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COMMUNITY DETECTION IN DENSE RANDOM NETWORKS
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Dedicated to the memory of Yuri I. Ingster

We formalize the problem of detecting a community in a network into
testing whether in a given (random) graph there is a subgraph that is unusu-
ally dense. Specifically, we observe an undirected and unweighted graph on
N nodes. Under the null hypothesis, the graph is a realization of an Erdős–
Rényi graph with probability p0. Under the (composite) alternative, there
is an unknown subgraph of n nodes where the probability of connection is
p1 > p0. We derive a detection lower bound for detecting such a subgraph in
terms of N,n,p0,p1 and exhibit a test that achieves that lower bound. We do
this both when p0 is known and unknown. We also consider the problem of
testing in polynomial-time. As an aside, we consider the problem of detecting
a clique, which is intimately related to the planted clique problem. Our focus
in this paper is in the quasi-normal regime where np0 is either bounded away
from zero, or tends to zero slowly.

1. Introduction. In recent years, the problem of detecting communities in
networks has received a large amount of attention, with important applications
in the social and biological sciences, among others [Fortunato (2010)]. The vast
majority of this expansive literature focuses on developing realistic models of
(random) networks [Albert and Barabási (2002), Barabási and Albert (1999)], on
designing methods for extracting communities from such networks [Girvan and
Newman (2002), Newman (2006), Reichardt and Bornholdt (2006)] and on fitting
models to network data [Bickel, Chen and Levina (2011)].

The underlying model is that of graph G = (E,V), where E is the set of edges
and V is the set of nodes. For example, in a social network, a node would represent
an individual and an edge between two nodes would symbolize a friendship or kin-
ship of some sort shared by these two individuals. In the literature just mentioned,
almost all the methodology has concentrated on devising graph partitioning meth-
ods, with the end goal of clustering the nodes in V into groups with strong inner-
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connectivity and weak inter-connectivity [Bickel and Chen (2009), Lancichinetti
and Fortunato (2009), Newman and Girvan (2004)].

In this euphoria, perhaps the most basic problem of actually detecting the pres-
ence of a community in an otherwise homogeneous network has been overlooked.
For example, imagine a finite number of individuals making a number of, say,
binary decisions. A network is then created with the nodes representing the indi-
viduals, and where two individuals are connected if they made the same decision,
say, 50% of the time. In such a setting,3 the task of community detection—as we
define it here—corresponds to determining whether the individuals are acting inde-
pendently, or not. Such an abstract setting could have applications in economics,
where the individuals may be corporations, and in biology, where the individu-
als could be genes and the decisions could be their different expressions. It could
arise in a dynamic setting where a network is growing over time and monitored for
clustering [Heard et al. (2010), Mongiovı et al. (2013), Park, Priebe and Youssef
(2013)]. Once a community is detected, the next step is often to identify it, but
from a mathematical perspective, probing the limits of detection (i.e., hypothesis
testing) often offers insight into what is possible in terms of identification (i.e.,
estimation).

Many existing community extraction methods can be turned into community
detection procedures. For example, one could decide that a community is present
in the network if the modularity of Newman and Girvan (2004) exceeds a given
threshold. To set this threshold, one needs to define a null model. Newman and
Girvan (2004) implicitly assume a random graph conditional on the node degrees.
Here, we make the simplest assumption that the null model is an Erdős–Rényi
random graph [Bollobás (2001)].

In this context, we also touch on another line of work, that of detecting a clique
in a random graph—the so-called planted (or hidden) clique problem [Alon, Kriv-
elevich and Sudakov (1998), Dekel, Gurel-Gurevich and Peres (2011), Feige and
Ron (2010)].

1.1. The framework. We address a stylized community detection problem,
where the task is to detect the presence of clustering in the network and is formal-
ized as a hypothesis testing problem. We observe an undirected graph G = (E,V)

with N := |V| nodes. Without loss of generality, we take V = [N ] := {1, . . . ,N}.
The corresponding adjacency matrix is denoted W ∈ {0,1}N×N , where Wi,j = 1
if, and only if, (i, j) ∈ E , meaning there is an edge between nodes i, j ∈ V . Note
that W is symmetric, and we assume that Wii = 0 for all i. Under the null hypothe-
sis, the graph G is a realization of G(N,p0), the Erdős–Rényi random graph on N

nodes with probability of connection p0 ∈ (0,1); equivalently, the upper diagonal

3This setting is better model with a random dot-product graph, which is more complex than what
we consider in this paper.
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entries of W are independent and identically distributed with P(Wi,j = 1) = p0 for
any i �= j . Under the alternative, there is a subset of nodes indexed by S ⊂ V such
that P(Wi,j = 1) = p1 for any i, j ∈ S with i �= j , with everything else the same.
We assume that p1 > p0, implying that the connectivity is stronger between nodes
in S. When p1 = 1, the subgraph with node set S is a clique, meaning all pairs of
nodes within S are connected. The subset S is not known, although in most of the
paper we assume that its size n := |S| is known.

We study detectability in this framework in asymptotic regimes where n,N →
∞, and p0,p1 may also change; all these parameters are assumed to be functions
of N . A test φ is a function that takes W as input and returns φ = 1 to claim there
is a community in the network, and φ = 0 otherwise. The (worst-case) risk of a
test φ is defined as

γN(φ) = P0(φ = 1) + max|S|=n
PS(φ = 0),(1)

where P0 is the distribution under the null and PS is the distribution under the al-
ternative where S indexes the community. We say that a sequence of tests (φN)

for a sequence of problems (WN) is asymptotically powerful (resp., powerless)
if γN(φN) → 0 (resp., → 1). Practically speaking, a sequence of tests is asymp-
totically powerless if it does not perform substantially better than any guessing
that ignores the adjacency matrix W. We will often speak of a test being power-
ful or powerless when in fact referring to a sequence of tests and its asymptotic
power properties. As the alternative hypothesis is completely symmetric with re-
spect to S, the results presented here remain valid if we replace the maximum in (1)
by an average over all subsets S of size n.

1.2. Closely related work. We take the beaten path, following the standard
approach in statistics for analyzing such composite hypothesis testing problems,
in particular, the work of Ingster (1997) and others [Donoho and Jin (2004), Hall
and Jin (2010), Ingster and Suslina (2002)] on the detection of a sparse (normal)
mean vector. Most closely related to our work is that of Butucea and Ingster (2011).
Specializing their results to our setting, they derive lower bounds and upper bounds
for the same detection problem when the graph is directed and the probability of
connection under the null (denoted p0) is fixed, which is a situation where the
graph is very dense. Their work leaves out the interesting regime where p0 → 0,
which leads to a null model that is much more sparse.

1.3. Main contribution. Our main contribution in this paper is to derive a
sharp detection boundary for the problem of detecting a community in a network
as described above. We focus here on the quasi-normal regime where np0 is either
bounded away from zero, or tends to zero slowly, specifically,

log
(

1 ∨ 1

np0

)
= o

[
log

(
N

n

)]
.(2)
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The other regime is studied in Arias-Castro and Verzelen (2013).
On the one hand, we derive an information theoretic bound that applies to all

tests, providing conditions under which all tests are powerless. On the other hand,
we display a test that basically achieves the best performance possible. The test is
the combination of the two natural tests that arise in Butucea and Ingster (2011)
and much of the work in that field [Arias-Castro, Candès and Plan (2011), Cai,
Jeng and Jin (2011), Ingster, Tsybakov and Verzelen (2010)]:

• Total degree test. This test rejects when the total number of edges is unusually
large. This is global in nature in that it cannot be directly turned into a method
for extraction.

