(
R

+,R
)
,CY , (P̃b, b ∈ FK)

)
.

For A > 0 a (CY
u )-stopping time, define the experiment

ẼA
0 = (

C
(
R

+,R
)
,CY

A, (P̃b/CY
A
, b ∈ FK)

)
.

Define for y ∈ C(R+,R),

Tu(y) =
∫ u

0

dv

σ 2(y(v))
, At (y) = inf

{
u ≥ 0, Tu(y) ≥ t

} = T.(y)−1(t).(8)

Thus, for all t ≥ 0, At(Y ) is a (CY
u )-stopping time.
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PROPOSITION 3.2. Assume (H1)–(C). If x = (x(t), t ≥ 0), (y(u) =
x(τu(x)), u ≥ 0), then At(y) = ρt(x), Tu(y) = τu(x). For a,T deterministic
�(ET

0 , ẼAT (Y )
0 ) = 0 and �(Eτa(X)

0 , Ẽa
0 ) = 0.

The experiments E0 and Ẽ0 are linked by the mapping (x(t), t ≥ 0) → (y(u) =
x(τu(x)), u ≥ 0). For the stopped experiments, noting that {u, τu(x) ≤ T } =
{u,u ≤ AT (y)}, the previous mapping links ET

0 and ẼAT (Y )
0 . Similarly, the exper-

iments Ẽ0 and E0 are linked by the mapping (y(u), u ≥ 0) → (x(t) = y(At (y)),

t ≥ 0) and, for stopped experiments, noting that {t,At (y) ≤ a} = {t, t ≤ τa(x)},
this mapping links Ẽa

0 and Eτa(X)
0 .

3.2. Time change on the Euler scheme. As the discrete Euler scheme experi-
ment (4) has not the same sample space as the diffusion experiment (3), an essential
tool is to use the accompanying experiment of (4) which is the continuous-
time Euler scheme. Given a path x = x(·) ∈ C(R+,R) and a sampling scheme
ti = ih, i ≥ 1, we define the diffusion-type process ξ̄t ,

dξ̄t = b̄h(t, ξ̄ ) dt + σ̄h(t, ξ̄ ) dWt, ξ̄0 = η,(9)

with

b̄h(t, x) = ∑
i≥1

b
(
x(ti−1)

)
1(ti−1,ti ](t), σ̄h(t, x) = ∑

i≥1

σ
(
x(ti−1)

)
1(ti−1,ti ](t).

Let Qb denote the distribution of (ξ̄t , t ≥ 0) on (C(R+,R),CX) and, for T a
(CX

t )-stopping time, Qb/CX
T

the restriction of Qb to CX
T . Set

GT
0 = (

C
(
R

+,R
)
,CX

T , (Qb/CX
T
, b ∈ FK)

)
.(10)

PROPOSITION 3.3. For h > 0, N a (Gn)-stopping time, the Le Cam distance
between Gh,N and GNh

0 [(4), (10)] is equal to 0: �(Gh,N ,GNh
0 ) = 0.

Let us define a time changed process associated with the continuous Euler
scheme (ξ̄t ). The study of this time changed process is more difficult because the
drift term and the diffusion coefficient of the continuous-time Euler scheme are
time and path dependent. Let

ρ̄t (x) =
∫ t

0
σ̄ 2

h (s, x) ds, τ̄u(x) = inf
{
t ≥ 0, ρ̄t (x) ≥ u

}
.

Analogously, τ̄u(X) is a stopping time of the canonical filtration CX . With the
convention

∑i−1
j=0 = 0 for i = 0, we have, for i ≥ 0 and ti < t ≤ ti+1,

ρ̄t (x) = ρ̄ti (x) + (t − ti)σ̄
2
h (ti , x) = h

i−1∑
j=0

σ 2(
x(tj )

) + (t − ti)σ
2(

x(ti)
)
.
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Hence, (ρ̄t (x), t ≥ 0) is continuous, increasing on R
+ and maps (ti , ti+1] on

(ρ̄ti (x), ρ̄ti+1(x)]. By (C), ρ̄+∞(x) = +∞, u/σ 2
1 ≤ τ̄u(x) ≤ (u/σ 2

0 ) + �, and
{t → ρ̄t (x)}, {u → τ̄u(x)} are inverse. In particular, for all i, x, ti = τ̄ρ̄ti

(x)(x).

For ξ̄ solution of (9), set (
Gu = Aτ̄u(ξ̄ )), and define the process

(ζ̄u = ξ̄τ̄u(ξ̄ ), u ≥ 0),(11)

which is adapted to the filtration (
Gu) which satisfies the usual conditions. Denote
by Q̃b the distribution of (ζ̄u).

PROPOSITION 3.4. The process (ζ̄u) defined in (11) has unit diffusion coeffi-
cient and drift term given by [see (5)]:

f̄ (v) = ∑
i≥0

f (ζ̄ρ̄ti
(ξ̄ ))1(ρ̄ti

(ξ̄ ),ρ̄ti+1 (ξ̄ )](v),(12)

where (ρ̄ti (ξ̄ )) are (
Gu)-stopping times and so, f̄ (v) is predictable w.r.t. (
Gu).

We associate to the time changed process (ζ̄u, u ≥ 0) an experiment with sam-
ple space C(R+,R) and canonical process (Yu,u ≥ 0) with associated canonical
filtration (CY

u , u ≥ 0). Set

G̃0 = (
C

(
R

+,R
)
,
(
CY

u

)
, (Q̃b, b ∈ FK)

)
.

For A > 0 a (CY
u )-stopping time, define the experiment

G̃A
0 = (

C
(
R

+,R
)
,CY

A, (Q̃b/CY
A
, b ∈ FK)

)
.