• Scan (or maximum modularity) test. This test amounts to turning modularity
(calibrated according to our null model) into a test statistic by rejecting when
its maximum value is unusually large. It is strictly speaking the generalized
likelihood ratio test under our framework.

We also consider the situation, common in practice, where p0 is unknown.
We derive the corresponding lower bound in this situation and design a test that
achieves this bound. The test is again the combination of the two tests:

• Degree variance test. This test is based on the differences between two estimates
for the degree variance. (Note that the total degree test cannot be calibrated
without knowledge of p0.)

• Scan test. This test can be calibrated in various ways when p0 is unknown, for
example, by estimation of p0 based on the whole graph, or by permutation. We
study the former.

Finally, we consider various polynomial-time algorithms, the main one being a
convex relaxation of the scan test based on a sparse eigenvalue problem formu-
lation. Our inspiration there comes from the recent work of Berthet and Rigollet
(2012). We discuss the discrepancy between the performances of the scan test and
the relaxed scan test and compare it with other polynomial-time tests.

We summarize our findings in Tables 1 and 2, where

R =
√

n(p1 − p0)√
p0(1 − p0)

is (up to
√

n/2 factor) the signal-to-noise ratio for deciding whether a given sub-
graph of size n is unusually dense or not.

In fact, we start by addressing the problem of detecting the presence of a large
clique in the graph, and treat it separately, as it is an interesting case in its own
right. It is simpler and allows us to focus on the regime where n/ logN → ∞
in the rest of the paper. We establish a lower bound and prove that the following
(natural) test achieves that bound:
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TABLE 1
Detection boundary and near-optimal algorithms when p0 is known and when p0 is unknown. For

any sequence a and b going to infinity, a ≪ b (resp., a ≫ b) means that there exists ε > 0
arbitrarily small such that a ≤ b1−ε (resp., a ≥ b1+ε). See Section 3 (p0 known) and

Section 4 (p0 unknown)

p0 known n ≪ N2/3 n ≫ N2/3

SCAN TEST TOT. DEG. TEST

p0 � log(N/n)
n R > 2

√
log(N/n) R > N/n3/2

p0 � log(N/n)
n R >

2 log(N/n)√
np0 log(log(N/n)/(np0))

p0 unknown n ≪ N3/4 n ≫ N3/4

SCAN TEST DEG. VAR. TEST

p0 � log(N/n)
n R > 2

√
log(N/n) R > N3/4/n

p0 � log(N/n)
n R >

2 log(N/n)√
np0 log(log(N/n)/(np0))

R > N3/4/n

• Clique number test. This tests rejects when the size of the clique number (the
size of a largest clique) of the graph is unusually large. It can be calibrated
without knowledge of p0, for example, by permutation, but we do not know of
a polynomial-time algorithm that comes even close.

The rest of the paper is organized as follows. In Section 2, we consider the prob-
lem of detecting the presence of a large clique and analyze the clique number test.
In Section 3, we consider the more general problem of detecting a densely con-
nected subgraph and analyze the total degree test and the scan test. The more real-
istic situation of unknown p0 is handled in Section 4. In Section 5, we investigate
polynomial-time tests. We then discuss our results and the outlook in Section 6.
The technical proofs are postponed to Section 7 and to the supplementary material
[Arias-Castro and Verzelen (2014)].

TABLE 2
The performance of our best polynomial time algorithms. See Section 5

p0 known n ≪
√

N n≫
√

N

RELAX. SCAN TEST TOT. DEG. TEST

R >
√

2(N logN)1/4 R > N/n3/2

p0 unknown n ≪
√

N n≫
√

N

RELAX. SCAN TEST DEG. VAR. TEST

R >
√

2(N logN)1/4 R > N3/4/n
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1.4. General assumptions and notation. We assume throughout the paper that
N → ∞ and the other parameters n,p0,p1 (and more) are allowed to change
with N , unless specified otherwise. This dependency is left implicit. In particular,
we assume that n/N → 0, emphasizing the situation where the community to be
detected is small compared to the size of the whole network. (When n is of the
same order as N , the total degree test is basically optimal.) We assume that p0 is
bounded away from 1, which is the most interesting case by far, and that N2p0 →
∞, the latter implying that the number of edges in the network (under the null) is
not bounded. We also hypothesize that either p1 = 1, or n → ∞ with n2p1 → ∞,
for otherwise there is a nonvanishing chance that the community does not contain
any edges, precluding any test to be powerful.

We say that the test that rejects for large values of a (real-valued) statistic T

is asymptotically powerful if there is a critical value t = t (N) such that the test
{T ≥ t} has risk (1) tending to 0. The choice of t that makes this possible may
depend on p1. (In practice, t is chosen to set the probability of type I error, which
does not necessitate knowledge of p1 as long as T itself does not depend on p1,
which is the case of all the tests we consider here, except for the likelihood ratio
test.) Similarly, we say that the test is asymptotically powerless if, for any sequence
of reals t = t (N), the risk of the test {T ≥ t} is at least 1 in the limit.

We use standard notation such as an ∼ bn when an/bn → 1; an = o(bn) when
an/bn → 0; an = O(bn) when an/bn is bounded; an � bn when an = O(bn) and
bn = O(an); an ≺ bn when there exists a positive constant C such that an ≤ Cbn.
For an integer n, let n(2) = n(n − 1)/2.

Because of its importance in describing the tails of the binomial distribution, the
following function—which is the relative entropy or Kullback–Leibler divergence
of Bern(q) to Bern(p)—will appear in our results:

Hp(q) = q log
(

q

p

)
+ (1 − q) log

(
1 − q

1 − p

)
, p, q ∈ (0,1).(3)

We will only consider Hp(q) with q ≥ p.

2. Detecting a large clique in a random graph. We start with specializing
the setting to that of detecting a large clique, meaning we consider the special case
where p1 = 1. In this section, n is not necessarily increasing with N .

2.1. Lower bound. We establish the detection boundary, giving sufficient con-
ditions for the problem to be too hard for any test.

THEOREM 1. All tests are asymptotically powerless if(
N

n

)
p

n(n−1)/2
0 → ∞.(4)
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The result is, in fact, very intuitive. Condition (4) implies that, with high proba-
bility under the null, the clique number is at least n, which is the size of the clique
planted under the alternative. This is a classical result in random graph theory, and
finer results are known; see [Bollobás (2001), Chapter 11]. This is not enough to
prove the result, however, as the clique number could still be even larger under
the alternative; and even if this is not the case, it would only imply that the clique
number test is powerless, but would not say anything about other tests. To prove
Theorem 1, we adopt the standard approach based on studying the likelihood ratio
test when the clique is chosen uniformly at random; see, for example, Lehmann
and Romano (2005), Chapter 8, or Tsybakov (2009), Chapter 2. In this specific
setting, the second moment method—which consists in showing that the variance
of the likelihood ratio tends to 0—suffices.

2.2. The clique number test. Computational considerations aside, the most
natural test for detecting the presence of a clique is the clique number test defined
in the Introduction. We obtain the following.

PROPOSITION 1. The clique number test is asymptotically powerful if(
N

n

)
p

n(n−1)/2
0 → 0.(5)

Hence, the clique number test is able to achieve the detection boundary estab-
lished in Theorem 1. The proof is entirely based on the fact that, when (5) holds,
the clique number under the null is at most n − 1 with high probability [Bollobás
(2001), Theorem 11.6], while it is at least n under the alternative. (Thus, the proof
is omitted.)

3. Detecting a dense subgraph in a random graph. We now consider the
more general setting of detecting a dense subgraph in a random graph. We start
with an information bound that applies to all tests, regardless of their computa-
tional requirements. We then study the total degree test and the scan test, showing
that the test that combines them with a simple Bonferroni correction is essentially
optimal.

3.1. Lower bound. When assuming infinite computational power, what is left
is the purely statistical challenge of detecting the subgraph. For simplicity, we
assume that n is not too small, specifically,

n

logN
→ ∞,(6)

though our result below partially extends to the case where n = O(logN), partic-
ularly when p1 is constant. As usual, a minimax lower bound is derived by choos-
ing a prior over the composite alternative. Assuming that p0 and p1 are known,
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because of symmetry, the uniform prior over the community S is least favorable,
so that we consider testing

H0 :G ∼G(N,p0) versus H̄1 :G ∼ G(N,p0;n,p1),(7)

where the latter is the model where the community S is chosen uniformly at ran-
dom among subset of nodes of size n, and then for i �= j , P(Wi,j = 1) = p1 if
i, j ∈ S, while P(Wi,j = 1) = p0 otherwise. For this simple versus simple testing
problem, the likelihood ratio test is optimal, which is what we examine to derive
the following lower bound. Remember the entropy function defined in (3).

THEOREM 2. Assuming (6) and (2) hold, all tests are asymptotically power-
less if

p1 − p0√
p0

n2

N
→ 0(8)

and

lim sup
nHp0(p1)

2 log(N/n)
< 1.(9)

Conditions (8) and (9) have their equivalent in the work of Butucea and Ingster
(2011). That said, (9) is more complex here because of the different behaviors of
the entropy function according to whether p1/p0 is small or large—corresponding
to the difference between large deviations and moderate deviations of the binomial
distribution. Only in the case where p1/p0 → 1 is the normal approximation to
the binomial in effect.

To better appreciate (9), note that it is equivalent to

lim sup
(p1 − p0)

2

4p0(1 − p0)

n

log(N/n)
< 1 when

np0

log(N/n)
→ ∞(10)

and

lim sup
p1

2(1 − p0)

n

log(N/n)
log

(
log(N/n)

np0

)
< 1

(11)
when

np0

log(N/n)
→ 0.

In (10), np0 is larger and only the moderate deviations of the binomial distribution
are involved, while in (11), np0 is smaller and the large deviations come into play.

Theorem 2 happens to be sharp because, as we show next, the test that com-
bines the total degree test and the scan test is asymptotically powerful when con-
ditions (8) and (9) are—roughly speaking—reversed.
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3.2. The total degree test. The total degree test rejects for large values of

W := ∑
1≤i<j≤N

Wi,j .(12)

PROPOSITION 2. The total degree test is asymptotically powerful if

p1 − p0√
p0

n2

N
→ ∞.(13)

It is equally straightforward to show that the total degree test has risk strictly less
than one—meaning has some nonnegligible power—when the same ratio tends to
a strictly positive and finite constant, while it is asymptotically powerless when
that ratio tends to zero.

3.3. The scan test. The scan test is another name for the generalized likeli-
hood ratio test, and corresponds to the test that is based on the maximum modu-
larity (calibrated according to our null model). It is particularly simple when p0 is
known, as it rejects for large values of

W ∗
n := max|S|=n

WS, WS := ∑
i,j∈S,i<j

Wi,j .(14)

Unlike the total degree (12), the scan statistic (14) has an intricate distribution
as the partial sums WS are not independent. Nevertheless, the union bound and
standard tail bounds for the binomial distribution lead to the following result.

PROPOSITION 3. The scan test is asymptotically powerful if

lim inf
nHp0(p1)

2 log(N/n)
> 1.(15)

3.4. The combined test. Having studied these two tests individually, we are
now in a position to consider them together, by which we mean a simple Bon-
ferroni combination which rejects when either of the two tests rejects. Looking
back at our lower bound and the performance bounds, we established for these
tests, we come to the following conclusion. When the limit in (8) is infinite—
yielding (13)—then the total degree test is asymptotically powerful by Proposi-
tion 2. When the limit inferior in (9) exceeds one—yielding (15)—then the scan
test is asymptotically powerful by Proposition 3.

3.5. Adaptation to unknown n. The scan statistic in (14) requires knowledge
of n. When this is unknown, the common procedure is to combine the scan tests
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at all different sizes n using a simple Bonferroni correction, which amounts to
considering a test that rejects for large values of

max
n≥uN

W ∗
n

wn

,(16)

for a carefully chosen sequence of positive reals (wn), and a sequence uN → ∞
slowly. We call this the multiscale scan test. This is done in Butucea and Ingster
(2011), with the conclusion that the resulting test is essentially as powerful as the
individual tests. It is straightforward to see that here, too, the tail bound used in
the proof of Proposition 3 allows for enough room to scan over all subgraphs of all
sizes.

PROPOSITION 4. Assuming (6), the multiscale scan test with uN = logN and

wn = n(2)H−1
p0

[
2

log(N/n) + 2

n − 1

]

is asymptotically powerful when (15) holds.

4. When p0 is unknown: The fixed expected total degree model. Although
it leads to interesting mathematics, the setting where p0 is known is, for the most
part, impractical. In this section, we evaluate how not knowing p0 changes the
difficulty of the problem. Formalizing the situation where p0 is unknown amounts
to considering the same hypothesis testing problem, but maximize the risk over
relevant subsets of p0’s and p1’s, since now even the null hypothesis is composite:

γ u
N(φ) = sup

p0∈C0

P0(φ = 1) + sup
(p0,p1)∈C1

max|S|=n
PS(φ = 0),(17)

with collections C0 ⊂ (0,1) and C1 ⊂ (0,1)2.
Lower bounding the optimal detection boundary for this new problem is not

straightforward. As a first step, we reduce our problem to an alternate testing prob-
lem, where the graph has the same expected total degree under the null and under
the alternative hypotheses. We still observe a graph G on N nodes. As before, under
the null, G is Erdős–Rényi with parameter p0. Under the alternative where S (still
of size n) is the community, P(Wij = 1) = p1 if i, j ∈ S, while P(Wij = 1) = p′

0

otherwise, where p0 = p′
0 + (p1 − p′

0)
n(2)

N(2) ; let P′
S and E

′
S denote the probability

distribution and expectation under that model. We check that, indeed,

E
′
S(W) = N(2)p′

0 + n(2)(p1 − p′
0
) = N(2)p0 = E0(W).

Note that we still assume that p0,p1, n are known to the statistician. The risk of a
test φ for this problem is defined as

γ ′
N(φ) = P0(φ = 1) + max|S|=n

P
′
S(φ = 0).
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Observe that, for all tests φ, γ ′
N(φ) ≤ γ u

N(φ) as soon as p0 ∈ C0 and (p′
0,p1) ∈ C1

so that the detection boundary for the fixed expected total degree model is smaller
than for the unknown p0 setting.

To obtain a lower bound on the minimax risk, we do as in (7) and reduce it to
the following simple versus simple testing problem:

H0 :G ∼ G(N,p0) versus H̄ ′
1 :G ∼ G

(
N,p′

0;n,p1
)
.(18)

As we did before, we first compute the detection boundary for the testing prob-
lem (18), and then exhibit some tests achieving this detection boundary. Interest-
ingly, these tests do not require the knowledge of p0 and p1, or even n, so that they
can be used in the original setting (7) when these parameters are unknown. This
will also imply that the detection boundaries are the same in the expected total
degree model and in the unknown p0 setting.