For y ∈ C(R+,R), set 
A0(y) = 0, for t ∈ (ti−1, ti],

At(y) = 
Ati−1(y) + σ 2(

y
(
Ati−1(y)

))
(t − ti−1).(13)

Let 
Tu(y) = inf{t, 
At(y) ≥ u}.
LEMMA 3.1. Set (y(u) = x(τ̄u(x)), u ≥ 0). Then, 
At(y) = ρ̄t (x) and 
Tu(y) =

τ̄u(x). Consequently, for all t ≥ 0, 
At(Y ) is a (CY
u )-stopping time.

Thus, the drift term in Proposition 3.4 is f̄ (v) = f̄ (v, ζ̄ ) with

f̄ (v, y) = ∑
i≥1

f
(
y
(
Ati−1(y)

))
1(
Ati−1 (y),
Ati

(y)](v).

The following result parallel of Proposition 3.2 contains the main difficulties.

THEOREM 3.1. Assume (H1) and (C). For deterministic a > 0 and T = nh,

�(GT
0 , G̃
AT (Y )

0 ) = 0 and �(G τ̄a(X)
0 , G̃a

0 ) = 0.

The proof uses the following devices. If x and y are linked by (x(t), t ≥ 0) →
(y(u) = x(τ̄u(x)), u ≥ 0), then {u, τ̄u(x) ≤ T } = {u,u ≤ 
AT (y)}. Similarly, for
(x(t) = y(
At(y)), t ≥ 0), then {t, 
At(y) ≤ a} = {t, t ≤ τ̄a(x)}.
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3.3. Asymptotic equivalence of randomly stopped experiments. At this point,
the triangle inequality implies that, for fixed T ,n,h such that T = nh,

�
(
ET

0 ,Gh,n) ≤ �
(
ET

0 ,GT
0

) ≤ �
(
ẼAT (Y )

0 , G̃
AT (Y )
0

)
.

We now introduce the asymptotic framework. Set Tn = T = nhn and consider the
stopping times

An = Anhn(Y ), 
An = 
Anhn(Y ), Sn = 
An ∧ An.(14)

It remains to study �(ẼAn

0 , G̃
An

0 ). These two experiments have the same sample
space but are observed up to distinct stopping times.

LEMMA 3.2. Assume (H1) and (C). There exists a constant D depending only
on K,Kσ ,σ0, σ1 such that EP̃b

|An − 
An| ≤ Dnh2
n.

Using (14), the triangle inequality yields

�
(
ẼAn

0 , G̃
An

0

) ≤ �
(
ẼAn

0 , ẼSn

0

) + �
(
ẼSn

0 , Ẽ 
An

0

) + �
(
Ẽ 
An

0 , G̃
An

0

)
.(15)

Therefore, we have to study the Le Cam distances, respectively, for the same ex-
periment observed up to two distinct times and for two experiments observed up
to the random time 
An. The following holds.

PROPOSITION 3.5. Assume (H1) and (C). There exist constants K1,K2 de-
pending only on K,Kσ ,σ0, σ1 such that

�
(
ẼAn

0 , ẼSn

0

) + �
(
Ẽ 
An

0 , ẼSn

0

) ≤ K1
(
nh2

n

)1/2
,(16)

�
(
Ẽ 
An

0 , G̃
An

0

) ≤ K2
(
nh2

n

)1/2
.(17)

Therefore, if nh2
n goes to 0 as n tends to infinity, �(ẼAn

0 , G̃
An

0 ) → 0.

Joining Propositions 3.2, 3.3, Theorem 3.1 and Proposition 3.5 completes the
proof of Theorem 2.1.

4. Concluding remarks. In this paper, we have obtained the asymptotic
equivalence of the continuous time diffusion (1) observed on the time interval
[0, T ] and (2) the corresponding Euler scheme with sampling interval h and
T = nh in the case of a nonconstant diffusion coefficient. The discrete Euler
scheme model is often used in applications instead of the diffusion itself. It is
broadly accepted as an appropriate substitute to the diffusion because of its weak
convergence to the diffusion. The equivalence result obtained here was known for
a constant diffusion coefficient. Our contribution is the extension to the case of a
nonconstant diffusion coefficient by means of random time changed experiments.
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The constant K in the definition of the class FK is not used for building the Markov
kernels contrary to the diffusion coefficient σ(·). The asymptotic framework is
n → +∞, h = hn → 0 and nh2

n = T 2/n → 0. In our result, T = nhn may be fixed
or tend to infinity. We have no assumption concerning the existence of a stationary
regime for the diffusion or for the Euler scheme. This comes from the assumption
that b is bounded which allows to substantially shorten proofs. For unbounded drift
functions, the two cases “T bounded” and “T tending to infinity” have to be dis-
tinguished. In the latter case, the diffusion model must be positive recurrent with
moment assumptions on the stationary distribution.

Compared with other equivalence results, the regularity assumption for b might
seem too strong. However, a classical assumption for existence and uniqueness of a
strong solution to (1) is b locally Lipschitz with linear growth. Generally, authors
assume that b is C1 with linear growth. Dalalyan and Reiss (2006) consider a
special class of drift functions: b is locally Lipschitz, known outside a compact
interval I , and Hölder with exponent α ∈ (0,1) inside I . They obtain a global
asymptotic equivalence of a stationary diffusion and a mixed Gaussian experiment
as T → +∞.