4.1. Lower bound.

THEOREM 3. Assuming (6) holds and that

log
(

1 ∨ 1

np′
0

)
= o

[
log

(
N

n

)]
,(19)

all tests are asymptotically powerless for the problem (18) if

p1 − p′
0√

p′
0

n3/2

N3/4 → 0(20)

and

lim sup
nHp′

0
(p1)

2 log(N/n)
< 1.(21)

Comparing with Theorem 2, where p0 is assumed to be known, condition (20)
is substantially weaker than the corresponding condition (8), while we shall see
in the proof that (21) is comparable to (9). That said, when n2 < N , the entropy
condition (9) is a stronger requirement than either (8) or (20), implying that the
setting where p0 is known and the setting where unknown are asymptotically as
difficult in that case.

4.2. Degree variance test. By construction, the total degree W has the same
expectation under the null and under the alternative in the testing problem with
fixed expected total degree—and same variance also up to second order—making
it difficult to fruitfully use this statistic in this context.

We design instead a test based on comparing the two estimators for the node
degree variance, not unlike an analysis of variance. Let

Wi· =
∑
j �=i

Wi,j(22)
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denote the degree of node i in the whole network. The first estimate is simply the
maximum likelihood estimator under the null

V1 = (N − 1)
N(2)

N(2) − 1
p̂0(1 − p̂0), p̂0 := W

N(2)
.

The second estimator is some sort of sample variance, modified to account for the
fact that the Wi·’s are not independent

V2 = 1

N − 2

N∑
i=1

(
Wi· − (N − 1)p̂0

)2
.

Both estimators are unbiased for the degree variance under the null, meaning,
E0 V1 = E0 V2 = (N − 1)p0(1 − p0). Under the alternative, V2 tends to be larger
than V1, leading to a test that rejects for large values of

V ∗ := V√
Np̂0

, V := V2 − V1.(23)

PROPOSITION 5. Assume that lim infNp0 > 2. The degree variance test is
asymptotically powerful under fixed expected total degree if

(p1 − p′
0)

2

p′
0

n3

N3/2 → ∞.(24)

The test based on V ∗ achieves the part (20) of the detection boundary. We note
that computing V ∗ does not require knowledge of p0, p1 or n, and in fact, its
calibration can be done without any knowledge of these parameters via a form of
parametric bootstrap, as we do for the scan test below.

4.3. The scan test. When p0 is not available a priori, we have at least three
options:

• Estimate p0. We replace p0 with its maximum likelihood estimator under the
null, that is, p̂0 = W/N(2), and then compare the magnitude of the observed
scan statistic (14) with what one would get under a random graph model with
probability of connection equal to p̂0.

• Generalized likelihood ratio test. We simply implement the actual generalized
likelihood ratio test [Kulldorff (1997)], which rejects for large values of

max|S|=n

[
n(2)h(p̂1,S) + (

N(2) − n(2))h(p̂0,S) − N(2)h(p̂0)
]
,

where h(p) := p logp + (1 − p) log(1 − p), p̂0 as above, and

p̂1,S := WS

n(2)
, p̂0,S := W − WS

N(2) − n(2)
,

which are the maximum likelihood estimates of p1 and p0 for a given subset S.
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• Calibration by permutation. We compare the observed value of the scan statis-
tic to simulated values obtained by generating a random graph with either the
same number of edges—which leads to a calibration very similar to the first
option—or the same degree distribution—which is the basis for in the modular-
ity function of Newman and Girvan (2004).

We focus on the first option.

PROPOSITION 6. Assume that lim infp0N
2/n > 1. The scan test that rejects

for W ∗
n ≥ n(2)H−1

p̂0
[2 log(N/n)+2

n−1 ] is asymptotically powerful under fixed expected
total degree if

lim inf
nHp′

0
(p1)

2 log(N/n)
> 1.(25)

Hence, the scan test calibrated by estimation of p0 achieves the entropy condi-
tion (9) without requiring the knowledge of p0 or p1. We mention that adaptation
to unknown n may be achieved as described in Section 3.5.

4.4. Combined test and full adaptation to unknown p0. A combination of the
degree variance test and of the scan test calibrated by estimation of p0 is seen
to achieve the detection boundary established in Theorem 3, without requiring
knowledge of p0 or p1.

Recall the definition of the risk γ u
N(φ) in (17).

PROPOSITION 7. Consider any fixed number ε > 0 and any sequence vn =
o(1). Define C0 as the collection of sequences p0 such that p0 ≤ 1/2 and Np0 ≥ 1.
Define C1 as the collection of sequences (p′

0,p1) with p′
0 ≤ 1/2, Np′

0 ≥ 1 and
either

nHp′
0
(p1)

2 log(N/n)
≥ 1 + ε or

(p1 − p′
0)

2

p′
0

n3

N3/2 vn ≥ 1.(26)

Then the test φ that rejects if V ∗ ≥ v
−1/2
n or W ∗

n ≥ n(2)H−1
p̂0

[2 log(N/n)+2
n−1 ] satisfies

γ u
N(φ) = o(1).

In particular, this entails that the minimax detection boundary for the unknown
p0 problem is the same as for the fixed expected degree model. Adaptation to n

can be handled as in the previous section.

5. Testing in polynomial-time. A question of particular importance in mod-
ern times is determining the tradeoff between statistical performance and com-
putational complexity. At the most basic level, this boils down to answering the
following question: What can be done in polynomial-time?
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While computing the total degree (12) or the degree variance statistic (23) can
be done in linear time in the size of the network, that is, in O(N2) time, computing
the scan statistic (14) seems intractable: it is NP-hard by reduction to the clique
problem (that of computing the clique number) [Karp (1972)], which is even hard
to approximate [Zuckerman (2006)].

We consider below various polynomial-time alternatives. The main test in this
section, the one for which we prove the strongest performance, is the relaxed scan
test presented in Section 5.2 below.

5.1. The dense n-subgraph problem. Feige, Kortsarz and Peleg (2001) con-
sider the closely related (but harder) problem of identifying S ⊂ V that maximizes
WS among subsets of nodes of size n. They call this the dense n-subgraph problem.
The algorithm they develop achieves, as far as we know, the best approximation
ratio for the scan statistic. More precisely, their procedure returns some quantity
A∗

n satisfying

N−δW ∗
n ≤ A∗

n ≤ W ∗
n ,

where δ is a universal constant between 1/3 and 5/18, which is not made explicit
in [Feige, Kortsarz and Peleg (2001)]. Arguing as in the analysis of the scan test,
we derive that the approximate scan test based on A∗

n is asymptotically powerful
if p0 � log(N/n)/n and p1 � p0N

δ . Comparing this with Proposition 8, our per-
formance guarantee for the relaxed scan test are stronger in the regime n � N1/2

and p0 � log(N/n)/n.

5.2. Convex relaxation scan test. We now suggest a convex relaxation to the
problem of computing the scan statistic. To do so, we follow the footsteps of
Berthet and Rigollet (2012), who consider the problem of detecting a sparse prin-
cipal component based on a sample from a multivariate Gaussian distribution in
dimension N . Assuming the sparse component has at most n nonzero entries, they
show that a near-optimal procedure is based on the largest eigenvalue of any n-by-
n submatrix of the sample covariance matrix. Computing this statistic is NP-hard,
so they resort to the convex relaxation of d’Aspremont et al. (2007), which they
also study. We apply their procedure to W2.