An interesting issue concerns multidimensional diffusions and their associated
Euler scheme. If the diffusion matrix is constant, the problem is solved [Dalalyan
and Reiss (2007)]. Otherwise, consider a d-dimensional process dξt = b(ξt ) dt +
�(ξt ) dWt , where b :Rd → R

d , � :Rd → R
d ⊗ R

d , (Wt) is a d-dimensional
Brownian motion. If �(x) has the special form �(x) = σ(x)P (x) where σ :Rd →
(0,+∞) and the d × d-matrix P(x) satisfies, for all x ∈ R

d , P(x)P (x)t = I ,
the equivalence result is obtained similarly. Indeed, setting ρt (x) = ∫ t

0 σ 2(x(s)) ds

with inverse τu(x), the time changed process ζu = ξτu(ξ) has a diffusion matrix
equal to the identity matrix and a drift equal to b(u)/σ 2(u). As for the continuous
Euler scheme, we can define analogously ρ̄t (x) and τ̄u(x).

Statistical procedures for estimating the drift generally do not use the knowledge
of the diffusion coefficient which appears as a nuisance parameter. It is an open
question to know whether the equivalence proved here holds when the diffusion
coefficient is unknown.

5. Proofs.

PROOF OF PROPOSITION 3.2. By Proposition 3.1, Ẽa
0 is the image of Eτa(X)

0
by the measurable mapping (x(t), t ∈ [0, τa(x)]) → (y(u) = x(τu(x)), u ∈ [0, a]),
which implies δ(Eτa(X)

0 , Ẽa
0 ) = 0.

Now, we look at ET
0 . As T = τρT (x)(x) [(6)], the image of (x(t), t ≤ T ) is

(y(u) = x(τu(x)), u ≤ ρT (x)). We must express ρT (x) in terms of the path y and
prove that ρT (x) = AT (y). Since (ρT (X) ≥ u) = (τu(X) ≤ T ), ρT (X) is a stop-
ping time of (CX

τu(X), u ≥ 0). The continuity of u → τu(X) implies

σ(Xτv(X), v ≤ u) = σ
(
Xs, s ≤ τu(X)

)
.
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Thus, ρT (X) is a stopping time of σ(Yv, v ≤ u) with Yv = Xτv(X). Observe that,
using the change of variable τv(X) = s ⇔ v = ρs(X), we have

Tu(Y ) =
∫ u

0

(
dv/σ 2(Yv)

)
dv =

∫ τu(X)

0
ds = τu(X).

This implies ρT (X) = AT (Y ) which yields δ(ET
0 , ẼAT (Y )

0 ) = 0.
Consider now the reverse operation. Let (Bu,u ≥ 0) be a standard Brownian

motion with respect to a filtration (Gu) satisfying the usual conditions and ζ0 be a
G0-measurable random variable. We define, for u ≥ 0,

ζu = ζ0 +
∫ u

0

b(ζv)

σ 2(ζv)
dv + Bu and Tu = Tu(ζ ) =

∫ u

0

dv

σ 2(ζv)
.(18)

Clearly, the mapping u → Tu is a bijection from [0, a] onto [0, Ta] with inverse
t → T −1(t) := At(ζ ). Therefore, we can define, for 0 ≤ t ≤ Ta , the process ξt =
ζAt (ζ ). The change of variable v = As(ζ ) ⇔ s = Tv yields that ds = dv/σ 2(ζv) =
dv/σ 2(ζAs(ζ )) = dv/σ 2(ξs) and equation (18) becomes

ξt = ξ0 +
∫ At (ζ )

0

b(ζv)

σ 2(ζv)
dv + BAt(ζ ) = ξ0 +

∫ t

0
b(ξs) ds + BAt(ζ ).

Now, (Mt = BAt(ζ )) is a martingale w.r.t. (GAt (ζ )) satisfying

〈M〉t = At(ζ ) =
∫ At (ζ )

0
ds =

∫ t

0
σ 2(ζAs(ζ )) ds =

∫ t

0
σ 2(ξs) ds.

Hence, τu(ξ) = A.(ζ )−1(u) = Tu and (ξt ) has distribution Pb. As (At (ζ )) is con-
tinuous, (GAt (ζ )) inherits the usual conditions from (Gu).

Finally, we can express the above properties on the canonical space. Let y =
(y(v), v ≥ 0), set Tu(y) = ∫ u

0 dv/σ 2(y(v)) with inverse A.(y) and consider

� :y ∈ C
(
R

+,R
) → (

x := y
(
At(y)

)
, t ≥ 0

) ∈ C
(
R

+,R
)
.

As At(y) = ∫ t
0 σ 2(x(s)) ds = ρt (x), we see that A.(y)−1(u) = τu(x). Thus,

(Xt , t ≤ τa(X)) is the image of (Y (u),u ≤ a) by the measurable mapping � .
Hence, δ(Ẽa

0 ,Eτa(X)
0 ) = 0. Analogously, (Xt , t ≤ T ) is the image of (Y (u),u ≤

AT (Y )) which implies δ(ẼAT (Y )
0 ,ET

0 ). �

PROOF OF PROPOSITION 3.3. This proof relies on Lemma 5.1 below. Define
the linear interpolation between the points ((ti,Zi), i ≥ 0):

y(t) = Zi + t − ti

ti+1 − ti
(Zi+1 − Zi) if t ∈ [ti , ti+1] and i ≥ 0.(19)

LEMMA 5.1. The solution (ξ̄t ) of (9) satisfies (ξ̄ti , i ≥ 0) = (Zi, i ≥ 0) where
(Zi, i ≥ 0) is the discrete Euler scheme (2). Moreover,

ξ̄t = y(t) + σ(Zi)Bi(t) if t ∈ [ti , ti+1] and i ≥ 0,(20)
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where Bi(t) = Wt −Wti − t−ti
ti+1−ti

(Wti+1 −Wti ). The process (ξ̄t ) is adapted to (At ),

((Bi(t), t ∈ [ti , ti+1]), i ≥ 0) are independent Brownian bridges and the sequence
((Bi(t), t ∈ [ti , ti+1]), i ≥ 0) is independent of (Zj , j ≥ 0).