Formally, for a positive semidefinite matrix B ∈ R
N×N and 1 ≤ n ≤ N , define

λmax
n (B) = max|S|=n

λmax(BS),

where BS denotes the principal submatrix of B indexed by S ⊂ {1, . . . ,N} and
λmax(B) the largest eigenvalue of B. d’Aspremont et al. (2007) relaxed this to

SDPn(B) = max
Z

Trace(BZ) subject to Z � 0,Trace(Z) = 1, |Z|1 ≤ n,
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where the maximum is over positive semidefinite matrices Z = (Zst ) ∈ R
N×N and

|Z|1 = ∑
s,t |Zst |. We consider the relaxed scan test, which rejects for large values

of

SDPn

(
W2)

.(27)

When p0 is known, we simply calibrate the procedure by Monte Carlo simu-
lations, effectively generating W1, . . . ,WB i.i.d. from G(N,p0) and computing
SDPn(W2

b) for each b = 1, . . . ,B , and estimating the p-value by the fraction of
b’s such that SDPn(W2

b) ≥ SDPn(W2). Typically B is a large number, and below
we consider the asymptote where B = ∞.

When p0 is unknown, we estimate p0 as we did for the scan test in Proposi-
tion 6, and then calibrate the statistic by Monte Carlo, effectively using a form of
parametric bootstrap.

In either case, we have the following.

PROPOSITION 8. Assume that (2) holds and n ≤ N1/2−t for some t > 0. Then,
the relaxed scan test is asymptotically powerful if

lim inf
n√

N log(N)

(p1 − p0)
2

p0
> 2.(28)

To gain some insights on the relative performance of the scan test and the re-
laxed scan test, let us assume that n2 � N , and np0 � log(N/n). Applying Propo-
sition 3 (or Proposition 6) in this setting, we find that the scan test is asymptotically
powerful when

(p1 − p0)
2

p0
� log(N/n)

n
.

Thus, comparing with (28), we lose a factor of
√

N/ log(N) when using the re-
laxed version. In the regime where n2 � N log(N), the total degree test and degree
variance test both have stronger theoretical guarantees established in Proposition 2
and Proposition 5, respectively. Below we explain why the

√
N/ log(N) loss is not

unexpected. Consider the specific case where p0 = 1/2 and p1 = 1, known as the
planted clique problem [Feige and Ron (2010)]. According to Proposition 8, the
power of the relaxed scan test in the planted clique problem is not guaranteed for
n = o(

√
N), while the clique test can detect a clique of size n � logN , as shown

in Proposition 1. In fact, there is no known polynomial-time algorithm that can de-
tect a clique of size n = o(

√
N) [Dekel, Gurel-Gurevich and Peres (2011)] and the

problem is provably hard in some computational models, such as monotone cir-
cuits [Feldman et al. (2012), Rossman (2010)]. We refer to [Berthet and Rigollet
(2012)] for a thorough discussion of the difficulty of the planted clique problem.
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5.3. Densest subgraph test. Another possible avenue for designing computa-
tionally tractable tests for the problem at hand lies in algorithms for finding dense
subgraphs of a given size. We follow [Khuller and Saha (2009)], where the reader
will find appropriate references and additional results. Define the density of a sub-
graph S ⊂ V as

h(S) = WS

|S| .
Although maximizing h(S) among subsets of given size n reduces this to the dens-
est n-subgraph problem described earlier, the same optimization with constraint on
|S| may be done in polynomial-time.

PROPOSITION 9. Assume that p0 � log(N)/N .

1. Under the null hypothesis,

max
S

h(S) ∼P0 h(V) ∼ Np0/2,

and this maximum is achieved at subsets S satisfying |S| ∼ N .
2. The densest subgraph test is asymptotically powerful if

lim inf
np1

Np0
> 1.

3. Assume that np1
Np0

→ 0. Under the alternative hypothesis,

max
S

h(S) ∼PS
h(V) ∼PS

Np0/2,

and this maximum is achieved at subsets S satisfying |S| ∼ N .

The condition lim inf np1
Np0

> 1 is stronger than what we obtained for the re-

laxed scan test in (28) in the regime where n ≤ N1/2−t for some t > 0, and also
stronger than what we obtained for the total degree test (13) and the degree vari-
ance test (24) in the regime n � √

N . If np1/Np0 → 0, then the densest subgraph
statistic seems to behave like the total degree statistic and we therefore expect
similar performances although we have no proof of this statement.

Maximizing h(S) over subsets of size |S| ≥ n is harder, but can be approximated
within a constant factor in polynomial-time. However, the power of the resulting
test is not better. Indeed, this test is asymptotically powerful only if np1 ≥ CNp0
where C is positive constant that depends on this approximation factor.

5.4. The maximum degree test. Consider the test based on the maximum de-
gree

max
i=1,...,N

Wi·,(29)

where Wi· is the degree of node i in the graph, defined in (22).
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PROPOSITION 10. The maximum degree test is asymptotically powerful if
p0 � log(N)/N and

lim inf
n2

N log(N)

(p1 − p0)
2

p0(1 − p0)
> 2.

Under condition (2), the maximum degree test is asymptotically powerless if
lim sup log(n)/ log(N) < 1 and

n2

N log(N)

(p1 − p0)
2

p0(1 − p0)
→ 0.(30)

Comparing with Propositions 2 and 8, we observe that the maximum degree
test is either less powerful than the relaxed scan test (when n ≤ N1/2−t for any
t > 0) or less powerful than the total degree test [when n � √

N/ log(N)]. For
unknown p0, the maximum degree test (which can be calibrated as we did for the
scan test) is also less powerful than the degree variance test.

6. Discussion. With this paper, we have established the fundamental statisti-
cal (information theoretic) difficulty of detecting a community in a network, mod-
eled as the detection of an unusually dense subgraph within an Erdős–Rényi ran-
dom graph, in the quasi-normal regime where np0 is not too small as made explicit
in (2). When np0 is smaller, the arguments are more complex and a number of
other tests, not presented here, play an important role. This is detailed in our recent
work [Arias-Castro and Verzelen (2013)]. For the time being, in the quasi-normal
regime, we learned the following. In the setting where n � N2/3 for known p0,
and n � N3/4 for unknown p0, this detection boundary is achieved by the total
degree test and the degree variance test, respectively, which can be computed in
polynomial-time. Otherwise, there is a large discrepancy between the information
theoretic detection boundary, achieved by the scan test, and what polynomial tests
are shown to achieve, which in view of the planted clique problem is not surpris-
ing. It is of great interest to study this optimal detection boundary, this time under
computational constraints, a theme of contemporary importance in statistics, ma-
chine learning and computer science. This promisingly rich line of research is well
beyond the scope of the present paper.

7. Proofs.

7.1. Auxiliary results. The following is Chernoff’s bound for the binomial dis-
tribution. Remember the definition of Hp in (3).

LEMMA 1 (Chernoff’s bound). For any positive integer n, any 0 < p ≤ q ≤ 1,
we have

P
(
Bin(n,p) ≥ qn

) ≤ exp
(−nHp(q)

)
.(31)
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A consequence of Chernoff’s bound is Bernstein’s inequality for the binomial
distribution.

LEMMA 2 (Bernstein’s inequality). For positive integer n, any p ∈ (0,1) and
any x ≥ 0, we have

P
[
Bin(n,p) ≥ np + x

] ≤ exp
[
− x2

2[np(1 − p) + x/3]
]
.

We will need the following basic properties of the entropy function.

LEMMA 3. For p ∈ (0,1), Hp(q) is convex and increasing in q ∈ [p,1].
Moreover,

Hp(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(q − p)2

2p(1 − p)
+ O

(
(q − p)3

p2

)
,

q

p
→ 1;

p(r log r − r + 1),
q

p
→ r ∈ (1,∞),p → 0;

q log
(

q

p

)
+ O(q),

q

p
→ ∞.

(32)

We will also use the following upper bound on the binomial coefficients.

LEMMA 4. For any integers 1 ≤ k ≤ n,

k log(n/k) ≤ log
(

n

k

)
≤ k log(ne/k),(33)

where e = exp(1).

The next result bounds the hypergeometric distribution with the corresponding
binomial distribution. Let Hyp(N,m,n) denotes the hypergeometric distribution
counting the number of red balls in n draws from an urn containing m red balls out
of N .

LEMMA 5. For any m ≤ N/2, Hyp(N,m,n) is stochastically smaller than
Bin(n, m

N−m
).

PROOF. Suppose the balls are picked one by one without replacement. At each
stage, the probability of selecting a red ball is smaller than m/(N − m). More
formally, sample n i.i.d. uniform variable Zi ∈ (0,1). Then, on the one hand, Y :=∑n

i=1 1{Zi≤m/(N−m)} follows a binomial distribution with parameters (n,m/(N −
m)), while on the other hand X := ∑n

i=1 Xi , with

Xi := 1{Zi≤(1/(N−i+1))(m−∑i−1
j=1 Xi)},

follows a hypergeometric distribution with parameters N,m,n. And by construc-
tion X ≤ Y . �
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7.2. Proof of Theorem 1. Following standard lines, we start by reducing the
composite alternative to a simple alternative by considering the uniform prior π

on subsets S ⊂ [N ] := {1, . . . ,N} of size |S| = n. Indeed, for a test φ, recall its
worst-case risk γN(φ) defined in (1), and define its average risk

γ̄N (φ) = P0(φ = 1) + 1

n

∑
|S|=n

PS(φ = 0).

Then the average risk is bounded by the worst-case risk, meaning, γ̄N (φ) ≤ γN(φ),
this being valid for all φ. It suffices, therefore, to lower bound the average risk, and
the advantage is that we know that the likelihood ratio test minimizes the average
risk, and we can even compute its risk. The likelihood ratio is

L = #{S ⊂ [N ] : |S| = n,WS = n(2)}(N
n

)
p

n(n−1)/2
0

,(34)

which is the observed number of cliques of size n divided by the expected number
under the null. Then the test {L > 1} minimizes the average risk [Lehmann and
Romano (2005), Problem 3.10], with risk equal to

γL := P0(L > 1) +E0
(
L{L ≤ 1}).

Therefore, it suffices to show that γL → 1. Here, we use arguably the simplest
method, a second moment argument, which is based on the fact that

γL = 1 − 1
2 E0 |L − 1| ≥ 1 − 1

2

√
Var0(L),

by the Cauchy–Schwarz inequality, so it is enough to prove that Var0(L) → 0. We
do so by showing that E0(L

2) ≤ 1 + o(1).
Note that

L = p−n(2)

0 π
[
WS = n(2)],

where π [·] denotes the expectation with respect to π . Hence, by Fubini–Tonelli’s
theorem, we have

E0 L2 = π⊗2[
p−2n(2)

0 P0
(
WS1 = WS2 = n(2))] = π⊗2[

p
−K(K−1)/2
0

]
,

where K := |S1 ∩S2|, and π⊗2 is the joint distribution of S1, S2
i.i.d.∼ π . Indeed, the

event {WS1 = WS2 = n(2)} means that all edges between pairs of nodes in S1 exist,
and similarly for S2, and there are a total of n(n − 1) + K(K − 1)/2 such edges.

Before going further, note that (4) and (33) imply that

log(N/n) − (n − 1)

2
log(1/p0) → ∞.(35)

In particular, this means that n ≤ 3 logN , eventually and, therefore,

n2

N
= O

(
(logN)2/N

) → 0.(36)
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Since K ∼ Hyp(N,n,n), by Lemma 5, K is stochastically bounded by
Bin(n,ρ), where ρ := n/(N − n). Hence, by Lemmas 1 and 5, we have

P(K ≥ k) ≤ P
(
Hyp(N,n,n) ≥ k

)
≤ P

(
Bin(n,ρ) ≥ k

)
(37)

≤ exp
(−nHρ(k/n)

)
.

Now, using Lemma 3 and (36), for k ≥ 2 we get

nHρ(k/n) = k log
(
k/(nρ)

) + O(k) = k log
(
kN/n2) + O(k).

Hence,

π⊗2[
p

−K(K−1)/2
0

]

= P0(K ≤ 1) +
n∑

k=2

exp
(

k(k − 1)

2
log(1/p0) − nHρ(k/n)

)
(38)

≤ 1 +
n∑

k=2

exp
(
k

[
(k − 1)

2
log(1/p0) − log

(
kN/n2) + O(1)

])
.

For a > 0 fixed, the function x �→ ax − logx is decreasing on (0,1/a) and
increasing on (1/a,∞). Therefore,

(k − 1)

2
log(1/p0) − log

(
kN/n2) ≤ −ω,

where

ω := min
(

log
(
N/n2) − 1

2
log(1/p0), log(N/n) − n − 1

2
log(1/p0)

)
.

By (35), the second term in the minimum tends to ∞. This also the case of the first
term, since

log
(
N/n2) − 1

2
log(1/p0) = log(N/n) − n − 1

2
log(1/p0) + n

2
log(1/p0) − logn,

with the second difference bounded from below. Hence, ω → ∞. Hence, the sum
in (38) is bounded by

n∑
k=2

exp
(−k

[
ω + O(1)

]) ≤
n∑

k=2

e−kω/2 = e−ω

1 − e−ω/2 → 0,

eventually.
Hence, we showed that E0(L

2) ≤ 1 + o(1) and the proof of Theorem 1 is com-
plete.
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7.3. Proof of Theorem 2. We assume that (2), (8) and (9) hold. We reduce the
composite alternative to a simple alternative by considering the uniform prior π

on subsets S ⊂ [N ] := {1, . . . ,N} of size |S| = n. The resulting likelihood ratio is

L = L(W) =
(

N

n

)−1 ∑
|S|=n

LS = π [LS],(39)

where π [·] is the expectation with respect to S ∼ π , and

LS := exp
(
θp1WS − �(θp1)n

(2)),(40)

with

θq := log
(

q(1 − p0)

p0(1 − q)

)
(41)

and

�(θ) := log
(
1 − p0 + p0e

θ )
,

which is the moment generating function of Bern(p0).
It is well known that H is the Fenchel–Legendre transform of �; more specifi-

cally, for q ∈ (p0,1),

Hp0(q) = sup
θ≥0

[
qθ − �(θ)

] = qθq − �(θq).(42)

The second moment argument used in Section 7.2 is also applicable here, though
it does not yield sharp bounds. In Case 1 below [see (44)], which is the regime
where the moderate deviations of the binomial come into play, this method leads
to a requirement that the limit superior in (9) be bounded by 1/2 instead of 1. And,
worse than that, in Case 3 below, which is the regime where the large deviations
of the binomial are involved, it does not provide any useful bound whatsoever.