This is a classical result obtained with standard tools. We may now complete
the proof of Proposition 3.3. Since (Zi, i ≥ 0) is the image of (ξ̄t , t ≥ 0) by the
mapping x(·) → (x(ti), i ≥ 0), δ(GNh

0 ,Gh,N) = 0.
Consider, for ω ∈ �, the application �σ,h = � :RN → C(R+,R) defined by

(xi, i ≥ 0) → x(·) with x(t) = xi−1 + t−ti−1
ti−ti−1

(xi − xi−1) + σ(xi−1)Bi−1(t,ω) for

t ∈ [ti−1, ti]. As σ is known, � is a randomization and, by Lemma 5.1, GNh
0 is the

image by � of Gh,N . Hence, δ(Gh,N ,GNh
0 ) = 0. �

PROOF OF PROPOSITION 3.4. By definition of (ζ̄u), we have

ζ̄u = ξ̄0 +
∫ τ̄u(ξ̄ )

0

∑
i≥0

b(ξ̄ti )1ti<s≤ti+1 ds + 
Bu,(21)

where 
Bu = ∫ τ̄u(ξ̄ )
0

∑
i≥0 σ(ξ̄ti )1ti<s≤ti+1 dWs is a martingale w.r.t. 
Gu = Aτ̄u(ξ̄ )

with quadratic variations 〈
B〉u = ∫ τ̄u(ξ̄ )
0

∑
i≥0 σ 2(ξ̄ti )1ti<s≤ti+1 ds = u. Therefore,

(
Bu) is a Brownian motion with respect to (
Gu).
In the integral of (21), the change of variable s = τ̄v(ξ̄ ) ⇔ v = ρ̄s(ξ̄ ) yields,

noting that dv = σ 2(ξ̄ti ) ds for v ∈ (ρ̄ti (ξ̄ ), ρ̄ti+1(ξ̄ )], and that ti = τ̄ρ̄ti
(x)(x),

ζ̄u = ξ̄0 +
∫ u

0

∑
i≥0

b(ξ̄ti )

σ 2(ξ̄ti )
1ρ̄ti

(ξ̄ )<v≤ρ̄ti+1 (ξ̄ ) dv + 
Bu,(22)

where ξ̄ti = ζ̄ρ̄ti
(ξ̄ ) = Zi is the discrete Euler scheme (Lemma 5.1).

Thus, (
Yu) defined in (11) is a process with diffusion coefficient equal to 1
and drift term f̄ (v). We now check that f̄ (v) is predictable w.r.t. (
Gu), that
is, ∀i, ρ̄ti (ξ̄ ) is a (
Gu)-stopping time and ζ̄ρ̄ti

(ξ̄ ) is 
Gρ̄ti
(ξ̄ )-measurable. Noting

that (ρ̄ti (ξ̄ ) ≤ u) = (τ̄u(ξ̄ ) ≥ ti) belongs to 
Gu = Aτ̄u(ξ̄ ) yields that ρ̄ti (ξ̄ ) is a

(
Gu)-stopping time. We know that ζ̄ρ̄ti
(ξ̄ ) = ξ̄ti is Ati -measurable, which achieves

the proof since Ati = 
Gρ̄ti
(ξ̄ ). �

PROOF OF LEMMA 3.1. The relation (y(u) = x(τ̄u(x)) is equivalent to
(y(ρ̄t (x)) = x(t)). First, note that 
At1(y) = σ 2(y(0))t1 = σ 2(x(0))t1 = ρ̄t1(x). By
induction, assume that 
Atj (y) = ρ̄tj (x) for j ≤ i − 1. Then


Ati (y) = ρ̄ti−1(x) + σ 2(
y
(
ρ̄ti−1(x)

))
(ti − ti−1)

= ρ̄ti−1(x) + σ 2(
x(ti−1)

)
(ti − ti−1) = ρ̄ti (x).
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Thus, the two inverse functions coincide: 
Tu(y) = τ̄u(x). As above, we deduce that
At(y) is a stopping time w.r.t. (CY

u ) with Yu = Xτ̄u(X). �

PROOF OF THEOREM 3.1. The proof is divided in several steps.

First, as G̃a
0 is the image of G τ̄a(X)

0 by the measurable mapping (x(t), t ≤
τ̄a(x)) → (y(u) = x(τ̄u(x)), u ∈ [0, a]), δ(G τ̄a(X)

0 , G̃a
0 ) = 0.

Now consider GT
0 . We have T = τ̄ρ̄T (x)(x). Hence, the image of (x(t), t ≤ T ) is

(y(u) = x(τ̄u(x)), u ≤ ρ̄T (x) = 
AT (y)) according to Lemma 3.1. This proves that

δ(GT
0 , G̃
AT (y)

0 ) = 0.
Let us study the other deficiencies. We first construct a process (ζ̄u) with distri-

bution Q̃b (step 1), then a process (ξ̄t ) with distribution Qb obtained from (ζ̄u) by
the mapping (y(u), u ≥ 0) → (y(
At(y)), t ≥ 0) (step 2).