Fortunately, a finer approach was suggested by Ingster (1997). The refinement
is based on bounding the first and second moments of a truncated likelihood ra-
tio. Here, we follow Butucea and Ingster (2011). They work with the following
truncated likelihood:

L̃ =
(

N

n

)−1 ∑
|S|=n

1�S
LS,

where the events �S will be specified below (50). We note � = ⋂
|S|=n �S . Using

the triangle inequality, the fact that L̃ ≤ L and the Cauchy–Schwarz inequality, we
have the following upper bound:

E0 |L − 1| ≤ E0 |L̃ − 1| +E0(L − L̃)

≤
√
E0

[
L̃2

] − 1 + 2
(
1 −E0[L̃]) + (

1 − E0[L̃]),
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so that γL → 1 when E0[L̃2] → 1 and E0[L̃] → 1. Note that contrary to what
Butucea and Ingster (2011) do, we do not require that P0(�) → 1. More pre-
cisely, we shall prove that (1,1) is an accumulation point of any subsequence of
(E0 L̃,E0[L̃2]). Adopting this approach allows us to assume that p1/p0 converges
to r ∈ [1,∞], p2

1/p0 converges to r2 ∈ [0,∞] and that

nHp0(p1)

2 log(N/n)
< 1 − η0,(43)

for some η0 ∈ (0,1) fixed. Notice that (6) and (9) imply that Hp0(p1) → 0, which
by Lemma 3 forces either p1/p0 → 1 or p1 → 0; in any case, p1 is bounded away
from 1 this time.

In what follows, we provide the general arguments while the proof of the techni-
cal results (Lemmas 6–8) is postponed to the supplementary material Arias-Castro
and Verzelen (2014). To show these technical results, we divide the analysis de-
pending on the behavior of p1/p0

p1

p0
→

⎧⎪⎪⎨
⎪⎪⎩

r = 1,(44)

r ∈ (1,∞),(45)

r = ∞.(46)

In regime (44), the moderate deviations of the binomial distribution dominate and
these are asymptotically equivalent to normal (Gaussian) deviations; in particular,
it is in this setting (with p0 constant) that Butucea and Ingster (2011) successfully
reduce the binary setting to the normal setting. In regime (46), the large deviations
of the binomial distribution dominate, which do not resemble the normal devia-
tions and lead to a completely different regime. Regime (45) is intermediary and
requires a special treatment.

Define the numbers

k∗ =
[
1 + 2

log(N/n)

log(1 + (p1 − p0)2/(p0(1 − p0)))

]
∧ n,(47)

kmin =
[
1 + 2

log(Nk∗/n2) − log{log(n/log(N/n)) ∧ log(N/n)}
log(1 + (p1 − p0)2/(p0(1 − p0)))

]
∧ n.(48)

The exact expression of kmin will be useful for bounding the second moment of L̃.
For the time being, we only need to have in mind the properties summarized in the
following lemma.

LEMMA 6. We have kmin ∼ k∗ → ∞ and log(n/kmin) = o[log(N/n)].

We next define a sequence of number (qk) via the following result.
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LEMMA 7. For any integer k between kmin + 1 and n, there exists a unique
qk ∈ (p0,1) such that

(k − 1)

2
Hp0(qk) = log(N/k) + 2.(49)

Moreover, qk satisfies θqk
≤ 2θp1 .

Let wk = qkk
(2) and define

�S := {
WT ≤ w|T |,∀T ⊂ S such that |T | ≥ �kmin� + 1

}
.(50)

7.3.1. First truncated moment. We first prove that E0 L̃ → 1. By Fubini’s the-
orem, we have

E0 L̃ = π
[
E0[LS1�S

]] = π
[
PS(�S)

] = PS(�S),

where S is any fixed subset of size n in {1, . . . ,N} and this last inequality is by
the fact that PS(�S) does not depend on S by symmetry. By the union bound,
Chernoff’s bound (31) and (33),

1 − PS(�S) ≤
n∑

k=�kmin�+1

∑
T ⊂S,|T |=k

PS

(
WT > qkk

(2))

≤
n∑

k=�kmin�+1

(
n

k

)
P

(
Bin

(
k(2), p1

)
> qkk

(2))

≤
n∑

k=�kmin�+1

exp
[
k

(
log(ne/k) − (k − 1)

2
Hp1(qk)

)]
.

We then conclude that 1 − PS(�S) = o(1) using the following result.

LEMMA 8. We have

min
k=�kmin�+1,...,n

(
k − 1

2
Hp1(qk) − log

(
n

k

))
→ ∞.(51)

7.3.2. Second truncated moment. We now prove that E0 L̃2 ≤ 1+o(1), which

with E0 L̃ → 1 shows that Var0(L̃) → 0. Let S1, S2
i.i.d.∼ π and define K = |S1 ∩

S2|. By Fubini’s theorem, we have

E0 L̃2 = π⊗2[
E0(LS1LS21�S1

1�S2
)
]

= π⊗2[
E0

(
exp

{
θp1(WS1 + WS2) − 2�(θp1)n

(2)}1�S1∩�S2

)]
.

Define

WS×T = 1

2

∑
i∈S,j∈T

Wi,j ,
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and note that WS = WS×S . We use the decomposition

WS1 + WS2 = WS1×(S1\S2) + WS2×(S2\S1) + 2WS1∩S2,(52)

the fact that

�S1 ∩ �S2 ⊂ {WS1∩S2 ≤ wK},
and the independence of the random variables on the RHS of (52), to get

E0
(
exp

{
θp1(WS1 + WS2) − 2�(θp1)n

(2)}1�S1∩�S2

) ≤ I · II · III,

where

I := E0 exp
(
θp1WS1×(S1\S2) − �(θp1)

2
(n − K)(n + K − 1)

)
= 1,

II := E0 exp
(
θp1WS2×(S2\S1) − �(θp1)

2
(n − K)(n + K − 1)

)
= 1,

III := E0
(
exp

(
2θp1WS1∩S2 − 2�(θp1)K

(2))1{WS1∩S2≤wK }
)
.

The first two equalities are due to the fact that the likelihood integrates to one.
To bound III, we follow Butucea and Ingster (2011), with a twist. When K ≤

kmin, we will use the obvious bound

III ≤ E0 exp
(
2θp1WS1∩S2 − 2�(θp1)K

(2)) = exp
(
�K(2)),

where

� := �(2θp1) − 2�(θp1) = log
(

1 + (p1 − p0)
2

p0(1 − p0)

)
.(53)

When K > kmin, we use a different bound. For any ξ ∈ (0,2θp1), we have

III ≤ E0
[
exp

(
ξWS1∩S2 + (2θp1 − ξ)wK − 2�(θp1)K

(2)){WS1∩S2 ≤ wK}]
≤ E0 exp

[
ξWS1∩S2 + (2θp1 − ξ)wK − 2�(θp1)K

(2)],
so that

III ≤ exp
(
�KK(2)),

where

�k := min
ξ∈[0,2θp1 ]�(ξ) + (2θp1 − ξ)qk − 2�(θp1).(54)

By the variational definition of the entropy (42), the minimum of �(ξ) + (2θp1 −
ξ)qk − 2�(θp1) over ξ in R

+ is achieved at ξ = θqk
, and we know from Lemma 7

that θqk
≤ 2θp1 . Hence, we have

�k = −Hp0(qk) + 2θp1qk − 2�(θp1)
(55)

= −2Hp1(qk) + Hp0(qk).
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Following our tracks, we have

E0 L̃2 ≤ E
[
1{K≤kmin} exp

(
�K(2))] +E

[
1{K>kmin} exp

(
�KK(2))],

where the expectation is with respect to π⊗2.
Let b be an integer sequence such that b → ∞ so slowly that

(p1 − p0)√
p0

bn2

N
→ 0,(56)

which is possible because of (8). Recall that ρ = n/(N −n) and define k0 = �bnρ�.
We divide the expectation into two parts: K ≤ k0 and k0 + 1 ≤ K ≤ n. When
k0 = 1, we simply have

E
[
1{K≤k0} exp

(
�K(2))] = P(K ≤ 1) ≤ 1.

When k0 ≥ 2, we use the expression (53) of � to derive

E
[
1{K≤k0} exp

(
�K(2))] ≤ exp

[
�k2

0
]

≤ exp
[
O(1)

(p1 − p0)
2

p0(1 − p0)

b2n2

N2

]
= 1 + o(1),

because of (56).
When k0 + 1 ≤ K ≤ �kmin�, we use the bound (37) and the identity (1 −

x) log(1 − x) ≥ −x, to get

E
[
1{k0+1≤K≤�kmin�} exp

(
�K(2))]

≤
�kmin�∑

k=k0+1

exp
[
�

k(k − 1)

2
− nHρ

(
k

n

)]

≤
�kmin�∑

k=k0+1

exp
[
k

(
�

k − 1

2
− log

(
k

nρ

)
+ 1

)]
.

For a > 0 fixed, the function f (x) = ax − logx is decreasing on (0,1/a) and
increasing on (1/a,∞). Therefore, for k0 + 1 ≤ k ≤ n,

�
k − 1

2
− log

(
k

nρ

)
≤ −ω,

where

ω := min
[
logb − �

k0 − 1

2
, log

(
kmin

nρ

)
− �

kmin − 1

2

]
.

From what we did previously, we know that �(k0 −1) = o(1), so that the first term
in the maximum tends to ∞. Therefore, it suffices to look at the second term in
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the maximum. In fact, kmin has been precisely defined in (48) to make this second
term diverge. Indeed, by (48) and (53), we have

�
kmin − 1

2
≤ log

(
Nk∗

n2

)
− log log

[
n

log(N/n)

]
.

By Lemma 6 and since ρ � n/N = o(1), we get log(kmin/(nρ)) − log(Nk∗
n2 ) =

o(1). Consequently,

log
(

kmin

nρ

)
− �

kmin − 1

2
≥ log log

[
n

log(N/n)

]
+ o(1) → ∞,

because of (6).
When K > kmin, we have

E
[
1{K>kmin} exp

(
�KK(2))]

≤
n∑

k=�kmin�+1

exp
[
k

(
�k

k − 1

2
− log

(
k

nρ

)
+ 1

)]
.

Now, using (55), we have

�k

k − 1

2
− log

(
k

nρ

)

= k − 1

2

[−2Hp1(qk) + Hp0(qk)
] − log

(
N

k

)
+ 2 log

(
n

k

)
+ o(1),

which goes to −∞ uniformly over all k between �kmin� + 1 and n by the defi-
nition (49) of qk and by the control of Hp1(qk) from Lemma 8. Hence, the sum
above tends to zero.

This concludes the proof that E0 L̃2 ≤ 1 + o(1).

7.4. Proof of Proposition 2. We start with a useful result for proving that a test
is asymptotically powerful based on the first two moments of the corresponding
test statistic.

LEMMA 9. Suppose that for testing H0 versus H1, a statistic T satisfies

RT := E1(T ) −E0(T )

max(
√

Var1(T ),
√

Var0(T ))
→ ∞.(57)

Then there is a test based on T that is asymptotically powerful.

PROOF. Consider the test that rejects when T ≥ E0(T ) + √
RT Var0(T ). By

Chebyshev’s inequality, the probability of type I error tends to zero:

P0
(
T ≥ E0(T ) + √

RT Var0(T )
) ≤ 1

RT

→ 0.
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For the probability of type II error, we have

P1
(
T ≥ E0(T ) + √

RT Var0(T )
) = P1

(
T −E1(T )√

Var1(T )
≥ −ξ

)
≥ 1 − 1

ξ2 ,

where

ξ := RT max(
√

Var1(T ),
√

Var0(T )) − √
RT Var0(T )√

Var1(T )
→ ∞. �

We now apply Lemma 9 to the total degree test. Under the null,

E0(W) = N(N − 1)

2
p0, Var0(W) = N(N − 1)

2
p0(1 − p0),

while under the alternative,

E1(W) = N(N − 1)

2
p0 + n(n − 1)

2
(p1 − p0)

and

Var1(W) = N(N − 1)

2
p0(1 − p0) + n(n − 1)

2

[
p1(1 − p1) − p0(1 − p0)

]
.

In any case,

max
(
Var1(W),Var0(W)

) ≤ 1
2N2p0 + 1

2n2(p1 − p0).

Recalling the definition of RW in (57), under (13) we have

RW ≥ n(n − 1)(p1 − p0)√
N2p0 + n2(p1 − p0)

� n2

N

p1 − p0√
p0

→ ∞.

Therefore, the total degree test is asymptotically powerful when (13) holds.

7.5. Proof of Proposition 3. We use the union bound, Chernoff’s bound (31)
and (33) to get

P0
(
W ∗

n ≥ an(2)) ≤
(

N

n

)
exp

(−n(2)Hp0(a)
)

≤ exp
(
n log(Ne/n) − n(2)Hp0(a)

)
,

which goes to zero when

log(N/n) − (n − 1)

2
Hp0(a) → −∞.(58)

Choose a = ηp0 + (1 − η)p1 with η = log−1(N/n) ∈ (0,1) fixed, sufficiently
small that

lim inf
nHp0(a)

2 log(N/n)
> 1.
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This is possible because of how H varies, which is described in Lemma 3.
We then consider the test that rejects when W ∗

n ≥ an(2). We just chose a

so that its level tends to zero. Under the alternative, let S denote the commu-
nity. By definition, W ∗

n ≥ WS , and since WS ∼ Bin(n(2), p1) and p1n
(2) → ∞,

WS = p1n
(2) +OP (

√
p1n(2)). Therefore, the test is asymptotically powerful when

n2(p1 − a) �
√

p1n(2). Since p1 − a = η(p1 − p0) and η > 0 is constant, this

is the same as (p1 − p0)n
2 �

√
p1n2. Now, if p1/p0 is bounded away from

1, this is true because p1 − p0 � p1 and p1n
2 → ∞; while if p1/p0 → 1, we

use Lemma 3 and (15) to get that (p1 − p0)
2n/p0 ≥ cst log(N/n), implying that

(p1 − p0)n
2/

√
p1n2 ∼ (p1 − p0)n/

√
p0 → ∞.

7.6. Proof of Proposition 4. The proof is a simple refinement of that of Propo-
sition 3. Let an = H−1

p0
[2[log(N/n)+2]

n−1 ] = wn/n(2). Then

P0

(
max
n≥uN

W ∗
n

wn

≥ 1
)

=
N∑

n=uN

P0
(
W ∗

n ≥ ann
(2))

≤
∞∑

n=uN

exp
(
n log(Ne/n) − n(2)Hp0(an)

)

=
∞∑

n=uN

e−n = o(1).

Now, assume we are under the alternative, with a community S of size n. As
in the proof of Proposition 3, let η ∈ (0,1) be fixed, but large enough that a :=
ηp0 + (1 − η)p1 satisfies lim inf

nHp0 (a)

2 log(N/n)
> 1. Since

nHp0 (an)

2 log(N/n)
→ 1, necessarily

an ≤ a for n large enough, in which case p1 − an ≥ p1 − a �
√

p1n(2), as shown
earlier, and we conclude in the same way.
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SUPPLEMENTARY MATERIAL

Technical appendix (DOI: 10.1214/14-AOS1208SUPP; .pdf). This supplemen-
tary material contains the remaining proofs and some technical details.

http://dx.doi.org/10.1214/14-AOS1208SUPP
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