Step 1. Let (
Bu) be a Brownian motion w.r.t. a filtration (
Gu) satisfying the
usual conditions. Assume that ζ̄0 is 
G0-measurable. Then we define recursively a
sequence of random times (Ti) and a continuous process (ζ̄u). First, set T0 = 0,
then

T1 = T1(ζ̄ ) = σ 2(ζ̄0)t1, ζ̄u = ζ̄0 + f (ζ̄0)u + 
Bu for 0 < u ≤ T1,

Ti = Ti(ζ̄ ) = Ti−1 + σ 2(ζ̄Ti−1)(ti − ti−1),(23)

ζ̄u = ζ̄Ti−1 + f (ζ̄Ti−1)(u − Ti−1) + 
Bu − 
BTi−1 for Ti−1 < u ≤ Ti.(24)

Note that Ti = 
Ati (ζ ) [see (13)].

LEMMA 5.2. The sequence (Ti) is an increasing sequence of (
Gu)-stopping
times such that, for all i ≥ 1, Ti is 
GTi−1 measurable. Moreover, the process (ζ̄u)

defined in (23), (24) is a diffusion-type process adapted to (
Gu) with diffusion
coefficient equal to 1 and drift coefficient

f̄ (u, y) = ∑
i≥1

f
(
y
(
Ti−1(y)

))
1Ti−1(y)<u≤Ti(y),

where (Ti(y) = 
Ati (y), i ≥ 0) are recursively defined as in (13) using y(·) and
f = b/σ 2 [see (5)]. Hence, the process (ζ̄u) has distribution Q̃b.

PROOF. First, T1 is 
G0-measurable, thus {T1 ≤ u} ∈ 
G0 ⊂ 
Gu. Hence, T1 is a
(
Gu)-stopping time. Now, ζ̄u = ζ̄0 + f (ζ̄0)u + 
Bu is 
Gu-measurable. Thus, T1 and
ζ̄T1 are 
GT1 measurable.

By induction, assume that, for 1 ≤ j ≤ i, Tj is 
GTj−1 -measurable, Tj is a
(
Gu)-stopping time, and (ζ̄u, u ≤ Ti) is 
Gu-measurable. Now, for u > Ti , ζ̄u =
ζ̄Ti

+ f (ζ̄Ti
)(u − Ti) + 
Bu − 
BTi

defined by (24) is 
Gu-measurable. As Ti+1 =
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Ti +σ 2(ζ̄Ti
)(ti+1 − ti), the induction assumption yields that Ti+1 is 
GTi

-measurable
and, since Ti < Ti+1 by (C),

∀v ≥ u {Ti+1 ≤ u} = {Ti+1 ≤ u} ∩ {Ti ≤ v} ∈ 
Gv.

This implies that {Ti+1 ≤ u} = {Ti+1 ≤ u} ∩ ⋂
v>u{Ti ≤ v} ∈ ⋂

v>u

Gv = 
Gu

which proves that Ti+1 is a (
Gu)-stopping time. Thus, Ti+1 and ζ̄Ti+1 are

GTi+1 -measurable. The proof of Lemma 5.2 is now complete. �

Step 2. Let us study the distribution of ξ̄t defined as

ξ̄t = ζ̄
At (ζ̄ ).(25)

By Lemma 5.2, 
Ati (ζ̄ ) = Ti is a (
Gu)-stopping time. For ti ≤ t ≤ ti+1, 
At(ζ̄ ) =
Ti + (t − ti)σ

2(ζ̄Ti
) is 
GTi

-measurable, so

∀v > u
{
At(ζ̄ ) ≤ u

} = {
At(ζ̄ ) ≤ u
} ∩ {Ti ≤ v} ∈ 
Gv.

Hence, {
At(ζ̄ ) ≤ u} = {
At(ζ̄ ) ≤ u}∩⋂
v>u{Ti ≤ v} ∈ ⋂

v>u

Gv = 
Gu which proves

that 
At(ζ̄ ) is a (
Gu)-stopping time.
Thus, we can define the filtration ( 
At := 
G
At (ζ̄ )) to which (ξ̄t ) is adapted.

LEMMA 5.3. The sequence (ξ̄ti = ζ̄Ti
, i ≥ 0), with (ζ̄u) defined by (23)–(24),

(ξ̄t ) in (25), has the distribution of the discrete Euler scheme (2).

PROOF. For all i ≥ 0, the process(
B(i)
v = 
BTi+v − 
BTi

, v ≥ 0
)

(26)

is a Brownian motion independent of 
GTi
= Ati , adapted to (
GTi+v). As ξ̄ti = ζ̄Ti

is 
GTi
-measurable, this r.v. is independent of (
B(i)

v , v ≥ 0). Define

εi+1 =

BTi+1 − 
BTi√

Ti+1 − Ti

=

B(i)

σ 2(
YTi
)(ti+1−ti )

σ (
YTi
)
√

ti+1 − ti
.(27)

The random variable εi+1 is 
GTi+1 -measurable. We can write

ζ̄Ti+1 = ζ̄Ti
+ b(ζ̄Ti

)(ti+1 − ti) + σ(ζ̄Ti
)
√

ti+1 − tiεi+1, i ≥ 0.(28)

To conclude, it is enough to prove that (εi, i ≥ 1) is a sequence of i.i.d. standard
Gaussian random variables, independent of 
G0.

Applying Proposition A.1 of the Appendix yields that, for all i ≥ 0, εi+1 is a
standard Gaussian variable independent of 
GTi

. This holds for i = 0 and proves that
ε1 is independent of 
G0 and has distribution N (0,1). By induction, assume that
(εk, k ≤ i − 1) are i.i.d. standard Gaussian random variables, independent of 
G0.
Consider ζ̄0 ∼ η. As (ζ̄0, εk, k ≤ i − 1) is 
GTi

-measurable, we get that εi+1 is a
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standard Gaussian variable independent of (ζ̄0, εk, k ≤ i − 1). This completes the
proof of Lemma 5.3. �

Define now (x̄(t)) as the linear interpolation between the points (ti, ξ̄ti ). We
now describe the processes (ξ̄t − x̄(t)) for ti ≤ t ≤ ti+1.

LEMMA 5.4. For t ∈ [ti , ti+1], ξ̄t = x̄(t) + σ(ξ̄ti )

Ci(t), where ((
Ci(t), ti ≤

t ≤ ti+1), i ≥ 0) is a sequence of independent Brownian bridges adapted to ( 
At ),
independent of (ξ̄tj , j ≥ 0).

PROOF. We have ȳ(u) = ζ̄Ti
+ u−Ti

Ti+1−Ti
(ζ̄Ti+1 − ζ̄Ti

). Using (27)–(28), we ob-
tain, for u ∈ [Ti, Ti+1],

ζ̄u = ȳ(u) + 
Bu − 
BTi
− u − Ti

Ti+1 − Ti

σ (ζ̄Ti
)
√

ti+1 − ti

BTi+1 − 
BTi√

Ti+1 − Ti

= ȳ(u) + Di(u)

with

Di(u) = 
Bu − 
BTi
− u − Ti

Ti+1 − Ti

(
BTi+1 − 
BTi
).

For ti ≤ t ≤ ti+1, using (13) and (23), we get x̄(t) = ȳ(
At(ζ̄.)). Thus, ξ̄t − x̄(t) =
Di(
At(ζ̄.)), and define, using (26), 
Ci(t) by

ξ̄t − x̄(t) = 
B(i)

σ 2(ξ̄ti
)(t−ti )

− t − ti

ti+1 − ti

B(i)

σ 2(ξ̄ti
)(ti+1−ti )

= σ(ξ̄ti )

Ci(t).

Proving that (ξ̄ti , i ≥ 0) is independent of ((
Ci(t), t ∈ [ti , ti+1]), i ≥ 0) is equiva-
lent to proving that (ξ̄0, εi, i ≥ 1) is independent of ((
Ci(t), t ∈ [ti , ti+1]), i ≥ 0).
We now show that, ∀i ≥ 1, (ξ̄0, ε1, . . . , εi) is independent of (
C0, . . . , 
Ci−1) and
that the latter processes are independent Brownian bridges. Using Proposition A.1
with B = 
B(i−1), F. = 
GTi−1+., τ = σ 2(ξ̄ti−1), i ≥ 1 yields that Wi(t − ti−1) =

1
σ(ξ̄ti−1 )


B(i−1)

σ 2(ξ̄ti−1 )(t−ti−1)
, t ≥ ti−1, is a Brownian motion independent of 
GTi−1 .

Thus, (
Ci−1(t), t ∈ [ti−1, ti]) is a Brownian bridge independent of Wi(ti − ti−1) =
εi

√
ti − ti−1. Moreover, 
GTi−1 , Wi(ti − ti−1), and (
Ci−1(t), t ∈ [ti−1, ti]) are inde-

pendent.
For i = 1, as ξ̄0 is 
G0-measurable, we get that ξ̄0, ε1, 
C0 are independent and 
C0

is a Brownian bridge. By induction, let us assume that ξ̄0, ε1, . . . , εi, 
C0, . . . , 
Ci−1
are independent and that 
C0, . . . , 
Ci−1 are Brownian bridges (on their respective
interval of definition). As Z = (ξ̄0, ε1, . . . , εi, 
C0, . . . , 
Ci−1) is 
GTi−1 -measurable,
we get that Z,εi+1, 
Ci are independent. The proof of Lemma 5.4 is complete. �
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Thus, we have constructed a process (ξ̄t ) with distribution Qb obtained by
the mapping (y(u), u ≥ 0) → (y(
At(y)), t ≥ 0). Hence, (x(t) = y(
At(y)), t ≤

Ta(y) = τ̄a(x)) is the image of (y(u), u ≤ a). This proves δ(G̃a

0 ,G τ̄a(X)
0 ) = 0.

Moreover, (x(t), t ≤ T ) is the image of (y(u), u ≤ 
AT (y)). This yields

δ(G̃
AT (Y )
0 ,GT

0 ) = 0. This completes the proof of Theorem 3.1. �

PROOF OF LEMMA 3.2. Using (8), At(y) = u ⇔ Tu(y) = t yields that An =∫ nhn

0 σ 2(y(As(y))) ds. Combining with (13), we get

An − 
An =
n∑

i=1

∫ ti

ti−1

(
σ 2(

y
(
As(y)

)) − σ 2(
y
(
Ati−1(y)

)))
ds.

Under P̃b, (Y (At (Y )) = Xt) has distribution Pb (see proof of Proposition 3.2).
Hence, EP̃b

|An − 
An| = EPb
|∑n

i=1
∫ ti
ti−1

(σ 2(Xs) − σ 2(Xti−1)) ds|. Denoting by L
the generator of the diffusion (Xt) (Lh = (1/2)σ 2h′′ +bh′), the Itô formula yields∫ ti
ti−1

(σ 2(Xs) − σ 2(Xti−1)) ds = B1(i) + B2(i), with

B1(i) =
∫ ti

ti−1

dv

∫ s

ti−1

Lσ 2(Xu)du,

B2(i) =
∫ ti

ti−1

dv

∫ s

ti−1

(
σ 2)′

(Xu)σ (Xu)dBu.

Condition (C) and (H1) ensure that ‖Lσ 2‖∞ is bounded by D1 depending on
K,Kσ ,σ1, so that, |B1(i)| ≤ D1h

2
n/2. For the second term,

B2(i) =
∫ ti

ti−1

ds

∫ s

ti−1

(
σ 2)′

(Xu)σ (Xu)dBu

=
∫ ti

ti−1

(ti − u)
(
σ 2)′

(Xu)σ (Xu)dBu,

n∑
i=1

B2(i) =
∫ nhn

0
H(n)

u dBu,

where

H(n)
u =

n∑
i=1

1]ti−1,ti ](u)(ti − u)
(
σ 2)′

(Xu)σ (Xu).

This yields EPb
(
∑n

i=1 B2(i))
2 = EPb

∫ nhn

0 (H
(n)
u )2 du ≤ D2nh3

n with D2 a con-
stant. Therefore, EP̃b

|An − 
An| ≤ D′(nh2
n + (nh3

n)
1/2) ≤ Dnh2

n. �

PROOF OF PROPOSITION 3.5. Proof of inequality (16). As ẼSn

0 is a restric-

tion of ẼAn

0 to a smaller σ -algebra, δ(ẼAn

0 , ẼSn

0 ) = 0. To evaluate the other defi-

ciency, we introduce a kernel from ẼSn

0 to ẼAn

0 . Let B ∈ CY
An

, and set N(ω,B) =
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EP̃0
(1B |CY

Sn
)(ω), where P̃0, corresponding to b = 0, is the distribution of (η +

Bu,u ≥ 0). Now, N(P̃b|CY
Sn

) defines a probability on (C(R+,R),CY
An

) with den-

sity w.r.t. P̃0|CY
An

, (dP̃b/dP̃0)|CY
Sn

. Indeed, for B ∈ CAn ,

N(P̃b|CSn)(B) =
∫
�

N(ω,B)d
(
P̃b|CY

Sn

) = EP̃0

(
dP̃b

dP̃0

∣∣∣∣CY
Sn

EP̃0

(
1B |CY

Sn

))

= EP̃0

(
dP̃b

dP̃0

∣∣∣∣CY
Sn

1B

)
.

For T a bounded stopping time,

dP̃b

dP̃0

∣∣∣∣CY
T = L̃T (b) = exp

(∫ T

0
f (Yu) dYu −

∫ T

0

1

2
f 2(Yu) du

)
.

Thus, (dP̃b/dP̃0)|CY
An

= L̃An(b) = L̃Sn(b)Vn, with logVn = ∫ An

Sn
f (Yu) dYu −∫ An

Sn

1
2f 2(Yu) du. Hence, dP̃b|CY

An
/dN(P̃b|CY

Sn
) = Vn. By the Pinsker inequality

(Appendix) and Lemma 3.2, we have

∥∥N(
P̃b|CY

Sn

) − P̃b|CY
An

∥∥
TV = 1

2

∫
�

dP̃0
∣∣L̃Sn(b) − L̃An(b)

∣∣
≤

√
K

(
P̃b|CY

An
,N

(
P̃b|CY

Sn

))
/2,

K
(
P̃b|Cτn,N(P̃b|CSn)

) = EP̃b|CY
An

∫ An

Sn

1

2
f 2(Xu)du

≤ K2

2σ 4
0

EP̃b
|An − 
An| ≤ K2

σ 4
0

cnh2
n.

Using that δ(ẼSn

0 , ẼAn

0 ) ≤ supb∈FK
‖N(P̃b|CY

Sn
) − P̃b|CY

An
‖TV yields the first in-

equality. We proceed analogously for the other one.
Proof of inequality (17). These experiments have the same sample space and

are, respectively, associated with the distributions P̃b (resp., Q̃b) on C(R+,R) of
(ζu, u ≥ 0) given by (7) [resp., (ζ̄u, u ≥ 0) given by (11)]. Hence,

�
(
Ẽ 
An

0 , G̃
An

0

) ≤ sup
b∈F

‖P̃b/C
AY
n

− Q̃b/C
AY
n
‖TV = �0

(
Ẽ 
An

0 , G̃
An

0

)
.

Using the bound of Proposition A.2 yields

2‖P̃b/CY
An

− Q̃b/CY
An

‖2
TV ≤ K(P̃b/CY
An

, Q̃b/CY
An

)

= EP̃b/CY
An

(∫ 
An

0

(
f (Yv) − f̄ (v, Y )

)2
dv

)
.
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Setting Ti = Ti(Y ) and using that, for i = 1, . . . , n, Ti = Ti(Y ) = 
Ati (Y ) [see (5.2)]
and that f is Lipschitz with constant L [see (5)], we get∫ 
An

0

(
f (Yv) − f̄ (v, Y )

)2
dv =

n∑
i=1

∫ Ti

Ti−1

(
f (Yv) − f (YTi−1)

)2
dv

≤ L2
n∑

i=1

∫ Ti

Ti−1

(Yv − YTi−1)
2 dv.

Under P̃b, Yv − YTi−1 = ∫ v
Ti−1

f (Yu) du + Bv − BTi−1 , with (Bv) Brownian mo-
tion. So

(Yv − YTi−1)
2 ≤ 2

[(∫ v

Ti−1

f (Yu) du

)2

+ (Bv − BTi−1)
2
]
.

This yields
∫ 
An

0 (f (Yv) − f̄ (v, Y ))2 dv ≤ 2L2(R1 + R2), with

R1 =
n∑

i=1

∫ Ti

Ti−1

(∫ u

Ti−1

f (Yv) dv

)2

du, R2 =
n∑

i=1

∫ Ti

Ti−1

(Bu − BTi−1)
2 du.

Using (5) and Ti − Ti−1 ≤ σ 2
1 hn by (23),

R1 ≤ K2

σ 4
0

n∑
i=1

(Ti − Ti−1)
3 ≤ K2

σ 4
0

n
(
σ 2

1 hn

)3
.

For the second term, using definition (26),

EP̃b
(R2) = EP̃b

(
n∑

i=1

∫ Ti

Ti−1

(Bu − BTi−1)
2 du

)
≤

n∑
i=1

∫ σ 2
1 hn

0
EP̃b

(
B(i)
v

)2
dv

= n
(σ 2

1 hn)
2

2
.

Thus, the result follows from

K(P̃b/C
AY
n
, Q̃b/C
AY

n
) ≤ 2L2

(
K2

3σ 4
0

n
(
σ 2

1 hn

)3 + n
(σ 2

1 hn)
2

2

)
.

%upqed Joining (16), (17) and (15) completes the proof of Proposition 3.5. �

APPENDIX

Let us recall properties of the Le Cam deficiency distance �. Consider two sta-
tistical experiments E = (�,A, (Pf )f ∈F ) and G = (X ,C, (Qf )f ∈F ) and assume
that the families (Pf )f ∈F , (Qf )f ∈F are dominated. A Markov kernel M(ω,dx)
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from (�,A) to (X ,C) is a mapping from � into the set of probability mea-
sures on (X ,C) such that, for all C ∈ C, ω → M(ω,C) is measurable on (�,A),
and for all ω ∈ �, M(ω,dx) is probability measure on (X ,C). The image MPf

of Pf under M is defined by MPf (C) = ∫
� M(ω,C)dPf (ω). The experiment

ME = (X ,C, (MPf )f ∈F ) is called a randomization of E by the kernel M . If
the kernel is deterministic, that is, for T : (�,A) → (X ,C) a random variable,
T (ω,C) = 1C(T (ω)), the experiment T E is called the image experiment by T .

DEFINITION A.1. �(E,G) = max{δ(E,G), δ(G,E)} where δ(E,G) =
infM∈M� : X supf ∈F ‖MPf − Qf ‖TV, ‖ · ‖TV is the total variation distance and
M� : X the set of Markov kernels from (�,A) to (X ,C).

When �(E,G) = 0, the two experiments are said to be equivalent. When
the experiments have the same sample space: (�,A) = (X ,C), it is possible to
define �0(E,G) = supf ∈F ‖Pf − Qf ‖TV, which satisfies �(E,G) ≤ �0(E,G).
Consider an asymptotic framework ε → 0 and families of experiments Eε =
(�ε,Aε, (P ε

f )f ∈F ), Gε = (X ε,Cε, (Qε
f )f ∈F ), Bε ⊂ Aε a σ -algebra.

DEFINITION A.2. The families Eε , Gε are asymptotically equivalent as
ε → 0 if �(Eε,Gε) tends to 0. The σ -algebra Bε is asymptotically sufficient if
�(Eε,Eε/Bε ) tends to 0, where Eε/Bε is the restriction of Eε to Bε .

We state now two auxiliary results used in proofs.

PROPOSITION A.1. Let (Bt , t ≥ 0) be a Brownian motion with respect to a
filtration (Ft , t ≥ 0) (satisfying the usual conditions) and let τ be a positive F0-
measurable random variable. Then (W(t) = 1√

τ
Bτt , t ≥ 0) is a standard Brownian

motion, independent of F0.

This result follows from a straightforward application of Paul Lévy’s charac-
terisation of the Brownian motion [see, e.g., Karatzas and Shreve (2000)]. Next,
we recall the first Pinsker inequality [see, e.g., Tsybakov (2009)] for the total vari-
ation distance between probability measures. Let (X ,A) be a measurable space,
P,Q two probability measures on (X ,A), ν a σ -finite measure on (X ,A) such
that P � ν, Q � ν and set p = dP/dν, q = dQ/dν. The total variation dis-
tance between P and Q is defined by: ‖P − Q‖TV = supA∈A |P(A) − Q(A)| =
1
2

∫ |p − q|dν. The Kullback divergence of P w.r.t. Q is K(P,Q) = ∫
log dP

dQ
dP

if P � Q, = +∞ otherwise.

PROPOSITION A.2. ‖P − Q‖TV ≤ √
K(P,Q)/2.

The remarkable feature of this inequality is that the left-hand side is a sym-
metric quantity whereas the right-hand side is not. The noteworthy consequence



1164 V. GENON-CATALOT AND C. LARÉDO

is that it is possible to choose, for the right-hand side, K(P,Q) or K(Q,P ).
The Pinsker inequality is particularly useful when P,Q are associated with dif-
fusion type processes. Let P (resp., Q) be the distribution C(R+,R) of the dif-
fusion type process dξt = p(t, ξ.) dt + dWt with predictable drift p(t,X.) [resp.,
dηt = q(t, η.) dt +dWt with drift q(t,X.)] and constant diffusion coefficient equal
to 1, with the same initial condition ξ0 = η0. Let T = T (X.) be a finite stopping
time under P and Q. Then the Girsanov formula stopped at T yields [with (Xv)

the canonical process of C(R+,R)]

dPT

dQT

= exp
(∫ T

0

(
p(s,X.) − q(s,X.)

)
dXs − 1

2

∫ T

0

(
p2(s,X.) − q2(s,X.)

)
ds

)
,

where PT = P/CT
,QT = Q/CT

are the restriction of P,Q to the σ -field CT .
Hence, using that under P dXt − p(t,X.) dt = dBt , with (Bt ) a Brownian mo-
tion, yields K(PT ,QT ) = (1/2)EP (

∫ T
0 (p(s,X.) − q(s,X.))

2 ds).
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